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Abstract—We characterize the capacity of Rayleigh block-
fading multiple-input multiple-output (MIMO) channels in the
noncoherent setting where transmitter and receiver have no
a priori knowledge of the realizations of the fading channel.
We prove that unitary space-time modulation (USTM) is not
capacity-achieving in the high signal-to-noise ratio (SNR) regime
when the total number of antennas exceeds the coherence time
of the fading channel (expressed in multiples of the symbol
duration), a situation that is relevant for MIMO systems with
large antenna arrays (large-MIMO systems). This result settles
a conjecture by Zheng & Tse (2002) in the affirmative. The
capacity-achieving input signal, which we refer to as Beta-variate
space-time modulation (BSTM), turns out to be the product
of a unitary isotropically distributed random matrix, and a
diagonal matrix whose nonzero entries are distributed as the
square-root of the eigenvalues of a Beta-distributed random
matrix of appropriate size. Numerical results illustrate that using
BSTM instead of USTM in large-MIMO systems yields a rate
gain as large as 13% for SNR values of practical interest.

I. INTRODUCTION

The use of multiple antennas increases tremendously the
throughput of wireless systems operating over fading chan-
nels [1], [2]. Specifically, when a genie provides the receiver
with perfect channel state information (the so called coher-
ent setting), the capacity of a multiple-input multiple-output
(MIMO) fading channel grows linearly in the minimum between
the number of transmit and receive antennas [2]. In practice,
however, the fading channel is not known a priori at the receiver
and must be estimated, for example through the transmission
of pilot symbols. Lack of a priori channel knowledge at the
receiver determines a capacity loss compared to the coherent
case. This loss, which depends on the rate at which the fading
channel varies in time, frequency, and space [3]-[6], can be
characterized in a fundamental way by studying capacity in
the noncoherent setting where neither the transmitter nor the
receiver are assumed to have a priori knowledge of the realiza-
tions of the fading channel (but both are assumed to know its
statistics perfectly). In the remainder of the paper, we will refer
to capacity in the noncoherent setting simply as capacity. We
emphasize that in the noncoherent setting the receiver is allowed
to try and gain channel knowledge. Channel estimation is simply
viewed as a specific form of coding [7].
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For frequency-flat fading channels, a simple model to capture
channel variations in time is the Rayleigh block-fading model
according to which the channel remains constant over a block of
T > 1 symbols and changes independently from block to block.
The parameter 7' can be thought of as the channel’s coherence
time. Even if the capacity of the Rayleigh block-fading MIMO
channel has been studied extensively in the literature [3], [8],
[4], [9], no closed-form capacity expression is available to date.
Zheng and Tse [4] showed that capacity behaves in the high
signal-to-noise ratio (SNR) regime as'

*

Clp) =0 (1= 5 ) lox(p) + O, p o0 1)

Here, p denotes the SNR, M* £ min{M, N, |T/2]} with M
and N standing for the number of transmit and receive antennas,
respectively, and O(1) indicates a bounded function of p (for
sufficiently large p). The high-SNR capacity expression given
in (1) is insightful as it allows one to determine the capacity
loss (at high SNR) due to lack of a priori channel knowledge.
Recalling that in the coherent case

Ceon(p) = min{M, N}log(p) + O(1), p— o0

one sees that this loss is pronounced when the channel’s coher-
ence time 7' is small. The capacity expression (1) also implies
that, for a given coherence time 7" and number of receive anten-
nas N, the capacity pre-log (i.e., the asymptotic ratio between
the capacity in (1) and log(p) as p — o) is maximized by using
M = min{N, |T/2|} transmit antennas.

When 7' > M + N (channel’s coherence time larger or equal
to the total number of antennas) the high-SNR expression (1)
can be tightened as follows [4, Sec. IV.B]:

*

C(p) = M"* (1 - A;) log(p) + ¢+ o(1), p— 0. (2)
Here, ¢, which is given in [4, Eq. (24)], dependsonT', M, and N
but not on p, and o(1) — 0 as p — oo. Differently from (1), the
high-SNR expression (2) describes capacity accurately already
at moderate SNR values [11], because it captures the first two
terms in the asymptotic expansion of C'(p) for p — oco. The
key element exploited in [4] to establish (2) is the optimality
of isotropically distributed unitary input signals [3, Sec. A.2]
at high SNR. The isotropic unitary input distribution is often
referred to as unitary space-time modulation (USTM) [12], [9],
[13]. Capacity-approaching coding schemes that are based on

"When T' = 1, capacity grows double-logarithmically in p [10, Thm. 4.2].
2More generally, for fixed 7" and N, and for arbitrary SNR, the capacity for
M > T is equal to the capacity for M = T [3, Thm. 1].



USTM and do not require the explicit estimation of the fading
channel have been recently proposed in [13].

In this paper, we focus on the case ' < M + N (channel’s co-
herence time smaller than the total number of antennas), which
is of interest for point-to-point communication systems using
large antenna arrays. The use of large antenna arrays in MIMO
systems (large-MIMO systems) has been recently advocated to
reduce energy consumption in wireless networks, to combat the
effect of small-scale fading, and to release multi-user MIMO
gains with limited co-operation among base stations and low
complexity channel estimation algorithms [14]-[16].

Contributions: We prove that in the large-MIMO setting
where T' < M + N, USTM is not capacity-achieving at high
SNR. The capacity-achieving input signal turns out to consist of
the product of a unitary isotropically distributed random matrix
and a diagonal matrix whose nonzero entries are distributed
as the square-root of the eigenvalues of a Beta-distributed ran-
dom matrix of appropriate size. Utilizing this input distribu-
tion, which we refer to as Beta-variate space-time modulation
(BSTM), we extend (2) to the case T < M + N. We show
that using BSTM instead of USTM yields a rate gain of about
13% when SNR is 30dB and N > T. Note that our result
holds for all ', M, and N values satisfying 1 < T < M + N.
In other words, differently from most of the literature on large-
MIMO systems, our analysis is not asymptotic in the number of
antennas.

Our proof technique exploits the geometric structure in the
MIMO block-fading channel input-output relation first observed
in [4]. The set of tools used to establish our main result is, how-
ever, different from the one used in [4]. In particular, differently
from [4], our proof is based on the duality approach [10], and on
a novel closed-form characterization of the probability density
function (pdf) of the MIMO block-fading channel output, which
generalizes a previous result obtained in [9]. These two tools
allow us to simplify the derivation of (2) for the case T' > M+ N
compared to the derivation provided in [4], and to generalize (2)
to the large-MIMO setting T' < M + N.

Notation: Uppercase boldface letters denote matrices and
lowercase boldface letters designate vectors. Uppercase sans-
serif letters (e.g., Q) denote probability distributions, while
lowercase sans-serif letters (e.g., r) are reserved for pdfs. The
superscripts | and " stand for transposition and Hermitian trans-
position, respectively. We denote the identity matrix of dimen-
sion M x M by I,; diag{a} is the diagonal square matrix
whose main diagonal contains the entries of the vector a, and
Ag{A} stands for the gth largest eigenvalue of the Hermitian
positive-semidefinite matrix A. For a random matrix X with
probability distribution Qx, we write X ~ Qx. We denote
expectation by E[], and use the notation Ex[-] or Eqy[] to
stress that expectation is taken with respect to X ~ Qx. We
write D(Qy () || Ry (:)) for the relative entropy between the
probability distributions Qy and Ry. Furthermore, CA(0, X)
stands for the distribution of a circularly-symmetric complex
Gaussian random vector with covariance matrix 3. For two
functions f(x) and g(x), the notation f(x) = O(g(z)), x —
oo, means that limsup,_, .| f(z)/g(z)| < oo, and f(z) =
o(g(x)),x — co, means that lim,_, | f(2)/g(z)| = 0. Finally,
log(-) indicates the natural logarithm, I'(-) denotes the Gamma

Definition ‘
max{N,T — M}
min{N,T — M}

max{N, T}
min{N, T}
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TABLE I
FOUR PARAMETERS RELATED TO THE CHANNEL’S COHERENCE TIME T,
THE NUMBER OF TRANSMIT ANTENNAS M, AND THE NUMBER OF
RECEIVE ANTENNAS N.

function [17, Eq. (6.1.1)], and T',,,(a) designates the complex
multivariate Gamma function [18, Eq. (44)]

Tp(a) =7V T T(a—k+1). 3)
k=1

II. SYSTEM MODEL AND KNOWN RESULTS
A. System Model

We consider a point-to-point Rayleigh block-fading MIMO
channel with M transmit antennas, N receive antennas, and
channel’s coherence time 7' > 1. The channel input-output
relation within a coherence interval can be compactly written
in matrix notation as follows [4], [8], [9]:

Y =/p/M-XH+W. 4)

Here, X = [x; - - xp7] € CT*M contains the signal transmit-
ted from the M antennas within the coherence interval, H €
CM>N i the channel’s propagation matrix, W € CT* is the
additive noise, and Y € CT*N contains the signal received at
the N antennas within the coherence interval. We will assume
throughout the paper that M < min{N, |T/2|}. The random
matrices H and W are independent of each other and have inde-
pendent and identically distributed (i.i.d.) CN'(0, 1) entries. We
consider the noncoherent setting where neither the transmitter
nor the receiver have a priori knowledge of the realizations of
H and W, but both know their statistics perfectly.

