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Abstract

Cooperative localization (also known as sensor networklipation) using received signal strength
(RSS) measurements when the source transmit powers ageedifand unknown is investigated. Previous
studies were based on the assumption that the transmit p@fysource nodes are the same and perfectly
known which is not practical. In this paper, the source tmahgowers are considered as nuisance
parameters and estimated along with the source locatidres.corresponding Cramér-Rao lower bound
(CRLB) of the problem is derived. To find the maximum likeldtb (ML) estimator, it is necessary to
solve a nonlinear and nonconvex optimization problem, wisccomputationally complex. To avoid the
difficulty in solving the ML estimator, we derive a novel sel@finite programming (SDP) relaxation
technique by converting the ML minimization problem into angex problem which can be solved
efficiently. The algorithm requires only an estimate of tla¢hploss exponent (PLE). We initially assume
that perfect knowledge of the PLE is available, but we thesngre the effect of imperfect knowledge
of the PLE on the proposed SDP algorithm. The complexity yaseal of the proposed algorithms are
also studied in detail. Computer simulations showing theamkable performance of the proposed SDP
algorithm are presented.

Copyright (c) 2012 IEEE. Personal use of this material isméed. However, permission to use this material for anyepth
purposes must be obtained from the IEEE by sending a requgsths-permissions@ieee.org.

R. M. Vaghefi and R. M. Buehrer are with the Mobile and PortdRéelio Research Group, Bradley Department of Electrical
and Computer Engineering, Virginia Polytechnic Institated State University (Virginia Tech), Blacksburg, VA 2408BA
(e-mail: vaghefi@vt.edu; buehrer@vt.edu)

M. R. Gholami and E. G. Strom are with the Division of Comnuation Systems and Information Theory, Department
of Signals and Systems, Chalmers University of Technol&#:412 96 Gothenburg, Sweden (e-mail: moreza@chalmers.se
erik.strom@chalmers.se).

This work was supported in part by the Swedish Research @ofomntract no. 2007-6363). This paper was presented in
part at the IEEE International Conference on AcousticseSpand Signal Processing (ICASSP), Prague, Czech Rephalic
22-27, 2011.

October 25, 2012 DRAFT



Index Terms
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lihood (ML), semidefinite programming (SDP), linear leaquares (LLS), path loss exponent (PLE),

computational complexity.

. INTRODUCTION

Recently, wireless sensor networks (WSN) have been theestubfj great interest in many studies
because of their wide applications in control, trackinggd amonitoring. Location information is a vital
aspect of many WSNs. Indeed, the location of each sensortém oéquired to make the collected
information useful. Generally, in a WSN, the positions oftenber of sensors are known (anchor nodes),
while there are some sensors (source nodes) whose positiensnknown and thus must be estimated
using sensor localization. The main purpose of sensorikatain is to determine the location of sensors
in a WSN via noisy measurements [1]. These measurementsnmokyé received signal strength (RSS)
[2]-[4], time-of-arrival [5], [6], time-difference-of4aival [7]-[9], and angle-of-arrival [10], [11]. Among
the different types of measurements, RSS is a popular mettaidly because of its low complexity and
cost in software and hardware implementations [1].

Sensor localization is generally divided into two casesi1-nooperative and cooperative. In the non-
cooperative case, source nodes can communicate only wititoanodes [1], [12]. The lack of accessible
anchor nodes and also limited connectivity among anchoresahd source nodes have led to the
emergence of cooperative localization in which source s@te able to communicate with both anchor
nodes and other source nodes. Therefore, not only are thev&®8&s between source nodes and anchor
nodes (source-anchor measurements) measured, but alsoutee nodes themselves are involved and
collect RSS measurements from each other (source-sourasunegnents). Furthermore, in cooperative
localization, anchor nodes can estimate the location ofsallrce nodes simultaneously. Thus, both
estimation performance and robustness are improved byosimpl cooperative localization [1], [3],
[13].

The maximum likelihood (ML) estimator and the Cramér-Rawdr bound (CRLB) of cooperative RSS
localization were studied in [1]. The cost function of the M&timator is severely nonlinear and noncovex

and, therefore, it can be optimized by iterative algorittanty with an appropriate initialization [14], [15].
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The performance of iterative algorithms strongly dependhe initial solution. If the initialization is not
sufficiently close to the global minimum, the iterative aigfom may converge to a local minimum or a
saddle point causing a large estimation error. Therefaterchining an appropriate initialization point is
a crucial problem in optimizing the ML cost function. As autissome approaches such as grid search
methods, linear estimators, and convex relaxation tectesichave been introduced to address the ML
problem [3], [12], [16]. The grid search methods are not galhe popular because they are very time-
consuming and require a huge amount of memory when the nuailibe unknown parameters is too
large. Linear estimators having a closed-form solutionusgally derived based on many approximations
[12], [17]-[19] which affect its performance, especiallh@n shadowing is very high [19]. A convex
relaxation technique such as semidefinite programming j$&hother solution for the ML convergence
problem [13], [16], [19]-[24]. In the semidefinite relaxati technique, the nonlinear and nonconvex ML
problem is transformed into a convex optimization probldrhe advantage of an SDP is that its cost
function does not have local minima and thus convergendegetglobal minimum is guaranteed [25], [26].
The downside is that the SDP technique is sub-optimal andataachieve the best possible performance
in all conditions. Most studies mentioned above on RSS ipatdbn assume that the source transmit
powers are the same and known [4], [13], [17], [23].

The RSS measurement model depends on the transmit power sdtince nodes. Therefore, the anchor
nodes are not able to find the location of a source node ifatsstmit power is not accounted for. Each
source node has a specific transmit power depending on,its.pattery and antenna gain. In addition,
the transmit power might change with time, e.g., when biattebegin to exhaust. Consequently, each
source node has to report its transmit power to anchor namlestantly during RSS measurements which
requires additional hardware and software in both anchdes@nd source nodes making the network
more convoluted [1]. When the transmit powers are not abklathere are generally two common
solutions suggested to address this problem. First, oneesamate the transmit power of the source
along with its location [19], [27]. Second, one can elima#te dependency of the transmit power from
the RSS measurement model by using the differential RSSdeeta source node and two anchor nodes
[19], [28], [29]. The number of unknown parameters in theelaimethod is fewer than in the former
method. However, employing the latter method introducesencorrelation and noise enhancement which

complicate the computations and degrade the accuracy [tL8hould also be noted that all previous
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studies on RSS localization with unknown transmit powerfarghe non-cooperative case. In this paper,
for the first time, we examine this problem for the cooperaticalization case. Some range-free and
non-model-based techniques were also suggested [30]if3&hich the localization algorithms do not
require the model parameters, such as the transmit powetharghth loss exponent, and the estimate of
the source location was basically obtained based on the @osops among RSS measurements. However,
having a cooperative network and source nodes with diffetrmsmit powers make those algorithms
complex and inapplicable.

