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Abstract—A novel general ready-to-use bit-error rate (BER) In this paper, we prove the equivalence of the SD and
expression for one-dimensional constellations is develed. The the ABD in terms of uncoded BER for any constellation
BER analysis is performed for bit patterns that form a labeling. 5,4 labeling. Due to this equivalency, we go on and study
The number of patterns for equally spacedM -PAM constellations the ABD f ) di . | t,II fi To thi d
with different BER is analyzed. e or one-dimensional constellations. To this end,

we introduce a novel ready-to-use BER expression valid for
I. INTRODUCTION AND MOTIVATION any one-dimensional constellation and binary labelinge Th

Current wireless communication systems are based on #ralysis is performed for bit-patterns that form a labeling
bit-interleaved coded modulation (BICM) paradigm introdd
in [1] and later studied in [2], [3]. One key element in these Il. PRELIMINARIES
systems is the calculation of logarithmic likelihood ratioa. Notation Convention
(LLR, also known as L-values) for the received bits, which ar . o

: The following notation is used throughout the paper. Lower-
passed to the channel decoder. The coded performancemnale/s

. . . ase letters: denote real scalars and boldface letterdenote
of such systems is generally not straightforward, and igillysu
. : . . : a row vector of scalars. Blackboard bold letteéfsdenote
carried out either numerically by Monte-Carlo simulatian,

in terms of lower and upper bounds [2, Sec. 4], [3, Ch 4§watrices with elements,; ; in theith row and thejth column

T o . . .

The calculation of LLRs is crucial also in many other code nd(-)" denotes transposition. Calligraphic gapltal lettats

svstems. In this paper. we analvze thecodedoerformance enote sets, where the set of real numbers is denotel.by
Y ' paper, y b The binary complement af € {0,1} is denoted byt = 1—=z.

over the additive white Gaussian noise (AWGN) channel. _. . . . .
A symbol-based demodulator (SD) is (the mogt natural wainary addition (exclusive-OR) of two bits andb is denoted
a @ b. Random variables are denoted by capital lettgrs

of decoding symbols transmitted through the channel. T . L .
approach is optimal in terms of symbol-error rate (SER). Tf?end pmbfb'll't'es br{:}. The Gaussian Q-function s defined

t2
bit-error rate (BER) performance of the SD is well documdntés Q(z) = Vo f;o e” = di.
in literature, e.g. [4, Ch. 5], [5, Ch. 10], [6]-[11] and redeces
therein. On the other hand, in a coded system, such as BICIR/I, System Model
soft or hard information on the receivedlts is passed to In this paper we analyze a system where a vector of
the decoder, and thus, bit-wise decisions are more relevhiftary datab = [b1,...,by,] is fed to a modulator. The
than symbol-wise decisions. The optinmét-wisedemodulator modulator carries out a one-to-one mapping frénto one
(BD) minimizing the BER implies the calculation of (exact) L of the M constellation points: € X = {s1,...,5x}, where
values for the received bits. The uncoded performance d¢f sua < s2 < ... < sy, for transmission over the physical
a demodulator has been studied in [12], where closed-foghannel, wherelMl = 2™. The modulator is defined as the
expressions for the BER for 4-ary pulse amplitude modutatidunction @ : {0,1}™ — X with a corresponding inverse
(PAM) with the binary reflected Gray code (BRGC) [9], [13]function®~! : X — {0,1}™.
[14] are presented. Due to the complexity of the BD, the For PAM constellations,s;, = —d(M — 2i + 1),i =
calculation of L-values in practical systems is usually @onl, ..., M, whered = \/3/(M? — 1) to normalize the constel-
based on the so-called max-log approximation [15, eq. (5)tion to unit average energy, i.dz = % Zf\il s?=1. We
[16, eq. (1)]. We call this demodulator the approximate BRssume the bits to be independent and identically disatbut
(ABD). The three above demodulators (SD, BD, and ABD).i.d.) with Pr{B; = u} = 0.5,Vj andu € {0, 1}, and thus,
have been recently numerically compared from a mututle symbols are equiprobable, i.@;{X = s;} = 1/M, Vi.

information point of view in [17] for multiple-input multie- The modulator is defined by the constellation and its binary
output BICM systems. labeling. A binary labeling is specified by the mati =
N ) [e],...,cl,]T of dimensionsM by m, where theith row
Research supported by The British Academy and The Royak§uiia the - is the bi label of th llati
Newton International Fellowship scheme), UK, and by the @sfeResearch Ci = [¢i,1,- -, ci,m] is the binary label of the constellation

Council, Sweden (under grant #621-2006-4872 and #621-3050). point s;, i.e., ®(¢;) = s;.



