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Abstract—In this paper, we propose a new double PHD filter
for simultaneous multi-target tracking and background discrim-
ination for airborne radar applications. Both the foreground
and the background processes are modeled as Poisson point
processes, which gives a symmetric formulation of the coupled
filters. The differences between foreground and background lie
in the assumed target dynamics, and in the sensor detection
probabilities. Although there are proposals for PHD filter with
adaptive background models in the literature, our filter appears
to be novel and also the simplest possible. To implement the
filter we use a Gaussian mixture approximation of the intensities,
which enables simple and effective ways to extract tracks. For
the evaluations we use a simulated target tracking scenario with
an airborne radar tracking a number of flying targets over
a background of road objects. First, the performance of the
Gaussian mixture PHD filter with track extraction is illustrated.
Second, the superior ability of the foreground-background PHD
filter to suppress clutter and disturbing road traffic is illustrated.

Keywords: Bayesian estimation, target tracking, PHD
filter, classification.

I. INTRODUCTION

This paper is concerned with multi-target tracking in chal-
lenging backgrounds. In particular, we address a scenario
where an airborne radar is tracking a number of air targets
in a background of a high density of moving ground objects,
e.g., road traffic. The classical solution to this problem is to
let the radar block detections from a wide radial velocity
interval. This is undesirable since it reduces performance
and imposes limits on the waveform design for the radar.
Another solution would be to track the background objects.
However, due to mask effects ground objects are typically
seen only for relatively short intervals, and can be very dense
in certain areas. Thus, tracking the ground objects individually
is unrealistic, and we seek other ways to model the background
of ground objects in order to discriminate them from air
targets.
In the tracking literature, measurements from non-targets

are referred to as clutter, and the concept of a clutter density
becomes natural. The most common model the clutter density
is by a (non-homogeneous) Poisson point process. Such a
clutter model is used in algorithms such as the Probabilistic
Data Association (PDA) and the Joint PDA (JPDA) filters [1].

Since the intensity1 of the Poisson point process is not usually
known a priori, various methods to estimate it have been
proposed.
Clutter density estimation usually assumes a locally homo-

geneous intensity, and may use detections from one or more
scans (see [2] and references therein). Since a wide variety
of phenomena is subsumed in the term clutter, the clutter
density could be either constant or totally independent from
scan to scan [2]. We note that the problem of road traffic
may be somewhere in between those extremes. This leads to
the question of how the clutter density evolves over time.
This now, is analogous to a recently popular approach to
multi target tracking, called the Probability Hypothesis Density
(PHD) filter, which models targets as a (non-homogeneous)
Poisson point process with an intensity that evolves over time.
There are a couple of works published that address clutter

density estimation in PHD filters. In [3], Lian et al. starts
with the ordinary PHD formulation that contains an a priori
assumed clutter density, which they parameterize as a finite
mixture model. They then propose to find the maximum like-
lihood estimates of parameters describing the clutter through
expectation maximization (EM) or Markov Chain Monte Carlo
(MCMC) methods. In [4], Chen et al. proposes two different
clutter density estimation methods. The first is, like Lian’s
method, a maximum likelihood estimator of the clutter density
in the ordinary PHD formulation. The second method is
similar to the one described in this report, in that it evolves two
Poisson point processes. It makes some special assumptions on
the background process though, and use a Wishart model for
the background intensity mixture components. The problem of
an unknown background have also been addressed by Mahler,
using more complicated models for the clutter process, and
mainly directed towards the Cardinalized PHD (CPHD) filter
[5]–[7].
In this paper, we propose a new double PHD filter, which is

symmetric in its formulation of a foreground and a background
model as Poisson point processes. The difference between
the foreground and background filters lie in the parameter
settings for the dynamics, and in the detection probabilities.
It is assumed that each detection either comes from a point
1Here intensity refers to the intensity in point process theory, not the clutter

signal strength. In target tracking literature the intensity of the clutter process
is often referred to as clutter measurement density.
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in the foreground or from the background process, and that
those two processes are independent. To implement the filter,
we use a Gaussian mixture approximation of the intensities as
described by Vo et al. [8]. The double PHD filter is evaluated
on a target tracking scenario, with an airborne radar tracking
a number of flying targets over a background of ground
clutter and detections from dense road traffic. The simulations
demonstrate a superior ability of the double PHD filter to
suppress the clutter and disturbing road traffic, compared to
the ordinary PHD filter with track extraction.

