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Abstract

Cooperative localization (also known as sensor network localization) using received signal strength

(RSS) measurements when the source transmit powers are different and unknown is investigated. Previous

studies were based on the assumption that the transmit powers of source nodes are the same and perfectly

known which is not practical. In this paper, the source transmit powers are considered as nuisance

parameters and estimated along with the source locations. The corresponding Cramér-Rao lower bound

(CRLB) of the problem is derived. To find the maximum likelihood (ML) estimator, it is necessary to

solve a nonlinear and nonconvex optimization problem, which is computationally complex. To avoid the

difficulty in solving the ML estimator, we derive a novel semidefinite programming (SDP) relaxation

technique by converting the ML minimization problem into a convex problem which can be solved

efficiently. The algorithm requires only an estimate of the path loss exponent (PLE). We initially assume

that perfect knowledge of the PLE is available, but we then examine the effect of imperfect knowledge

of the PLE on the proposed SDP algorithm. The complexity analyses of the proposed algorithms are

also studied in detail. Computer simulations showing the remarkable performance of the proposed SDP

algorithm are presented.
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Index Terms

Received Signal Strength (RSS), cooperative sensor localization, transmit power, maximum like-

lihood (ML), semidefinite programming (SDP), linear least squares (LLS), path loss exponent (PLE),

computational complexity.

I. INTRODUCTION

Recently, wireless sensor networks (WSN) have been the subject of great interest in many studies

because of their wide applications in control, tracking, and monitoring. Location information is a vital

aspect of many WSNs. Indeed, the location of each sensor is often required to make the collected

information useful. Generally, in a WSN, the positions of a number of sensors are known (anchor nodes),

while there are some sensors (source nodes) whose positionsare unknown and thus must be estimated

using sensor localization. The main purpose of sensor localization is to determine the location of sensors

in a WSN via noisy measurements [1]. These measurements may include received signal strength (RSS)

[2]–[4], time-of-arrival [5], [6], time-difference-of-arrival [7]–[9], and angle-of-arrival [10], [11]. Among

the different types of measurements, RSS is a popular methodmainly because of its low complexity and

cost in software and hardware implementations [1].

Sensor localization is generally divided into two cases: non-cooperative and cooperative. In the non-

cooperative case, source nodes can communicate only with anchor nodes [1], [12]. The lack of accessible

anchor nodes and also limited connectivity among anchor nodes and source nodes have led to the

emergence of cooperative localization in which source nodes are able to communicate with both anchor

nodes and other source nodes. Therefore, not only are the RSSvalues between source nodes and anchor

nodes (source-anchor measurements) measured, but also thesource nodes themselves are involved and

collect RSS measurements from each other (source-source measurements). Furthermore, in cooperative

localization, anchor nodes can estimate the location of allsource nodes simultaneously. Thus, both

estimation performance and robustness are improved by employing cooperative localization [1], [3],

[13].

The maximum likelihood (ML) estimator and the Cramér-Rao lower bound (CRLB) of cooperative RSS

localization were studied in [1]. The cost function of the MLestimator is severely nonlinear and noncovex

and, therefore, it can be optimized by iterative algorithmsonly with an appropriate initialization [14], [15].

October 25, 2012 DRAFT



3

The performance of iterative algorithms strongly depends on the initial solution. If the initialization is not

sufficiently close to the global minimum, the iterative algorithm may converge to a local minimum or a

saddle point causing a large estimation error. Therefore, determining an appropriate initialization point is

a crucial problem in optimizing the ML cost function. As a result, some approaches such as grid search

methods, linear estimators, and convex relaxation techniques have been introduced to address the ML

problem [3], [12], [16]. The grid search methods are not generally popular because they are very time-

consuming and require a huge amount of memory when the numberof the unknown parameters is too

large. Linear estimators having a closed-form solution areusually derived based on many approximations

[12], [17]–[19] which affect its performance, especially when shadowing is very high [19]. A convex

relaxation technique such as semidefinite programming (SDP) is another solution for the ML convergence

problem [13], [16], [19]–[24]. In the semidefinite relaxation technique, the nonlinear and nonconvex ML

problem is transformed into a convex optimization problem.The advantage of an SDP is that its cost

function does not have local minima and thus convergence to the global minimum is guaranteed [25], [26].

The downside is that the SDP technique is sub-optimal and cannot achieve the best possible performance

in all conditions. Most studies mentioned above on RSS localization assume that the source transmit

powers are the same and known [4], [13], [17], [23].

The RSS measurement model depends on the transmit power of the source nodes. Therefore, the anchor

nodes are not able to find the location of a source node if its transmit power is not accounted for. Each

source node has a specific transmit power depending on, e.g.,its battery and antenna gain. In addition,

the transmit power might change with time, e.g., when batteries begin to exhaust. Consequently, each

source node has to report its transmit power to anchor nodes constantly during RSS measurements which

requires additional hardware and software in both anchor nodes and source nodes making the network

more convoluted [1]. When the transmit powers are not available, there are generally two common

solutions suggested to address this problem. First, one canestimate the transmit power of the source

along with its location [19], [27]. Second, one can eliminate the dependency of the transmit power from

the RSS measurement model by using the differential RSS between a source node and two anchor nodes

[19], [28], [29]. The number of unknown parameters in the latter method is fewer than in the former

method. However, employing the latter method introduces noise correlation and noise enhancement which

complicate the computations and degrade the accuracy [19].It should also be noted that all previous
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studies on RSS localization with unknown transmit power arefor the non-cooperative case. In this paper,

for the first time, we examine this problem for the cooperative localization case. Some range-free and

non-model-based techniques were also suggested [30], [31]in which the localization algorithms do not

require the model parameters, such as the transmit power andthe path loss exponent, and the estimate of

the source location was basically obtained based on the comparisons among RSS measurements. However,

having a cooperative network and source nodes with different transmit powers make those algorithms

complex and inapplicable.

Thus, cooperative localization using RSS in the practical case where transmit powers are different and

unknown is currently an open problem. In this paper, we consider this problem and provide a solution.

Specifically, the source transmit powers are considered as nuisance parameters and estimated jointly with

the source node locations. A novel SDP technique is introduced for this expanded estimation problem.

To make the derivations easier to understand, we start by describing the proposed SDP algorithm for

the non-cooperative case. Then, the measurement model is extended to the cooperative case and the

corresponding SDP algorithm is derived. The original ML estimator is transformed into an approximate

nonlinear least squares (NLS) problem. Then, an appropriate relaxation is applied to convert the NLS

problem into an SDP optimization problem. It is worth mentioning that the SDP techniques introduced

in [16], [20] are not applicable here, since they assumed that noisy pairwise distances between source

nodes and anchor nodes are available. However, in our study,the distances cannot be computed because

the transmit powers of the source nodes are not available to the estimator. Ouyang et al. [13] also derived

an SDP approach which is directly applied to the RSS model. However, they assumed that all source

nodes have the same known transmit power which is not practical. Conversely, in the current work, we

assume that each source node has a unique transmit power which is not known. The Cramér-Rao lower

bound (CRLB) of this problem is computed. We also propose a linear estimator for comparison with the

proposed SDP algorithm. Moreover, we investigate the effect of imperfect knowledge of the path loss

exponent (PLE) on the algorithms’ accuracy and introduce a novel technique to improve performance

when the PLE is estimated. We also study the computational complexity of the considered algorithms in

detail.

