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Most of previous studies on diversity gains and capacities of multiantenna systems assumed independent and identically
distributed (i.i.d.) Gaussian noises. There are a few studies about the noise correlation effects on diversity gains or MIMO
capacities, however, by simulations only. In this paper, the maximum ratio combining (MRC) diversity gain and multiple-input
multiple-output (MIMO) capacity including correlated noises are presented. Based on the derived formulas, measurements in a
reverberation chamber are performed for the first time to observe the effect of noise correlations on diversity gains and MIMO
capacities.

1. Introduction

Diversity techniques are used to mitigate fading effects in
wireless multipath environments to offer better communica-
tion reliability; the multiple-input multiple-output (MIMO)
multiplexing, on the other hand, makes use of the scattering
property to provide higher communication data rates. Since
both the (spatial) diversity and multiplexing in mobile
communications involve multiport antennas, the diversity
gain and ergodic MIMO capacity become two common
parameters for characterization of multiport antennas. This
paper focuses on the maximum ratio combining (MRC)
diversity gain and the ergodic MIMO capacity. We assume
perfect channel sate information (CSI) at receive side but no
CSI at transmit side throughout this paper.

MRC diversity gains and MIMO capacities of multi-
port antennas have been measured in real-life (outdoor
and indoor) multipath environments [1–4]. These studies
provide valuable empirical results for various representative
environments. However, real-life measurements are usually
time-consuming and costly. The diversity gain of a multiport
antenna can also be evaluated based on anechoic chamber
measurements [5]. However, the full radiation pattern
measurement is also time-consuming. As an alternative, the

reverberation chamber is getting more and more popularity
for MIMO terminal characterization (and even system tests)
due to its fast and repeatable measurements [6–14]. A
reverberation chamber is basically a large metal cavity with
mode-stirrers inside to create a Rayleigh-fading environment
[15].

While most of the previous works assumed independent,
identically distributed (i.i.d.) noises, it was pointed out
in [16, 17] that the antenna mutual coupling, apart from
affecting spatial correlations of received signals, causes noise
correlations which, in turn, affect diversity gains and MIMO
capacities. However, these studies were carried out by
simulations only, and there is so far no measurement for
noise correlation effects on either diversity gains or MIMO
capacities.

The main purpose of this paper is to study and observe
the effects of correlated noises on diversity gains and MIMO
capacities by measurements in a reverberation chamber. For-
mulations of the diversity gain and MIMO capacity including
noise correlations (using the noise prewhitening concept)
are given in Section 2. The measurements and results are
discussed in Section 3, where great care is exerted in choosing
appropriate frequency step and frequency stirring bandwidth
in order to have accurate measurement results. This paper
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is particularly useful for over-the-air (OTA) measurements
using reverberation chambers.

2. Theory

Unlike that in [16] where an open-circuit channel concept
was used, in the paper, we deal with composite channels
including overall antenna effects (i.e., spatial correlation,
mutual coupling, and antenna efficiencies) directly, which
are more convenient for measured channels [1–14]. Provided
that mutual coupling effects can be included correctly using
antenna impedance matrices and with the right channel
normalization, the open-circuit channel approach gives the
same result as the composite channel (including overall
antenna effect) approach [4]. In the paper, the MRC diversity
gain is presented using the noise prewhitening concept based
on [18]. A similar approach is used in the presentation of the
MIMO capacity, yet the formulation is rather simple thanks
to the well-known MIMO capacity work [19].

2.1. MRC Diversity Gain. Considering a narrowband N-
port diversity antenna in a Rayleigh-fading environment, the
input-output relation is

y = hx + n, (1)

where h is the composite fading channel vector including
overall antenna effect, x is the complex baseband scalar
input signal, y is the complex baseband output signal, and
n is the noise vector. Without specifications, vectors in this
paper (e.g., h, y, n) are column vectors. Note that this
composite channel model is almost the same as the open-
circuit one except that signals are measured with the antenna
ports terminated with matched loads instead of open-
circuited. In this exhibition, the mutual coupling effect is
implicitly included via the composite channel h. To illustrate
the equivalence of the open-circuit and composite channel
model, we resort to numerical simulations using both models
(see Appendix A).