Thus, cooperative localization using RSS in the practieakeovhere transmit powers are different and
unknown is currently an open problem. In this paper, we amrsihis problem and provide a solution.
Specifically, the source transmit powers are consideredi@amce parameters and estimated jointly with
the source node locations. A novel SDP technique is intreddor this expanded estimation problem.
To make the derivations easier to understand, we start bgridewy the proposed SDP algorithm for
the non-cooperative case. Then, the measurement modetdadexi to the cooperative case and the
corresponding SDP algorithm is derived. The original MLraator is transformed into an approximate
nonlinear least squares (NLS) problem. Then, an apprepreltxation is applied to convert the NLS
problem into an SDP optimization problem. It is worth meniig that the SDP techniques introduced
in [16], [20] are not applicable here, since they assumetlribesy pairwise distances between source
nodes and anchor nodes are available. However, in our stuglylistances cannot be computed because
the transmit powers of the source nodes are not availableetedtimator. Ouyang et al. [13] also derived
an SDP approach which is directly applied to the RSS modeledder, they assumed that all source
nodes have the same known transmit power which is not pedct@onversely, in the current work, we
assume that each source node has a unique transmit powdr ishiot known. The Cramér-Rao lower
bound (CRLB) of this problem is computed. We also propos@eali estimator for comparison with the
proposed SDP algorithm. Moreover, we investigate the effiéémperfect knowledge of the path loss
exponent (PLE) on the algorithms’ accuracy and introduceehtechnique to improve performance
when the PLE is estimated. We also study the computatiomaptaxity of the considered algorithms in
detail.

The rest of the paper is organized as follows. Section Ilgntssthe non-cooperative RSS localization

problem, introducing the measurement model and proposadization algorithms. The extension of RSS
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localization to the cooperative case is discussed in SedtioSection |V describes the effect of imperfect
knowledge of the PLE on the proposed algorithms. Complextitglyses of the proposed algorithms are
given in Section V. The simulation results and algorithm panisons are discussed in Section VI. Finally,
Section VII concludes the paper. In Appendix A, the corresjfilog CRLB of the measurement model
is derived. The proposed linear estimator is derived in Aylpe B. The full details of the complexity
analyses are given in Appendix C.

Notation. Throughout the paper, the following notations are useavdroase and uppercase symbols
denote scalar values. Bold uppercase symbols and bold dasersymbols denote matrices and vectors,
respectively|| - || denotes/s norm. diag {-} represents a diagonal matrix4| represents the cardinality
(number of elements) of the set. I, and 0;; denote theM by M identity and theM by M zero
matrices, respectively. For arbitrary symmetric matrideand B, A = B means thatA — B is positive
semidefinite [a]; and [A]; ; denote theith element of vecton and the element at th&h row andth

column of matrixA, respectively[A; B] means that matriceA andB are concatenated vertically.

II. NON-COOPERATIVELOCALIZATION

This section describes the RSS localization model for the-camperative case. In non-cooperative
localization problems, only the measurements between@esomwde and the anchor nodes are considered
and the location of each source node is estimated indep#nd&émetwork in a two-dimensional space
is consideretl Let x = [a,b]7 € R? be the unknown coordinates of the source node to be detedmine
Denote byC = {1,..., M} the set of indices of the anchor nodes, Yy= [z;, 4|7 € R?, i € C, the
known location of the anchor nodes. Ldt= { i | i € C,anchor node is connected to source node
be the set of the indices of the anchor nodes connected tathreesnode. The received power (in dBm)
at thesth anchor nodepP’;, under log-normal shadowing is modeled as [2]

d; .
P, = Py —1081ogyg & +n; 1€ A, (1)

where P, (in dBm) is the reference power at distangefrom the source (which depends on the transmit
power), 5 is the path loss exponeni; = |y; — x|| is the true distance between the source node and

the ith anchor node, and, are the log-normal shadowing terms modeled as independdntiantically

1The generalization to a three-dimensional space is stfaigrard, but is not explored in this paper.
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distributed (i.i.d.) zero-mean Gaussian random variaklik standard deviatiow,p for i € A. The
variance of the shadowing term is constant with distancecay depends on the environment where the
network is set up [1]. Without loss of generality, we assuime= 1 m. In this case, there are 3 unknown

parameters that should be estimated including the sourde coordinates and its transmit power.

A. Maximum Likelihood Estimator

The ML estimator is asymptotically efficient meaning thatdn achieve the CRLB accuracy when
the number of measurements tends to infinity [32, Ch. 7]. Thedsgtimator of the measurement model

in (1) is obtained by the following nonconvex optimizatioroplem [2], [19]

0= arg min Z (Pz — Py + 108 10g10 d2)2 s (2)
OCR®  jca

where 8 = [x; Py]. We can write (2) equivalently as

- . hidi )’
0 = arg min Z logyg ) 3)

3 (6
OER® e

whereh; £ d2, \; £ 107:/5% anda 2 10"%/5%, As mentioned before, a closed-form solution of (2) is not
available and it should be approximately solved by numeéteehniques [14], [32], [33]. The difficulty
in finding the solution of the ML estimator leads us to emplapaptimal estimators, such as SDP and
linear least squares (LLS) algorithms. The proposed SDBritthgn is derived in the next section. A

linear estimator for the non-cooperative localizationecess previously derived in [19].

B. Semidefinite Programming

This section describes the procedure of converting the Miblem of (2) into an SDP optimization

problem. By rearranging the logarithmic term and dividirgjtbsides by553, (1) can be reformulated as

P n;
2y 0 i
loglo dl /\Z _56 + 5_ﬁ . (4)
Taking the power of 10 on both sides yields
d2\; = a10™/58, (5)
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For sufficiently small noise, the right-hand side (RHS) of ¢an be approximated using the first-order

Taylor series expansion as

In10
2y, — i
di N\ a<1+ 55 n2>. (6)
This can be rewritten as
AN =a+ e, 7)

wheree; is a zero-mean Gaussian random variable with varighd®)?a?c3; /253%. The corresponding
NLS estimator of the unknown parametéksa] in (7) is [32, Ch. 8]

[x; & = arg minz (hidi — @)? . (8)
[x;a]€R® ;23

The cost function (8) is still nonlinear and noncovex. In tlext step, an auxiliary variableis defined
as

z=x'x. 9)

The minimization problem of (8) can be relaxed to an SDP ogation problem as [25]

. N N2
m}:r;l&néze Z:(hz)\Z a) (10a)
i€ A
T
i L x i
subject to h; = Y ? Y , (10b)
—1 xI' 2 —1
IQ X
EOg. (100)
xI 2

The solution of (10) can be effectively found with well knowtgorithms such as interior point methods
[25], [26]. In MATLAB simulations, standard SDP solvers buas SeDuMi or SDPT3 [34], [35] are
employed to solve SDP optimization problems. Note that weelemployed the inequality constraint
(10c) instead of the equality in (9) to relax the cost functino (8) to a convex problem in (10) [16],
[20], [25].