The rest of the paper is organized as follows. Section II presents the non-cooperative RSS localization

problem, introducing the measurement model and proposed localization algorithms. The extension of RSS
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localization to the cooperative case is discussed in Section III. Section IV describes the effect of imperfect

knowledge of the PLE on the proposed algorithms. Complexityanalyses of the proposed algorithms are

given in Section V. The simulation results and algorithm comparisons are discussed in Section VI. Finally,

Section VII concludes the paper. In Appendix A, the corresponding CRLB of the measurement model

is derived. The proposed linear estimator is derived in Appendix B. The full details of the complexity

analyses are given in Appendix C.

Notation. Throughout the paper, the following notations are used. Lowercase and uppercase symbols

denote scalar values. Bold uppercase symbols and bold lowercase symbols denote matrices and vectors,

respectively.‖ · ‖ denotesℓ2 norm. diag {·} represents a diagonal matrix.|A| represents the cardinality

(number of elements) of the setA. IM and 0M denote theM by M identity and theM by M zero

matrices, respectively. For arbitrary symmetric matricesA andB, A � B means thatA−B is positive

semidefinite.[a]i and [A]i,j denote theith element of vectora and the element at theith row andjth

column of matrixA, respectively.[A;B] means that matricesA andB are concatenated vertically.

II. N ON-COOPERATIVE LOCALIZATION

This section describes the RSS localization model for the non-cooperative case. In non-cooperative

localization problems, only the measurements between a source node and the anchor nodes are considered

and the location of each source node is estimated independently. A network in a two-dimensional space

is considered1. Let x = [a, b]T ∈ R
2 be the unknown coordinates of the source node to be determined.

Denote byC = {1, . . . ,M} the set of indices of the anchor nodes, byyi = [xi, yi]
T ∈ R

2, i ∈ C, the

known location of the anchor nodes. LetA = { i | i ∈ C,anchor nodei is connected to source node}

be the set of the indices of the anchor nodes connected to the source node. The received power (in dBm)

at theith anchor node,Pi, under log-normal shadowing is modeled as [2]

Pi = P0 − 10β log10
di
d0

+ ni, i ∈ A, (1)

whereP0 (in dBm) is the reference power at distanced0 from the source (which depends on the transmit

power),β is the path loss exponent,di = ‖yi − x‖ is the true distance between the source node and

the ith anchor node, andni are the log-normal shadowing terms modeled as independent and identically

1The generalization to a three-dimensional space is straightforward, but is not explored in this paper.
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distributed (i.i.d.) zero-mean Gaussian random variableswith standard deviationσdB for i ∈ A. The

variance of the shadowing term is constant with distance andonly depends on the environment where the

network is set up [1]. Without loss of generality, we assumed0 = 1 m. In this case, there are 3 unknown

parameters that should be estimated including the source node coordinates and its transmit power.

A. Maximum Likelihood Estimator

The ML estimator is asymptotically efficient meaning that itcan achieve the CRLB accuracy when

the number of measurements tends to infinity [32, Ch. 7]. The ML estimator of the measurement model

in (1) is obtained by the following nonconvex optimization problem [2], [19]

θ̂ = argmin
θ∈R3

∑

i∈A

(Pi − P0 + 10β log10 di)
2 , (2)

whereθ = [x;P0]. We can write (2) equivalently as

θ̂ = argmin
θ∈R3

∑

i∈A

(

log10
hiλi

α

)2

, (3)

wherehi , d2i , λi , 10Pi/5β , andα , 10P0/5β . As mentioned before, a closed-form solution of (2) is not

available and it should be approximately solved by numerical techniques [14], [32], [33]. The difficulty

in finding the solution of the ML estimator leads us to employ suboptimal estimators, such as SDP and

linear least squares (LLS) algorithms. The proposed SDP algorithm is derived in the next section. A

linear estimator for the non-cooperative localization case was previously derived in [19].

B. Semidefinite Programming

This section describes the procedure of converting the ML problem of (2) into an SDP optimization

problem. By rearranging the logarithmic term and dividing both sides by5β, (1) can be reformulated as

log10 d
2
i λi =

P0

5β
+

ni

5β
. (4)

Taking the power of 10 on both sides yields

d2iλi = α10ni/5β . (5)

October 25, 2012 DRAFT



7

For sufficiently small noise, the right-hand side (RHS) of (5) can be approximated using the first-order

Taylor series expansion as

d2iλi = α

(

1 +
ln 10

5β
ni

)

. (6)

This can be rewritten as

d2i λi = α+ ǫi, (7)

whereǫi is a zero-mean Gaussian random variable with variance(ln10)2α2σ2
dB/25β

2. The corresponding

NLS estimator of the unknown parameters[x̂; α̂] in (7) is [32, Ch. 8]

[x̂; α̂] = argmin
[x;α]∈R3

∑

i∈A

(hiλi − α)2 . (8)

The cost function (8) is still nonlinear and noncovex. In thenext step, an auxiliary variablez is defined

as

z = xTx. (9)

The minimization problem of (8) can be relaxed to an SDP optimization problem as [25]

minimize
x,z,α,hi

∑

i∈A

(hiλi − α)2 (10a)

subject to hi =





yi

−1





T 



I2 x

xT z









yi

−1



 , (10b)





I2 x

xT z



 � 03. (10c)

The solution of (10) can be effectively found with well knownalgorithms such as interior point methods

[25], [26]. In MATLAB simulations, standard SDP solvers such as SeDuMi or SDPT3 [34], [35] are

employed to solve SDP optimization problems. Note that we have employed the inequality constraint

(10c) instead of the equality in (9) to relax the cost function in (8) to a convex problem in (10) [16],

[20], [25].

In summary, an SDP solution for RSS localization with unknown transmit power is introduced by

converting the nonconvex cost function of the ML estimator into a convex cost function using two steps

of approximations and relaxations. In the first step, the ML cost function in (3) is approximated by
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Fig. 1. (a) illustration of functions(λh−α)2 and log2
10
(λh/α) versus unknown variablesh andα (for simplicity, λ = 1), (b)

cost function of (3), (c) cost function of (8) versusa andb coordinates (source location), the minimum of the cost functions is
indicated by a white square.

another cost function of (8). More specifically, the function
∑

i(λihi−α)2 is substituted for the function
∑

i log
2
10(λihi/α). Fig. 1 depicts the two mentioned functions versus unknown parametersh andα (λ

is a known parameter). As can be seen, these functions have similar behaviors; the minimum of both

functions appears atλh = α and both monotonically increase and decrease in the same regions. Note that

the valueλ changes the minimum of the functions but does not affect their general behaviors. Hence, for

simplicity λ = 1 has been selected for the illustration. Fig. 1 also depicts one realization of the ML cost

function of (3) and the cost function of (8). A source is located at [10, 10]T and five anchor nodes are

randomly placed inside a square area 20 m× 20 m. The standard deviation of log-normal shadowing is

3 dB and the path loss exponent is set to 4. Since it is not possible to show a plot in four-dimensional

space, the value ofP0 is fixed at the true value (-10 dBm) and the functions are plotted versusa and

b coordinates. Fig. 1b shows the cost function of the ML estimator given in (3) which has a global

minimum at [10.5, 11.5]T (the step of the mesh grid is 0.5) and some local minima and saddle points,

e.g., a local minimum at[2.5, 17.5]T . The cost function of (8), shown in Fig. 1c, is much smoother

than (3) and has a global minimum at[10, 11.5]T . However, it has some concave areas around its global

minimum. It, therefore, still must be relaxed to a convex shape. In the next step, by using the relaxation

of (10c), the function in (8) is relaxed to a convex function in (10). The solution of (8) and (10) for the

source location will coincide if the minimum of (10) occurs for x andz such thatz = xTx.