The covariance matrix of the diversity antenna is

R = E
[

hhH
]

, (2)

where the superscript H is the Hermitian operator, and E
is the expectation operator that is usually approximated
by sample mean of channel realizations. Note that in a
Rayleigh-fading channel, correlation and covariance are used
interchangeably, and that in rich scattering environments R
is nonsingular. The instantaneous MRC output power is

PMRC = hHh. (3)

Previous literature assumed i.i.d. Gaussian noises with
unity variance, that is, n∼CN(0, I) where I denotes identity
matrix, so that PMRC was equal (in value) to the instan-
taneous signal-to-noise ratio (SNR), denoted as γ [18].
However, for compact multiport antennas, the antenna
mutual coupling colors the noises in different antenna

branches, so that n∼CN(0, Rn). Therefore, y needs noise
prewhitening prior to further signal processing [20]:

y′ = R−1/2
n y = R−1/2

n hx + R−1/2
n n, (4)

where y′ is the prewhitened output signals together with
spatially white (unity variance) noises to be combined by
MRC. Therefore, the instantaneous SNR is

γ =
(

R−1/2
n h

)H(
R−1/2
n h

)
= hHR−1

n h (5)

and the covariance matrix of the prewhitened signals is

R′ = E
[(

R−1/2
n h

)(
R−1/2
n h

)H] = R−1/2
n R

(
R−1/2
n

)H
. (6)

The characteristic function of the MRC output is [21]

φ(z) = E
[
exp

(
jzγ
)] = 1

det(I + zR′)

= 1
det
(

I + zR−1
n R

) .
(7)

Denote λi (i = 1, . . . ,N) as the ith eigenvalue of R′ (or
equivalently R−1

n R). The probability density function (PDF)
of γ is inverse Fourier transform of φ(z),

p
(
γ
) = 1∏

iλi

∑

i

exp
(−γ/λi

)
∏

k /= i((1/λk)− (1/λi))
. (8)

The cumulative distribution function (CDF) of γ is,

F
(
γ
) = 1−

N∑

i=1

λN−1
i exp

(−γ/λi
)

∏N
k /= i(λi − λk)

. (9)

For a theoretically ideal case (where a multiport antenna
is power-balanced and has zero correlations and no mutual
coupling among all branches), all eigenvalues are equal to
each other, neither (8) nor (9) is valid anymore due to
singularity. For such cases (8) and (9) must be replaced by
(10) and (11), respectively [22]

p
(
γ
) = 1

(N − 1)!
γN−1

λ
exp

(
−γ

λ

)
, (10)

F
(
γ
) = 1− exp

(
−γ

λ

) N∑

i=1

(
γ/λ
)i−1

(i− 1)!
. (11)

Note that the CDF formula (9) is almost identical to the one
given in [18] except that λi are eigenvalues of R−1

n R instead of
R. This CDF formula is also only valid for multiport antennas
with distinct eigenvalues because of its singularity (when any
two eigenvalues are equal). Thus one tends to believe that (9)
will result in large numerical error when two eigenvalues are
close to each other. However, it is has been shown in [7] that
(9) does not have large numerical error when the estimated
eigenvalues from measurements are close to each other, and
therefore holds for practical measurements. Equation (9) will
be used in this paper hereafter.
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The effective diversity gain is defined as the output SNR
improvement of a diversity antenna compared with that of
an ideal single antenna at 1% outage probability level [22],

Geff = F−1
(
γ
)

F−1
ref

(
γ
)
∣∣∣∣∣

1%

, (12)

where (·)−1 denotes functional inversion, Fref is the CDF of a
single ideal antenna,

Fref
(
γ
) = 1− exp

(−γ). (13)

2.2. MIMO Capacity. Considering a narrowband MIMO
system with Nt transmit antennas and Nr receive antennas
in a flat Rayleigh-fading environment, the input-output
relation can be modeled as

y = Hx + n, (14)

where H is complex fading channel matrix including overall
antenna effects, and x is complex baseband transmit signal
vector. Similarly, due to mutually coupled noise, the noise
prewhitening needs to be performed to y,

y′ = R−1/2
n y = R−1/2

n Hx + R−1/2
n n, (15)

so that the classical MIMO capacity formula given by [19]
holds.