In summary, an SDP solution for RSS localization with unknatansmit power is introduced by
converting the nonconvex cost function of the ML estimatdoia convex cost function using two steps

of approximations and relaxations. In the first step, the Mistcfunction in (3) is approximated by
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(b)

Fig. 1. (a) illustration of functiong\h — ) andlog?,(\h/a) versus unknown variablegs and o (for simplicity, A = 1), (b)
cost function of (3), (c) cost function of (8) versusandb coordinates (source location), the minimum of the cost tione is
indicated by a white square.

another cost function of (8). More specifically, the funotl, (\;2; — «)? is substituted for the function
> logly(N\ihi /). Fig. 1 depicts the two mentioned functions versus unknoamameters: and o (A

is a known parameter). As can be seen, these functions hanlarsbehaviors; the minimum of both
functions appears ath = « and both monotonically increase and decrease in the sanmmsedlote that
the value)\ changes the minimum of the functions but does not affect tigmeral behaviors. Hence, for
simplicity A = 1 has been selected for the illustration. Fig. 1 also depictsrealization of the ML cost
function of (3) and the cost function of (8). A source is l@ghtat[10,10]7 and five anchor nodes are
randomly placed inside a square area 2620 m. The standard deviation of log-normal shadowing is
3 dB and the path loss exponent is set to 4. Since it is not Iples& show a plot in four-dimensional
space, the value oF; is fixed at the true value (-10 dBm) and the functions are @tbttersus: and

b coordinates. Fig. 1b shows the cost function of the ML estimator given iy {&ich has a global
minimum at[10.5,11.5]7 (the step of the mesh grid is 0.5) and some local minima andlesgubints,
e.g., a local minimum af2.5,17.5]7. The cost function of (8), shown in Fig. 1c, is much smoother
than (3) and has a global minimum [aD, 11.5]7. However, it has some concave areas around its global
minimum. It, therefore, still must be relaxed to a convexpghdn the next step, by using the relaxation
of (10c), the function in (8) is relaxed to a convex function(10). The solution of (8) and (10) for the

source location will coincide if the minimum of (10) occur f& and z such thatz = x”x.
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[1l. COOPERATIVELOCALIZATION

This section describes the cooperative RSS localizatiotetia which there are more than two source
nodes with unknown locations, and moreover, source nodescommunicate not only with anchor
nodes but also with each other [1]. Indeed, the power of thesmitted signal of each source can be
measured at both anchor nodes and other source nodes. dreer@fo sets of RSS measurements are
available to the estimator: source-anchor and sourcezseaueasurements. Denote 8y= {1,..., N}
the set of indices of the source nodes andsyy= [a;,b;] € R? j € S, the coordinates of the
jth source location. Letd; = { ¢ | i € C,anchor node is connected to source node} be the set
of the indices of the anchor nodes connected to jtiesource node and;, = { i | i € S, i >
j,source nodé is connected to source node} be the set of indices of the source nodes connected to

the jth source node. The cooperative RSS measurement modelrnsserp as [2]
Pij = P()j — 10,8 loglo dij + 15, j € S, 1€ .Aj U Bj, (11)

where I, is the reference power at a reference distance (1 m) fronyttheource (which depends on
the transmit power)d;; = |ly; — x;l,7 € A;, andd;; = ||x; — x;||,¢ € B;. In addition,n,; are the log-
normal shadowing terms which are modeled as i.i.d. zeroan@=ussian random variables with standard
deviationo,p. In this case, there are in totalVvV + N unknown parameters that should be estimated

including the source node coordinates and transmit powers.

A. Maximum Likelihood Estimator

The corresponding ML estimator of the measurement modelli) {s obtained by the following

nonconvex optimization problem [32, Ch. 7]

= arg min Z Z 57 — Poj + 108 1ogyg dlj) , (12)
PERY e S icA,UB,
whereg = [x7, pl]7 is the vector of unknown parameters to be estimated inaiudia: [x7, x2, ... x%]7
andpg = [Po1, Po2, ..., Pyn]”. Similarly to the non-cooperative case, (12) can be writitarnatively
as

hijNi
—argmln E E <log10 d j) , (13)
aj

PERM S S ie A, UB,
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10

whereh;; £ d?

2, Xij £1075/5%  anda; £ 1075/%, The proposed SDP algorithm is derived in the next

section. We also formulate the proposed LLS algorithm faspeyative localization in Appendix B.

B. Semidefinite Programming

The SDP relaxation of cooperative RSS localization folldkessame procedure as described previously
for the non-cooperative case but with a slightly differeglakation. Consider similar approximations as

applied to (4)-(8). Then, the ML cost function in (13) can bg@ressed approximately as [19]

[X;&] = argmin Z Z (Aijhij — ozj)2, (14)
[l €RY s e A;UB;
wherea = [ay,...,ay]|T. Similarly to the non-cooperative case, the cost functibr{ld) is relaxed
to a convex optimization problem. L& = [x1,Xs,...,xy]| € R2*Y be the matrix of the source node

coordinates. The auxiliary matri@ ¢ RV*" is introduced as
Z=X"X, (15)

where[Z];; = x!'x; is the (4, j)th element of the matriZ. The cost function (14) can be relaxed to an

SDP optimization problem as [25]

. N2
migimize >~ 30 (Aijhij — o) (19
JES i€A;UB,;
_ T
Vi L X| |
subjectto h;; = ’ ' , 1€ A;,
_—ej XT Z —ej
_ T
02 IQ X 02
hij — , 1€ Bj,
_ei—ej XT Z €, —€j
I, X
= On 4o,
XT 7

wheree; is an M by 1 vector in which theth element is one and other elements are zero. The solution
of (16) and (14) for the source node locations will coincitlthe minimum of (16) occurs foXK andZ

such thatz = XTX.
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IV. PATH LOSSEXPONENT

The PLE determines the rate of RSS attenuation with distaffoe value of the PLE depends on the
propagation environment and varies typically between&e(bpace) and 4 [1]. In RSS-based localization,
the accuracy of the estimate of the source node locationlyhigties on the PLE value. Generally in
wireless localization, first the PLE of the environment igaified through experimental analysis [36],
and then the network is established. However, the valuesoPttE might change with time, for instance,
due to changes in environment. Therefore, it may be requivedalibrate the PLE and collect RSS
measurements simultaneously. In [37], the PLE is consitlese a nuisance parameter and estimated
jointly with the source location. However, in our model,iemstting the PLE together with the source
location and transmit power appears to be very difficult.Ha simulation section, we will examine a
condition where the estimators have an imperfect estimfatieeoPLE and its impact on the performance
of proposed algorithms will be presented. Here, we intredactechnique to deal with an inaccurate
estimate of the PLE. First, we make an estimate for the PLEeghan the network environment) and
compute the source location with the proposed algorithrhenTwe update the value of the PLE as

. A \2
P = arg minz Z (Pij — Py; +1031logyq dij) , a7
YERNF S icA,UB;

wherep = [B; po] is the unknown vector to be estimated apgl = [Py1, Poa, ..., Pon]”. cZZ-j are the
estimates of the distances calculated from the estimat#fisea$ource node locations. The least squares

solution of (17) is obtained as [32, Ch. 4]

¢ = (B'B)'B'p, (18)
whereB = [b, By| and
b1
P=|: |, Pi= |y
[PV | i€A;UB;
b,
b= ) bj = |—-10 loglo dAU
b :
Y] L i€A;UB;
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By = diag{1,(1)4m(1)> - - - » In(W)4+m(¥) }>

wherem(j) = | A;| andn(j) = |B;|. We estimates = [¢)];. Now, the algorithms will be computed with
the updated PLE and the iterative procedure continues theilchange in3 is sufficiently small. As
can be seen in (17), we estimate the transmit powers joinitly the PLE. The main reason is that, in
our simulations, we observed that the imperfect PLE cauwmge lerror in the estimates of the transmit
powers, while the estimates of the source locations sufes from the imperfect PLE estimate. Hence,
when updating the PLE value in (18), we have used the sounsidm estimates but not the transmit

power estimates.