October 25, 2012 DRAFT



9

III. C OOPERATIVE LOCALIZATION

This section describes the cooperative RSS localization model in which there are more than two source

nodes with unknown locations, and moreover, source nodes can communicate not only with anchor

nodes but also with each other [1]. Indeed, the power of the transmitted signal of each source can be

measured at both anchor nodes and other source nodes. Therefore, two sets of RSS measurements are

available to the estimator: source-anchor and source-source measurements. Denote byS = {1, . . . , N}

the set of indices of the source nodes and byxj = [aj, bj ] ∈ R
2, j ∈ S, the coordinates of the

jth source location. LetAj = { i | i ∈ C,anchor nodei is connected to source nodej } be the set

of the indices of the anchor nodes connected to thejth source node andBj = { i | i ∈ S, i >

j, source nodei is connected to source nodej } be the set of indices of the source nodes connected to

the jth source node. The cooperative RSS measurement model is expressed as [2]

Pij = P0j − 10β log10 dij + nij, j ∈ S, i ∈ Aj ∪ Bj, (11)

whereP0j is the reference power at a reference distance (1 m) from thejth source (which depends on

the transmit power).dij = ‖yi − xj‖, i ∈ Aj, anddij = ‖xi − xj‖, i ∈ Bj. In addition,nij are the log-

normal shadowing terms which are modeled as i.i.d. zero-mean Gaussian random variables with standard

deviationσdB . In this case, there are in total2N + N unknown parameters that should be estimated

including the source node coordinates and transmit powers.

A. Maximum Likelihood Estimator

The corresponding ML estimator of the measurement model in (11) is obtained by the following

nonconvex optimization problem [32, Ch. 7]

φ̂ = argmin
φ∈R3N

∑

j∈S

∑

i∈Aj∪Bj

(Pij − P0j + 10β log10 dij)
2, (12)

whereφ = [xT ,pT
0 ]

T is the vector of unknown parameters to be estimated includingx = [xT
1 ,x

T
2 , . . . ,x

T
N ]T

andp0 = [P01, P02, . . . , P0N ]T . Similarly to the non-cooperative case, (12) can be writtenalternatively

as

φ̂ = argmin
φ∈R3N

∑

j∈S

∑

i∈Aj∪Bj

(

log10
hijλij

αj

)2

, (13)
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wherehij , d2ij , λij , 10Pij/5β , andαj , 10P0j/5β . The proposed SDP algorithm is derived in the next

section. We also formulate the proposed LLS algorithm for cooperative localization in Appendix B.

B. Semidefinite Programming

The SDP relaxation of cooperative RSS localization followsthe same procedure as described previously

for the non-cooperative case but with a slightly different relaxation. Consider similar approximations as

applied to (4)-(8). Then, the ML cost function in (13) can be expressed approximately as [19]

[x̂; α̂] = argmin
[x;α]∈R3N

∑

j∈S

∑

i∈Aj∪Bj

(λijhij − αj)
2 , (14)

whereα = [α1, . . . , αN ]T . Similarly to the non-cooperative case, the cost function of (14) is relaxed

to a convex optimization problem. LetX = [x1,x2, . . . ,xN ] ∈ R
2×N be the matrix of the source node

coordinates. The auxiliary matrixZ ∈ R
N×N is introduced as

Z = XTX, (15)

where[Z]ij = xT
i xj is the (i, j)th element of the matrixZ. The cost function (14) can be relaxed to an

SDP optimization problem as [25]

minimize
X,Z,αj,hij

∑

j∈S

∑

i∈Aj∪Bj

(λijhij − αj)
2 (16)

subject to hij =





yi

−ej





T 



I2 X

XT Z









yi

−ej



 , i ∈ Aj,

hij =





02

ei − ej





T 



I2 X

XT Z









02

ei − ej



 , i ∈ Bj ,





I2 X

XT Z



 � 0N+2,

whereei is anM by 1 vector in which theith element is one and other elements are zero. The solution

of (16) and (14) for the source node locations will coincide if the minimum of (16) occurs forX andZ

such thatZ = XTX.
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IV. PATH LOSSEXPONENT

The PLE determines the rate of RSS attenuation with distance. The value of the PLE depends on the

propagation environment and varies typically between 2 (free space) and 4 [1]. In RSS-based localization,

the accuracy of the estimate of the source node location highly relies on the PLE value. Generally in

wireless localization, first the PLE of the environment is obtained through experimental analysis [36],

and then the network is established. However, the value of the PLE might change with time, for instance,

due to changes in environment. Therefore, it may be requiredto calibrate the PLE and collect RSS

measurements simultaneously. In [37], the PLE is considered as a nuisance parameter and estimated

jointly with the source location. However, in our model, estimating the PLE together with the source

location and transmit power appears to be very difficult. In the simulation section, we will examine a

condition where the estimators have an imperfect estimate of the PLE and its impact on the performance

of proposed algorithms will be presented. Here, we introduce a technique to deal with an inaccurate

estimate of the PLE. First, we make an estimate for the PLE (based on the network environment) and

compute the source location with the proposed algorithms. Then, we update the value of the PLE as

ψ̂ = argmin
ψ∈RN+1

∑

j∈S

∑

i∈Aj∪Bj

(

Pij − P0j + 10β log10 d̂ij

)2
, (17)

whereψ = [β; p0] is the unknown vector to be estimated andp0 = [P01, P02, . . . , P0N ]T . d̂ij are the

estimates of the distances calculated from the estimates ofthe source node locations. The least squares

solution of (17) is obtained as [32, Ch. 4]

ψ̂ = (BTB)−1BTp, (18)

whereB = [b, B0] and

p =













p1

...

pN













, pj =













...

Pij

...













i∈Aj∪Bj

b =













b1

...

bN













, bj =













...

−10 log10 d̂ij
...













i∈Aj∪Bj
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B0 = diag{1n(1)+m(1) , . . . ,1n(N)+m(N)},

wherem(j) = |Aj| andn(j) = |Bj|. We estimatêβ = [ψ̂]1. Now, the algorithms will be computed with

the updated PLE and the iterative procedure continues untilthe change inβ̂ is sufficiently small. As

can be seen in (17), we estimate the transmit powers jointly with the PLE. The main reason is that, in

our simulations, we observed that the imperfect PLE causes large error in the estimates of the transmit

powers, while the estimates of the source locations suffer less from the imperfect PLE estimate. Hence,

when updating the PLE value in (18), we have used the source location estimates but not the transmit

power estimates.