We assume that H and W take on independent realiza-
tions over successive coherence intervals. Under this block-
memoryless assumption, the ergodic capacity of the channel
in (4) is given by

Cp) = lsupI(X;Y).

75 &)

Here, I(X;Y) denotes the mutual information [19, Sec. 8.5]
between the input matrix X and the output matrix Y, and the
supremum is over all probability distributions Qx on X that
satisfy the average-power constraint

(6)

Since the variance of the entries of H and W is normalized
to one, p in (4) can be interpreted as the SNR at each receive
antenna.

Throughout the paper, we will often make use of four param-
eters (L, L, P, P) related to the coherence time 7', the number
of transmit antennas M, and the number of receiver antennas N.
These parameters are listed in Table I for future reference.

E[tr{XX"}] < TM.



B. Properties of the Capacity-Achieving Input Distribution

Even if no closed-form expression is available to date for
C(p), the structure of the capacity-achieving input distribu-
tion is partially known. We next review two properties of the
capacity-achieving input distribution that will reveal useful for
our analysis.

Lemma 1 ([3, Thm. 2]): The capacity-achieving input ma-
trix X is the product of a 7" x M isotropically distributed unitary
matrix ® and an independent M x M nonnegative diagonal
matrix D = diag{[d; --- dp]"}.

For the case T' > M + N, taking D deterministic with
diagonal entries equal to /7' turns out to be optimal at high
SNR. In this case, the resulting input matrix X is a scaled
isotropically distributed unitary matrix. This input distribution,
which is known as USTM [12], [9], [13], is the one used in [4]
to establish (2).

When T' < M + N, USTM is not optimal at high SNR, as we
shall illustrate in Section III. Nevertheless, the optimal distribu-
tion of X = ®D shares the following property with USTM:
the probability distribution induced on \/pd,, = /p||Xm]s
m = 1,..., M, by the capacity-achieving input distribution es-
capes to infinity [10, Def. 4.11] as p — co. Namely, it allocates
vanishing probability to every interval of the form [O, \/,%} with
po > 0. This property is formalized in the following lemma:

Lemma 2: Fix an arbitrary py > 0 and let

K(po) 2 {A = [ay ---ay] € CTXM

: 2
min | (pllan]® <o} (D)

Let {ng), p > 0} be a family of input distributions
(parametrized with respect to the SNR p) satisfying (6) and the
following additional property
. IXyY) ~o»
o) T X

Then, lim,,_, o ]P’(X € K(po), X ~ Q§§>> —o.
Proof: The proof follows along the same lines of the proofs
of [5, Thm. 8] and [4, Lem 8]. [ |

An important consequence of the escape-to-infinity property
of the capacity-achieving input distribution is that the asymp-
totic behavior of C'(p) as p — oo does not change if we con-
strain the probability distribution of /pd,, (m = 1,2,..., M)
to be supported outside the interval [0, /pg], po > 0. More
precisely, we have the following result.

Lemma 3: Fix an arbitrary pg > 0 and let KC(pg) as in (7).
Denote by Ci(p) the capacity of the channel (4) when the
input X is subject to the average-power constraint (6) and to the
additional constraint that X ¢ K(pg) with probability 1 (w.p.1).
Then, C(p) = Cx(p) + o(1), p = oo.

Proof: The proof follows from [10, Thm. 4.12]. [ |

III. CAPACITY IN THE HIGH-SNR REGIME
A. Asymptotic Characterization of Capacity

The main result of this paper is Theorem 4 below, which pro-
vides a high-SNR characterization of C'(p) that generalizes (2),

in that it holds also in the large-MIMO setting T' < M + N .2

Theorem 4: The capacity C(p) of the Rayleigh block-fading
MIMO channel (4) with N receive antennas, coherence time 7',
and M < min{N, |7/2|} transmit antennas is given by

C(p):M(l—Aj{)log(p)—i—c—&-o(l), p— oo (8)

o= pion(E5s ) 4 (1 ) )
ML @7) n %(E [log det(HH")] — M ). (9)

+7710g

Here, L and L are defined in Table I, and
M
E [log det (HH")] = (N —i+1)
i=1
(10)

where ¢ (-) denotes Euler’s digamma function [17, Eq. (6.3.1)]
and v ~ 0.577 is Euler’s constant.

Proof: See Section IV. A sketch of the proof for the single-
input multiple-output case, which is simpler to analyze than the
MIMO case, is given in [20]. |

In Section III-B below we compare C(p) in (8) with the
capacity lower bound obtained using USTM. The input distribu-
tion that achieves (8) is described in Section III-C. Numerical
results illustrating the lack of tightness of the USTM-based
capacity lower bound in the large-MIMO setting are provided
in Section III-D.

B. Rates Achievable with USTM

For the case T' > M + N, the high-SNR capacity expres-
sion (8) coincides with the one reported in [4, Sec. IV.B].*
In this case, USTM, ie., X = T®, with ® unitary and
isotropically distributed, achieves (8). When T' < M + N, the
novel capacity characterization provided in Theorem 4 implies
that USTM is not capacity-achieving at high SNR, as formalized
in the following corollary.

Corollary 5: The rate achievable using USTM over the
Rayleigh block-fading MIMO channel (4) with N receive an-
tennas, coherence time 7', and M < min{N, |T/2|} transmit
antennas is

M
OUSTM(P) =M (1 — T> log(p) + cust™ + 0(1)7 p — 0
(11)

3Because of the constraint M < min{N, |T/2]}, large-MIMO setting in
this paper indicates a point-to-point MIMO uplink with a large antenna array at
the receiver.

4The expression for ¢ given in [4, Eq. (24)] contains a typo: the argument of
the logarithm in the second addend should be divided by M as one can verify
by comparing [4, Eq. (24)] with the result given in [4, Thm. 9] for the case
M = N.



where

o b (8) (- 23

+ (1 - ]\;) E [log det(HH™)] .

Note that cysTm = ¢ whenT' > M + N; however, custvm <
cwhenT < M + N.

Proof: The proof follows by repeating the same steps as
in Section IV-B after having replaced the capacity-achieving
input distribution (to be described in Section III-C) with USTM.

|

C. The Capacity-Achieving Input Distribution at High SNR

1) Matrix-variate distributions: To describe the input proba-
bility distribution that achieves (8), we shall need the following
preliminary results from multivariate statistics.

Definition 6: An m x m random matrix A is said to have a
complex Wishart distribution with n > 0 degrees of freedom
and covariance matrix X if A = BB/, where the columns of
the m x n matrix B are independent and CA/(0, X)-distributed.
In this case, we shall write A ~ W,,(n, X).

Note that when m > n, the matrix A is singular and, hence,
does not admit a pdf. In this case, the probability distribution
of A is sometimes referred to as pseudo-Wishart or singular
Wishart.

Definition 7: An m x m random matrix C is said to have a
complex matrix-variate Beta distribution of parameters p > 0
and n > 0 if C can be written as C = (TH)flAT’l,
where A ~ W,,(p,X) and B ~ W,,(n,X) are independent,
and A + B = T"T, with T upper-triangular with positive
diagonal elements [21, p. 406]. In this case, we shall write
C ~ Betan,(p, n).

For the case when n < m or p < m, the probability distri-
bution of C is usually referred to as singular complex matrix-
variate Beta distribution because it involves singular Wishart
distributions. In the next lemma, we state two properties of the
complex matrix-variate Beta distribution that will be used in the
proof of Theorem 4.