V. COMPLEXITY ANALYSIS

In this section, we evaluate the computational complexityhe estimators considered in this study
based on the total number of floating-point operationiops The full details of the complexity analysis
for each algorithm are given in Appendix C. The complexites expressed in Appendix C as a function

of NV, the number of source nodel, the number of anchor nodes, ahd= " ._s |.A;| +|B;|, the total

jES
number of connections. Table | shows the computational ¢exitp of the algorithms for cooperative
localization, assuming a network with full connectivityhere|.A;| = M andL = N(M + (N —1)/2).
Table | is obtained by substituting/ and N (M + (N —1)/2) for |A;| and L respectively in (48), (50),
and (52). It should be noted that Table | provides asympiimplexities of the algorithms, meaning
that only the dominating elements are presented. As candre beear estimators (LLS and PLE) require
only one iteration. The number of iterations for the SDP &t depends on the required accuracy
[25], [38]. The number of iterations for the ML estimator ngiGauss-Newton method depends on its
initial point and required accuracy [32, Ch. 8]. We will latmention the experimental values for the
number of iterations required for each algorithm in the dation results section. From Table |, we can
observe that for a dense network with many source nodesptiglexities per iteration of SDP and ML

algorithm are similar but much larger than that of LLS algun, however for a modest network size

(e.g., 10 source nodes), the complexities per iterationlcalgorithms are approximately the same.

VI. SIMULATION RESULTS

Computer simulations were conducted to evaluate the pedoce of the proposed algorithms. Two

scenarios were examined; in the first scenario, five anchdesavere placed regularly on the corners
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13

COMPLEXITY OF THE ALGORITHMS FOR COOPERATIVE LOCALIZATIONWITH FULL CONNECTIVITY, |AJ‘ =M,

L=N(M+(N—1)/2).

N NUMBER OF SOURCE NODESM NUMBER OF ANCHOR NODES L TOTAL NUMBER OF CONNECTIONS

| Algorithm | lterations | Complexity per Iteration]
MLin (12) | O(N*(M + N/2)%)
SDP in (16) | v/Nlog(1/e) | O(N*(M + N/2)?)
LLSin(34) | 1 O(6N*(M + N/2)?)
PLEin (18) | 1 O(2N?*(M + N/2)?)

and in the center of a square 2020 m and ten source nodes were distributed in a square area 19 m

x 19 m inside the convex hull of the anchor nodes. Fig. 2a shberxtordinates of the anchor nodes,

source nodes, and reference powers for the first scenarithelrsecond scenario, the location of the

source nodes is the same as in Fig. 2a, but the anchor nodesplaeed irregularly. Fig. 2b shows the

configuration of the network in the second scenario. Theevaluthe path loss exponeftwas known

and set to 4, unless otherwise noted. The standard deviatitre shadowingr,z varied from 1 to 8 dB.

The ML estimator was solved by the MATLAB routirlesgnonl i n using the Levenberg-Marquardt

method. The proposed SDP was implemented byQW toolbox [39] using SeDuMi as the solver [34].

The value of the regularization parametewas set to 0.1 for the linear estimator. A summary of the

considered algorithms is given in Table II.

TABLE Il
THE SUMMARY OF THE CONSIDEREDALGORITHMS.

| Algorithm Description
SDP-URSS The proposed SDP algorithm in (16) with unknown transmit @y
ML The ML estimator in (12) initialized with the true values
LLS The proposed linear estimator in (47)
SDP-UNS The SDP estimator in [23] with unknown transmit powers
SDP-RSS The SDP estimator in [13] with true transmit powers
SDP-RSS-WP | The SDP estimator in [13] with -10 dBm reference power asslifoe all source nodeg
SDP-RSS-P2 The SDP estimator in [13] with 2 dB uncertainty about trarignowers
SDP-RSS-P5 The SDP estimator in [13] with 5 dB uncertainty about trarignowers
ML-SDP-URSS| The ML estimator in (12) initialized with the solution of SBFRSS
ML-LSS The ML estimator in (12) initialized with the solution of LLS
ML-RAND The ML estimator in (12) initialized with random values
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Fig. 2. The configuration the proposed networks. The solichsegs and crosses represent the anchor nodes and soureg node
respectively. The value of the reference power, in dBm, mhesource node is indicated next to it.

A. Cranér-Rao Lower Bound (CRLB)

In this section, we show the effect of unknown transmit p@a@mn the CRLB accuracy, evaluated on
a regular grid. Figs. 3a and 3b show the CRLB ellipse [40] afi-nooperative RSS localization with
either known or unknown transmit power when the anchor nadgeplaced based on the first and second
scenarios, respectively. Fig. 3a illustrates that thermisignificant difference between the CRLB of RSS
localization with known and unknown transmit power of a s®ulocated inside the convex hull of the

anchor nodes, whereas, when the source node is relativedg ¢b the anchor nodes or between two
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(b) The second scenario

Fig. 3. The CRLB of non-cooperative RSS localization. Blés#lid) and red (dashed) circles represent the CRLB ellipisie
known transmit power and unknown transmit power, respelstivi he solid squares and crosses indicate the anchor rodkes
source nodes, respectively. The standard deviation ofostiad term is 3 dB. The difference between the two CRLBs in the
second scenario is more significant.

adjacent anchor nodes, the effect of unknown transmit p@methe CRLB is more significant. On the
other hand, as depicted in Fig. 3b, the differences betweeCRLBs for the second scenario are much
larger, especially when the source node is located outs&ednvex hull of the anchor nodes. Thus, when
the source node is outside the convex hull, the impact of owkrtransmit power is significant. However,
the impact is minor when the source node is inside the conuéxThe CRLBs for the cooperative case

are more or less similar to the non-cooperative case.
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Fig. 4. The RMSE of the proposed algorithms versus the stdndieviation of shadowing. The proposed SDP (SDP-URSS)
performs very well and its performance is very close to thgimal ML estimator, especially in regular networks.