V. COMPLEXITY ANALYSIS

In this section, we evaluate the computational complexity of the estimators considered in this study

based on the total number of floating-point operations orflops. The full details of the complexity analysis

for each algorithm are given in Appendix C. The complexitiesare expressed in Appendix C as a function

of N , the number of source nodes,M , the number of anchor nodes, andL =
∑

j∈S |Aj |+ |Bj|, the total

number of connections. Table I shows the computational complexity of the algorithms for cooperative

localization, assuming a network with full connectivity, where|Aj| = M andL = N(M + (N − 1)/2).

Table I is obtained by substitutingM andN(M + (N − 1)/2) for |Aj| andL respectively in (48), (50),

and (52). It should be noted that Table I provides asymptoticcomplexities of the algorithms, meaning

that only the dominating elements are presented. As can be seen, linear estimators (LLS and PLE) require

only one iteration. The number of iterations for the SDP algorithm depends on the required accuracyǫ

[25], [38]. The number of iterations for the ML estimator using Gauss-Newton method depends on its

initial point and required accuracy [32, Ch. 8]. We will later mention the experimental values for the

number of iterations required for each algorithm in the simulation results section. From Table I, we can

observe that for a dense network with many source nodes, the complexities per iteration of SDP and ML

algorithm are similar but much larger than that of LLS algorithm, however for a modest network size

(e.g., 10 source nodes), the complexities per iteration of all algorithms are approximately the same.

VI. SIMULATION RESULTS

Computer simulations were conducted to evaluate the performance of the proposed algorithms. Two

scenarios were examined; in the first scenario, five anchor nodes were placed regularly on the corners
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TABLE I
COMPLEXITY OF THE ALGORITHMS FOR COOPERATIVE LOCALIZATIONWITH FULL CONNECTIVITY, |Aj | = M ,

L = N(M + (N − 1)/2).
N NUMBER OF SOURCE NODES, M NUMBER OF ANCHOR NODES, L TOTAL NUMBER OF CONNECTIONS.

Algorithm Iterations Complexity per Iteration

ML in (12) k O(N3(M +N/2)3)

SDP in (16)
√
N log(1/ǫ) O(N4(M +N/2)2)

LLS in (34) 1 O(6N3(M +N/2)2)
PLE in (18) 1 O(2N3(M +N/2)2)

and in the center of a square 20 m× 20 m and ten source nodes were distributed in a square area 19 m

× 19 m inside the convex hull of the anchor nodes. Fig. 2a shows the coordinates of the anchor nodes,

source nodes, and reference powers for the first scenario. Inthe second scenario, the location of the

source nodes is the same as in Fig. 2a, but the anchor nodes were placed irregularly. Fig. 2b shows the

configuration of the network in the second scenario. The value of the path loss exponentβ was known

and set to 4, unless otherwise noted. The standard deviationof the shadowingσdB varied from 1 to 8 dB.

The ML estimator was solved by the MATLAB routinelsqnonlin using the Levenberg-Marquardt

method. The proposed SDP was implemented by theCVX toolbox [39] using SeDuMi as the solver [34].

The value of the regularization parameterδ was set to 0.1 for the linear estimator. A summary of the

considered algorithms is given in Table II.

TABLE II
THE SUMMARY OF THE CONSIDEREDALGORITHMS.

Algorithm Description

SDP-URSS The proposed SDP algorithm in (16) with unknown transmit powers
ML The ML estimator in (12) initialized with the true values
LLS The proposed linear estimator in (47)
SDP-UNS The SDP estimator in [23] with unknown transmit powers
SDP-RSS The SDP estimator in [13] with true transmit powers
SDP-RSS-WP The SDP estimator in [13] with -10 dBm reference power assumed for all source nodes
SDP-RSS-P2 The SDP estimator in [13] with 2 dB uncertainty about transmit powers
SDP-RSS-P5 The SDP estimator in [13] with 5 dB uncertainty about transmit powers
ML-SDP-URSS The ML estimator in (12) initialized with the solution of SDP-URSS
ML-LSS The ML estimator in (12) initialized with the solution of LLS
ML-RAND The ML estimator in (12) initialized with random values
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(b) The second scenario

Fig. 2. The configuration the proposed networks. The solid squares and crosses represent the anchor nodes and source nodes,
respectively. The value of the reference power, in dBm, for each source node is indicated next to it.

A. Craḿer-Rao Lower Bound (CRLB)

In this section, we show the effect of unknown transmit powers on the CRLB accuracy, evaluated on

a regular grid. Figs. 3a and 3b show the CRLB ellipse [40] of non-cooperative RSS localization with

either known or unknown transmit power when the anchor nodesare placed based on the first and second

scenarios, respectively. Fig. 3a illustrates that there isno significant difference between the CRLB of RSS

localization with known and unknown transmit power of a source located inside the convex hull of the

anchor nodes, whereas, when the source node is relatively close to the anchor nodes or between two
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(b) The second scenario

Fig. 3. The CRLB of non-cooperative RSS localization. Black(solid) and red (dashed) circles represent the CRLB ellipsewith
known transmit power and unknown transmit power, respectively. The solid squares and crosses indicate the anchor nodesand
source nodes, respectively. The standard deviation of shadowing term is 3 dB. The difference between the two CRLBs in the
second scenario is more significant.

adjacent anchor nodes, the effect of unknown transmit poweron the CRLB is more significant. On the

other hand, as depicted in Fig. 3b, the differences between the CRLBs for the second scenario are much

larger, especially when the source node is located outside the convex hull of the anchor nodes. Thus, when

the source node is outside the convex hull, the impact of unknown transmit power is significant. However,

the impact is minor when the source node is inside the convex hull. The CRLBs for the cooperative case

are more or less similar to the non-cooperative case.
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(b) The second scenario

Fig. 4. The RMSE of the proposed algorithms versus the standard deviation of shadowing. The proposed SDP (SDP-URSS)
performs very well and its performance is very close to the original ML estimator, especially in regular networks.

B. Root-Mean-Square-Error (RMSE)

Now consider the configuration of the network given in Fig. 2a. Full connectivity was initially assumed,

meaning that each source node was connected to all anchor nodes and also to all other source nodes. The

locations of the anchor and source nodes were fixed and 500 measurement noise realizations were drawn.

The RMSE of each algorithm is calculated by averaging over all estimated source locations and noise

realizations. The RMSE performance of the proposed algorithms is depicted in Fig. 4. The solver for the

ML estimator was initialized with the true value of the source location. The term URSS is used for RSS
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localization when the transmit powers of the source nodes are not known and the term RSS is used for

the classic RSS localization with known transmit powers as studied in [2], [13]. CRLB-RSS is the classic

CRLB with known transmit powers derived in [13]. As expected, in Fig. 4a the difference between the

CRLB with known transmit power in [2] and the CRLB with unknown transmit power is small, since

the source nodes were located inside the convex hull of the anchor nodes. Fig. 4a shows that the ML

estimator has superior performance for low shadowing standard deviations, but its performance degrades

for shadowing standard deviation higher than 5 dB, even though it is initialized with the true values.