Lemma 8: Let C ~ Beta,,(p,n) withp > m > 0and n >
0. The following properties hold:

1) C is unitarily invariant [22, Def. 2.6], i.e., C ~ UCU"
for every m X m unitary matrix U independent of C.

2) The joint pdf of the ordered eigenvalues Ay > --- > A\,
of C takes on two different forms according to the value
of n.If n > m,then1 > Ay > --- > \,;, > 0w.p.1, and

the joint pdf of Aq,..., A, is given by
fkla---vkvn (al’ Tt am)
Fm(m) Fm (p)Fm(n)
. Haf_m(l — G/Z‘)n—m . H(ai — aj)2. (12)
i=1 1<j

Ifo<n<m,then \;y =--- = X\,,_, = 1 wp.l, and
1> Ap—nt1 > -+ > A > 0 w.p.1. Moreover, the joint
pdf of A\py—na1, ..., A is given by

(1= a)™ " ][] (@i —a)? (13)

m—n<i<j

Proof: Part 1 and (12) in part 2 follow by extending to the
complex case [23, Lem. 3.11] and [24, Thm. 3.3.4], respectively;
to prove (13) it is sufficient to note that C = (I,, — C) ~
Beta,,, (n, p) (see [24, Def. 3.3.2]), that C has rank n < m, and
that its n nonzero eigenvalues are distributed as the eigenvalues
of a Betay, (m, p + n — m)-distributed random matrix. ]

We shall also need the following result relating Wishart-
distributed and Beta-distributed matrices.

Lemma 9: Let S ~ Wy, (p + n,X) withm > 0,n > 0,
and p > m. Furthermore, let C ~ Beta,, (p, n) be independent
of S. Finally, put S = THT, where T is upper-triangular with
positive diagonal elements. Then, A = THCT ~ W,,(p, Z).

Proof: The lemma follows from a generalization to the
complex case of [24, Thm. 3.3.1] for the nonsingular case
n > m, and of [25, Thm. 1] for the singular case 0 < n < m.

|

Note that Lemma 8 (part 1) implies that the eigenvalues of A
and of CS in Lemma 9 have the same distribution.

2) The Optimal Input Distribution: We are now ready to de-
scribe the input distribution that achieves (8). This distribution
takes on two different forms according to the relation between
T, M and N. Specifically, one should take X = ®D where ¢
is unitary and isotropically distributed, and D = /TN /L - D
with L defined in Table I, and with D being a diagonal matrix
whose ordered positive entries {d1, ..., dys} are distributed as
follows:

_a) Case T < M + N: The squared nonzero entries
{d3,...,d3,} of D have the same joint pdf as the ordered
eigenvalues of a positive-definite M x M random matrix Z ~
Betay (T — M, M+N —T). The resulting pdf of {d?, ..., d2,}
is obtained by settingp =T — M andn = M + N — T in (12)
ifT< N,andin (13)if N <T < M + N.

_b) CaseT > M + N: The nonzero entries {dy,....du}
of D should be taken so that Jl =... = CZM = 1 w.p.1. This
results in the USTM distribution used in [4].

In the remainder of the paper, we shall denote by Q%’l the
probability distribution of D = /TN /L- D we have just intro-
duced. Furthermore, we shall refer to the probability distribution
of X = ®D resulting by choosing ® unitary and isotropically
distributed and D ~ Q%’t as BSTM. Note that BSTM reduces
to USTM whenT' > M + N.

As shown in [4, p. 369], USTM is optimal for the case T' >
M + N because it maximizes

h(UDH) + (T — M — N)E[logdet(D?)]  (14)



where U € CM*M i5 an isotropically distributed unitary matrix
independent of both D and H, and h(-) denotes the differential
entropy. In fact, the average-power constraint (6) implies that

h(UDH) < M N log(neT); E[logdet(D?)] < Mlog(T)

and under USTM, which yields D =
hold with equality.

In the large-MIMO setting T' < M + N, however, the
second term in (14) turns negative and USTM does no longer
maximize (14). As we shall now illustrate, the maximizing
distribution of D turns out to be Q%n, which results in BSTM.
Through algebraic manipulations similar to the ones leading to
(46) and (47) in Section IV, it is possible to show that

= h(G) + k.

VT -1y, both inequalities

h(UDH) + (T — M — N) E[log det(D?)]

Here, k is a constant that does not dependent on D, and G €
CM>(T=M) is a random matrix with singular values jointly
distributed as the singular values of DH, and with isotropically
distributed singular vectors. Lemma 10 below implies that the
choice D ~ Q' induces a matrix G that is Gaussian with
i.i.d.CN(0, TN/(T — M)) entries. But a Gaussian G with i.i.d.
entries maximizes h(G), and, hence, (14).

Lemma 10: Let D ~ QOPt and let H be an independent
M x N random matrix with i.i.d. CA/(0, 1) entries. The singular
values of DH are distributed as the singular values of an M x L
matrix G with i.i.d. CAV(0,TN/L) entries.

Proof: For the case T' > M + N, we have that L = N and,
hence, D = /T - I,;. Consequently, DH = (\/T -H) ~ G,
from which the statement in the lemma follows.

For the case T < M + N (and, hence, L = T — M)
we shall proceed as follows. Let D = /T N/(T — M) - D,
and let U be an M x M unitary and isotropically distributed
random matrix independent of D and H. Since HH" is uni-
tary invariant, we have that HH" ~ U"HH"U, and hence
DHH"D ~ DUYHH"UD. Now note that DUFHH"UD
and UD2UHHHH have the same eigenvalues; furthermore,
UD?UY ~ Betay(T — M,M + N — T), which fol-
lows from Lemma 8 (part 1), and from [22, Lem. 2.6]; fi-
nally, HH" ~ W,(N,I,). Hence, by Lemmas 8 and 9
the eigenvalues of UD2U"HH"—and consequently also the
eigenvalues of DHH"D—have the same distribution as the
eigenvalues of a Wy (T — M, I,s)-distributed random matrix.

|

D. Gain of BSTM over USTM

The use of USTM is motivated by several practical consider-
ations [8], [9], [13]. Is it then worth to replace USTM by the
capacity-achieving BSTM in the large-MIMO setting? In this
section, we shall investigate the rate gain that results from the
use of BSTM instead of USTM.

Asymptotic Analysis: In Corollary 11 below we show that
the rate gain resulting from the use of BSTM instead of USTM
grows logarithmically in the number of receive antennas.

Corollary 11: Let T and M < |T/2] be fixed. Then

M2
lim lim (C(p) — CustMm(p) — > log(N)> = cpr (15)

N —00 p—00

where C(p) and CysTm(p) are given in (8) and (11), respec-

tively, and
M(T - M
( ) log< e >

e = = 10g<FM(T M))

7

T T—-M
M
~ 57 {M log(me) + log(2 )}

Proof: As we are interested in the limit N — oo, we s}all
assume without loss of generality that L = T'— M and L =
N. Since the first term in the high-SNR expansion of C'(p) and
CustMm(p) is the same,

lim (C(P) - CUSTM(ﬂ)) = C€—CUSTM = Co T CN

p—00

where ¢y and ¢y are defined as follows:

T-co= log(FM(T—M)) +M(T_M)10g<TeM>
—log(T'a(N))
(16)

T-cy=(N—T+ M)E [logdet(HH")]
— MN + M(T — M)log(N).

Note that cyy is a function of IV, while cq is not. Consequently,
to establish (15) it is sufficient to study the limit N — oo of
the first two terms on the right-hand side (RHS) of (16). For the
first term, we use (10) and the following asymptotic expansion
of the Euler’s digamma function [17, Eq. (6.3.18)]: ¥(m) =
log(m) — 1/(2m) 4+ o(1/m), m — oo, which yields

(N =T + M)E[log det(HH")]

M
:(N-T+M)Z¢(N—z‘+1)
= —M(T — M)log(N +NZlog —i+1)
—%4—0(1), N — oo. 17

For the second term on the RHS of (16) we proceed as follows:

log (FM(N)>

= %bg +Zlog( )

2
M
3)Z< — i) log(N )+10g(N2)+i)—MN
=1
M M2
—|—71g(2)—|——log( ) +0(1), N = oo

M? e M
2 (7) 2 og(2
+ 5 og N + > og(2e)

(18)

=N [Z log(N —

— MN + o(1), N — oo.