In this paper we consider a discrete time memoryle#8D can be written as

AWGN channel with outputy = , Wherez € X and the . .
P y A * {17 MiNgex; o (y - x)2 > MNgex; (y - :E)2a

2

noise sampley is a zero-mean Gaussian random variable withB;.*BD = ] ) ]
: 0, mingex,, (y —x)* <mingex,, (y — 2)°,

varianceN, /2. The conditional PDF of the channel output is

given by which can be simplified to
_ P —py—2)?
r)=,/—e , 1 .
pY\X(y| ) \/; (1) b?BD _ argmin{ m/_\i’/n (y — x)2} (7
. . . . . u TEN; u
where the average signal to noise ratio (SNR) is defined as 0.1 !
p= Es/Nog = 1/Ny. Since min, 0,13 {Ininmexj,u (y — 17)2} = mingex (y — )2

The observationy is used by the demodulator to deciddor any X, p, and C, the symbol found by the ABD in (7)
on the transmitted binary sequence, i.e., to prodéice- will always be the closest € X to y in terms of Euclidean
[131, . ,Bm]. distance (ED), regardless of the bit positipiThis is the same
rule used in (2), which completes the proof. O

Theorem 1 states that the SD and the ABD are equivalent
and optimal in terms of minimizing the SER for any constella-
The SD makes a hard decision on the transmitted symbimin® and any labeling. Because of this, from now on we only

C. Demodulators

and returns the length: binary label of that symbol, i.e.,  consider the ABD.
~SD .
b 27! <argn21(m (y — 50)2) , (2 I1l. BER FOR ONE-DIMENSIONAL CONSTELLATIONS
S

The SD in (2) is optimal in terms of minimizing the SER, but The BER for a given labeling® can be expressed as

it does not necessarily minimize the BER. 1™
To minimize the BER the optimal BD should be used. The Pe=— > (8)

BD calculates (a posteriori) L-values for the bits based on J=l1
the observationy, i.e., where the BER for thejth bit positon P; £ Pr{B; #

Pr{B; = 1|Y =y} bj|B; = b;} can be written as
Li(y) £ 1o J 3 7
e—ply—a)? Pj ==Y Pr{B; #ci;|X = si} 9)
~ log Zzexj,l @) I M ; J J

Dsex, 0 PWTIY . . e

7 using the law of total probability. The BER for thgh bit
wherej = 1,...,m and X, £ {s; € X : ¢;; = u, ¥i}. To position P; depends only on the subconstellatiok’s, and
pass from (3) to (4) Bayes’ rule was used together with th¥; ; (cf. (4)—(5)), i.e., on thgth column ofC, such thatP; =
i.i.d. assumption of the bits and the conditional PDF in (1).P([c1 5, ---,¢a,;])-

The implementation of the BD in its exact form (4) is We define a bit pattern (or simply pattern) as a lengfh-
complicated, especially for large constellations, as duiees binary vectorp = [p1,...,pum] € {0,1} with Hamming
calculation of the logarithm of a sum of exponentials. Tweight M/2. The labelingC can now be defined byn
overcome this problem, approximations are usually used patterns, each corresponding to one columrCofWe index
practice. The most common approximation is the so-callélde patterns ap,, with w being the decimal representation
max-log approximationl¢g 3", e* ~ max; ;) [1, eq. (3.2)], of the vectorp, i.e., w = S 2M~ip, For example, for
[2, eq. (9)], [15, eq. (5)], [18, eq. (8)], which used in (4ygs M = 4, the pattern0,1,0,1] is indexed agp; (cf. Table I).