The proposed SDP (SDP-URSS) performs significantly better than LLS algorithm and is very close to

the ML estimator. When shadowing is very high (7 dB and more),the proposed SDP performs slightly

better than the ML estimator. The ML estimator is optimal when the number of measurements tends to

infinity meaning that no unbiased estimator can have lower RMSE than the ML estimator asymptotically

[32, Ch. 7]. However, here the number of measurements is limited, therefore, the optimality of the ML

estimator is not guaranteed. Moreover, since both the ML estimator [2] and the proposed SDP are biased

(especially when either the number of measurements is limited or shadowing is high), we cannot expect

that the ML estimator provides the best accuracy. Note that this behavior has also been observed in

[13]. Besides the proposed algorithms, an SDP algorithm given in [23] (labeled as SDP-UNS) is also

included in the simulations. It should be noted that SDP-UNSis generally based on the fact that the

transmit powers are available. Therefore, we modified the algorithm to estimate jointly transmit powers

and source locations. There are many weighting terms in SDP-UNS which depend highly on the transmit

powers [23]. To rectify this problem, we first set the value ofthe weighting terms to 1 and estimate

transmit powers and source locations. Then, we updated the weighting terms using the estimated transmit

powers and ran the algorithm again. The performance of SDP-UNS falls between LLS and SDP-URSS,

even though its computational complexity is higher than SDP-URSS.

The comparison of the proposed algorithms versus the standard deviation of shadowing for the second

scenario is illustrated in Fig. 4b. Here, there is a considerable gap between CRLB-RSS and CRLB-

URSS. The performance order of the algorithms is the same as in the first scenario. In comparison with

the previous scenario, the difference between the accuracyof the ML estimator and the proposed SDP

is larger. However, the proposed SDP-URSS is still much better than LLS and SDP-UNS estimators.

In Table III, we compare the average running time of the considered algorithms. The running time
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TABLE III
THE AVERAGE RUNNING TIME OF THE CONSIDEREDALGORITHMS.

N = 10, |Aj | = 5, L = 95.
CPU: INTEL CORE 2 DUO E7500 2.93 GHZ

Algorithm Iterations Time [ms]

ML 22 268.72
SDP-URSS 19 218.34
SDP-UNS 35 462.16
LLS 1 11.81

is measured by averaging over 500 noise realizations when the first network with full connectivity is

considered and the standard deviation of the shadowing is set to 3 dB. LLS has the lowest complexity

and therefore the fastest running time. The required running time of the proposed SDP-URSS is about

20% lower than the ML estimator. From Table I, the complexity periteration for all algorithms is almost

identical for this network size (N = 10, |Aj | = 5). However, they require different numbers of iterations.

Moreover, we empirically computed the average number of iterations for the ML and SDP algorithms.

The average number of iterations for the ML and SDP-URSS were22 and 19, respectively. Consequently,

the running time of the ML and SDP-URSS is approximately 22 and 19 times higher than LLS (which

requires only one iteration). As mentioned in Section V, therunning time of the ML estimator depends

highly on the initialization. Here, the ML estimator has been initialized with the true values which cuts

down its running time and improves its performance. Later, we will discuss the effect of initialization

on the complexity and performance of the ML estimator. The computational of complexity of SDP-UNS

in [23] is almost the same as that of the proposed SDP-URSS. However, as mentioned above, SDP-

UNS should be run twice because of the estimation of the weighting terms. Therefore, the required

running time of SDP-UNS is nearly as twice as that of SDP-URSS. Thus, complexity and performance

are directly related for the considered algorithms, exceptfor SDP-UNS which was designed for known

transmit powers.

Fig. 5 illustrates the performance of the proposed SDP compared with the previously studied algorithm

in [13] (labeled as SDP-RSS) for the first scenario. Since SDP-RSS is based on the availability of source

transmit powers, the true values of the source nodes transmit powers were given to SDP-RSS in Fig. 5.

In SDP-RSS-WP, the same algorithm in [13] was used, however,the algorithm did not have the exact

value of the transmit powers and the value of -10 dBm was givento the algorithm as the reference power
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Fig. 5. The RMSE of the proposed algorithms versus the standard deviation of shadowing for the first scenario with uncertainty
in the transmit power. Although in the first scenario unknowntransmit powers do not have a huge impact on the CRLB accuracy,
employing the proposed SDP (handling unknown transmit powers) is very useful and strongly improves performance.

for all source nodes. We also proposed a condition where there is uncertainty about the transmit power.

Assume that approximate values of the transmit powers,P̄0j , are given as

P̄0j = P0j + vj , (19)

wherevj ∼ N (0, σP0
) are Gaussian random variables with standard deviationσP0

. Instead of the true

value of transmit powerP0j , the value ofP̄0j was given to the SDP algorithm in [13]. In this simulation,

the value ofσP0
was set to 2 and 5 dB for SDP-RSS-S2 and SDP-RSS-S5, respectively. SDP-RSS

(exact knowledge) outperforms the proposed approach, mainly because the true value of transmit power

is available to it. SDP-RSS-S2 performs worse than SDP-RSS especially when the shadowing is low.

SDP-RSS-WP and SDP-RSS-S5 have poor performance forσdB < 6dB. As can be seen, as the standard

deviation of the shadowing increases, the effect of transmit power uncertainty on the estimation accuracy

decreases since performance is dominated by shadowing. Theperformance of the proposed SDP-URSS

is close to SDP-RSS and has better accuracy than SDP-RSS-S5 and SDP-RSS-WP, especially for low

shadowing standard deviation. Hence, although in the first scenario, unknown transmit powers do not

have a huge impact on the CRLB, employing an algorithm handling this uncertainty is very useful and

strongly improves performance.
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Fig. 6. The RMSE of proposed algorithms versus the standard deviation of shadowing and different initializations for the
ML estimator. The initialization has a huge impact on the ML estimator performance. The proposed SDP algorithm providesa
suitable initial point for the ML estimator if better accuracy is required.

C. Initialization

It is well-known that the performance of the ML estimator depends heavily on its initial solution, since

most implementations of the ML estimator are iterative. To further compare the proposed SDP and the ML

estimator, we initialized the solver of the ML estimator with different values. Fig. 6a and 6b illustrate the

RMSE of the proposed algorithms as a function of the standarddeviation of the shadowing with different

initial points for the solver of the ML estimator for the firstand second scenarios, respectively. The curve

labeled as ML stands for the ML estimator initialized with the true values, whereas ML-SDP, ML-LLS,
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TABLE IV
THE AVERAGE RUNNING TIME OF THE ML ESTIMATOR WITH DIFFERENTINITIALIZATIONS .

Algorithm Iterations Time [ms]

ML 22 268.72
ML-SDP 23 282.51
ML-LLS 26 316.16
ML-RAND 43 514.58

and ML-RAND stand for the ML estimator when its solver was initialized with the SDP solution, LLS

solution, and random values, respectively. Fig. 6 shows that in both scenarios, the ML estimator initialized

with the true values outperforms other algorithms as expected. However, the initial point can have a large

effect on ML accuracy. The proposed SDP algorithm offers better performance compared to ML-LLS

and ML-RAND, especially for large shadow fading standard deviation. It is interesting that when the ML

estimator is initialized with the solution of the proposed SDP (ML-SDP-URSS), we can achieve almost

the same accuracy as the ML algorithm initialized with the true solution. Therefore, although the proposed

SDP algorithm has excellent standalone performance, it canalso be used as an initial point for the ML

estimator when even better accuracy is required. Fig. 6 alsoshows that randomly initializing the ML

estimator yields extremely poor performance even at lowσdB values. Table IV shows the running time of

the ML estimator for different initializations. We can see that the initial point has a huge impact on not

only the performance of the ML estimator, but also the required number of iterations and the running time.