Here, (a) follows from Stirling’s formula n! =
n"e "/2mn (1+0(1)), n — oco. We complete the proof by
substituting (17) and (18) into (16), and using that

N—-7+1
lim Nlog(ANZ_‘,_) =1. |

N—o0 —1
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Fig. 1. Rate gain resulting from the use of BSTM instead of USTM as a function
of the number of receive antennas N and the channel’s coherence time 7'; in
the figure, p = 30dB, and M = min{|7T/2], N}.

Numerical Results: Let C (p) be the high-SNR approxi-
mation of C(p) obtained by neglecting the o(1) term in (8).
Similarly, let CysTm(p) be the high-SNR approximation of
CustM(p) obtained by neglecting the o(1) termin (11). As can
be inferred from the results reported in [4], [9], [11], CusTm(p)
is a good approximation for Custm(p) at p 2 30 dB. Numeri-
cal evidence suggests that the same holds for the pair C'(p) and
C(p). To illustrate the gain resulting from the use of BSTM
instead of USTM for a finite (but large) number of receive anten-
nas, we plot in Fig. 1 the ratio [C'(p) — Custm(p)]/Custm(p)
for different values of 7" and N, when p = 30dB and M =
min{|7T/2|, N}.

We observe from Fig. 1 that the rate gain resulting from the
use of BSTM instead of USTM becomes significant when the
number of receive antennas /N is much larger than the channel’s
coherence time 7'. For example, when N = 100 and T = 10,
the rate gain amounts to 13%. However, when T = N = 100
the rate gain is below 3%.

IV. PROOF OF THEOREM 4

The proof is effected by exhibiting capacity upper and lower
bounds that agree up to a o(1) term.

A. Upper Bound

Fix pg > 0 and let K(pp) as in (7); as a consequence
of Lemma 3, we can restrict—without loss of generality—the
supremum in (5) to input distributions Qx satisfying the con-
straint X ¢ KC(po) w.p.1. Our capacity upper bound is based
on duality [10], [26], which is a technique that allows one to
obtain tight upper bounds on I(X;Y) by carefully choosing
a probability distribution of Y. Specifically, let Py |x denote
the conditional probability distribution of Y given X, and Qv
denote the distribution induced on Y by Qx through (4). Finally,
let Ry be an arbitrary distribution of Y with pdf ry. We use du-
ality to upper-bound I(X;Y) in (5) as follows [10, Thm. 5.1]:

I(X;Y) = Ex[D(Py x [| Qy)]
Y Ex[D(Py x |Ry)] = D(Qy ||Ry)

Ex[D(Py x| Ry)]
— Eqy [log(rv (Y))] — A(Y | X).

—

—
INS

19)

Here, (a) follows from Topsge’s identity [27], and (b) is a conse-
quence of the nonnegativity of relative entropy [19, Thm. 2.6.3].
The conditional differential entropy ~A(Y | X) in (19) is given by

M 12
WY|X)=NY E {log <1 + p”;\}”)] + NT log(e). (20)
=1

To evaluate the first term on the RHS of (19), we need to choose
a specific output pdf ry. Let us express Y in terms of its singular
value decomposition (SVD)

Y =uxvH (21)
where U € CT™L£ and V € CNXE (P is defined
in Table I) are (truncated) unitary matrices, and X =
diag{[o1(Y) --- op(Y)]"} contains the singular values of Y
arranged in decreasing order. To make the SVD unique, we
shall assume that the diagonal entries of U are real and non-
negative. Hence, V is an element of the complex Stiefel man-
ifold S(N, P) [18], [4], while U belongs to a submanifold
S(T, P) of S(T', P). We put forward the following result about
the volume of S(n, m) and S(n, m) for the case n > m (see [138,
Sec. V)

m,__mn 7 |S(n,m)\ ,/Tm(nfl)

2r,:(n); ’g(”’m)’ T Tenm T Ta)

When Qx is capacity-achieving, Lemma 1 and the Gaussianity
of H and W, imply that U and 'V are uniformly distributed on
S(T,P) and S(N, P), respectively, and independent of each
other and of 3. We shall take an output pdf for which this
property holds. Furthermore, we take the first M singular values
of Y distributed as the ordered singular values of the noiseless
channel output matrix \/p/M - XH = \/p/M - ®DH, with
@ unitary and isotropically distributed, and D ~ Q%’l. By
Lemma 10, this implies that the first M singular values of Y are
distributed as the singular values of an M x L matrix with i.i.d.
CN (0, \) entries, where A & NTp/(ML). We take the remain-
ing P — M singular values distributed as the singular values of
an independent (N — M) X (T — M) matrix with i.i.d. CA(0, 1)
entries. The intuition behind this choice is the following: in the
absence of the additive noise W in (4), the output matrix Y has
rank M ; this suggests that, in the high-SNR regime, the smallest
P — M singular values of Y carry information about W only.
Summarizing, we take the pdf r;, ., of the ordered singular
values of Y as follows® -

S(n,m)| =

fo1,op (@1, ,aP) = Yoy o oy (@1, an)

Tongr, ,U£<GM+1a T 7a£)
where

r0'17"'70'1\4(a’1’ o vaM)

M 2 M M
_ 3! 2/
_ ke 2im1 95 H Q(L—M)Jrl.H 2 2)2
==z a; (ai aj)”,
i=1 i<j

ap > --->apy  (22)

SWe shall indicate o;(Y') simply as o; whenever no ambiguity occurs.



with kg £ 2MgMOM=1) /(T (L)L 5 (M)) and

Fong1, 70'P(a’M+1’ : 7aP)
P P
2(P—P)+1 2
S | C R N
=M M<i<j
apy1 > >ap  (23)

with P defined in Table I, and
9P—M (P—M)(P—M-1)
Lpom(P—M)Lp_y (P — M)
Here, both (22) and (23) follow from [22, Thm. 2.17] and the
change of variable theorem. We are now ready to evaluate the
first term on the RHS of (19). Let
P P

1:[ a?(ffﬂ)ﬂ ] 1:[ (O_ig _ U?)z

i=1 i<j
be the Jacobian of the SVD transformation [4, App. A]. The
change of variables theorem yields
—Eflog(ry (Y))] = —Eflog(ru =,v(U, %, V))]
+E {1og<Jﬁ£(Ul, e ,05))}
= —Eflog(ru(U))] — E[log(rv (V)]
— E[10g(ropisrop (01, o0r))]
—E [log(rUMH)“,,UE(UMH7 e ,UE))]

+ E{log(JiB(m,'-- ,03))} (25)

where the second equality follows from the independence be-
tween U, V, and 3. Because U and V are uniformly distributed
on the corresponding manifolds,

ky &

J?,B(O-lf" ,Uﬂ): (24)

~ Ellog(ru (V)] = log| (T, P)| 26)
~Ellog(rv(V)] = log|S(V.P)|.  @7)

Substituting (22), (23), (24), (26) and (27) into (25) we obtain
after simple algebraic manipulations

L (M)T (L) )
Ly (N)Tp (T)

vt

~ Ellog(rx (Y)] = MLIog() + log

+ NTlog(w) + ks E

>

i=M+1

Here, k3 & P — P + M — L. We next upper-bound the last
three terms on the RHS of (28). Using that the singular values
are arranged in decreasing order we obtain

S > Eflog((0? - 0?)?)]

i=1j=M+1

031 . (28)

M

2(P— M) E[log(o?)] -

i=1

(29)

For the second-last term, the power constraint (6) and the noise-
variance normalization imply that

=ML+ o(1), p— oo (30)

1L NT(p+1)
1> u[oz) < Mo tD

where we used that A = NT'p/(M L). Finally, to upper-bound
the last term in (28) we proceed as in [4, p. 377] and obtain

Eli

i=M+1

< (T — M)(N — M). 31)

Substituting (29), (30), and (31) into (28), and then (28) and (20)
into (19), we get

I(X;Y)

< MLlog(p)—M(N+T—M—1L)

wwe(etaneni) ()

+(I'-M—-L)E

(32)