~ The BER for the labelingC does not depend on the order
Lily)=p { Ien)lvn (y —x)* — ren)l{n (y—z)?|.  (5) ofits columns, and thus, the BER for the labeliigss fully
FEAg0 e determined by a set ofi patternsW = {wy, ..., wn}.
The ABD is defined as the demodulator that applies theBased on the previous discussion, from now on we concen-
following decision rule trate our analysis only on patterns (and not on labelings), i
R 1 Z-(y) >0 on the functionP(p), however, to simplify the notation, the
b = { I = (6) dependency on the pattern will be omitted.
0 otherwise To analyze the BER of a pattern (PBER), the observation

The next theorem gives proof for the equivalence of trPaceR is splitinto two disjoint decision regions, i.d'y =
SD and the ABD. This was mentioned in [17, Sec. IV-A]{y € R : b = 0} andI'y = {y € R : b = 1} such that

however, no proof was given there. Louly =R.
Theorem 1:For anyp, X, andC, b5 = b2BP for all j =

1 m : 1The proof of Theorem 1 was given for one-dimensional colagtehs only,
ye ey N

o o however, its extension to any multi-dimensional constieltais straightfor-
Proof: Combining (6) and (5), the decision rule for theward.



Using the definition of"y andT';, the PBER for the pattern

p can be rewritten as
1 M
P=— ;Pr{y €Ty |X = s} (10)

By expressingP as in (10), it is clear that the PBER in (9)
can be calculated using the decision regibgsandI'; only,
as opposed to alternative approaches where (10) is exgresse
in terms of the PDF of the L-values (cf. [19, eq. (19)], [20,
Sec. IV]).

P

Using (13)—(15) the PBER in (16) can be expressed as

L r M M
=M {Z; D ICICI(CEEIED

=1 2

k=
M M-1
-1

M—

1—1
> (einr1 —ein)Q ((Bk - Si)\/%) ;
=1

k
17)

ek Q ((ﬂk - Si)\/%):|

k=1

1 1 M
“3tmL

Decision thresholds (or simply thresholds), denotedspy

M M _ '
wherek = 1,2,... stands for the index of the threshold V€€ 2 izt €11 = iy Pi ©p1 = M/2 was used. To obtain

are defined as the points that separate the decision regi%hnesexpressmn in (11), we express, 1 — eix in (17) as
for zeros and ones, and thus, they fully determine the PBER €ikt1 — €ik = Dkt+1 D Pi — Pk D Di (18)
in (10). The thresholds for the ABD are the midpoints between = (a1 — o) (1 — 2p;) (19)

the constellation points labeled with different bits, whic _ _
follows directly from (7). where the identityp; ® p; = p:;p; + pip; was used together
The BER expression for the ABD and an M-PAM con- The threshold3; between the constellation points labeled

stellation with any labeling is well known and can be founq,i h the same bit does not affect the PBER in (11)}jas —
in [14, eq. (21)]. The PBER expression can easily be obtainsofw in (12) "0

Irr(]asa I‘:’": 'Ei;viay' (Iznl;;] teofsggy\gngglﬁ]egrzr:égvfog:; ?tzl'gr? dthe Remark 1:Theorem 2 gives an expression for the PBER
it €4 qually sp ' for the ABD. However, (11) can be used for calculating the

derive a general PBER expression for any one—dimensio%ER when the thresholds, are not midpoints or, moreover

constellation. when they are dependent on the SNR, for example, when the
Theorem 2:The PBER for the ABD using an arbitrary one-BD is used. Analytical expressions for thresholds for the BD

dimensional constellation with a patteprcan be expressed asare in general unknown.
) ) To illustrate Remark 1, consider 8-PAM labeled by
P—_4_— ; —s)V/2p), 11) the BRGC, which is formed by the patterng,; =

2 " ; ,; 9:xQ ((ﬂk )\/_p) ) 0,0,0,0,1,1,1,1], pgy = [0,0,1,1,1,1,0,0], and pypy =

 sebonss _ ~[0,1,1,0,0,1,1,0]. From (11)—(12), whenevey, ,, = 0, the
wheref, = =554, k=1,...,M—1andg;, € {0,+1}iS yajye of 8, does not influence the PBER and can be set to
(12) any value. The thresholds f_ggk # 0 can be numeri<_:a||y cal-
culated setting the L-value in (4) to zero. The obtainedltssu
are shown in Fig. 1. Using these thresholds in (11) and (8),
the BER for the patterns and for the BRGC are calculated.
The results for the BD and the ABD are presented in Fig. 2
and show no notable difference between the demodulators for
p >0 dB.