When the initial point is not sufficiently close to the globalminimum, the number of iterations increases

significantly. Moreover, there is no guarantee that the algorithm converges to the global minimum. This

is the major drawback of the ML estimator. In this case, an increase in running time (complexity) does

not result in performance improvement because of initialization; in fact the opposite is true.

D. Connectivity

In the previous simulations, we assumed that the network hasfull connectivity. However, this as-

sumption is not valid in all practical cases where the connections among sensors are limited. In this

section, we examine the first scenario but with limited connectivity. Fig. 7 shows the RMSE of the

proposed algorithms versus the number of connections when the shadowing standard deviation is 4 dB.

For instance, the value of 10 on the x-axis means that each source node is connected to the 10 closest

sensors, either anchor nodes or source nodes. The LLS estimator in (47) is no longer applicable here
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Fig. 7. The RMSE of the proposed algorithms versus the numberof connections. The standard deviation of the shadowing
is 4 dB. As the number of connections increases, the estimation accuracy improves. The proposed SDP algorithm has better
performance than the ML estimator when the connectivity in the network is limited.

because in its formulation, each source node should be connected to at least four noncollinear anchor

nodes, but in low connectivity there is no guarantee that each source node can communicate with four

neighboring anchor nodes. Fig. 7 shows that by increasing the number of connections, the estimation

accuracy improves, as expected. Comparing the two CRLBs, weobserve that the unknown transmit

power has more effect on the CRLB accuracy when the network connectivity is limited. The proposed

SDP performs better than the ML estimator when the number of connections in the network is very low.

Potential reasons were previously mentioned in the description of Fig. 4. When the number of connections

is 6 or 7, the proposed SDP is slightly lower than CRLB. As mentioned previously in Section VI-B,

both SDP-URSS and ML estimators are biased (especially whenthe number of connections is limited)

and thus the CRLB cannot provide an absolute lower bound for them [2], [13], [41].

E. Path Loss Exponent (PLE)

In this section, we investigate the effect of imperfect PLE knowledge on the performance of the

proposed algorithms. The first scenario was considered for this simulation. However, we assume that the

estimators do not have the exact value of the PLE and instead they have an approximate value modeled

as

β̄ = β +N (0, 1), (20)
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Fig. 8. The RMSE of the proposed algorithms versus the standard deviation of shadowing for the first scenario with uncertainty
in the PLE. Imperfect PLE decreases the performance of all algorithms, especially at lowσdB values. When the shadowing is
larger than 6 dB, the proposed SDP is more robust against imperfect PLE than the ML estimator.

where β = 4 in our simulations. Fig. 8 shows the performance of the proposed algorithms in this

condition. The order of the algorithms remains unchanged compared to Fig. 4a. It is obvious that the

performance of all the algorithms degrades, especially at low values ofσdB . The proposed SDP-URSS

performs better than the ML estimator in the presence of PLE uncertainty when the shadowing standard

deviation is larger than 5 dB. Now, assume that we have an imperfect value of the PLE and the proposed

algorithms are computed based on the approach given in (18).Fig. 9 shows the estimate of the PLE

versus the number of iterations and different shadowing standard deviations for the proposed SDP in

(16). The true value of the PLE was set to 4 and we started the algorithm with the PLE of 3 and 5. It can

be seen from Fig. 8 that the RMSE performance of the proposed algorithms is poor at the low shadowing

standard deviations. However, as depicted in Fig. 9, by exploiting the iterative approach given in (18),

the imperfect PLE estimate converges to a value very close tothe true value for a small number of

iterations. It is worth mentioning that we have only plottedthe convergence of the PLE for the proposed

SDP in (16). However, the PLE convergence for the ML and LLS algorithms is more or less the same.

Our simulations show that once the PLE has converged, the RMSE of the proposed algorithms for the

source locations is almost identical to Fig. 4a.
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Fig. 9. The convergence rate of the PLE for the proposed SDP. The algorithm starts with the initial valueβ0. The true value
of β is 4. Once the PLE has converged, the proposed algorithms achieve performance nearly identical to what is achieved with
perfect knowledge.

VII. C ONCLUSION

In this paper, cooperative RSS-based sensor localization with unknown and different transmit powers

was examined. The CRLB of the measurement model was derived and through computer simulations it

was shown that the effect of unknown transmit powers on the CRLB accuracy of the source locations

depends strongly on the network deployment geometry. A novel SDP technique was derived to estimate the

source transmit powers jointly with the source node locations. The complexity analyses of the considered

algorithms were presented. Simulation results demonstrated that the proposed SDP algorithm has excellent

performance, close to the original ML estimator in most conditions. Not only does the proposed SDP

exhibit good accuracy alone but also gives a good initial point for the ML estimator if further refinement

is required. We also introduced an approach for dealing withimperfect information about the path loss

exponent which can strongly impact the performance of RSS-based localization algorithms.
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APPENDIX A

CRAMÉR-RAO LOWER BOUND OF COOPERATIVE RSSLOCALIZATION

In this section, the CRLB of cooperative RSS localization with unknown transmit power is derived.

The CRLB defines a lower bound on the variance of any unbiased estimator and is employed as a

benchmark for evaluating the performance of estimators [32, Ch. 3], [1], [2], [13]. Since the transmit

power of the source nodes is not available to the estimator, it should also be taken into account as an

unknown parameter. Let us recall the vector of unknown parametersφ = [xT ,pT
0 ]

T including the source

node locationsx = [xT
1 ,x

T
2 , . . . ,x

T
N ]T and the source node transmit powersp0 = [P01, P02, . . . , P0N ]T .

From the measurement model in (11), the logarithm of the probability density function of the RSS

measurements is written as

ln p(p;φ) = k − σ−2
dB(µ(φ)− p)T (µ(φ)− p), (21)

wherek is a constant which does not depend on the unknown parametersand p is the measurement

vector defined in (18).µ(φ) is the mean of the measurement vectorp defined as

µ(φ) =













µ1(φ)
...

µN (φ)













, µj(φ) =













...

µij

...













i∈Aj∪Bj

(22)

where

µij = P0j − 10β log10 dij .

The CRLB of the unknown parameters are the diagonal elementsof the inverse of the Fisher information

matrix [32, Ch. 3]. The Fisher information matrix of the measurement model in (11) is obtained as [32,

Ch. 3]

J(φ) = σ−2
dBF

TF, (23)

where

F =
∂µ(φ)

∂φ
=













F1

...

FN













, Fj =













...

fij
...













i∈Aj∪Bj
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and fij = [fyij, f
p
ij],

f
y
ij =

[

01×2(j−1),u
T
ij ,01×2(N−j)

]

, i ∈ Aj

f
y
ij =

[

01×2(j−1),u
T
ij ,01×2(i−j−1),−uT

ij ,01×2(N−i)

]

, i ∈ Bj

f
p
ij =

[

01×(j−1), 1,01×(N−j)

]

, i ∈ Aj ∪ Bj

uij =
10β

ln 10

(yi − xj)

d2ij
, i ∈ Aj

uij =
10β

ln 10

(xi − xj)

d2ij
, i ∈ Bj.