To conclude the proof, we bound ¢ (p) and ¢3(p) by exploiting
that X ¢ K(po) w.p.1. Let Z be a (T — M) x N random
matrix, independent of the channel matrix H, and with i.i.d.
CN(0,1) entries. Given X = ®D, the matrix Y'Y has the
same conditional distribution as [4, p. 377]

H" (IM+ﬁD2)H+aHPZ/.

a =B
=A

This property allows us to use Weyl’s theorem [21, Thm. 4.3.1]
to bound ¢ (p) as follows:

c1(p) = Ex

Evy|x lilog(Ai{YHY})‘ XH

L i=1

En,z

> log(M{A}+ M {B}) | XH

i=1

< Ex |En Zlog(Ai{AHEz[Al{B}]) X| .33

A
L =n

Here, in the last step we used Jensen’s inequality. We next
rewrite the argument in the expectation on the RHS of (33) in a



more convenient form:

M
> log(M{A} +1n)

=1

@ 10g det((IM + %m) HH" + 771M>

_ P p2
- logdet(IM—I- 7P )
+ log det (HHH + diag{ {7] (1 + ﬁHXle)_
(b)
< logdet <IM + ﬁDz)

- n(1+fw||xM|2)_1]T}>

—1
+log det (HHH +1 (1 + @) IM> : (34)

M

£5(H,po)

Here, (a) follows because H" (I + (p/M)D?)H and
(In + (p/M)D?)HH" have the same M nonzero
eigenvalues [21, Thm. 1.3.20], and (b) follows because
X ¢ K(po) w.p.1 and because for two matrices A and B, if
A — B is positive semidefinite then det(A) > det(B) [21,
Cor. 7.7.4]. Substituting (34) into (33) we obtain

ca(p) <E [log det (IM + ﬁDQH +E[x(H, po)] (35)

< M10g<1 + ?j) + E[x(H, po)]

T
= M10g<Mp> +E[k(H, po)] + o(1), p — co. (36)
To bound c3(p) we use (35) and obtain

c2(p) < E[x(H, po)] .
Finally, substituting (36) and (37) into (32) we get
I(X;Y) < M((T—-M)log(p) +T - cp, +0(1), p— 0

(37

(38)
where
o (BT (00T
+ MTLlog(JZ> + %(E[K(H,po)] “u). @)

Note that the RHS of (38) does not depend on the choice of the
input distribution. Hence, (38) is an upper bound on capacity
as well. Because H has i.i.d. Gaussian entries, and, hence, its
singular values have finite differential entropy, we can apply [10,
Lem. 6.7(b)] combined with the dominated convergence theo-
rem [28, p. 180] and obtain

lim E[x(H, po)]

Po—>00

=E [p&i_r}noo k(H, po)}
= E[log det(HH")] .

Hence, c,, in (39) can be made arbitrarily close to ¢ in (9) by
choosing pg sufficiently large.

B. Lower Bound

To obtain a capacity lower bound that matches the upper
bound derived in Section IV-A, we evaluate 1(X;Y) for the
BSTM input distribution introduced in Section III-C. More
specifically, we proceed as follows. Fix py > 0 and let

IC(pU) {A diag{[A\y - )\M]T} :
0< m:rgi?},kj{ki} < PO/P}~

Starting from QJ}' (see Section I1I-C), we define the following
family of probability distributions parameterized with respect
to® p

QB (A) . c
1—P(DE/%(po)., DNQ(]Jgt) ) if A ¢ IS(pO)
0, if A e K(po)

QR (A) = (40)

Note that QP¥“’(A) is supported outside K(po) and that
lim, 00 Q°P“P( ) = QBY(A) for all A.

1) Preliminary Results: In Lemma 12 below, we establish
that when X = ®D with D ~ Qp5"” and & unitary and isotropi-
cally distributed, the joint pdf of the largest M singular values of
the output matrix Y in (4) converges pointwise to the pdf of the
nonzero singular values of 1/ p/M - ®DH. Furthermore, the pdf
of the remaining P — M singular values converge pointwise to
the pdf of the singular values of an independent Gaussian matrix.
We remark that we implicitly used this property to construct the
output distribution in Section I'V-A.

Lemma 12: Let X = ®D where ® is unitary and isotrop-
1cally distributed and D ~ Qp"*; let Y as in (4). Denote by
01 > --- > op the singular values of Y and let

.
5 — [( M/p)oy --- . (4D

The pdf of & converges pointwise as p — oo to the pdf of a
vector u € CZ whose first M entries are distributed as the or-
dered nonzero singular values of DH, with D ~ Q(]’_l‘,’t and H as
in (4), and whose remaining P — M entries are distributed as the
nonzero singular values of an independent (T'— M) x (N — M)
random matrix with i.i.d. CA(0, 1) entries.

Proof: See Appendix A. [ ]
Note that by Scheffé’s Theorem [29], pointwise convergence
of pdfs implies convergence in distribution of o to u. This
weaker convergence result (which is not sufficient to establish
our capacity lower bound) has been already pointed out (without
proof) in [4, Lem. 16].

In Lemma 13 below we collect four asymptotic results regard-
ing the differential entropy and the expected logarithm of the
entries of & in (41) that we shall need in the proof of the lower
bound.

Lemma 13: Leto = [61 -+ -
in Lemma 12. Then

D h(&) = h(w) + o(1), p—

2) Ellog(3:)] = Eflog(u)] + o{1), p 50,1 < < P
3)E [log(a -5 )] = E[log(u? — u? )] + o(1), p — oo,
1<i<j< B

( M/p)O'M OM+1 " 0P

Gp]Tandu = [ug - -

6 Although Qgt’p depends on both p and pg, the choice of pg in the proof of
the lower bound will turn out to be immaterial.



4) Elog(67 — M&3/p)] = E[log(u?)] +

o(1), p = oo,

1<i<j<P.
Proof: See Appendix B. [ |
2) The Actual Bound: We evaluate the mutual information
[(X:Y) = h(Y) — h(Y | X) (“2)

in (5) for X = ®D with ® unitary and isotropically distributed

and D ~ Q%’"p . The second term on the RHS of (42) is given
by

M

WY |X) = NTlog(me) + N > Elog(1 + pl|xi||>/M)]

i=1

M
= NTlog(me) + N ZIE [log(pd3 /M)
M -
+ NZJE llog(1 4 M/(pd3))]

@ N7 log(mwe) + M N log(p/M)

+ NE[logdet(D?)] +0(1), p—o0. (43)

Here, (a) follows because pd? > po w.p.1, and hence, 0 <
log(1 + M/(pd?)) < log(1 + M/po) w.p.1, which implies
that

lim E |log 1+M =E| lim log 1—|—]\/[2 =0
p—00 pdi p—r00 pd;

as a consequence of the dominated convergence theorem [28,
p. 180]. We shall compute 2(Y) in SVD coordinates [cf., (21)]
as follows:

(@)

MY)=  h(U) +  W(V)  +h(on,...,0p)
=log |S(T,P)| =log|S(N,P)|

+ E{]og(J (01,...,03))}

P+ a5
+1(&) +E [log(Jp plor, - oop))| @4

Here, (a) follows because the isotropic distribution of ® and
the Gaussianity of H and W imply that U and V are uni-
formly distributed on S(T', P) and S(N, P), respectively, and
independent of X; In (b), we used (41) and that h(Ax) =
h(x) + logdet(A) for a random vector x and a deterministic
matrix A [19, Eq. (8.71)]. It is convenient to express also the
Jacobian J5 5 in (44) in terms of o. Using (24) and (41) we
obtain o

Y 10g [S(T, P)| + log [S(N

E{10g<J (01,...,03))}
= ky 10g(ﬁ> + i E [log(&?(ﬁ—ﬂ)ﬂ)}
+ 38 s - 5)°)]

i<j

+ 3 Bllon(? o)

i=M+1

P

+ Z E[log((&? — 5?)2)}

M<i<j
[log(

+ Z Z
i=1 j=M+1

where ky 2 M (P + P — M —1/2). Substituting (45) into (44),
and using Lemma 13, we obtain

h(Y) =1log|S(T, P)| +log|S(N, P)|
+M(ﬁ+P M)log(p/M) + h(ug,...