M M-1

Gike = (i1 — pi) (1 — 2p;).
Proof: Let v; ;. be the following conditional probabilities
vi1 = Pr{Y < 511X = s;}

:1—Q((51—8i)\/%),

vk EPr{Br_1 <Y < Bl X = 55}

=Q ((5k—1 - Si)\/%) -Q ((5k - Si)\/%) , (14)

Vi, M £ PY{BM—I < Y|X = Sl}
=Q ((ﬁM—1 - Si)\/%) ;

wherei =1,.... M, k=2,...,M —1, and 3, = Sﬁzsk+1

(13)

IV. BER FORM-PAM

In this section, we study the BER for equally spaded
PAM constellations. We concentrate on classifying pastern
(15) and comparing their performance. Fbf-PAM, (11) can be
expressed as a bit-wise version of [14, eq. (21)]:

M-1

fork=1,...,M — 1. The PBER in (10) can be rewritten as 1
P= i Z a,Q ((Qn - 1)d\/2p), (20)
1 M n=1
P==Y "Pr{Y el |X = s
M ; HY €Ly sid where
1 MM M-1
M DD eintvik, (16)  an 2 > (pry1 — )1 = 2pki1n)
i=1 k=1 k=n
wheree; j £ i B pr € {0,1}. — (Ph+2—n = Prt1-n)(1 = 2pr41).  (21)



A ; ; ps = [0,1,0,1] and the patternp,, = [1,0,1,0] have
identical PBER performance because of the symmetry of the
- : 0ss constellation. It is therefore interesting to find all thetpens
with different performance. This will allow us to predicteth

- performance of any possible labeling. We therefore group al
the patterns with identical performance into one class. The
- Os7 next theorem gives a closed form expression for the number
of classes for lengtld4 patterns.

- Theorem 3:For M-PAM, all the lengtha/ patterns can be
grouped intoQ classes, where the patterns within each class

- [s6 have identical PBER, and
Lrom M/2 M/2
r o 7 : D> Q= 1 ((M/2) + (M§4) +2M/ ) : (22)
4, P15

| B6: Peo Oss Proof: We define two operations that can be applied to

A B, Pro2 a pattern that will be used in the proof. wflectionof p is

> s, Pio2 defined agp’ = refl(p) with p; = parp1—; fori=1,..., M.

10 5 0 = 10 An inversionof p is defined agp’ = inv(p) with p, = p;
p [dB] fori = 1,..., M. Both these functions are self-inverse, i.e.,

p = refl(refl(p)) andp = inv(inv(p)), and they commute,
Fig. 1. Thresholds for 8-PAM with different patterns vs. SNBue to the i.e.,refl(inv(p)) = inv(refl(p)). Note also that for any pattern
symmetry'of the patterns the thresholds are symmetric wziﬂpe_ct to zero. p, we have thap # inv(p).
Only positive thresholds are shown. Squares represenbtigadiation points. . .

We introduce three special types of patterns. The pattern

p is said to bereflected(RE) if refl(p) = p, the patternp
is said to beanti-reflected(ARE) if inv(refl(p)) = p, and
the patternp is calledasymmetric(ASY) if it is neither RE
nor ARE. For examplepg, = [0,0,1,1,1,1,0,0] is an RE
pattern,p,; = [0,0,1,0,1,0,1,1] is an ARE pattern, and
Pors = [1,1,0,1,1,0,0,0] is an ASY pattern.

From (9)—(10), we note that the PBER is not affected by
reflections and/or inversion of the patterns, since the PBER
is averaged over both transmitted zeros and ones. Because of
this, we group all patterns that are connected via reflection
or inversion into one class of patterns that all have idantic
PBER. Each class contains either two pattegmsudinv(p)
becausep # inv(p), Vp) or four patternsy, inv(p), refl(p),

0.5

BER

10+

e andinv(refl(p))).
Peo Any patternp must contain) /2 zeros andM /2 ones,
* Do hence, the total number of patterns is equal(;ﬁ%). For
v BRGC a pattern to be REp; = pap—_iy1, i.€., the positions of the
e > m 15 M/4 ones infpy,...,puyo] fully describe the pattern, and

thus, the number of RE patterns | %Z) There are two

members in every class of RE patterns,= refl(p) and

Fig. 2. The BER for 8-PAM with pattemnp, 5, peo, P10, and the BRGC. inv(refl(p)) = inv(p), which gives%(%ﬁ) classes.
Solid lines correspond to the BD and dashed lines correspmtigde ABD. For a pattern to be AREy, — P it ie. the positions of
the ones irfpy, ..., par/2] fully describe the pattern, where the
number of ones ifpy, ..., prs/o] is between 0 and//2. From