B. Root-Mean-Square-Error (RMSE)

Now consider the configuration of the network given in Fig. Rall connectivity was initially assumed,
meaning that each source node was connected to all anches aod also to all other source nodes. The
locations of the anchor and source nodes were fixed and 508umemaent noise realizations were drawn.
The RMSE of each algorithm is calculated by averaging oveestimated source locations and noise
realizations. The RMSE performance of the proposed alyuostis depicted in Fig. 4. The solver for the

ML estimator was initialized with the true value of the saitocation. The term URSS is used for RSS
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localization when the transmit powers of the source nodesat known and the term RSS is used for
the classic RSS localization with known transmit powerstadisd in [2], [13]. CRLB-RSS is the classic
CRLB with known transmit powers derived in [13]. As expectadFig. 4a the difference between the
CRLB with known transmit power in [2] and the CRLB with unknowransmit power is small, since
the source nodes were located inside the convex hull of tkbamodes. Fig. 4a shows that the ML
estimator has superior performance for low shadowing st&hdeviations, but its performance degrades
for shadowing standard deviation higher than 5 dB, evenghat is initialized with the true values.
The proposed SDP (SDP-URSS) performs significantly beltien LLS algorithm and is very close to
the ML estimator. When shadowing is very high (7 dB and maie), proposed SDP performs slightly
better than the ML estimator. The ML estimator is optimal whiee number of measurements tends to
infinity meaning that no unbiased estimator can have loweSENhan the ML estimator asymptotically
[32, Ch. 7]. However, here the number of measurements iselintherefore, the optimality of the ML
estimator is not guaranteed. Moreover, since both the Mimesor [2] and the proposed SDP are biased
(especially when either the number of measurements isddvir shadowing is high), we cannot expect
that the ML estimator provides the best accuracy. Note thiat hehavior has also been observed in
[13]. Besides the proposed algorithms, an SDP algorithrergin [23] (labeled as SDP-UNS) is also
included in the simulations. It should be noted that SDP-UsI§enerally based on the fact that the
transmit powers are available. Therefore, we modified tigerdhm to estimate jointly transmit powers
and source locations. There are many weighting terms in BB-which depend highly on the transmit
powers [23]. To rectify this problem, we first set the valuetloé weighting terms to 1 and estimate
transmit powers and source locations. Then, we updated ¢fighting terms using the estimated transmit
powers and ran the algorithm again. The performance of SNB-flls between LLS and SDP-URSS,
even though its computational complexity is higher than SIHSS.

The comparison of the proposed algorithms versus the stnidaiation of shadowing for the second
scenario is illustrated in Fig. 4b. Here, there is a consibller gap between CRLB-RSS and CRLB-
URSS. The performance order of the algorithms is the same #eifirst scenario. In comparison with
the previous scenario, the difference between the accuhtye ML estimator and the proposed SDP
is larger. However, the proposed SDP-URSS is still muchebéfian LLS and SDP-UNS estimators.

In Table Ill, we compare the average running time of the atereid algorithms. The running time
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TABLE Il
THE AVERAGE RUNNING TIME OF THE CONSIDEREDALGORITHMS.
N =10, |A;| =5, L = 95.
CPU: INTEL CORE2 DUO E7500 2.93 GH

| Algorithm | lterations | Time [ms] |

ML 22 268.72
SDP-URSS| 19 218.34
SDP-UNS | 35 462.16
LLS 1 11.81

is measured by averaging over 500 noise realizations wherfitt network with full connectivity is
considered and the standard deviation of the shadowingti®os dB. LLS has the lowest complexity
and therefore the fastest running time. The required runtime of the proposed SDP-URSS is about
20% lower than the ML estimator. From Table I, the complexity fteration for all algorithms is almost
identical for this network sizeN = 10, |.A;| = 5). However, they require different numbers of iterations.
Moreover, we empirically computed the average number oétiens for the ML and SDP algorithms.
The average number of iterations for the ML and SDP-URSS @2rend 19, respectively. Consequently,
the running time of the ML and SDP-URSS is approximately 28 &8 times higher than LLS (which
requires only one iteration). As mentioned in Section V, fikening time of the ML estimator depends
highly on the initialization. Here, the ML estimator has besitialized with the true values which cuts
down its running time and improves its performance. Latex, will discuss the effect of initialization
on the complexity and performance of the ML estimator. Thejgatational of complexity of SDP-UNS
in [23] is almost the same as that of the proposed SDP-URS®ettr, as mentioned above, SDP-
UNS should be run twice because of the estimation of the Wieighterms. Therefore, the required
running time of SDP-UNS is nearly as twice as that of SDP-URB#Is, complexity and performance
are directly related for the considered algorithms, exdepSDP-UNS which was designed for known
transmit powers.

Fig. 5 illustrates the performance of the proposed SDP cosdpaith the previously studied algorithm
in [13] (labeled as SDP-RSS) for the first scenario. Since-838 is based on the availability of source
transmit powers, the true values of the source nodes tramswers were given to SDP-RSS in Fig. 5.
In SDP-RSS-WP, the same algorithm in [13] was used, howéeralgorithm did not have the exact

value of the transmit powers and the value of -10 dBm was giwehe algorithm as the reference power
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Fig. 5. The RMSE of the proposed algorithms versus the stdrdkviation of shadowing for the first scenario with undetta
in the transmit power. Although in the first scenario unkndvemsmit powers do not have a huge impact on the CRLB accuracy
employing the proposed SDP (handling unknown transmit pgwis very useful and strongly improves performance.

for all source nodes. We also proposed a condition where tiseuncertainty about the transmit power.

Assume that approximate values of the transmit powgys, are given as
p()j = Poj + Vj, (19)

wherev; ~ N (0, op,) are Gaussian random variables with standard deviatign Instead of the true
value of transmit power;, the value ofF;; was given to the SDP algorithm in [13]. In this simulation,
the value ofop, was set to 2 and 5 dB for SDP-RSS-S2 and SDP-RSS-S5, resgec8DP-RSS
(exact knowledge) outperforms the proposed approach,lynagcause the true value of transmit power
is available to it. SDP-RSS-S2 performs worse than SDP-R$@olly when the shadowing is low.
SDP-RSS-WP and SDP-RSS-S5 have poor performance;fpx 6dB. As can be seen, as the standard
deviation of the shadowing increases, the effect of tranpower uncertainty on the estimation accuracy
decreases since performance is dominated by shadowingpdfiemance of the proposed SDP-URSS
is close to SDP-RSS and has better accuracy than SDP-RS8dSSP-RSS-WP, especially for low
shadowing standard deviation. Hence, although in the fa@shario, unknown transmit powers do not
have a huge impact on the CRLB, employing an algorithm hagdhis uncertainty is very useful and

strongly improves performance.

October 25, 2012 DRAFT



20

T T
—%— SDP-URSS \
|| —8— ML
—6— ML-LLS
—4~— ML-RAND
7 —s— ML-SDP-URSS
= = = CRLB-URSS
6H CRLB-RSS ]

Shadowing [dB]
(a) The first scenario

T T
—#— SDP-URSS
|| —8— ML
—6— ML-LLS
—~A— ML-RAND
7| —— ML-SDP-URSS

- = = CRLB-URSS
6H CRLB-RSS J
A—

Shadowing [dB]
(b) The second scenario

Fig. 6. The RMSE of proposed algorithms versus the standaviation of shadowing and different initializations foreth
ML estimator. The initialization has a huge impact on the Mitimator performance. The proposed SDP algorithm provides
suitable initial point for the ML estimator if better accuayais required.

