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ABSTRACT. A set E is minimally thin at a boundary point, &, if the Martin
kernel with pole at ¢ does not coincide with its balayage on E. Or in a proba-
bilistic language: There is a non-zero probability that a Brownian motion that
is conditioned to exit at £ will avoid the set E. We will consider a special class
of sets E, namely sets in the upper half-space that lies between the graph of
a function and the boundary of the half-space. Brelot and Doob gave in 1963
an integral criterion for positive non-decreasing functions for minimally thin-
ness of E. In 1991 Gardiner showed that the same criterion holds for the class
of Lipschitz continuous functions. We will generalize these results to the class
self-controlled functions, which is similar to the Beurling slow varying class of
functions.
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1. INTRODUCTION

The history of the following result is as long as the history of minimal thinness
itself. The reason is probably because it deals with one of the most straightforward
constructions of sets that candidate for being minimally thin at a given point.
From now on we will for simplicity assume that the given point is the origin.

Let us consider the upper-half-space

H={(z,y) R : 2 = (21,29,... ,2q_1) € R and y > 0}
and let us define the subset
Fr={(z,y) eR': 0 <y < f(IX]},

where f is a function from R, to [0, 00).
Let us now state a well known result, originally stated in the upper half plane
by M. Brelot and J. Doob in 1963.

Theorem A. ([6], see also [1, p. 440], [7, p. 98], [3, p. 357]) Let f be a positive
non-decreasing function on (0,00). Then

f

ij) dzr < o0. (1)

Fy is minimally thin at 0 if and only z'f/
0

This paper is dedicated in memory of my teacher Matts Essén. He was the most caring teacher
you could which for. T am most grateful to have been one of his students and friends. In the
present study, I was originally inspired by a Wiener-type criterion for minimal thinness (using a
Whitney decomposition) which was introduced by Matts Essén in [9)].

1



2 TORBJORN LUNDH

K. Burdzy gave a probabilistic proof in [7, Theorem 8.2 and Remark 8.2] where
he also raised the question how to extend to functions not being non-decreasing.

Using Lipschitz continuous functions, S. Gardiner gave in the following result
a way to extend Theorem A to functions f not necessarily non-decreasing. Using
his formulation we will look at sets that are not necessarily radially symmetric, i.e
let

E,={(z,y) eR':2 € R, and 0 < y < p(2)}, (2)
where ¢ is a function from R¢~! to [0, 00) and such that ¢(0) = 0.
Theorem B. ([10, Lemma 1]) Let E, be as in (2) and such that ¢ is such that
p(z) = (y)| < ale—y| for z,y e RT. (3)

Then E, is minimally thin at 0 if and only if
/ iﬂ? dx < oo. (4)
o |7

2. SELF CONTROLLED FUNCTIONS

We will now use a more general condition on ¢, based on the definition of self-
controlled functions introduced by C. Goldie and R. Smith in [11], which we here
formulate near the origin instead of a neighborhood of infinity.

Definition 2.1. ( [11, (2.4.2)]) If f is a measurable function from (0, 00) to (0, 00).
We say that f is self-controlled at 0 if for some A, c,,C > 0,25 > 0,

csf(z) < flx+0f(x)) < Cf(x) for some0 << A,z < x.

We will use a generalization of their definition in the following one sided, higher
dimensional, variant.

Definition 2.2. If ¢ is a positive function on R?~1. We say that ¢ is lower
self-controlled at 0 if it is measurable and

inf M:cs>0 for some A > 0.
 0l<Ap() o(z)
sign(v;)sign(z;)>0

Remark 2.3. Heuristically, a lower self-controlled function can not decrease too
fast, but is allowed to increase momentarily, when ”going out” away from the ori-
gin. See Figure 2 for a one-dimensional example of a lower self-controlled function
(which is not self-controlled).

Remark 2.4. Tt should be noted that the (lower) self-controlled condition is a close
relative to the so called Beurling slow varying condition, see for example [5, p.
120]. That is worth noting, especially since also the other concept of interest in
this short paper, minimal thinness, is indicated in the seminal paper [4] of A.
Beurling.

Let us now formulate our main result.

Theorem 2.5. Let ¢ be lower self-controlled, then E, is minimally thin in the
upper half space at the origin if and only if (4) holds
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3. PROOF OF THEOREM 2.5

Definition 3.1. We say that {Qx} is « Whitney decomposition in the upper-
half-space H if {Qr} is a partition of H and if all Qx are cubes (or squares) in H
and there ezists universal constants ¢’ and ¢ such that

'ty < sidelength of Qi < cty,
where ty is the distance from the center of Q. to the boundary OH.

We will also need the corresponding two Whitney adjusted variants of our set

E,.
E_(p: U Qka

anEso?é@
B= U o

QrNE,=Qk

Definition 3.2. Let us by M denote the class of functions from R4~ to R such
that for each ¢ in M there exists a Whitney decomposition {Qy} in H™! such
that

/ dz < = <
0 o0 — Q.
5, 1 5, 2"

We will need the following theorem of B. Dahlberg, which we state in the form
given in [2, p. 26].