One direct consequence of (20) is that the veaio”® that, it follows that there are™/? ARE patterns. There are
[a1,...,apm—1] with a, given by (21) completely definestwo members in every class of ARE patterps inv(refl(p))
the performance of the ABD foi/-PAM and allows us to andrefl(p) = inv(p)), which gives2*/2~1 classes.
compare the performance of different patterns. From (20),All the remaining classes include only ASY patterns. The
the PBER for high SNR can be predicted by the coefficienumber of ASY patterns can be obtained by subtracting the
multiplying the Q-function with the smallest argument,ttt|f number of RE and ARE patterns from the total number of
a1. If for two patterns the coefficients are identical, the nexgatterns. There are four patterns in each clasg #srefl(p)
coefficientsa, are checked, and so on. and p # refl(inv(p)) (or equivalently,refl(p) # inv(p)).

We observe that, for instance, for 4-PAM, the patterdsing this, the total number of classes in (22) is obtained

5
p [dB]



TABLE |

0.5 CLASSES OF PATTERNS FOR-PAM AND 8-PAM WITH THEIR
CORRESPONDING REPRESENTATIVES , DECIMAL REPRESENTATIONS OF
THE PATTERNSw, AND VECTORSa DEFINING THEIR PBER
D w a
0,0,1,1 312 2, 2, 0
0,1,1,0 6 0 4, 2,-2
0,1,0,1 5 10 6,—4, 2
x 0,0,0,0,1,1,1,1 15 240 2, 2, 2,2, 0, 0, 0
L 0,0,0,1,1,1,1,0]|30 120 135 225|[ 4, 3, 3, 2,—2,—1,—1
o 0,0,1,1,1,1,0,0 60 195 4, 4, 2, 2,-2,-2, 0
B 0,0,0,1,0,1,1,1 23 232 6,—2, 2, 0, 2, 0, 0
10 - 0,0,0,1,1,1,0,1]|29 71184226][ 6, 1, 2,—3, 1, 0, 1
0,0,0,1,1,0,1,1]|27 39216228][ 6, 2,-3, 1, I, 1, O
0,1,1,1,0,0,0,1 113 142 6, 4, 4, —4,—2,—2, 2
0,0,1,1,1,0,0,1] |57 99156 198|[ 6, 5, 0,3, -3, 2, 1
a1=2 0,0,1,1,0,0,1,1 51 204 6, 6,—4,—4, 2, 2, 0
0,0,1,0,1,1,1,0]|46 116 139 209 [ 8,—1,2, -1, 3, -2, —1
0,0,1,1,1,0,1,0]|58 92163197 8,—1,3,-2, 2,1, -1
0,1,0,0,1,1,1,0]| 78 114 141 177 8, 2,—1,—1,—1,3, -2
-5 0 5 10 15 0,0,1,1,0,1,1,0]| 54 108 147 201|[ 8, 3,6, 3, 3,—2, —1
p [dB] 0,1,1,0,0,1,1,0 102 153 8, 6,6, -4, 4, 2,2
(a) 8-PAM 0,0,1,0,1,0,1,1 43 212 10,-6, 4,—2, 0, 2, 0
0,0,1,0,1,1,0,1]|45 75 180 210 [10,—3,—3, 6,4, 1, 1
0,0,1,1,0,1,0,1]| 53 83 172 202|[10,-3, 1, 0,2, 1, 1
0.5 0,1,0,0,1,1,0,1 77 1783 10, 0,6, 2, 4,4, 2
0,1,1,0,1,0,0,1 105 150 10, 0,4, 6,—4, -2, 2
0,1,0,1,1,0,0,1]| 89 101 154 166 | [10, 0,—3, 1, 1,-3, 2
0,1,0,1,1,0,1,0 90 165 [12,—6, 0, 6,—6, 4, —2
0,1,0,1,0,1,1,0]| 86 106 149 169 [12,—6,3, —1,—1, 3, —2
0,1,0,1,0,1,0,1 85 170 [14, —12,10, —8,6, 4,2
& number of pairs of constellation points at minimum ED whose
@ bits are different (for a given pattern). Using this, it caa b

shown that forM-PAM there areM — 1 different values of
a1. This means that the PBER of all the patterns merge into
M —1 groups at high SNR. For example, for 8-PAM and 16-
PAM the number of groups of patterns at high SNR is 7 and
15, respectively, as illustrated by Fig. 3.