II. PROBLEM FORMULATION
In the PHD filter framework, the total state of all the targets

are seen as a Random Finite Set (RFS). At a time k the state
is

Xk =
{
xk,1, . . . xk,M(k)

}
(1)

of all the states xk,m of all the M(k) individual target states.
Note, that there is no target-ID or ordering present. Likewise,
the measurements at time k are collected in the set

Zk =
{
zk,1, . . . zk,N(k)

}
. (2)

The optimal solution to the target tracking problem is then to
calculate the RFS density p(Xk|Zk), and to derive optimal
estimates of the individual target states from it. Such an
approach is infeasible, and the idea of the PHD filter is to
recursively estimate the first moment of the RFS Xk, referred
to as the Probability Hypothesis Density (PHD) [9], [10].
The problem studied in this paper is to perform target track-

ing under disturbing background clutter generated by ground-
based traffic, and random ground clutter. The problem is thus
to discriminate between the targets of interest—called the
foreground targets—and the background objects and clutter.
The dynamics of a general target is modeled by a linear-

Gaussian process model

fk|k−1(x|ξ) = N (x|Fξ,Q), (3)

where ξ is the state at time k−1. The probability that a target
still exists at the updated time step, given that it had state x
in the previous time step is denoted pS(x). The appearance of
new targets is modeled as another independent Poisson point
process with the (“birth”) intensity γ(x). Note that we could
have made pS(x) and γ(x) dependent on the time k, and
introduced a spawning model, but we will not use that in this
paper.
The measurements are modeled through a detection proba-

bility pD(x) (we ignore a possible time dependence here too),
and a likelihood gk(z|x) of a target with state x being the
source of measurement z. The considered measurement model
is non-linear:

zk = h(xk) + εk, (4)

where εk is zero mean Gaussian with covariance matrix R.
Measurements can also come from clutter, which is modeled
as another independent Poisson point process (on the measure-
ment space) with intensity κk(z), and from ground moving
objects on roads.

III. THE GAUSSIAN-MIXTURE PHD FILTER

The mathematics of random finite sets or equivalently
“simple point processes” is quite advanced. In the original
derivation of the PHD filter, finite-set statistics (FISST) was
used. We will not use that here, but will instead use a
conventional measure formalism of probability (with densities
defined with respect to unit rate Poisson point process)2.
The PHD filter models the multi-target stateXk as a Poisson

point process, which is fully described by its intensity νk(x).
If νk(x) is integrated over some region of the state space, one
gets the expected number of targets in that region. Moreover,
the number of targets in that region is Poisson distributed with
that mean. With this notation, and the notation in Section II,
the PHD filter has the form

νk|k−1(x) =

∫
pS(ξ)fk|k−1(x|ξ)νk−1(x)dξ + γ(x) (5)

νk(x) = (1− pD(x)) νk|k−1(x) + . . .∑
z∈Zk

pD(x)gk(z|x)νk|k−1(x)

κk(z) +
∫
pD(x)gk(z|x)νk|k−1(x)dx

(6)

The expression above contains an approximation, since the a
posteriori point process is no longer Poisson, but is approxi-
mated with a Poisson point process with the same intensity.
Practical implementations of the above PHD expressions

require approximations. Two such approximations are given
by particle-filter implementations [11], which require large
number of particles and some kind of clustering technique
to extract tracks, and Gaussian-sum approximations of the
intensities, as described by Vo et al. [8]. In this paper, we
use Gaussian-mixture implementations. We thus represent the
intensity by:

νk(x) =

Jk∑
i=1

w
(i)
k N (x|m(i)

k , P
(i)
k )

where N (x|m,P ) denotes a Gaussian density with mean
m and covariance matrix P . We recognize that, if all other
quantities depending on x present in the PHD expression also
are represented as Gaussian sums, the expression for νk(x)
will hold for all k with an exponentially increasing number
of components Jk. In practice, this increase in components
has to be countered by some pruning and merging technique.
The details of how the various parameters are updated can be
found in [8] and we will not write them out here.

