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Single-pixel digital ghost holography
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Since its discovery, the “ghost” diffraction phenomenon has emerged as an unconventional technique for
optical imaging with very promising advantages. However, extracting the intensity and phase information of a
structured and realistic object remains a challenge. Here we show that a ghost hologram can be recorded with
a single-pixel configuration by adapting concepts from standard digital holography. The presented homodyne
scheme enables phase imaging with nanometric depth resolution and three-dimensional focusing ability and
shows a high signal-to-noise ratio.
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I. INTRODUCTION

In 1948 Gabor introduced the technique of holography to
push the resolution of electron microscopy near its theoretical
limit [1]. The invention of the laser boosted the field and
the first practical three-dimensional (3D) holograms were
achieved [2]. Recording interference patterns with a charge-
coupled device (CCD) led to the development of digital holog-
raphy, where the intensity and phase of the electromagnetic
field are measured, stored, transmitted, and manipulated with
the aid of a computer [3]. Digital holography is currently
a ubiquitous diagnostic and metrological tool [4,5]. Taking
biological applications as an example, digital holographic
microscopy offers the capability of measuring phase variations
in the nanometer range, allowing a marker-free quantitative
analysis in the cellular and subcellular ranges [6]. Nowadays,
digital holographic microscopes are so compact and versatile
that they can be integrated in a cellular phone to offer a
cost-effective tool for telemedicine applications [7].

In a parallel research avenue, the so-called ghost imaging
technique continues attracting attention since its demonstra-
tion in the mid 1990s [8–11]. It permits one to use single-
pixel detectors [12], offers enhanced robustness to weakly
absorbing samples [13], features the cancellation of optical
aberrations [14], and can be used for image encryption [15].
In its most standard configuration, two light beams from
a common light source propagate through different optical
systems. The light illuminating the object is collected with
a detector without spatial resolution (so-called bucket). The
term ghost comes from the counterintuitive fact that the image
appears by correlating the intensity distributions obtained
at the path where the object was not located with the
outcomes from the bucket detector. The early experiments used
spontaneous parametric down-conversion as the light source,
which may show entanglement. Later it was proved that many
features obtained in a ghost imaging experiment could also be
reproduced with a pseudothermal classical light source [16].
After two decades of intense debate, we now understand that it
can be implemented with either quantum or classical sources,
albeit with slightly distinct features [16–21]. Leaving aside
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the quantum vs classical debate, the ghost appellative actually
offers enormous possibilities for optical imaging hitherto not
fully exploited. In a recently proposed configuration, a laser
is used as the light source and the spatial incoherence is
introduced by a set of random phase patterns preprogrammed
on a spatial light modulator (SLM) [20]. In this way, only the
beam path corresponding to the single-pixel detector needs
to be in the setup, as the propagation through the other
arm is calculated offline. This hybrid digital-optical scheme
enables three-dimensional sectioning while simply using a
point detector [12]. The computation comes at the expense
of storing and processing thousands of speckle patterns to
achieve an image with a suitable signal-to-noise ratio (SNR),
a problem that can be partly alleviated by using compressive
sensing algorithms [22].

Advanced imaging applications require amplitude and
phase information of structured objects, which represents a
significant challenge for any ghost imaging setup. A few
attempts can be found in the literature. Using 2D phase-
retrieval algorithms, the object’s complex information can be
extracted from the near- and far-field patterns [23,24], but
only after rearranging the optical setup for each configuration.
Another approach corresponds to that in Ref. [25], in which
the complex information is extracted from the measurement
of the first-order spatial cross-correlation function using a
modified Young interferometer. Both configurations are rather
cumbersome and still need a 2D sensor. Finally, quantum
entanglement was also proposed for extracting holographic
information about a remote 3D object in a confined space,
although the experimental verification was not implemented
[26]. Here we show a homodyne configuration that allows
for recording the ghost Fourier digital hologram of an object
in a hybrid digital-optical scheme while using a single-pixel
detector. This scheme provides an inherently higher SNR
than other intensity-based configurations. Furthermore, our
solution allows for 3D sectioning and full-frame phase imaging
with nanometer resolution of highly structured samples.