Since there is no CSI at transmit side, the transmit
power is assumed to be equally allocated to the Nt transmit
antennas, the ergodic capacity in this case is [19]

C = E
{

log2

[
det
(

I +
γ

Nt

(
R−1/2
n H

)(
R−1/2
n H

)H)]}

= E
{

log2

[
det
(

I +
γ

Nt
R−1
n HHH

)]}
.

(16)

2.3. Mutual Coupling on Noises. The mutual coupling effect
on noises was studied in [16] for a MIMO system, which
is also applicable for diversity antennas. For the sake
of completeness, we briefly include the derivation here.
Assuming that each antenna port is terminated separately,
the spectral density of total thermal noise matrix is

Pn
(
f
) = 1

2

(
YL + Y∗L

)
vnvH

n , (17)

where YL is the diagonal admittance matrix of the loads and
vn is thermal noise voltage. Based on simple circuit theory,
we have

vnvH
n = 2kTY−1

A

(
YA + Y∗A

)(
Y−1
A

)H
,

YA = YR + YL,
(18)

where k is Boltzmann’s constant, T is the absolute tempera-
ture, and YR is the admittance matrix of the receive antennas.
For a narrowband system, the normalized noise covariance
matrix is

Rn = Pn
(
f
)

Pn
(
f
) , (19)

where Pn(f ) is the noise spectral density of an isolated
antenna. Note that the exact values of k, T and actual system
bandwidth do not matter for Rn since they are all cancelled
out by the normalization (19). In order to illustrate the
mutual coupling effect on noise correlation, we resort to
numerical simulations presented in Appendix B, where it is
shown that the mutual coupling effect on noise correlation is
more profound with small antenna separation.

3. Measurements and Results

To study noise coupling effects on diversity gains and MIMO
capacities, we performed measurements of the so-called
Eleven antenna (a wideband log-periodic array working from
2 to 13 GHz as shown in Figure 1) [23], in a reverberation
chamber. In this case, the wideband array has to be regarded
as many narrowband antennas working at different frequen-
cies. Therefore, the wideband measurement is regarded as
many separate narrowband measurements for many virtual
narrowband antennas operating at different frequencies.

3.1. Measurement of Channel Samples. The chamber used
in this work is the Bluetest HP reverberation chamber with
a size of 1.75 × 1.25 × 1.8 m3. It has two plate stirrers,
a turn-table platform, and three wall antennas (antennas
mounted on three orthogonal walls inside the chamber) (see
Figure 2). In the measurements, the platform moved step-
wisely to 20 positions (equally spaced over one complete
platform rotation) and for each platform position the two
plates moved step-wisely and simultaneously to 10 positions
(equally spaced over the total distances that they could
travel). At each stirrer position and for each of the three wall
antennas, the vector network analyzer (VNA) performed a
frequency sweeping to sample the channel transfer functions
over frequency. The VNA used in this work is Agilent
E5071C ENA series network analyzer working from 100 kHz
to 8.5 GHz. We therefore chose a measuring frequency range
of 2–8 GHz. The frequency step was set to 1 MHz (for a
reason that will become clear later). Since the maximum
sweep point of this VNA is 1601, we have to divide the whole
frequency band into four subbands, that is, 2–3.5 GHz, 3.5–
5 GHz, 5–6.5 GHz, and 6.5–8 GHz.