IV. A PHD FILTER ESTIMATING BOTH FOREGROUND AND
BACKGROUND MODELS

In this section, we will formulate a double PHD filter for
estimating both foreground targets and background clutter. It
is assumed that each detection either comes from a point in
the foreground process, or from the background process, and
that those two processes are independent. In Appendix A, it
is shown that such a filter has the form:
2For the relation to the FISST formalism we refer to [11]
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νFk|k−1(x) =

∫
pFSf

F
k|k−1(x|ξ)νFk−1(x)dξ + γF(x)

νBk|k−1(x) =

∫
pBSf

B
k|k−1(x|ξ)νBk−1(x)dξ + γB(x)

νFk(x) =
(
1− pFD

)
νFk|k−1(x) + . . .∑

z∈Zk

pFDgk(z|x)νFk|k−1(x)∫
pFDgk(z|x)νFk|k−1(x)dx+

∫
pBDgk(z|x)νBk|k−1(x)dx

νBk(x) =
(
1− pBD

)
νBk|k−1(x) + . . .∑

z∈Zk

pBDgk(z|x)νBk|k−1(x)∫
pFDgk(z|x)νFk|k−1(x)dx+

∫
pBDgk(z|x)νBk|k−1(x)dx

and use a Gaussian sum approximation of the intensities:

νFk(x) =

JF
k∑

i=1

F FwF
k
(i)N (x|mF

k
(i), P F

k
(i))

νBk(x) =

JB
k∑

i=1

F BwB
k
(i)N (x|mF

k
(i), P B

k
(i))

where the F and B indeces denote foreground and back-
ground PHD filter respectively. Note that we use the same
measurement model for both the foreground and the back-
ground, which need to be linearized in EKF fashion as
described in the subsequent section. The differentiation be-
tween foreground from background is based on choosing:
fFk|k−1(x|ξ) = N (x|F Fξ,QF), fBk|k−1(x|ξ) = N (x|F Bξ,QB),
and in the birth intensities γF(x) = wF

γN (x|mF
γ , P

F
γ ) and

γB(x) = wB
γN (x|mB

γ , P
B
γ ). The dynamics for the background

should be chosen to reflect that the background objects are
“stationary”, even for moving objects like road traffic, in the
sense that they are localized in certain areas. We give an
example of this in the next section, where some simulation
results are presented.
Another difference we make between the processing of

the foreground and the background model, is that another
merging algorithm is used for the background model. The
algorithm in [8] used for the foreground model is not suitable
for the background, since it favors strong components. For the
background model we instead use the algorithm by Runnalls
[12].

V. IMPLEMENTATION STRATEGIES AND TRACK
EXTRACTION

To handle the non-linear measurement model, we use a
Extended Kalman Filter (EKF), like the extension to the PHD
filter described in [8]. The problem is to choose the point
to linearize around. In [8], the updated means mk−1 of the
components are used as in the EKF. This works well for all
old components, but not for the single birth intensity compo-
nent. For the new components, we instead linearize around a
projection x̂(z) of the measurement (i.e. h(x̂(z)) = z). Note

also that for the new components, it is numerically better to
compute m

(i)
k and P

(i)
k directly, and not to use the Kalman

gain and adjustments to mγ and Pγ .
To reduce the number of components, we remove com-

ponents with w
(i)
k < T where the threshold T typically is

some small value like 0.01. Similar components are merged
using the algorithm in [8]. Here one successively looks at the
component with the largest weight w(i)

k , and merge together
all components such as:

(
m

(i)
k −m

(j)
k

)T (
P

(i)
k

)−1 (
m

(i)
k −m

(j)
k

)
< U.