4 Z E [log( (P+P— 2M)+1)]

+ZE[log((u? — u?)Z)} + h(uprg1s- -, up)

-3 /p))| @)

7U'M)

i<j
P
(P—P)+1
+ 3 Elog(uET)]
P
+ Z E[log((u —u; ) )] +o(1), p — 0. (46)
M<i<y

We next evaluate the terms on the RHS of (46) by proceeding
as follows. By Lemmas 12 and 10, {u;,...,ups} are jointly
distributed as the singular values of an M x L Gaussian random
matrix G with i.i.d. CN'(0, \/NT/L) entries. Evaluating h(G)
in the SVD coordinate system, we get

hG) *log\g(M M)| +1log|S(L, M)| + h(u1, ..., un)
—&—ZE[log( 2(L— JV[)+1>:|
+ZE[10g((u3 -u?))]. 47

i<j

Similarly, by Lemma 12, {up41,...,ur} are jointly dis-
tributed as the singular values of a (7' — M) x (N — M) random
Gaussian matrix W with i.i.d. CN(0, 1) entries. Thus,

h(W) = loglg(T— M, P — M)] +1og|S(N = M, P — M)

)+ 3 efus(u® )]
> Bl a)?)].

M<i<j

Substituting (47) and (48) into (46), and then (43) and (46) into
(42), we obtain

I(X;Y)
— M(T - M) log(ﬁ) +h(G) + h(W)

+ h(uprrg1, .-, up

(48)

3B ln (12 Y] - Vg (%)
i=1

A
=«

+log(ks) — NT log(me) + o(1), p— 0 (49)



where ks £ [8(T, P)| |S(N. P)|/[|(T~M, P—M)||S(N -

M,P—M)|-|S(M, M)|-|S(L, M)|

] . The term denoted by «
in (49) can be simplified as follows:

£ [kt - 5l )

= LE [log det(DQHHH)] - NE[logdet(DQ)]
L — N)E[logdet(D?)] + LE [log det (HH")]

—~
=

Il
—

C

= (L — N)Mlog(T) + LE[logdet(HH")] . (50)

Here, in (a) we used that L = P + P — M — L, (b) follows
from Lemma 12, and (c) holds because when T" > M + N we
have that D = /T - I, and when ' < M + N we have that
L—-N=0. Finally, substituting (50) into (49), we get after
straightforward algebraic manipulations

I(X;Y)=M(T —M)log(p)+ T -c+ o(1), p— o0

where c is given in (9). This concludes the proof.

V. CONCLUSIONS

It was shown in [4] that USTM achieves the high-SNR ca-
pacity of a Rayleigh block-fading MIMO channel in the regime
where the channel’s coherence time 7' is larger or equal to
the sum of the number of transmit antennas M and receive
antennas N. In the same paper, it was also conjectured that
when 7' < M + N, a situation relevant for large-MIMO
systems, USTM is no longer optimal. In this paper, we prove
this conjecture. Specifically, we establish that USTM is not
capacity-achieving when T' < M + N by determining the input
distribution (which we refer to as BSTM) that achieves capacity
at high SNR. The corresponding capacity-achieving input signal
is the product of a unitary isotropically distributed matrix and
a diagonal matrix whose nonzero entries are distributed as the
square-root of the eigenvalues of a Beta-distributed matrix of
appropriate size. The analytical and numerical results reported
in Section III-D illustrate that the rate gain determined by using
BSTM instead USTM grows logarithmically in the number of
receive antennas NN, and can be as large as 13% for practically
relevant SNR values, when N > T and M = [T/2].

APPENDIX A
PROOF OF LEMMA 12

Throughout this appendix, we shall focus for simplicity on
the case T' < IN. We shall, however, outline the additional steps
needed to generalize the proof to the case 7' > N. Let g3 and

Op " be the pdfs corresponding to the probability distributions
Q(’pt’p and QP', respectively (such pdfs exist when 7' < N).

Let fy | p denote the conditional pdf of Y given D. Denote by

) () and fu the pdf of & and u, respectively. Finally, denote by
D and f,,|p the conditional pdf of & and u given D. The

proof consists of the following three steps:

f(P

1) We first obtain a closed-form expression for fy |p, thus
generalizing the result obtained in [9, Sec. III.A] (for the

special case of D being a scaled identity matrix) to ar-
bitrary diagonal matrices. This result is of independent
interest.

2) We then calculate £l ‘D from fy|p and show that fép ‘)D
converges pointwise to f, | p as p — oo.

3) Finally, we show that

@A) - af P (A)| <k (51)
where k is a finite constant that does not depend on a and
A, i.e., the bound is uniform in both a and A. As D ~
QB implies that D has compact support, we can invoke
the dominated convergence theorem [30, Thm. 1.34] and

conclude that

lim fép) (a) = lim f(p) plalA)g BeP(A)dA
pP—r00 pP—r00
_ / Tim [l ) (A)] dA
- /fu|D(a\A) DUA)AA = f,u(a).
A. Step 1

Set p £ p/M. Since Y is conditionally Gaussian given X,

. exp|— tr(YH (XXM +17) T Y )|

(Y 1X) = a7 det(5XXH + L)Y

™

To obtain fy |p from fy|x, it is convenient to consider the
eigenvalue decomposition of YYH:

Here, UisaT x T unitary matrix, and X, defined in (21),
contains the singular values o0y > --- > op of Y. Set now
A 2 (57'D72 +15,) ! and recall that X = ®D, where ®
is unitary and isotropically distributed, and, hence, uniformly
distributed on S(7T', M ). Proceeding as in [9, Sec. III],

22
O(r-p)xp

Opx(r—P)

0r_p (52)

YYH—I~J(

2A

f D) f- D)d
v p(Y| |STM|/Y|X (Y |®D)d®

1 .exp[ftr(YHY)] ' 1
|S(T, M)

™ det(pD? + I)N
. / exp[tr(ABADY)] d®.  (53)
S(T,M)

The integral on the RHS of (53) is computed in closed-form
in [9, Sec. III.A] for the special case D = VT - 1y, which
corresponds to USTM. We shall next evaluate this integral (and,
hence, fy|p) in closed-form for an arbitrary diagonal matrix
D. We start by observing that the integral under examination re-
sembles the well-known Itzykson-Zuber integral [31, Eq. (3.2)],
with the crucial differences that, in our case, the integration is
performed over the Stiefel manifold S(T', M) instead of the
unitary groupU(T) £ S(T,T).Let ® = [® & | where @ is



aT'x (T— M) matrix chosen so that ® is unitary, i.e., ® € U(T).
Then [32, Eq. (5)]

/ tr(A@A@H)dq) o

S(T,M)

/ tr APAD >d<I> (54)

Uu(r)

IU(T M)

The assumption 7' < N entails that the nonzero entries of
the diagonal matrix D are distinct (see Section III-C); hence,
the nonzero entries of the diagonal matrix A are distinct as
well. Furthermore, when 7' < N we have that P = T (and
P = N) and, hence, A = X2 [see (52)]. Starting from
A = diag{[\; --- Ay}, we next define the following full-
rank 7" x T' diagonal matrix:
A 2 diag{[A1 -+ Ay €hrqq o €]
Here, €, 1,..., € are nonnegative real numbers chosen so
that the nonzero entries of A, are distinct. As the unitary group
U(T) is compact,

/etr(z:?qm«b“)d;l; _

u(r)

/ (A 5
—0

Uu(r)

!
EM+1

(55)

The argument of the lim operator on the RHS of (55) is the
Itzykson-Zuber integral. Hence, by [31, Eq. (3.4)] we get’

T
2FA HH) .~ |Z/[(T)‘ : H P(Z) : det(A)
/ r(Zreace") 15 _ i1 T 56
Uu(T) H (02 — a]) ITd=X)
1<J i<j
Here, {/\ } _, are the diagonal entries of A, and Aisal x T

matrix defined as follows: [A]; ; = exp(o? Ai). We next com-
pute the limit €, ; — 0,...,e7 — 0 of the RHS of (56)
using I’Hopital’s Theorem, substitute the final result into (54),
and obtain [33, Lem. 5]

/ etr(A@A«b“)d(I,
S(T,M)

de det (AM-T I'(z
oy W )1THM+1<>(57)
_ T M
B o2 - o2 [T )
=|S(T,M)| 1<j i<j

with M being a T x T matrix defined as follows:

Xio?
e’

[M]” = { 2(T—1)
o

J )

1<i<M, 1<j<T
M<i<T 1<j<T.