For diversity measurements, the Eleven antenna is
regarded as the diversity antenna under test, and channels
corresponding to the three wall antennas are considered as
the same random process. Therefore, there are 600 channel
samples per frequency point for the diversity evaluation.
For capacity measurements, the Eleven antenna is regarded
as receive MIMO antenna under test, and the three wall
antennas are regarded as three transmit antennas. Therefore,
there are 200 MIMO channel samples per frequency point
for the capacity evaluation. In both cases, the measured
channel samples may not be sufficient to support accurate
estimations. A simple way to increase channel samples is
to treat channel samples at different frequencies as different
channel realizations. This methodology has been used in
[2] for real-life multipath measurements. In a reverbera-
tion chamber, it is usually referred to as the frequency
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Figure 2: Drawing of Bluetest reverberation chamber measuring a two-port antenna.

stirring or electronic stirring [24]. However, the frequency
stirring bandwidth has to be carefully chosen so that more
equivalently independent samples can be included without
changing the channel statistics. The coherence bandwidth of
the channel is around 1-2 MHz [25], while the stationarity
bandwidth is larger than 20 MHz (see [8] and the references
therein). In practice, the antenna bandwidth also affects the
channel characteristics, since the composite channel includes
the antennas. Hence, the frequency stirring bandwidth
should be larger than coherence bandwidth but smaller

than stationarity bandwidth and antenna bandwidth. The
Eleven antenna has reflection coefficients below −10 dB
over its working frequency range [23]. As a result, an
empirical frequency stirring bandwidth of 20 MHz is chosen.
At this point, the choice of 1-MHz frequency step starts
to make sense in that a larger frequency step will degrade
the frequency resolution and a smaller one will result
in spectrally correlated channel samples (which in turn
makes the frequency stirring less effective). As a result,
there are 12000 channel samples per frequency for diversity
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Figure 4: Measured ergodic capacities of the two-port Eleven
antenna at 15 dB SNR with/without coupled noise.

evaluations and 4000 channel samples per frequency for
capacity evaluations.

In order to calibrate out the long-term fading (or
attenuation) in the chamber (so that only short-term fading
comes into play), a reference measurement is needed, where
the average power transfer function is measured using a
reference antenna with known total radiation efficiency.
The reference power level, Pref, is obtained by dividing the
average power function by the total radiation efficiency of
the reference antenna. The measured channel vector hmeas

(for diversity evaluations) and channel matrix Hmeas (for

capacity evaluations) are functions of frequency (or virtual
narrowband antenna) and stirrer position. For convenience,
the normalized measured channel vector and matrix are
denoted, respectively, as

h = hmeas√
Pref

, H = Hmeas√
Pref

. (20)

Due to the strong scattering inside the chamber, line-
of-sight (LOS) components usually have much smaller
power level as scattered components. Therefore, h and H
in (20) can be considered as zero mean vector and matrix,
respectively. Note that the total radiation efficiencies of the
wall antennas are also calibrated out by (20). Since the wall
antennas are separated sufficiently far from each other (at
least 7∼8 wavelength spacing at the lowest frequency) and
orthogonally polarized, their correlations are negligible [26].
Therefore, the Eleven antenna’s effects on diversity gains
and MIMO capacities without the effects of the transmit
antennas can be examined by the measurement setup and
normalization (20) (cf. semicorrelation configurations in
[27]).

3.2. Measurement of Correlated Noises. In order to calculate
the correlated noises, we have to know the admittance
(or impedance) matrix of the Eleven antenna. Note that
the derivation in Section 2.3 holds for lossless multiport
antennas only. Fortunately, the Eleven antenna itself has
a negligible ohmic loss (below 0.3 dB over the working
frequency range) [23]. The 180◦ hybrids (see Figure 1),
however, have insertion losses between 1.4 dB at 2 GHz and
3 dB at 8 GHz. In order to calibrate the hybrid losses, we
measured S-parameters of the Eleven antenna at the four
ports, port1–port4 (see Figure 1) (without the 180◦ hybrids)
in an anechoic chamber. These measured S-parameters were
combined using two ideal lossless 180◦ hybrids to obtain S-
parameters at “lossless” ports P1′ and P2′. These “lossless”
S-parameters are converted to Y-parameters by

ZR = Z0(I + SR)(I− SR)−1, YR = Z−1
R , (21)

where SR is S-parameter matrix, ZR (YR) is the impedance
(admittance) matrix of the Eleven antenna, and Z0 =
50 ohm. Assuming 50-ohm impedance termination at
antenna ports, YL = I/Z0. Substitute these into (17)–(19),
the noise covariance matrix Rn can be calculated.