When using a PHD filter for tracking, an additional proce-
dure to extract estimates for individual targets from νk(x),
and also to form tracks where the identity of a target is
preserved over time. This is a problem where there is no strong
theoretical basis. Ad hoc methods appear to perform relatively
well though. In practice, we are interested in the performance
after some track extraction procedure, so the number of targets
estimated from νk(x) at a certain k is not in itself of interest. It
was proposed in [8] to use the components (after the pruning
and merging) of νk(x) with w

(i)
k over some threshold as the

target estimates, regardless of the mean number of targets
given by

∑
i w

(i)
k . This was in [13] combined with a track

extraction procedure. We use a simplified version of those
ideas.
We introduce an ID-tag on each component of the Gaussian

sum. This tag, for new components, gets a new value for each
detection. For components that are the result of the updating
of old components, the old tag is retained. When components
are merged, the oldest tag is retained. We also keep track of
the age of a component, in number of updates. A new track is
started when there is a component with w

(i)
k > wtrack and an

age larger than atrack. We have typically used wtrack = 0.9
and atrack = 3. When a track is started, it is marked by the
ID-tag of the component that started it, and all components
with that tag will thereafter be considered a part of the track.
When a component is part of a track, we lower the pruning
threshold T to T/10 in order not to lose tracks too often.

VI. SIMULATION RESULTS

In this section we will present some results from a target
tracking simulation. Our sensor is an airborne radar, tracking
a number of flying targets, and being disturbed by traffic
on roads. The trajectories of the targets are presented in
Figure 1. We will start by examining the performance of the
Gaussian sum PHD filter with track extraction on random
non-correlated uniformly distributed clutter detections. After
that, the foreground-background filter is introduced and its
ability to suppress uniform clutter and disturbing road traffic
is illustrated.
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Figure 1. Target scenario. The radar (R) moves at an altitude of 3000 m
along x=0, from y=-5 km to y=8 km. One target (A) moves along y=20 km
while climbing from 0 to 4500 m. Two targets (B and C) at an altitude of
1000 m moves towards each other, crosses each others path, and then moves
with close separation in the y direction. Two other targets (D and E), at an
altitude of 3000 m, moves in the -x direction from x=50 km, manoeuvre and
end close together. Finally, a slowly moving target (F) starts at an altitude of
500 m from x=50 km and starts climbing.

We are using a state with positions and velocities, xk =
[xk, yk, zk, ẋk, ẏk, żk], and a motion model

xk = Fxk−1 + v

where v have covariance matrix QF, and

FF =

[
I3 T0I3
0 I3

]
QF = qF

[
T 3

0

3 I3
T 2

0

2 I3
T 2

0

2 I3 T0I3

]

We have the time between measurements T0 = 1 and use
qF = 50 for the system noise. Measurements are in polar
coordinates and Doppler velocity: zk = [rk, ϕk, θk, ṙk]. The
measurement model thus becomes:

zk = h(xk − x0) +w h(x) =

⎡
⎢⎢⎢⎢⎣

√
x2 + y2 + z2

tan−1 (y/x)

tan−1
(
z/

√
x2 + y2

)
xẋ+yẏ+zż√
x2+y2+z2

⎤
⎥⎥⎥⎥⎦

where w have covariance matrix R = diag(
[
σ2
r , σ

2
ϕ, σ

2
θ , σ

2
ṙ

]
)

and x0 is the position of the radar. We used σr = 10 , σϕ =
σθ = 0.005 and σṙ = 2. Measurements were simulated with
errors according to R and with a 0.9 probability of detection.
The PHD filter used: pFD = 0.85, pFS = 0 and κF = 0.

The birth intensity was set to wF
γ = 0.1, and with mF

γ at
the center of the scene, at the same altitude as the radar
and at zero velocity. The matrix P F

γ was set to Pγ =
diag(

[
1010, 1010, 25 · 106, 25 · 104, 25 · 104, 25 · 104].

We will now introduce clutter from the ground, by introduc-
ing random detections in a 4 x 5 km rectangle at x=24 km and
y=5km, near target B and C. The density of clutter is varied
as 0.1, 0.2 and 0.5 detections per km2. The clutter intensity
parameter in PHD filter was set to κB = 10−9. The results
are shown in figure 2 and 3. We note that the number of false
tracks increase from a single one at 0.1 detections per km2
to about 25 at 0.5 detections per km2. The sensitivity to the
clutter intensity parameter is also quite high. When increased
to κB = 10−8, the tracks of target A, B, and C disappeared
along with all the clutter. This illustrates the difficulty in

0 1 2 3 4 5

x 10
4

-0.5

0

0.5

1

1.5

2

2.5

3
x 10

4

x

y

A

C

F

D

B

E

R

0 1 2 3 4 5

x 10
4

-0.5

0

0.5

1

1.5

2

2.5

3
x 10

4

x

y

A

C

F

D

B

E

R

Figure 2. Conventional PHD. Clutter from a limited ground area. The clutter
density is 0.1 per km2 in the left panel and 0.2 per km2 in the right panel.
κ = 10

−9.