C. Initialization

It is well-known that the performance of the ML estimator deg@s heavily on its initial solution, since
most implementations of the ML estimator are iterative. Uidtfer compare the proposed SDP and the ML
estimator, we initialized the solver of the ML estimator lwitifferent values. Fig. 6a and 6b illustrate the
RMSE of the proposed algorithms as a function of the standavihtion of the shadowing with different
initial points for the solver of the ML estimator for the fi@hd second scenarios, respectively. The curve

labeled as ML stands for the ML estimator initialized witle tttue values, whereas ML-SDP, ML-LLS,
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TABLE IV
THE AVERAGE RUNNING TIME OF THE ML ESTIMATOR WITH DIFFERENTINITIALIZATIONS .

| Algorithm | Iterations | Time [ms] |

ML 22 268.72
ML-SDP 23 282.51
ML-LLS 26 316.16
ML-RAND | 43 514.58

and ML-RAND stand for the ML estimator when its solver wadialized with the SDP solution, LLS
solution, and random values, respectively. Fig. 6 showsithiaoth scenarios, the ML estimator initialized
with the true values outperforms other algorithms as exqued¢dowever, the initial point can have a large
effect on ML accuracy. The proposed SDP algorithm offerselbgierformance compared to ML-LLS
and ML-RAND, especially for large shadow fading standardiatéon. It is interesting that when the ML
estimator is initialized with the solution of the proposddRS(ML-SDP-URSS), we can achieve almost
the same accuracy as the ML algorithm initialized with theetsolution. Therefore, although the proposed
SDP algorithm has excellent standalone performance, itatsmbe used as an initial point for the ML
estimator when even better accuracy is required. Fig. 6 stwovs that randomly initializing the ML
estimator yields extremely poor performance even atdg values. Table IV shows the running time of
the ML estimator for different initializations. We can séwt the initial point has a huge impact on not
only the performance of the ML estimator, but also the regglitumber of iterations and the running time.
When the initial point is not sufficiently close to the glolmainimum, the number of iterations increases
significantly. Moreover, there is no guarantee that theritlym converges to the global minimum. This
is the major drawback of the ML estimator. In this case, ameiase in running time (complexity) does

not result in performance improvement because of initian; in fact the opposite is true.

D. Connectivity

In the previous simulations, we assumed that the networkfllhsonnectivity. However, this as-
sumption is not valid in all practical cases where the cotioes among sensors are limited. In this
section, we examine the first scenario but with limited catingy. Fig. 7 shows the RMSE of the
proposed algorithms versus the number of connections wieeshadowing standard deviation is 4 dB.
For instance, the value of 10 on the x-axis means that eadltesowde is connected to the 10 closest

sensors, either anchor nodes or source nodes. The LLS &stima(47) is no longer applicable here
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Fig. 7. The RMSE of the proposed algorithms versus the nurabeonnections. The standard deviation of the shadowing
is 4 dB. As the number of connections increases, the estmatcuracy improves. The proposed SDP algorithm has better
performance than the ML estimator when the connectivityhiz network is limited.

because in its formulation, each source node should be ctethéo at least four noncollinear anchor
nodes, but in low connectivity there is no guarantee thah eatirce node can communicate with four
neighboring anchor nodes. Fig. 7 shows that by increasiagnthmber of connections, the estimation
accuracy improves, as expected. Comparing the two CRLBsplerve that the unknown transmit
power has more effect on the CRLB accuracy when the netwonkexctivity is limited. The proposed
SDP performs better than the ML estimator when the numbepwohfections in the network is very low.
Potential reasons were previously mentioned in the degmmipf Fig. 4. When the number of connections
is 6 or 7, the proposed SDP is slightly lower than CRLB. As rimer@d previously in Section VI-B,
both SDP-URSS and ML estimators are biased (especially weemumber of connections is limited)

and thus the CRLB cannot provide an absolute lower boundhtemt[2], [13], [41].

E. Path Loss Exponent (PLE)

In this section, we investigate the effect of imperfect PLiowledge on the performance of the
proposed algorithms. The first scenario was consideredhisrsimulation. However, we assume that the
estimators do not have the exact value of the PLE and instegdhtave an approximate value modeled
as

B=B+N(0,1), (20)
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Fig. 8. The RMSE of the proposed algorithms versus the stdrdiviation of shadowing for the first scenario with undetta
in the PLE. Imperfect PLE decreases the performance of gdirithms, especially at low ;5 values. When the shadowing is
larger than 6 dB, the proposed SDP is more robust againstrieghéd’LE than the ML estimator.

where 8 = 4 in our simulations. Fig. 8 shows the performance of the psedoalgorithms in this
condition. The order of the algorithms remains unchangedpawed to Fig. 4a. It is obvious that the
performance of all the algorithms degrades, especiallpwatvalues ofoyz. The proposed SDP-URSS
performs better than the ML estimator in the presence of Phéetainty when the shadowing standard
deviation is larger than 5 dB. Now, assume that we have anriiegievalue of the PLE and the proposed
algorithms are computed based on the approach given in Fi@).9 shows the estimate of the PLE
versus the number of iterations and different shadowingdstad deviations for the proposed SDP in
(16). The true value of the PLE was set to 4 and we started geeitdm with the PLE of 3 and 5. It can
be seen from Fig. 8 that the RMSE performance of the propdgedithms is poor at the low shadowing
standard deviations. However, as depicted in Fig. 9, bycétipl) the iterative approach given in (18),
the imperfect PLE estimate converges to a value very closthdatrue value for a small number of
iterations. It is worth mentioning that we have only plotteé convergence of the PLE for the proposed
SDP in (16). However, the PLE convergence for the ML and LLgathms is more or less the same.
Our simulations show that once the PLE has converged, the RbShe proposed algorithms for the

source locations is almost identical to Fig. 4a.
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Fig. 9. The convergence rate of the PLE for the proposed SB@.algorithm starts with the initial valug,. The true value
of 8 is 4. Once the PLE has converged, the proposed algorithnievacperformance nearly identical to what is achieved with
perfect knowledge.