3.3. Measurement Results. With known Rn and measured
channel samples, MRC diversity gains and MIMO ergodic
capacities can be readily calculated using the formulas
derived in Section 2. Figure 3 shows the measured effec-
tive diversity gains with/without noise coupling (i.e., iso-
lated/correlated noise). It is seen that the correlated noises
alter the effective diversity gains at some frequencies (corre-
sponding to some virtual narrowband antennas) compared
with that of the isolated noise case. Figure 4 shows the
measured ergodic capacity with/without noise coupling (i.e.,
isolated/correlated noise). Similarly, it is found that the
correlated noises affect ergodic capacities for some virtual
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narrowband antennas at different frequencies. The ideal
diversity gains and ergodic capacities with i.i.d. channel are
also plotted, respectively, in Figures 3 and 4 (marked as i.i.d.
limits) for comparisons. Note that the i.i.d. limit for ergodic
capacities were estimated by the sample mean of mutual
information realizations corresponding to 4000 numerically
generated i.i.d. Rayleigh-fading channel realizations, while
the exact i.i.d. limit for effective diversity gains was calculated
analytically using (11)–(13).

There are many factors affecting diversity gain and capac-
ity; however, the “isolated noise” curves in Figures 3 and 4
represent, respectively, the diversity gain and capacity taking
into account all the factors except the noise correlation,
while the corresponding “correlated noise” curves represent
the diversity gain or capacity with all factors including the
noise correlation. Therefore, the difference between these
two curves is only due to the effect of noise correlation.
To clearly illustrate the noise correlation effect on either
diversity gain or capacity, we plot the diversity gain and
capacity differences (or errors) between “correlated noise”
and “isolated noise” cases (in percentage by dividing the
differences with the corresponding “correlated noise” value)
in Figure 5.

The correlation magnitudes, ρ, of the two-port Eleven
antenna can be estimated by

ρ̂ =
∣∣∣
[

R̂
]

12

∣∣∣, R̂ = 1
MNt

M∑

m=1

HmHH
m, (22)

where Hm denotes the mth sample of normalized channel
H, M = 4000 is the number of samples, and Nt = 3 is
the number of wall antennas. Figure 6 shows the correlation
magnitudes of the virtual narrowband antennas working
at different frequencies. Comparing Figure 5 with Figure 6,
it is found that diversity gains (and ergodic capacities)
with isolated noises are very close to those with correlated
noises at frequencies where correlation magnitudes are
smaller than 0.2; otherwise, there are noticeable deviations
between them and these deviations tend to increase with
increasing correlations. In other words, for virtual nar-
rowband multiport antennas with small correlations, it is
a good approximation by assuming i.i.d. Gaussian noise,
otherwise noise correlations need to be considered in order
to get accurate diversity gains and/or ergodic capacities.
This observation agrees with the noise power simulation in
Appendix B, where it is shown that noise correlation can
be neglected when the mutual coupling (or correlation)
between the antenna ports is negligible.

This finding verifies the simulation results in [16], where
it was shown that the noise correlation has noticeable
effect on capacity when parallel half-wavelength dipoles
are closer than 0.3 wavelengths, while the parallel half-
wavelength dipoles’ correlation magnitude is larger than 0.2
when dipole separation is smaller than 0.3 wavelengths in
a three-dimensional isotropic-scattering environment [28],
for example, a reverberation chamber [29].