Therefore, the CRLB of the unknown parametersφ is computed as

CRLB([φ]r) =
[

J−1(φ)
]

r,r
, r = 1, 2, . . . , 3N. (24)

APPENDIX B

L INEAR ESTIMATOR FORCOOPERATIVE RSS LOCALIZATION

In this work, we derived an SDP estimator to deal with the convergence problem of the ML estimator

and its complexity. Another solution for the ML convergenceproblem is to use a linear estimator which

has an analytical closed-form solution. To obtain a linear estimator, some approximations should be

applied to linearize the nonlinear measurement model of (1). Linear estimators for RSS localization have

been previously considered in the literature [4]. However,to the best of our knowledge, all of them

are based on availability of the transmitted power. Here, wederive a similar technique to the one used

in [4] with considering unknown transmit powers. Since linearizing the source-source measurements is

difficult, we propose a two-step algorithm. In the first step (called coarse estimation), we estimate the

location of each source node independently using only source-anchor measurements. Then, in the next

step (called fine estimation), we improve the accuracy of theestimated source locations by using source-

source measurements. The main drawback of this approach is that we require at least four source-anchor

measurements for each source node, otherwise we cannot find acoarse estimate for the source location

in the first step and therefore the second step will be not applicable. We now start by describing the first

step. Let us rewrite (7) for cooperative localization as (j ∈ S)

hijλij = αj + ǫij, i ∈ Aj, (25)
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whereǫij = −nijαj(ln10)/5β is a zero-mean Gaussian random variable with variance(ln10)2α2
jσ

2
dB/25β

2.

Expanding the left-hand side (LHS) of (25) and rearranging gives

2λijy
T
i xj − λijx

T
j xj + αj = λijy

T
i yi + ǫij, i ∈ Aj . (26)

Let θ1,j = [xT
j ,x

T
j xj , αj ]

T be the unknown vector to be estimated. Then (26) can be expressed in matrix

form as

G1,jθ1,j = h1,j + ǫ1,j, (27)

where

G1,j =













...
...

...

2λijy
T
i −λij 1

...
...

...













,

h1,j =













...

λijy
T
i yi

...













, ǫ1,j =













...

ǫij
...













, i ∈ Aj ∪ Bj.

The LLS solution of (27) is [32, Ch. 4]

θ̂1,j = (GT
1,jW1,jG1,j)

−1GT
1,jW1,jh1,j , (28)

whereW1,j is the weighting matrix which is the inverse of the covariance matrix of the residual error

vectorǫ1,j

W1,j = E[ǫ1,jǫ
T
1,j]

−1 = ((ln10)αjσdB/5β)
−2

Im(j). (29)

wherem(j) = |Aj |. The covariance matrix of the estimated vectorθ̂1,j is [32, Ch. 4]

Cθ̂1,j
= (GT

1,jW1,jG1,j)
−1. (30)

The weighting matrixW1,j depends on the unknown parameterαj . Therefore, to compute the weighting

matrix, we can eliminate the value ofαj in (29) and determine the solution of (28). Sinceαj is a constant

factor inW1,j , its value does not change the solution ofθ̂1,j in (28). However, for further computations,

we can calculate the weighting matrixW1,j approximately byα̂j obtained from (28).
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Since the elements of estimated parameters in (28) are dependent, one method to improve the estimation

accuracy, called correction technique [5], [17], [42], is to take this relation between elements ofθ̂1,j into

account. Here we extend the correction technique to our problem. The unknown vectorθ1,j can be

expressed as

θ̂1,j = θ1,j +∆θ1,j, (31)

where∆θ1,j is the estimation error. Squaring the first two elements of (31) (element-wise) yields

[θ̂1,j]
2
1 = [θ1,j ]

2
1 + 2[θ1,j ]1[∆θ1,j ]1 + [∆θ1,j ]

2
1

≃ [θ1,j ]
2
1 + 2[θ1,j ]1[∆θ1,j ]1,

[θ̂1,j]
2
2 = [θ1,j ]

2
2 + 2[θ1,j ]2[∆θ1,j ]2 + [∆θ1,j ]

2
2

≃ [θ1,j ]
2
2 + 2[θ1,j ]2[∆θ1,j ]2, (32)

where we assume that the estimation error∆θ1,j is sufficiently small. Now, consider the following

expressions [17]

G2θ2,j = h2,j + ǫ2,j, (33)

whereθ2,j = [a2j , b
2
j , αj ]

T and

G2 =



















1 0 0

0 1 0

1 1 0

0 0 1



















, h2,j =



















[θ̂1,j ]
2
1

[θ̂1,j ]
2
2

[θ̂1,j ]3

[θ̂1,j ]4



















, ǫ2,j = −Bj∆θ1,j,

andBj = diag{2[θ1,j]1, 2[θ1,j ]2, 1, 1}. The LLS solution of (33) is [32, Ch. 4]

θ̂2,j = (GTW2,jG)−1GTW2,jh2,j , (34)

whereW2,j is the weighting matrix equal to the inverse of the covariance matrix of the residual error

vectorǫ2,j

W2,j = E[ǫ2,jǫ
T
2,j]

−1 =
(

BT
j Cθ̂1,j

Bj

)−1
, (35)

whereCθ̂1,j
is computed in (30). It should be noted that the weighting matrix W2,j depends on the
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unknown parametersθ1. Therefore, the weighting matrix is approximately calculated by availablêθ1

rather thanθ1. Our simulations show that the accuracy degradation due to the approximation is not

significant. The covariance matrix of the estimated vectorθ̂2,j is [32, Ch. 4]

Cθ̂2,j
= (GT

2 W2,jG2)
−1. (36)

Finally, the estimation of the source locationx̂j = [âj , b̂j ]
T is [17], [18], [43]

âj = sgn([θ̂1,j]1)

√

|[θ̂2,j ]1|

b̂j = sgn(|[θ̂1,j ]2|)
√

|[θ̂2,j]2|, (37)

wheresgn(z) = z/|z| is the sign function. The covariance matrix of the estimatedsource location̂xj is

computed as [18], [43]

Cx̂j
= DT

j [Cθ̂2,j
]1:2,1:2Dj, (38)

whereDj =
1
2diag{|aj |−1, |bj |−1} and [A]1:n,1:m denotes the upper-leftn×m part of matrixA.

Now we continue describing the second step using both source-source and source-anchor measurements.

The relationships between the estimated and the true value of the source location and the transmit power

of the source node are

xj = x̂j −∆xj ,

P0j = P̂0j −∆P0j , (39)

whereP̂0j = 5β log10(α̂j) (α̂j = [θ̂2,j]3 is computed for each source node from (34)),∆xj and∆P0j are

the estimation error of the source location and the source transmit power, respectively. Equation (11) is

a function of the unknown parametersxj andP0j . We substitute (39) forxj andP0j in (11). Therefore,

∆P0j and∆xj are the new unknown parameters to be estimated in (11).