0 1 2 3 4 5

x 10
4

-0.5

0

0.5

1

1.5

2

2.5

3
x 10

4

x
y

A

C

F

D

B

E

R

0 1 2 3 4 5

x 10
4

-0.5

0

0.5

1

1.5

2

2.5

3
x 10

4

x

y

A

C

F

D

B

E

R

Figure 3. Conventional PHD. Clutter from a limited ground area. The clutter
density is 0.5 per km2. κ = 10

−9 in the left panel and κ = 10
−8 in the

right panel.

handling clutter using the traditional PHD filter, and we will
now switch to our dual PHD filter, with both foreground and
background models.
In using the PHD filter with both foreground and back-

ground models as described in section IV we use as fore-
ground exactly the same parameter settings as above. For the
background we use

FB =

[
I3 0

0 0

]
QB = Diag ([500, 500, 0, 10, 10, 0])

We thus have clutter points that can “move” like a random
walk over the ground, but their velocity distribution is fixed
around zero and there is no movement in the stationary z
direction. The filter parameters used: P B

D = 0.3, pBS = 0,
wB

γ = 3. We also used mB
γ at the center of the scene

as before, but at zero altitude. The matrix P B
γ was set to

P B
γ = diag(

[
1010, 1010, 100, 100, 100, 0.01

]
. The threshold

for the background merging algorithm was set to 20.
When applying this foreground-background PHD filter on

same clutter case as the last one above, we get the results
shown in figure 4. In this figure we have included the inten-
sity of the background model at the last time step, plotted
in magenta. One notes that a number of Gaussian mixture
components cover the area of the clutter, and that no false
tracks were generated. Increasing the clutter density to 5 per
km2also worked well and the result is shown in figure 5.
Moving the clutter area out to the low flying slow target F
at x=50 km will result in losing that track at the high clutter
density of 5 per km2, but at the more moderate 0.5 per km2
the target F is tracked as shown in figure 5.
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Figure 4. Foreground-background PHD. Clutter from a limited ground area.
The clutter density is 0.5 per km2.
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Figure 5. Foreground-background PHD. Clutter from a limited ground area.
In the left panel the clutter density is 5 per km2, and in the right panel the
clutter density is 0.5 per km2, located near low-flying target F.

We are now turning our attention to the more challenging
problem of interfering road traffic. We will use the same target
scenario as above, and replace clutter with simulated road
traffic. To generate the road traffic detections we used a tool
that, using a geographic database, can compute the visibility
of targets moving on roads. We picked out a few roads, and
simulated new vehicles starting with 0.02 probability each
second. Those vehicles are traveling along the roads with a
speed that is picked randomly in an ±30% interval around the
speed limit for the road. Detections where generated with 0.3
probability if the Doppler speed exceeded 10 m/s. An example
of detections at a certain time step superimposed on the target
trajectories are given in figure 6.
Running the conventional PHD filter on the data with road

traffic results in about 500 short tracks, and is illustrated in
figure 7. Using the foreground-background PHD filter on the
other hand, results in only a single short track from a road,
as can be seen in figure 8. In order to assess the importance
of altitude separation between the targets and the road traffic
we let the birth intensity parameters for the background be
the same as for the foreground, i.e. mB

γ = mF
γ and P B

γ = P F
γ .

In that case the number of vehicle tracks increased to 9, and
the results are illustrated in figure 9. The most problematic
case, in this example, is to discriminate the low flying target
at x=50 km from vehicle tracks. This is illustrated in figure 10.
The experiment indicate that, while the difference in dynamics
between the foreground and the background is important for
the suppression of road traffic, the initiation of new tracks is
sensitive and separation of birth intensities (wB

γ � wF
γ) highly

beneficial.
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Figure 6. Example of detections of road traffic at a certain time step.
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Figure 7. Conventional PHD filter with road traffic.
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Figure 8. Foreground-background PHD filter with road traffic.
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Figure 9. Foreground-background PHD filter with road traffic. Birth intensity
parameters for the background set to the same as for the foreground.