4. Conclusion

Most of previous diversity and MIMO studies assumed i.i.d.
noises in antenna branches. There are only a few works
studying the effects of noise correlations on diversity gains
and MIMO capacity [16, 17], but these studies were carried
out by simulations only. In this paper, the noise correlation
effects on diversity gains and capacities are formulated
using the noise prewhitening concept and the computational
robustness of the derived MRC CDF was proved rigorously.
The effects of correlated noises on MRC diversity gains and
MIMO ergodic capacities were studied via reverberation
chamber measurements, where a great care is exerted in
choosing the measurement frequency step and frequency
stirring bandwidth in order to have accurate measurement
results. It was shown that, only for multiport antennas
with very small correlations, the noise correlation effects on
diversity gains (capacities) can be neglected. Otherwise, it
should be taken into account for accurate diversity (capacity)
measurements.

Appendices

A. Open-Circuit and Composite Channel Model

From the circuit theory, a MIMO system can be expressed
using the open-circuit channel model as [17]

[
vT
vR

]
=
[

ZT 0
Hoc ZR

][
iT
iR

]
, (A.1)

where ZT , iT , and vT are impedance matrix, current and
voltage vectors at the transmitter, respectively; and ZR,
iR, and vR are impedance matrix, current and voltage
vectors at the receiver, respectively; 0 is zero matrix with
proper dimensions, Hoc is channel matrix corresponding
to open-circuited antennas at both MIMO sides. Note that
for notation simplicity and without loss of generality, the
additive noises are omitted for the time being, while the
noises can be easily included using similar SNR concept as
the one used in Section 2.2.1. Based on simple circuit theory,
the transmit and receive voltage vectors can be expressed,
respectively, as

vT = ZT(ZT + Zs)
−1vs, vR = −ZLiR, (A.2)

where vs is source voltage vector, Zs and ZL are source
and load impedance matrices, respectively. For coupled
impedance matching, both Zs and ZL are full matrices,
whereas for uncoupled impedance matching, Zs and ZL are
diagonal matrices. vR is related to vT as

vR = ZL(ZL + ZR)−1Hoc(ZT + Zs)
−1vs. (A.3)

The factor ZL(ZL + ZR)−1Hoc(ZT + Zs)
−1 is voltage transfer

function. To relate the Z-parameter model (A.3) to the
information-theoretic input-output relation, y = Heffx, the
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Figure 5: Errors of effective diversity gain and ergodic capacities (at 15-dB SNR) of the two-port Eleven antenna due to noise correlation.

voltage transfer function has to be properly normalized such
that the received power satisfies

E
{

tr
[

Re
(

ZLiRiHR
)]}

= E
[

tr
(

yyH
)]

= E
[

tr
(

HeffKxHH
eff

)]
,

(A.4)

where Kx = INtPT/Nt is covariance matrix of transmit
signals. The total radiated power is PT = E{tr[Re(ZT iT iHT )]}.
The effective channel can be written as

Heff =
√
Nt Re (Z)1/2

L (ZL + ZR)−1Hoc Re (Z)−1/2
T . (A.5)

Accordingly, the effective channel should be normalized to
the average channel gain of a SISO system with antennas at
both sides conjugate matched, that is, zL = z∗R and zs = z∗T
where superscript ∗ is conjugate operator, zT and zR are
antenna transmit and receive impedance, respectively, and
zL and zs are load and source impedances at transmit and

receive sides, respectively. It is easy to derive the effective
SISO channel, that is, heff, as

heff =
√

Nt

rRrT

h

2
, (A.6)

where rT = Re{zT}, rR = Re{zR}, and E[|h|2] = 1. Dividing
Heff with

√
E[|heff|2], the normalized MIMO channel that

includes overall antenna effect is

H = 2
√
rRrTreal(Z)1/2

L (ZL + ZR)−1Hocreal(Z)−1/2
T , (A.7)

where Hoc = Φoc,1/2
R HwΦ

oc,1/2
T , with Φoc

R and Φoc
R denoting

the open-circuit correlation matrix. In order to compare the
open-circuit channel model (A.7) with composite channel
model, we have to construct the correlation matrix of the
signals at the loaded antenna ports (that takes the overall
antenna effect, including mutual coupling, into account)