Theorem C. ([8, Theorem 1)) E,, is minimally thin at 0 if and only if

/ £<oo
g, |2|¢ '

Let us also define two auxiliary functions that approximates ¢. The upper
Whitney function of ¢ is defined as

©(z) = sup{y : (z,y) € Q, such that Qr N (z, o(x)) # 0},
and the lower Whitney function of ¢ is defined as

o(x) = inf{y : (z,y) € Qk, such that QN (z, p(z)) # 0},

where z € R'.
Note that Ep = E, and E, = E,.

Lemma 3.3. If ¢ € M then E; is minimally thin at 0 if and only if (4) holds.
Proof. We note that

E,CE,CE,
and thus, if ¢ € M then, thanks to Theorem C, we see that E,, is minimally thin
if and only if wa % < oo, i.e. (4). O

Proof of Theorem 2.5. From Lemma 3.3 we see that it is sufficient to show that
@ is lower self-controlled implies that ¢ € M. Let us therefore suppose that ¢ is
self-controlled with the constants A and ¢, as in Definition 2.2 above.

Let us now pick a Whitney decomposition of H such that the conditions in

Definition 3.1 are fulfilled with the constant ¢ < min( 4233’ 5 \/%+ 5)-
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FIGURE 1. An upper and a lower Whitney square.

Let us by s; denote the side-length of the cube ). Definition 3.1 give us then
that

te < s < cty. (5)

We will study those Whitney cubes whose lower edge coincides with ¢ and
denote them {@, }. We will also use the notion ¢ for the distance from the center
of the cube Q to the boundary JH, and s for the side length of such lower cubes.

Completely analogously we have similar notions for the squares {@,} connected
to ©.

Let b(Qx) be the projection of of the Whitney cube @y down to OH.

Let us now obtain some estimates for the squares {Qk} below an “upper” square

{Q,}, i.e. the indexes k and 4 are such that b(@Q,) N b(Q;) # 0, e.g. see Figure 1.
Let

Vary = sup ¢(z) — ¢(§).

We can find a v € RI~! such that £ = x —|— v and |v| < Ap(z), since |v| <
Vd = 1sp < V/d—T1c(p(z) + 1si), and ¢ < 2\/—+A Thus we have that

Vary < sup o(z)(1 — cs). (6)
T€b(Qr)

For @, and Qk as above, we have the following.

_ 1 | - 3c c
ti — tk S E(ﬁk +§z) + Varz- S Ei + (tz + 551)(1 — CS) S tz(l + E - 05(1 — 5))

Let now M = ¢,(1 — £) — 3¢, We then note that M is strictly positive for our

Whitney decomposition since ¢ < 42%. Hence
ty > Mt;. (7)

Let us suppose that | B, | 7 < 00 holds. Then, by summing over all {Q, } we have
that

1
00 > %d.ﬁz (tk_§§k)/ | ‘ddx> E t.(1 / idx,
(

i hQ,) |z|d
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from (5). From (7) we then obtain

oo>M(1—§)Zfi/ idszu—f)Z%,-/_ ﬁdxz

gy Jway ot Py @l
1-¢£ %)
> y{L=9) /90(? da.
1+ Jo 2l
We conclude that f is in the family M finishing the proof. U

Is Theorem 2.5 really a generalization of the earlier results? The following
lemma tells us that that is the case.

Lemma 3.4. A function ¢ from R to R, is lower self-controlled (at the origin)
if any of the following conditions holds.

e ¢ is radially non-decreasing from the origin.
e ¢ is Lipschitz, i.e. as in (3).
e H'"\ E, is a Nagel-Stein domain.
Proof. The first statement is trivial.
The second is also easy. Suppose that |¢(z) —¢(y)| < a|z —y| holds and choose

A< é, see Definition 2.2. Furthermore, suppose that y = x+wv, sign(v;)sign(z;) > 0
and |v| < ¢(z)A. Then

o) — oY) < [e(z) — ()] < alv| < alp(),
due to the assumptions.
Thus, we have that

M >1—aA > 0.
(@)
The last statement follows easily from the definition of a Nagel-Stein domain,
see for example [3]. O

Remark 3.5. Note that there are no implications between the first two conditions
in the above lemma. Note also that the third condition implies the second.

3.1. A lower self-controlled example. Let u and v be two Lipschitz functions
from R to R, and such that u(0) = v(0) = 0, u(x) > v(x) when z # 0, and
such that E, is not minimally thin at 0, but F, is minimally thin at 0, in the
upper-half-plane.

Let us now construct a new function, w, that “zig-zags” its way between u and
v in the following way: Let limg »  w(z) = u(1l) > v(1) = lim,\ w(z), and
whenever the right limit of w equals v, w will increase linearly with a slope k if
x < 0. See Figure 2. A similar construction is made for z > 0. The resulting
function is neither Lipschitz nor monotone, but it will be lower self-controlled.
Hence one can use the integral criterion (4) for w to decide whether E,, is minimally
thin at 0.
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FIGURE 2. A lower self-controlled zig-zag function which is neither
monotone, nor Lipschitz.
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