Substituting  (57)
(pN_lD_2 + IM)_

into (53) and using that A =
, we obtain the following closed-form

"Note that—differently from our setup—in [31, Eq. (3.4)] the Haar measure
on the unitary group is normalized.

expression for the conditional pdf fy | p:

fy p(Y|D)
T H
1 —tr(Y"Y
= 7" H F(Z) . eXp[N ;( )1;
T i=T—M+1 det(pD? + Ipr)
det(M) det (AM~T)
T ) o M
_H_(Ji - Uj) ) H()‘Z =)
i<j 1<J
MOy ﬁ Cdet( D2+ Ty) M
aNT TN det(pD2+IM)N M+1
P 2
exp(— D1 Uz‘) det(M)
oz 2 2 M 2 2 . o9
VHV(O—i _Jj) 11(d; d')
i<j 1<j

We remark that (58) holds under the assumption that 7" < N,
which ensures that the {d;}}, are all distinct.

When T' > N, we have that dy = --- = d; = \/TN/L,
where | = T— L = min{M,T— N} (see Section ITI-C). Hence,
A =-=XN=A2[L/(TNp)+1]7L. Let in this case

er] '}

where €),...,¢ and €}, ,,..., €} are positive real numbers
chosen so that the diagonal elements of A’ are distinct. Let also
A, £ diag{[o? --- 0% eny1 -+ €]}, where eny1,. .., €r
are positive real numbers chosen so that the diagonal elements
of A, are distinct. To obtain fy | p, we need to replace (55) with
(59) on the top of next page, and then follow the same steps lead-
ing to (58). The corresponding steps are omitted. For simplicity,
in the remainder of the proof we shall focus exclusively on the
case T' < N.

AL £ diag{[A+€| - A€ Ny1 - Ay €y o

B. Step 2

1) Computing ft(}p |)D To obtain ) &b from fy | p, we express
Y in terms of its SVD [see (21)], Wthh yields

fusvp(U,%,V|D)

= fy | p(USV"|D) - Jyr(or, -+ ,or)  (60)
where Jy 7 is the Jacobian of the SVD transformation given
in (24) (recall that we assumed 7" < NV, and, hence, P = T and
P=N).

Next, we integrate the RHS of (60) over U and V and then
operate the change of variable o +— & defined in (41). These

two steps yield

f(“\D 6|D)

T ~2 T—-M
9T o= Diem+1 9 )

det(p D2 41y

- > 1y \N—M+1
ﬁ r()- H r) Cdet(D2 + 1y VM

1=N—-T+1 =1

M T =2

o= [et-a- 11 1T (-7

i<j M<i< i=1j=M+1



lim
eN+1—0,...

/ cr(aeae’) 15

Uu(T)

lim lim et
4 4 yeer€p—0

er—0 €] —0,...,e;—0 €10

H(aenet) (59)

Uu(T)

ﬁ FAN-T)H1
M =2 =
e PRi= % det(M) - S (61)
2 _ g2
£¢,(6) zl;[j(dZ dj)

2) Convergence of fc(‘ip|)D to fy|p as p — oo: We start by
characterizing the limit p — oo of ¢,(&) in (61). Let L be a
T x T matrix defined as in (62) on the top of next page. Observe
now that ¢,(6) = det(L) and that Lo; vanishes as p — oo.
These two facts imply that

plgn cp(F) = hm det(L)

= lim (det(L11)det(L22)>

p—00
_ T
=det(L)- [ @7-a7)  (©3)
M<i<j
with L being a M x M matrix defined by [f,]” — o—3/d}

Substituting (63) into (61), we get after some algebraic manip-
ulations

lim f)_ (6| D)

p—+00 G|D

. QT_Me— Z?:AlJrl&z‘Q .

The proof of part 2 is concluded by noting that

pli)ﬂ;ofép‘)D(&|D) = f1(5’1,...,(}]w) -f2((~TM+17...,6T)

= u\D(&|D)

where the last equality follows from [22, Thms. 2.17 and 2.18].

C. Step 3

We next establish that the function f/ e ) b(6 D) ap " (D) s
bounded. By (40), this is obviously true for the case when De
K(po). We analyze next the case D ¢ K(po). Throughout this
appendix, we shall use k to indicate a constant term that does not
depend on &, D, and p. Note that k can take on different values
at each appearance. We start by observing that for an arbitrary

¢ € (0,1), there exists a pyy, > 0 such that P{D € K(po), D
QB'} < ¢ for all p > py,. Hence, for p > pyp,

3'(D) _ a¥'(D)

1-P{DeK(p),D~Q¥} ~ 1-¢

B(D) =

9o . (65)

Since we are interested in the limit p — oo, we will assume
throughout that p > pyp, so that (65) holds. Let d* 2 TN /L. Tt
follows from (12) and from the change of variable theorem that

2 a2\ 1 2d;
AV B S

i=1

2(T—2M)+1 &2 -T
Sl

2
'H @2 — &2
d2
1<j

Here, the second equality follows by setting m = M,p =T —
M,andn = M + N —T in (12). Substituting (66) into (65) we
obtain

qp (D) =i,

(66)

)5 (@ D) - g3 (D)
det(p'D 7 4+ 1y

Cdet(D2 + 511, )V M

T T o 1T 1T (o2

)T—M _2

. det(M)e_[’Zﬁl i

bl‘g[\g
N——

i<J i=1j=M+1
Sﬁ F2AN-D)+1
i=1
T T
.B*Z?ZM+151‘2 . H &?(N_T)""l . H (071,2 o O'J2)
i=M+1 M<i<j
Ti=M41
M M
Tz =y [T 0 @@ = ap)V "
i<j i=1
M
<k-T] d;
=1
det(M L oN—i)t1
M M et( )l:[lal
< k-H[1+1/(,3d§)} S
i=1 H([fl +d12)N—M+1/2
<(A4+M/po)M(T—M) = =1
M d. ( M T
7 ~ ~2 ~2
Mg (77~ > )
1 2\1/2 7
i=1 (P! +dj) / i=1 i=M+1

)

< k-det(N (67)



L £ M- diag{[e "1 e P 1. 1"
——
T—M
~2 B =2 - ~
e 1+pd2 "1 e 1+,3d§UM 6)‘10%4+1 6)\10%
1+?d§ 57 1 fﬂ M A 62 AM G2
_ PeNM e tPdy MMM 41 e MIT
S ONT—M—1_ ,—p52 <2 \T-M—-1_ ,—p52, | =2(T—M-1) ~2(T—M-1)
(pai) e o (Pais) e oM M+1 Orp
=Pt = P51 1 1
Li1 Lo 62)
Lo;y Lo

where the T x T matrix N is defined as follows:

N 2 dlag{ |:(571 + d?)*(N*]VI#’l/Z)

T
.(ﬁ_l_’_d?\/j)—(N—M—o—l/@’l 1] }
T—M

. —p52 552, —52 _52 T
~M~dlag e 1 ... ¢ M e %M+1 ... 79T

T
.diag{[a_f(Nl)Jrl &i(NfT)H} }

Next, we upper-bound det(IN) by bounding the entries n; ; of

N, which are given by

exp [— (d? + ﬁ_l)_l &12}
(@ + 51y M2 "9 ’

exp[— (14 pd?)167]
(@ + ﬁ_l)NfM+1/2

Nij =
1<i<M, M<j<T

~onNT—i 552 _2(N—j)+1
()"~ e g3

M<i<T, 1<j<M

i ~2 . >
Gy TN om0 M < i< T, M<j<T.

In the following, we shalg repeatedly make use of the fact that
the function f(z) = e 7% 2 with o, 3,2 > 0 is maximized
for x = 2* = \/a/(20), and that the corresponding maximum

values is f(z*) = [o/(28e)] /% This implies that

2 « /2
f(x) =e Pz < (256) , x>0. (68)

1) Case 1 <i< M, 1<j3<M:

(a)

ni; < ﬁ—1)ij+1/2 (dzg _~_/3_1)7(N7M+1/2)

k- (d7 +
= ke (dF 457"

(b) M\M
<k- <d2 + ) = k.
Pth

Here, (a) follows from (68) by settingaw = 2(N —j) + 1, 8 =
(d? + p~ 1)1, and z = G;; (b) follows because d; < d and
j< M.