Using (8) and (20), the average BER far-PAM with
labelingC can be expressed as [14, eq. (21)]:

0 5 10 15 20

p [dB] 1
(b) 16-PAM Pe= 100 ngl anQ ((2n - 1)d\/%)’ (23)

Fig. 3. The PBER for the patterns for 8-PAM and 16-PAM. All therves

A .
merge intoM — 1 groups at high SNR as predicted by Remark 2. wherea = [al’ o ’aM_l] is the sum of vectors for the

m patterns used irC. The value ofa,, is a scaled version
of the so-called differential average distance spectfm \)
in [14, eq. 21], i.e.ov, = 2M(n, \).
as sum of classes of RE, ARE, and ASY patterns. O Remark 3: The value ofx; corresponds to twice the sum of
For example, Theorem 3 states that there are 3 classeddaimming distances between binary labelings of constefiati
patterns for 4-PAM, 23 classes for 8-PAM, and 3299 classpsints at minimum ED. It can be shown thdf = 2m(M —
for 16-PAM. The PBER for 8-PAM and 16-PAM for all thel)—a;, whereA, was recently shown to determine the BICM
patterns is shown in Fig. 3. All the classes of patterns fonutual information in the high SNR regime [21].
4-PAM and 8-PAM are shown in the first and the second By listing the vectorsa: for all the possible labelings for
parts of Table I, respectively. For each class, Table | sho®sPAM, we found 12 different;, which is in agreement with
the representative of the clags the decimal indices of classthe 12 classes of labelings (with differeAt,) shown in [21,
membersw (the index of the representative is shown witlrig. 2(b)]. The BER for all the labelings for 8-PAM is shown
boldface), and the vectarthat defines the PBER. The patternén Fig. 4, where the 12 classes are visible for high SNR.
are ordered from best to worst PBER at high SNR. To conclude, we present the vectoss for 4-PAM and
Remark 2:The elementa; in (21) is equal to twice the 8-PAM with some common labelings, including the BRGC,



BER

0 5 10 15
p [dB]

Fig. 4. The BER for all the 460 labelings with different BER &-PAM.

TABLE I
SOME COMMON LABELINGS FOR4-PAM AND 8-PAM WITH THEIR
CORRESPONDING PATTERN INDICE¥V AND VECTORS DEFINING THEIR

BER
M | Labeling w [a%
4 | BRGC {3,6} (6,4, —2]
4 NBC {3,5} (8,—2,2]
4 AG {5,6} (10, —2,0]
8 [ BRGC | {15,60,102} |[14,12,—2,0,2,0, —2]
8 | FBC | {15,60,90} |18, 0 4, 10 —8,2,—2]
8 | NBC | {15,51,85} [[22,—4,8,—10,8,—2,2]
8 | BSGC [{105, 60,102} [22,10 8 4,-2,-2,0]
8| AG | {90,105,85} |[36,—18,6,4, —4, —2, 2]

the natural binary labeling (NBC) [22, Sec. II-B], the fotte

arbitrary constellation sizé/ and also a number of groups
of labelings at high SNR.

(1]
(2]
(3]

[4]

(5]

(6]

(7]

(8]

El

[20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

binary code (FBC) [10] [22, Sec. 1I-B], the binary semi-Gray
code (BSGC) [22, Sec. 1I-B], and the so-called anti-GrayIAdlS]
labeling [23]. These labelings are shown in Table Il togethe
their pattern indice3/V and vectorse, in the first part for [19]
4-PAM, and in the second part for 8-PAM. The labelings are
also ordered from best to worst BER at high SNR. By listing
the vectorsa for all the possible labelings, we found threg20]

labelings with different BER for 4-PAM listed in Table Il. Fo

8-PAM we found 460 labelings as shown in Fig. 4.

V. CONCLUSIONS

[21]

A novel general expression for the uncoded BER of ong2]
dimensional constellations has been introduced. For gqual
spacedM -PAM constellations, a classification of the patterng,

has been performed and a closed form expression on the

number of patterns that give different BER has been derived.
The rule for combining patterns into a labeling remains for

future investigation. Establishing this rule will allow ue

define a number of labelings with different BER for an
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