II. THEORY

Our configuration bears intriguing similarities to the con-
ventional phase-shifting digital holography (PSDH) technique
[27]. A comparison between both schemes is shown in Fig. 1.
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FIG. 1. (Color online) Schematic comparison of (a) phase-
shifting digital holography and (b) the proposed digital ghost
holography.

Each setup consists of a Mach-Zehnder interferometer, which
includes a phase shifter in one of the arms to introduce stepwise
phase differences �ϕ. In PSDH, at least three phase-shifted
interferograms are recorded with a CCD [27], as shown in
Fig. 1(a). From these intensity patterns, the complex amplitude
of the object is reconstructed offline with a proper algorithm. In
our digital ghost holography (DGH) setup, spatially coherent
light from a monochromatic laser is split into two arms.
In the object arm, we insert the sample whose complex
information is to be retrieved and an SLM to shape the
phase distribution of the impinging beam. The object wave
is recombined with the reference beam and the central point of
the interference pattern is measured with a pinhole detector. It
is important to recognize that now the irradiance distribution at
the output plane is sampled at a single point, which is the major
difference from conventional PSDH. The role of the SLM has
a twofold aim. First, as in computational ghost imaging, it
imprints a set of pre-established random-phase distributions to
generate speckle patterns at the object plane. Second, on each
distribution it introduces sequentially a set of constant phase
shifts, which are mandatory for complex field reconstruction.

The optical field Oi,ϕ(�r1) at the detection plane, with
transversal coordinate �r1 in Fig. 1(b), can be calculated from
elementary paraxial diffraction theory,

Oi,ϕ(�r1) = |({exp[j�i(�r1) + ϕ]

⊗ hz′−z(�r1)}t(�r1)) ⊗ hz(�r1) + u(�r1)|2, (1)

where �i(�r) is the ith random-phase distribution codified onto
the SLM; hz(�r) is the Fresnel kernel propagator, given by
hz(�r) ∝ exp(jk�r2/2z) (with k the wave number); t[�r = (x,y)]

is the object’s complex amplitude; and u(�r) is the unshaped
laser field distribution (in our experiment considered to be a
plane wave). The symbol ⊗ stands for convolution operation
and z and z′ are the distances to the detector from the object
and from the SLM, respectively. Equation (1) accounts for
the paraxial propagation from the SLM to the object plane,
transmission through the mask, and further propagation until
the detector, where it interferes with the reference wave. A
constant phase shift ϕ, equal to both 0 and π , is added to the
phase programmed onto the SLM in a sequential way. For
each value of the phase shift, the signal at the output plane is
sampled by a single-pixel detector, which is arbitrarily chosen
to be at the origin. In mathematical terms, we measure the
signal Bi,ϕ = Oi,ϕ(�r1 = �0). The above operation is repeated for
N realizations and the weight coefficient �Bi = (Bi,0 − Bi,π )
is measured at each one of them.

Additionally, we compute offline the 2D interference
pattern at the output plane with transversal coordinate �r2 when
the object is removed. The intensity is given by

Ii,ϕ(�r2) = |exp[j (�i(�r2) + ϕ)] ⊗ hz′(�r2) + u(�r2)|2 . (2)

In Eq. (2) we have used the following property of the Fresnel
kernel: hz−z′ (�r) ⊗ hz(�r) = hz′ (�r). For the computational part
of the experiment, three different values for the phase shift
must be considered ϕ = (0,π/2,π ) and the signal

�Ii(�r2) = [Ii,0(�r2) − Ii,π (�r2)] − j [2Ii,π/2(�r2)

− Ii,0(�r2) − Ii,π (�r2)] (3)

is retained. Note that this quantity can be calculated as long as
the random phase �i(�r) is known, which is a major difference
with regard to noncomputational approaches to ghost imaging.

Finally, the object’s information is reconstructed from the
correlation between a set of measured intensities {�B} and a
set of computed intensity patterns {�I},

G(�r1 = 0,�r2) = 〈�B�I (�r2)〉 , (4)

where the angular brackets denote ensemble average. In
practical terms, Eq. (4) is calculated as G(�r1 = 0,�r2) =
1
/
N�N

i=1�Bi�Ii(�r2). The symbol � points out that the
quantities to be correlated are intensity differences calculated
with the aid of Eqs. (1) and (3). After a cumbersome but
straightforward calculation we get

T (�u) ∝ exp

(
j

k

2z
|�r2|2

)
G(�r1 = 0,�r2). (5)

Here T (�u) denotes the Fourier transform of the complex
object t(�r), with the spatial frequency �u = �r/λz, where λ is
the wavelength of the laser. Equation (5) indicates that, through
our ghost holography approach, it is possible to retrieve the
amplitude and phase information of a complex sample.