Pij = (P̂0j − P0j) (40)

− 10β log10 ‖yi − (x̂j −∆xj)‖+ nij, i ∈ Aj,

Pij = (P̂0j −∆P0j)

− 10β log10 ‖(x̂i −∆xi)− (x̂j −∆xj)‖+ nij, i ∈ Bj.
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Taking the power of 10 on both sides of (40) and rearranging yields

ξ̂ij∆αj10
nij/10β = ‖yi − (x̂j −∆xj)‖, i ∈ Aj, (41)

ξ̂ij∆αj10
nij/10β = ‖(x̂i −∆xi)− (x̂j −∆xj)‖, i ∈ Bj,

whereξ̂ij , 10(P̂0j−Pij)/10β and∆αj , 10−∆P0j/10β . By using the first-order Taylor series approximation

for the third element of the LHS and the element of the RHS, (41) turns into

ξ̂ij∆αj(1 +
ln 10

10β
nij) = d̂ij − ûT

ij∆xj, i ∈ Aj, (42)

ξ̂ij∆αj(1 +
ln 10

10β
nij) = d̂ij − ûT

ij∆xj + ûT
ij∆xi, i ∈ Bj,

where

ûij =
(x̂j − yi)

d̂ij
, d̂ij = ‖yi − x̂j‖, i ∈ Aj,

ûij =
(x̂j − x̂i)

d̂ij
, d̂ij = ‖x̂i − x̂j‖, i ∈ Bj.

Rearranging (42) gives

ûT
ij∆xj + ξ̂ij∆αj = d̂ij + ǫij, i ∈ Aj,

−ûT
ij∆xi + ûT

ij∆xj + ξ̂ij∆αj = d̂ij + ǫij, i ∈ Bj, (43)

whereǫij , (ln10) ξ̂ij∆αjnij/10β. Let ∆θ3 = [∆xT
1 , . . . ,∆xT

N ,∆α1, . . . ,∆αN ]T be unknown param-

eters to be estimated. We can write (43) in matrix form as

G3∆θ3 = h3 + ǫ3, (44)

where

G3 =













G3,1

...

G3,N













, h3 =













h3,1

...

h3,N













, ǫ3 =













ǫ3,1
...

ǫ3,N













,
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G3,j =













...

gij
...













, h3,j =













...

d̂ij
...













, ǫ3,j =













...

ǫij
...













i∈Aj∪Bj

andgij = [gy
ij , g

p
ij ],

g
y
ij =

[

01×2(j−1), û
T
ij ,01×2(N−j)

]

, i ∈ Aj

g
y
ij =

[

01×2(j−1), û
T
ij ,01×2(i−j−1),−ûT

ij,01×2(N−i)

]

, i ∈ Bj

g
p
ij =

[

01×(j−1), ξ̂ij,01×(N−j)

]

, i ∈ Aj ∪ Bj

Since as prior knowledge, we know that the unknown vector∆θ3 is not too large, (44) can be solved

by the Tikhonov-regularized LS formulation in which the cost function includes the weighted squared

norm of∆θ3 to keep it as small as possible. The Tikhonov-regularized LSsolution of (44) is obtained

as [44], [26, Ch. 6]

∆θ̂3 = argmin
∆θ3∈R3N

‖G3∆θ3 − h3‖2 + δ‖∆θ3‖2, (45)

whereδ is a regularization parameter controlling the trade-off between‖G3∆θ3 − h3‖2 and ‖∆θ3‖2.

The closed-form solution of (45) is given by [26, Ch. 6]

∆θ̂3 =
(

GT
3 G3 + δIL

)−1
GT

3 h3. (46)

Finally, the location of each source node is determined as

x̃j = x̂j −∆x̂j, j ∈ S. (47)

APPENDIX C

COMPLEXITY ANALYSIS OF THE ALGORITHMS

The computational complexity of the considered algorithmsbased on the required number of flops is

derived in this section. We assume that an addition, subtraction, multiplication, division, or square root

operation in the real domain can be computed by one flop [45], [46]. For simplicity, we keep only the

leading terms of the complexity expressions. We derive the complexity of cooperative approaches which

includes non-cooperative case as a special case (N = 1). Note that the worst-case complexity is derived
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without any attempt to optimize computations to take advantage of, e.g., the structure of matrices. The

complexity of the considered algorithms is computed as a function of N , the number of source nodes,

M , the number of anchor nodes, andL =
∑

j∈S |Aj |+ |Bj|, the total number of connections. Note that

for a network with full connectivity, we haveL = N(M + (N − 1)/2).

A. Maximum Likelihood

As previously mentioned, the ML estimator is nonlinear and nonconvex. Therefore, ML complexity

highly depends on the solution method. In addition, the complexity of every method also depends on

many parameters, e.g., the number of iterations, the initial point, or the solution accuracy. Gauss-Newton

(GN) is the one of the most popular methods used in solving nonlinear optimization problems [32, Ch.

8]. GN is an iterative technique and requires initialization. Assuming a nonlinear problem with a set of

m equations andn unknown variables, the asymptotic computational complexity (m ≫ n) of the GN

method in each iteration isO(m3) [47]. The number of iterations depends highly on the initialpoint

and required accuracy. AssumingO(k) iterations on average is required to solve a specific problem, the

total complexity of the GN method isO(km3). For the proposed ML, we havem = L, andn = 3N .

Consequently, the asymptotic complexity of the ML estimator in (12) is

ML Complexity ≃ O(kL3). (48)

B. Semidefinite Programming

Consider the general form of a semidefinite programming problem [25]

minimize
x

cTx

subject to F(x) � 0,
(49)

wherex ∈ R
m and

F(x) = F0 +

m
∑

i=1

xiFi.

The available data includes the vectorc ∈ R
m andm+ 1 symmetric matricesF0, . . . ,Fm ∈ R

n×n. An

SDP problem can be solved by iterative optimization techniques, e.g., interior-point methods [25], [26].

The worst-case computational complexity of solving SDP in each iteration isO(m2n2) [25]. The number

of iterations is also bounded byO(
√
n log(1/ǫ)), whereǫ is the accuracy of SDP solution [25], [34]. For
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the proposed SDP, we havem ≃ L+ 3N andn ≃ N . Therefore, the complexity of the SDP in (16) is

SDP Complexity≃ O(
√
N(L+ 3N)2N2 log(1/ǫ)). (50)

C. Linear estimator

Consider a weighted linear least squares problem with a set of m equations andn unknown variables

defined as [32, Ch. 5]

θ̂ = (GTWG)−1GTWh, (51)

whereθ ∈ R
n, G ∈ R

m×n, W ∈ R
m×m, andh ∈ R

m. Computingθ̂ includes five matrix multiplications

and one matrix inversion. Therefore, the computational complexity of (51) isO(2m2n+mn2+mn+n3+

n2) [45], [48]. Assumingm ≫ 2n, the complexity of (51) is upper bounded byO(m3). The complexity

of the proposed LLS algorithms can be simply expressed as follows,

TABLE V
COMPLEXITY OF LLS ALGORITHMS.

Algorithm m n Complexity

LLS in (28) |Aj | 4 O(8|Aj |2 + 20|Aj |+ 80)
LLS in (34) 4 3 O(180)

LLS in (46) L 3N O(6L2N + 9LN2)
PLE in (18) L N + 1 O(2L2(N + 1) + L(N + 1)2)

The cooperative LLS algorithm includes (28), (34) which arecalculated forN source nodes and (46).

Therefore, from Table V, the total computational complexity of the cooperative LLS approach is

LLS Complexity ≃ O(6L2N + 9LN2 +
∑

j∈S

8|Aj |2). (52)
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