R = Ξ ◦Φ, Ξ = √e
√

eT ,

[Φ]mn =
∫∫

4πgH
m(Ω)Pinc(Ω)gn(Ω)dΩ√∫∫

4πgH
m(Ω)Pinc(Ω)gm(Ω)dΩ · ∫∫ 4πgH

n (Ω)Pinc(Ω)gn(Ω)dΩ
,

(A.8)

where gi (i = 1, . . . ,N) is the embedded far-field function
vector (with elements representing components for different
polarizations) at the ith loaded antenna port, and Pinc is
dyadic power angular spectrum of the incident waves, e =
[eemb1 eemb2 . . . eembN ]T , ◦ denotes entry-wise product,
the superscript T denotes the transpose operator, and √ is
entry-wise square root. Note that in a polarization-balanced
isotropic reverberation chamber, Pinc(Ω) = I. Also note
that the transmitting or receiving dependence has been
dropped in the expression for notional convenience. The
composite channel (including the overall antenna effect) can
be expressed as

H = R1/2
R HwR1/2

T . (A.9)

For simplicity, we use two parallel half-wavelength dipoles
as an example. The dipole antennas are used as receive

antennas, and two ideal antennas are used at the transmit
side. The open-circuit and embedded radiation patterns can
be expressed, respectively, as

�Gi
(
θ,φ

) = −θ̂ 2Ckη cos(π/2 cos θ)
k sin θ

exp
(
jk
di
2

sin θ sinφ
)

,

�Gemb,1
(
θ,φ

) = �G1
(
θ,φ

)
I1 + �G2

(
θ,φ

)
I2,

�Gemb,2
(
θ,φ

) = �G1
(
θ,φ

)
I2 + �G2

(
θ,φ

)
I1,

(A.10)

where i = 1, 2, d1 =−d, d2 = d,Ck = − jk/4π, and η is the free-
space wave impedance. From simple circuit theory, when the
excitation current at the port 1 is unity, that is, I1 = 1,
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Figure 6: Measured magnitudes of complex correlations of the
Eleven antenna.

I2 = −Z12/(Z11 + Zs). The embedded radiation efficiencies
can therefore be calculated as

eemb, j =
⎛
⎝1−

∣∣∣∣∣
zin, j − z∗L, j j

zin, j + zL, j j

∣∣∣∣∣
2
⎞
⎠
⎛
⎜⎝1− rL, j j

∑
i=1,i /= j |Ii|2

Re
{
zin, j

}∣∣∣I j
∣∣∣2

⎞
⎟⎠,

zin, j = zj +
1
I j

∑

i=1,i /= j

z jiIi.

(A.11)

The analytical expressions for the self- and mutual-
impedances of the parallel dipoles can be found in [30].
Figure 7 shows the ergodic capacities (as functions of dipole
separation) in an isotropic scattering environment at 13-
dB SNR with 50-ohm loads using both open-circuit and
composite channel model. As expected, both models result
in the same capacity values.

B. Mutual Coupling Effect on Noise Correlation

In order to illustrate the mutual coupling effect on noise
correlations, we resort to simulations again using the exam-
ple of two parallel half-wavelength dipoles. As explained in
Appendix A, the impedance matrix of the parallel dipoles
is given in [30]. Substitute the impedance (or equivalently
admittance) matrix into (17)–(19), the noise correlation
matrix Rn can be calculated. Since the two dipole antennas
are identical, the noise power is simply [Rn]11. Figure 8
calculates the noise power as a function of dipole separation
with/without the mutual coupling effect (i.e., correlated
noise and isolated noise), where isolated noise is obtained
simply by assuming a pair of uncoupled parallel dipoles
(with a diagonal impedance matrix). It can be seen from
Figure 8 that due to mutual coupling affect the noise power
is not white anymore and that it approaches the white noise
(i.i.d. noise) asymptotically as dipole separation increases
(i.e., as the mutual coupling effect becomes negligible). This
observation implies that the noises at different antenna
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Figure 7: Ergodic capacities at 13-dB SNR in an isotropic scattering
environment using open-circuit and composite channel models.
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Figure 8: Comparison of noise powers of isolated noise and
correlated noise.

ports can be approximately treated as uncorrelated when the
separation is small.
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