III. EXPERIMENT

The experimental setup was based on the scheme shown in
Fig. 1(b). We used a He-Ne laser emitting at 0.6328 μm as the
spatially coherent light source. The SLM was a reflective 2D
liquid crystal on silicon (LCOS) display (Holoeye LC-R 2500)
with extended graphics array resolution and a pixel pitch δx0

of 19 μm. The random phase patterns �i(�r) were generated
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FIG. 2. (Color online) Amplitude and phase information recov-
ered from the Fourier ghost hologram of an amplitude mask.

by uploading a sequence of N = 24 000 random images of
256 × 256 pixels onto the modulator panel. The random phases
were uniformly distributed in [0, 2π ] radians and each phase
value was realized by group clusters of 2 × 2 SLM pixels. The
refreshing frequency of the LCOS display, which fixed the
maximum system speed, was 60 Hz. As a pinhole detector
we used a 6.45-μm-sized pixel of a commercial CCD (Basler
A102f).

Figure 2 shows the object reconstruction from the ghost
Fourier hologram of an amplitude object (a capital letter of
2 × 2.7 mm). As expected, the object’s phase (expressed in
radians) is approximately uniform (with a relative standard
deviation up to 2% due to glass roughness). The transverse
resolution of the ghost digital Fourier hologram is given by the
size δx of the speckle grains generated by the modulator on
the detection plane. For a window of m ×m pixels displayed
on the SLM plane, δx = 0.9 λz′/mδx0 [28]. For the results
shown in Fig. 2, z′ = 80.5 cm and thus δx ∼= 95 μm.

A major challenge for ghost imaging is to retrieve the
object’s phase distribution. Recent proposals for phase-only
imaging include nonlocal filtering using pseudothermal radi-
ation and 2D image detection and correlation [29]. However,
phase retrieval in holographic measurements is quantitative
and the depth resolution of the phase sample is of the order of a
fraction of the wavelength, i.e., is in the range of the nanometer
for visible light. Experimental results for a transparent plate
that generates a Seidel aberration (the Zernike polynomial Z1

3)
are presented in Fig. 3(a). Phase values are obtained from the
reconstruction of the ghost digital Fourier hologram using the
fast Fourier transform algorithm. The maximum phase value
of the reconstructed pattern corresponds to an optical path
difference of ∼8λ. In the zones where the phase gradient is
higher, which are clearly visible in the wrapped pattern, the
phase gradient reaches values up to 0.8 rad/pixel (i.e., around
75 nm in axial optical path length).

Our configuration also enables zooming capabilities with
minimum reconfiguration by adjusting the distances z and z′.
Figure 3(a) (bottom row) illustrates this ability. This image
represents a 1.6× resolution improvement when compared to
Fig. 3(a) (bottom row left), at the expense of a corresponding
reduction in spatial aperture. Finally, the fact that the intensity
and phase information is recovered allows for 3D wave-
field reconstruction through digital forward propagation, a
feature illustrated in Fig. 3(b). In other words, we can
calculate the diffracted light pattern generated by the sample
in any transverse plane from the registered hologram light
distribution. The results obtained with single-pixel DGH are

FIG. 3. (Color online) Ghost holography results for a phase-
only object, an aberrant circular pupil inscribed in a square of
8 × 8 mm2. (a) The top row shows wrapped and unwrapped phase
patterns (in radians). The setup distances are z = 63 cm and z′ =
81 cm. The bottom row shows the zooming capability of the digital
ghost holography scheme (with z = 40 cm and z′ = 80.5 cm).
(b) Comparison of 3D wave-field reconstruction from the recovered
phase pattern with DGH and PSDH.

in good agreement with those obtained using a CCD (Basler
A102f) in the conventional PSDH setup shown in Fig. 1(a).