2) Case 1 <i< M, M<j<T:

TN _2(N—j)+1
ni,jzexp[—(1+0d?) 10']2'] 'O'j( 2

<1
(@)

(a) .
p
< ( 1+po/M

~2(N—=j)+1 ~N-M+1/2
j P :

N—M+1/2)

)N—M+1/2

<k- (69)

Here, (a) follows because d?p > po.
3) Case M <+ <T, 1<j3<M:

s o
~szefpaj5]2(T+N i—j)+1

’17,1'7]' = p
(a) ) T—‘,—N—i—j—‘rl/Q
<k-pit (1)
p
- k. ﬁ*(N*jJrl/?)
< k- pt—h(N—j+1/2) -k

Here, (a) follows from (68) by setting o« = 2(T'+ N —i—j)+1,
B =p,and x = G;.

4) Case M < i <T, M < j <T: Wehave n; ; < Kk,
which follows directly from (68) by setting o« = 2(T + N —i —
J)+1,3=1andz=g7;.

To show that det(N) is bounded, it remains to further ana-
lyze case 2, where n; ; is not bounded. Let {i1,...,i7r} be an
arbitrary permutation of {1,...,7}. Then [21, Sec. 0.3]

det(N) = Z sgn(iy, ...

(41500esiT)

,iT) . nil,l LR niT’T. (70)

Here, the sum is over all the (T'!) permutations of {1,...,T}
and sgn(-) denotes the sign of the permutation [21, p. 8]. We
observe that for eachn,; ; (1 < ¢ < M,M < j < T) that
appears in the product on the RHS of (70), there exists a factor



n;s j» in the same product with M < 7 <T,1< 7 <M (case
3). Note now that

Mg - M5!
(a) .
~2(N— 1 ~N—
<k Uj( J)+ _pN M+1/2
—_—
®), N—j+1/2
S(po.‘?l)

~oNT—i" 552, _2(N—j)+1
(p02) e P% -oj,( i+

< k- p~2N+T—JV[+1—j—z" . 5]2»,(2N+T+17j’i/*j')e—ﬁﬁf/
(gk-ﬁ*(2N+T+1fj,i/,j/>

<k- ﬁ—(M—j’)

< kopp M) =k

Here, (a) follows from (69), in (b) we used that po , = 0']2/ >

O’? = 0' for j/ < M < j, and (c) follows from (68) by setting

0472(2N+T+].*]*7, —Jj).B=p.andx = 5.
Summarizing, we showed that

( ‘D(U\D) ap’(D)| < k- det(N) < k

which concludes the proof of the lemma.

APPENDIX B
PROOF OF LEMMA 13

Throughout this appendix, we shall set d £ \/NT/L, and
52 p/M, and denote by q75"” and qg5 the pdfs corresponding
to the probability distributions Qp* and Q', respectively, by
fép ) and f, the pdf of & and u, respectively, and by ft(}p |)D and
fu| D the conditional pdf of  and u given D, respectively. We
shall use k to denote a finite constant; its value might change
at every appearance. Since the lemma only addresses limiting
behaviors as p — oo, we shall assume throughout that p >
pen > 0. Finally, for simplicity we shall focus exclusively on
the case T' < N; the proof for the case T' > N follows from
analogous steps.

A. Proof of Part 1

The proof is based on the following theorem.

Theorem 14 ([34, Thm. 1]): Let {x; € C™} be a sequence
of random vectors with pdfs f; and let x € C™ be a ran-
dom vector with pdf f. Assume that f; converges to f point-
wise. If there exist i) a finite constant /© > 0 such that
max{sup, f;(x), sup, f(x)} < F for all ¢, and ii) a finite con-
stant L > 0 such that max{ [ ||x||"f;(x)dx, [ ||x||"f(x)dx} <
L for some x > 1 and all 4, then h(x;) — h(x).

Since we established in Appendix A that fép ) converges to f,,
pointwise as p — 0o, we just need to verify that both ft(}p ) and
fu satisfy the conditions i) and ii) in Theorem 14.

1) fép ) and f,, are bounded: Because of (51), and since 0 <
d; < d, we have that

f(e) = / )b (6D)a " (D)dD < k- d™ = k.

To show that f, is bounded, we first prove that f,|p - q%’t is
bounded by using (64) and (66):

fuip(u|D) - 45’ (D)
det(L)

M N—-—M M
2 —M 1
LT (w2 =)

IMI PN i
=1 M .
< T w2V
i=1
- , T T )
e Dlimn1 i H u?(N T)+1 H (u22 — U?)
i=M+1 M<i<j

T )
< I W2V T =20)+1

Ti=M41
M M
H (d? — d?) . <H dA(T—2M)+1 (d2 B dg)NT>
? J i i
1<j i=1
M
<k-I1 d;
i=1
. M M _
< k- det(L) - H d;(Q(NfM)H) ) H ui(Nﬂ)H
=1 j=1
(a)
<k
T 2
H e 7.u2(N+T 2i)+1
i=M+1

®)
<k

Here, (a) follows from (68) with the choice o« = 2(N —
8= d;Q, and x = u;, as detailed below

e—u?/d? _d;(Q(N*M)Jrl) .

i+1,

u?(N*j)Jrl
<k- 2 =3) <k d2M-D) =
forall 1 <1i,5 < M; (b) follows again from (68). Thus

fu(u)=/fu|n(u\D) P (D)dD < k- dM = k.

2) fép ) and fu have finite second moment: We take Kk = 2,
and obtain

1 M P
[1610@)de = =S Bl + > E[o}
pz=1 i=M+1
¢ ENT(p 1) + (N = M)(T = M)
< (14 1/pw)MNT + (N — M)(T - M)
= k. (71)

Here, (a) follows from (30) and (31). Furthermore,
JIERE

This concludes the proof.

[tr(DHHHD)] + (N — M)(T — M)



B. Proof of Part 2
Let 0 < 6 < 1 and let r be a positive integer satisfying r >
1. Denote by féf ) the pdf of &; and by f,, the pdf of ;. The
expectation on Lemma 13—Part-2 can be rewritten as follows:
pan;o Efg? [log(x)] = plin;o{Efgp> [log(z) - I{z < 6}]
+ ]Ef(p)[log ) I{(S <z< ’I“}]

+ By flog(z) - I{z > r}]} (72)

where I{-} is the indicator function. We analyze the three terms
on the RHS of (72) separately. For the first term, [10, Lemma
6.7(a)] and Lemma 13—Part 1 imply that

hm ]Ef(p> log(z) - I{z < §}] =

€1(9)

where €1 () — 0 as 6 — 0. For the second term, we have that
Jim B [log(x) - 1{8 < @ < 7}]
= K, [log(z) - I{0 <z <r}]
as a consequence of the dominated convergence theorem. Fi-

nally, for the third term we proceed as follows:
oo 1
By log(a) - I{z > )] = 5 / £ () log(x)dx
* l=r 1
@& T
< j{:t/“ﬁp) Wa dz
l=r 7
o I+1

IN

féf)(m) dx

< Z\/l—i—l/féf)(x)dac
l=r 1
o E) [27]
(b) (n)
2y v

N
Il
3

—
o
~

e

~

T

< V2kY 172,
l=r
Here, (a) follows because log(z) < +/z, x > 1, (b) follows
from Markov’s inequality, and (c) is a consequence of (71). Note
that (73) holds for all p > p¢,. Hence, we have

(73)

0<e(r)= pli)rgo B [log(x) - I{z > r}] < \/ikz 173/2,

l=r

Since >7° 173/2 converges, we can make e (r) arbitrarily
close to 0 by choosing r sufficiently large. Summarizing, we

showed that
lgn Ec ) [log(z)] = Es, [log(z) - {6 <z <r}]
p—oo &, 4

+€1(0) + ea(r).

The RHS of this equality can be made arbitrarily close to
Er,. [log(z)] by choosing d sufficiently small and  sufficiently
large. This concludes the proof.

C. Proof of Part 3

To establish the desired result, it is sufficient to show that

Ellog(c; — ;)] = E[log(u; — u;j)] +o(1), p =00  (74)
and that
Eflog(d; + ;)] = Ellog(u; + u;)] + o(1), p = oo. (75)

Lemma 13-Part 1 implies that, for sufficiently large p, h(5; —
Gj) > —oo and h(d; + ;) > —oo; We can now establish (74)
and (75) through steps similar to the ones in Part 2.

D. Proof of Part 4
The proof is analogous to the proof of part 2 and part 3.
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