VIl. CONCLUSION

In this paper, cooperative RSS-based sensor localizatibtmumknown and different transmit powers
was examined. The CRLB of the measurement model was derivédhaough computer simulations it
was shown that the effect of unknown transmit powers on th&ECRccuracy of the source locations
depends strongly on the network deployment geometry. AIrD® technique was derived to estimate the
source transmit powers jointly with the source node locetiarhe complexity analyses of the considered
algorithms were presented. Simulation results demoestthtt the proposed SDP algorithm has excellent
performance, close to the original ML estimator in most dods. Not only does the proposed SDP
exhibit good accuracy alone but also gives a good initiahpfar the ML estimator if further refinement
is required. We also introduced an approach for dealing witperfect information about the path loss

exponent which can strongly impact the performance of R&®t localization algorithms.
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APPENDIX A

CRAMER-RAO LOWER BOUND OF COOPERATIVE RSSLOCALIZATION

In this section, the CRLB of cooperative RSS localizatiothwinknown transmit power is derived.
The CRLB defines a lower bound on the variance of any unbiasdcha&or and is employed as a
benchmark for evaluating the performance of estimators (32 3], [1], [2], [13]. Since the transmit
power of the source nodes is not available to the estimdtshauld also be taken into account as an
unknown parameter. Let us recall the vector of unknown patersg = [x*, pZ]7 including the source
node location = [x1,xI,...,x%]7 and the source node transmit powexs= [Po1, Poz, - - ., Pon] 7.
From the measurement model in (11), the logarithm of the avdity density function of the RSS

measurements is written as

Inp(p; @) =k — o 5(1(d) — p)" (1(e) — p), (21)

where k is a constant which does not depend on the unknown paranmeatérp is the measurement

vector defined in (18)u(¢) is the mean of the measurement vegtodefined as

n(o) = : ) Hj(¢) = | K (22)
: i€A;UB;
where

,uij = P(]j — 10ﬁ loglo le

The CRLB of the unknown parameters are the diagonal elenoénibe inverse of the Fisher information
matrix [32, Ch. 3]. The Fisher information matrix of the messment model in (11) is obtained as [32,
Ch. 3]

J(¢) = 0 5F'F, (23)

where

i€A;UB;
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andf,-j = [f22;7 fg;],

£l = 01><2(j—1)7u;‘l;'701><2(N—j)}7 i€A;

[ T T .
£ = [01x2(j-1)s Wijs O1sa(i—j—1) —Wij» O1xan—s) |, © € By

fl = O1x(j-1); 1701><(N—j)}7 i€ A;jUB;

108 (yi —xj) . ‘
“iThoo @ S
s 5

TS TS

Therefore, the CRLB of the unknown parametexss computed as

CRLB([¢],) = [ ()] ., r=1,2,...,3N. (24)

)

APPENDIX B

LINEAR ESTIMATOR FORCOOPERATIVERSS LOCALIZATION

In this work, we derived an SDP estimator to deal with the esgence problem of the ML estimator
and its complexity. Another solution for the ML convergemmeblem is to use a linear estimator which
has an analytical closed-form solution. To obtain a linestingator, some approximations should be
applied to linearize the nonlinear measurement model ofL{hear estimators for RSS localization have
been previously considered in the literature [4]. Howeverthe best of our knowledge, all of them
are based on availability of the transmitted power. Here derve a similar technique to the one used
in [4] with considering unknown transmit powers. Since #iriging the source-source measurements is
difficult, we propose a two-step algorithm. In the first steplled coarse estimation), we estimate the
location of each source node independently using only seanchor measurements. Then, in the next
step (called fine estimation), we improve the accuracy ofetftenated source locations by using source-
source measurements. The main drawback of this approabhtisve require at least four source-anchor
measurements for each source node, otherwise we cannot fiodree estimate for the source location
in the first step and therefore the second step will be noticgdge. We now start by describing the first

step. Let us rewrite (7) for cooperative localization as(S)
hij>\ij =aaj+ €5, 1€ .Aj, (25)
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wheree;; = —n;j;(In10) /54 is a zero-mean Gaussian random variable with varighd®)? o207 /2557,

Expanding the left-hand side (LHS) of (25) and rearrangiivgs
2/\iijTXj — )\in?Xj +a; = )xijy;-ryi +e€i, 1€ A;. (26)

Let 6, ; = [x] ,x] x;j,;]" be the unknown vector to be estimated. Then (26) can be esqutés matrix

form as

G101 =hi; + €1, (27)

where

Gl,j: 2)\ijy;-r _>\z’j 1],

hy ; = /\iijTyZ' » €15 = |€j | ieAjUB;.

The LLS solution of (27) is [32, Ch. 4]
01, = (G{;W1;G1;)"'G] ;W ;hy;, (28)

where W ; is the weighting matrix which is the inverse of the covariameatrix of the residual error

vectore; ;
lej == E[ElJE{j]_l == ((lnlO)OéjO'dB/5ﬁ)_2 Im(j)' (29)
wherem(j) = |.A;]. The covariance matrix of the estimated vedlgr; is [32, Ch. 4]
C;, = (GI;W1,;Gy )" (30)

The weighting matrixW, ; depends on the unknown parametgr Therefore, to compute the weighting
matrix, we can eliminate the value af; in (29) and determine the solution of (28). Sinegis a constant
factor in W ;, its value does not change the solutionfef; in (28). However, for further computations,

we can calculate the weighting matWw; ; approximately bya; obtained from (28).
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Since the elements of estimated parameters in (28) are depgmne method to improve the estimation
accuracy, called correction technique [5], [17], [42],astdke this relation between elementséqu into
account. Here we extend the correction technique to ourl@mbThe unknown vecto#; ; can be
expressed as

él,j = 01,j + AOLj, (31)
where A@, ; is the estimation error. Squaring the first two elements &) (8lement-wise) yields
(01,517 = 01,17 +2(01,;11[A01 ;11 + [A0y ;13
=~ (01,517 +2(01,;11[A01 1,
(61,513 = (01,513 + 2[01,12[A01 3] + [A61]3

~ [01,;]5 + 2[601,5]2(A01 ]2, (32)

where we assume that the estimation erfof); ; is sufficiently small. Now, consider the following

expressions [17]

G260s; =hy; + €25, (33)
where8s ; = [a?,b%, o;]" and
100 01,13
010 (61,513
Gy = y hoj =1 i € =—B;A0,
110 61,5]3
00 1] _[91,j]4_

andB; = diag{2[01 ;]1,2[01 ]2, 1,1}. The LLS solution of (33) is [32, Ch. 4]
05 = (GTW,,;G) 'GTWy,hy , (34)

where Wy, ; is the weighting matrix equal to the inverse of the covaranmatrix of the residual error
vector ey ;

-1
WQJ' == E[€27j€§j]_1 == (BCJFCél]B]> 5 (35)

where C; is computed in (30). It should be noted that the weightingrixna¥V, ; depends on the
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unknown parameter;. Therefore, the weighting matrix is approximately caltedaby availabled;
rather thanf;. Our simulations show that the accuracy degradation duddoapproximation is not

significant. The covariance matrix of the estimated veél;gf is [32, Ch. 4]

C; = (GIW,;Gy)7 . (36)

é2,j

Finally, the estimation of the source locatign = [dj,Bj]T is [17], [18], [43]

a; = sgn([01,7]1)1/[02,5]1]
b; = sgn(|[01,512))1/1(02,5]2]; (37)

wheresgn(z) = z/|z| is the sign function. The covariance matrix of the estimatedrce locatiorx; is
computed as [18], [43]
Cs, = DJ[Cy, li212D;, (38)

J

whereD; = 3diag{|a;| ™!, [b;|'} and[Ali.,,1., denotes the upper-left x m part of matrix A.
Now we continue describing the second step using both samgrce and source-anchor measurements.
The relationships between the estimated and the true vélthe source location and the transmit power

of the source node are

x; = X; — Ax;,

Py; = Pyj — ARy, (39)
wherePy; = 53 1og,o(d;) (a; = [2,]3 is computed for each source node from (34)x; and AP, are
the estimation error of the source location and the sousresinit power, respectively. Equation (11) is

a function of the unknown parametets and ;. We substitute (39) fox; and Fy; in (11). Therefore,

APy; and Ax; are the new unknown parameters to be estimated in (11).