It is well known that homodyne detection provides imagery
recovery with a higher SNR [30,31]. Our proposal provides
an added advantage, namely, it works with a single pixel. In
Fig. 4 we simulate the SNR versus the number N of computed
speckle patterns for the binary mask in Fig. 2. The results
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FIG. 4. (Color online) Evolution of the SNR vs number of
computed speckle patterns for the binary mask of Fig. 2. The top
curve corresponds to DGH.

of the intensity reconstruction of the ghost Fourier hologram
are compared with those obtained from computational ghost
imaging through the algorithm detailed in Ref. [12]. The

parameters used in the DGH calculations are the same as
those considered in Fig. 2 and the SNR is calculated following
the procedure reported in Ref. [22]. The SNR of the images
recovered with DGH increases proportionally to N, in contrast
to

√
N as in conventional ghost imaging [11,12].

IV. CONCLUSION

We have reported a ghost scheme that measures the Fourier
hologram of a sample object. This has allowed us to get
the complex information of structured and realistic objects
with a high SNR, a previous challenge for any ghost imaging
setup. Appealing enough, our scheme uses only a single-pixel
detector in the physical configuration and yet recovers the
3D information of an object. We expect these results will
bring phase-shifting digital holography technologies to other
spectral regions (such as the terahertz or infrared), where 2D
sensor displays are costly or simply not available.
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[29] T. Shirai, T. Setälä, and A. T. Friberg, Phys. Rev. A 84,
041801(R) (2011).

[30] P. Zhang, W. Gong, X. Shen, S. Han, and R. Shu, Phys. Rev. A
80, 033827 (2009).

[31] M. Zhang, J. Xu, X. Wang, and Q. Wei, Phys. Rev. A 82, 043839
(2010).

041803-4

http://dx.doi.org/10.1038/161777a0
http://dx.doi.org/10.1364/AO.13.002693
http://dx.doi.org/10.1088/0957-0233/13/9/201
http://dx.doi.org/10.1088/0957-0233/13/9/201
http://dx.doi.org/10.1073/pnas.191361398
http://dx.doi.org/10.1109/JPROC.2006.870704
http://dx.doi.org/10.1002/anie.200802585
http://dx.doi.org/10.1002/anie.200802585
http://dx.doi.org/10.1039/c003477k
http://dx.doi.org/10.1103/PhysRevLett.74.3600
http://dx.doi.org/10.1103/PhysRevA.52.R3429
http://dx.doi.org/full_text
http://dx.doi.org/full_text
http://dx.doi.org/10.1103/PhysRevA.79.053840
http://dx.doi.org/10.1103/PhysRevA.79.053840
http://dx.doi.org/10.1103/PhysRevLett.104.253603
http://dx.doi.org/10.1103/PhysRevLett.104.253603
http://dx.doi.org/10.1103/PhysRevA.82.023819
http://dx.doi.org/10.1103/PhysRevA.82.023819
http://dx.doi.org/10.1364/OL.35.002391
http://dx.doi.org/10.1103/PhysRevLett.89.113601
http://dx.doi.org/10.1103/PhysRevLett.89.113601
http://dx.doi.org/10.1103/PhysRevA.70.013802
http://dx.doi.org/10.1103/PhysRevA.70.013802
http://dx.doi.org/10.1103/PhysRevLett.94.183602
http://dx.doi.org/10.1103/PhysRevLett.94.063601
http://dx.doi.org/10.1103/PhysRevLett.94.063601
http://dx.doi.org/10.1103/PhysRevA.78.061802
http://dx.doi.org/10.1364/AOP.2.000405
http://dx.doi.org/10.1063/1.3238296
http://dx.doi.org/10.1063/1.3238296
http://dx.doi.org/10.1103/PhysRevLett.93.213903
http://dx.doi.org/10.1103/PhysRevA.75.021803
http://dx.doi.org/10.1103/PhysRevLett.96.183901
http://dx.doi.org/10.1103/PhysRevLett.96.183901
http://dx.doi.org/10.1364/OE.9.000498
http://dx.doi.org/10.1364/OL.22.001268
http://dx.doi.org/10.1103/PhysRevA.84.041801
http://dx.doi.org/10.1103/PhysRevA.84.041801
http://dx.doi.org/10.1103/PhysRevA.80.033827
http://dx.doi.org/10.1103/PhysRevA.80.033827
http://dx.doi.org/10.1103/PhysRevA.82.043839
http://dx.doi.org/10.1103/PhysRevA.82.043839