~

Pjj = (Poj — Poj) (40)
—1081ogyg lly: — (X5 — Axj)|| +ngj, @ € A
P = (Py; — ARy)

— 105 loglo H()A(Z — AXZ) — ()ch — AX])” + 15, 1€ Bj.
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Taking the power of 10 on both sides of (40) and rearrangietpgi
€D 10" = ||y, — (%, — Ax;)|, i € Aj, (41)
€7 Ao 10™9/1% = ||(%; — Ax;) — (%5 — Ax;)||, i € B;

wheref;; £ 10(Ps=Pi)/108 andAq;, £ 10-2F/108, By using the first-order Taylor series approximation

for the third element of the LHS and the element of the RHS) {ddns into

In10

iAo (1 + mn,-j) =di; — 0L Ax;, i € Aj, (42)
~ In10 5 ~T ~T .
fijAOéj(l + mnw) = dij — U_Z-jAXj + uijAXi, 1€ Bj
where
N (>A<' - Yi) 3 s .
U = =, dij = |lyi = %4, i € A
. (Xj — %) - .. .
u;; = in, d,’j = ”X, — Xj”, S Bj.
Rearranging (42) gives
ﬁZ;AXj + éz'jAOéj = (iij + €5, 1€ .Aj,
—ﬁg;AXi + ﬁg;-AXj + éz'jAOéj = (iij + €45, 1€ Bj, (43)
wheree;; 2 (In10) &;;Aa;jn;;/105. Let A0z = [AxT, ..., Ax%, Aay, ..., Aay]T be unknown param-

eters to be estimated. We can write (43) in matrix form as

G3A03 = h3 + €3, (44)
where
Gz hs 1 €31
Gs = - Lbhy=1] : |,e=1| : |,
G3 N hs v €3N
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G = |gij|» hsj= |dij| €= |e
icA;UB;
andg;; = [g};, &,
giyj - :lez(j—l)’ﬁz?;701><2(N—j)}, i€ A;

v _ | T T .
8 = |01x2(j—1)> Wij5 O1x2(i—j—1), —Wi5, O1xav—i) |, © € B

gfj = le(j—l)yéiﬁolx(]\f—j)}’ i€ A;UB;

Since as prior knowledge, we know that the unknown vegiég is not too large, (44) can be solved
by the Tikhonov-regularized LS formulation in which the tésnction includes the weighted squared
norm of A@; to keep it as small as possible. The Tikhonov-regularizedsal8tion of (44) is obtained
as [44], [26, Ch. 6]

AB3 = argmin ||G3A0; — hs||® + 6] Abs]%, (45)
AB3ER3N

where§ is a regularization parameter controlling the trade-offile®n |G3 A6z — hs|? and ||Afs||%.

The closed-form solution of (45) is given by [26, Ch. 6]
A = (GIG3 +01;) " Glhs, (46)

Finally, the location of each source node is determined as

ij :}A(j—A)A(j, jes. 47
APPENDIXC

COMPLEXITY ANALYSIS OF THEALGORITHMS

The computational complexity of the considered algoritirased on the required number of flops is
derived in this section. We assume that an addition, sufmrgamultiplication, division, or square root
operation in the real domain can be computed by one flop [4®]. [For simplicity, we keep only the
leading terms of the complexity expressions. We derive tmaptexity of cooperative approaches which

includes non-cooperative case as a special c&se (1). Note that the worst-case complexity is derived
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without any attempt to optimize computations to take adsgatof, e.g., the structure of matrices. The
complexity of the considered algorithms is computed as atfan of NV, the number of source nodes,

M, the number of anchor nodes, ahd= >, s |A;| +[B;], the total number of connections. Note that

for a network with full connectivity, we havé = N(M + (N —1)/2).

A. Maximum Likelihood

As previously mentioned, the ML estimator is nonlinear amdagonvex. Therefore, ML complexity
highly depends on the solution method. In addition, the demity of every method also depends on
many parameters, e.g., the number of iterations, the lipgant, or the solution accuracy. Gauss-Newton
(GN) is the one of the most popular methods used in solvindimear optimization problems [32, Ch.
8]. GN is an iterative technique and requires initializatidhssuming a nonlinear problem with a set of
m equations anch unknown variables, the asymptotic computational compfe. > n) of the GN
method in each iteration i®©(m?) [47]. The number of iterations depends highly on the inipaint
and required accuracy. Assumiay k) iterations on average is required to solve a specific probteen
total complexity of the GN method i©(km?). For the proposed ML, we have = L, andn = 3N.

Consequently, the asymptotic complexity of the ML estimaro(12) is

ML Complexity ~ O(kL?). (48)

B. Semidefinite Programming

Consider the general form of a semidefinite programming lprol{25]

minimize c¢’x
x (49)
subjectto F(x) = 0,
wherex € R™ and
m
=1
The available data includes the vectoe R™ andm + 1 symmetric matrice¥, ..., F,, € R™*"™. An

SDP problem can be solved by iterative optimization techedq e.g., interior-point methods [25], [26].
The worst-case computational complexity of solving SDPanleiteration isO(m?n?) [25]. The number

of iterations is also bounded ly(\/nlog(1/¢)), wheree is the accuracy of SDP solution [25], [34]. For
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the proposed SDP, we hawe ~ L + 3N andn ~ N. Therefore, the complexity of the SDP in (16) is
SDP Complexity ~ O(VN(L + 3N)*>N?log(1/e)). (50)

C. Linear estimator

Consider a weighted linear least squares problem with afset equations ana. unknown variables
defined as [32, Ch. 5]
6 = (GTWG)'GT"Wh, (51)

where@ ¢ R, G ¢ R™*", W ¢ R"™*™_ andh ¢ R™, Computing@ includes five matrix multiplications
and one matrix inversion. Therefore, the computationalgenrity of (51) isO(2m?n+mn?+mn+n3+
n?) [45], [48]. Assumingm > 2n, the complexity of (51) is upper bounded Bym?). The complexity
of the proposed LLS algorithms can be simply expressed &si®)

TABLE V
COMPLEXITY OF LLS ALGORITHMS.

[ Algorithm [ m [n | Complexity |
LLSin (28) [ |A4;] | 4 O(8].A; 7 + 20].4;] + 80)
LLSin (34) | 4 3 180)

O(
LLS in (46) | L 3N O(6L*N + 9LN?)
PLE in (18) | L N+1 | ORL*(N+1)+ L(N +1)%)

The cooperative LLS algorithm includes (28), (34) which eatculated forN source nodes and (46).

Therefore, from Table V, the total computational comphexif the cooperative LLS approach is

LLS Complexity ~ O(6L*N +9LN? +> " 8|A;%). (52)
JES
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