4.75 4.8 4.85 4.9 4.95 5

x 10
4

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

x 10
4

x

y

F

4.75 4.8 4.85 4.9 4.95 5

x 10
4

-200

0

200

400

600

800

1000

1200

1400

x

z

F

Figure 10. Foreground-background PHD filter with road traffic. Birth
intensity parameters for the background set to the same as for the foreground.
Detail of low flying target (F).

VII. CONCLUSIONS

We have implemented a Gaussian mixture PHD filter to-
gether with a simple track extraction procedure. Using this
filter in a simulation of an airborne radar, tracking a number
of flying targets, showed good results.
Adding simulated clutter and road traffic overwhelmed the

PHD filter. Although, there is a clutter intensity parameter in
the PHD filter, it is sensitive and hard to tune. In the case of
road traffic, hundreds of short tracks where started.
To handle challenging backgrounds, such as road traffic,

we propose a new double PHD filter that is symmetric in
its formulation of a foreground and a background model
as Poisson point processes. The foreground is differentiated
from the background using different parameter settings for
the dynamics and detection probabilities. It is assumed that
each detection either comes from a point in the foreground
or the background process, and that those two processes are
independent. Although there is proposals for PHD filter with
adaptive background models in the literature, our filter appears
to be novel and also the simplest possible. Testing our new
filter on the same airborne radar scenario, with simulated
clutter and road traffic, showed excellent performance. Very
high clutter intensities were handled perfectly, and road traffic
was also mitigated.

APPENDIX A
DERIVATION OF THE DOUBLE PHD FILTER

The idea of the Double PHD filter is to propagate two
different, and independent, Poisson PP:s X and Y represented
by their intensities νX(x) and νY(y). The prediction part of

the filter is separate for X and Y and is equivalent to the
ordinary PHD filter. The different dynamics for X and Y, e.g.
for targets and some background objects, are thus reflected in
different parameters in the prediction step.
In the measurement updating part of the filter, the process

Y takes the place of clutter process K in he ordinary PHD
filter. This results in the updating rule:

νX(x) ← (1− pDX(x)) νX(x) + . . .∑
z∈Z

pDX(x)lX(z|x)νX(x)∫
pDY(y)lY(z|y)νY(y)dy +

∫
pDX(x)lX(z|x)νX(x)dx

νY(y) ← (1− pDY(y)) νY(y) + . . .∑
z∈Z

pDY(y)lY(z|y)νY(y)∫
pDY(y)lY(z|y)νY(y)dy +

∫
pDX(x)lX(z|x)νX(x)dx

which we will prove below.
The detection procedure splits X in two independent PP:s

X = X̌∪ X̂. The undetected part X̌ is Poisson PP with inten-
sity (1− pDX(x)) νX(x) and the detected part X̂ is Poisson
PP with intensity pDX(x)νX(x). Equivalently for Y = Y̌∪Ŷ
with intensities (1− pDY(y)) νY(y) and pDY(y)νY(y). The
measurement process Z is a superposition of Z|X and Z|Y,
which are two independent Poisson PP:s. Using probability
generating functionals we thus have

GZ|X,K [h|z1, . . . zn] = G
Z|X̂ [h|z1, . . . zn]GZ|Ŷ [h|z1, . . . zn]

The joint probability generating functional, due to the inde-
pendence of X and Y, now becomes:

G
X̂,Ŷ,Z [f, g, h] = G

X̂
[fHX [h|.]]G

Ŷ
[gHY [h|.]]

HX [h|x] =
∫

h(z)lX(z|x)dz HY [h|y] =
∫

h(z)lY(z|y)dz

and

G
X̂
[g] = exp

(∫
(g(x)− 1) pDX(x)νX(x)dx

)

G
Ŷ
[g] = exp

(∫
(g(y)− 1) pDY(y)νY(y)dy

)

The functional derivatives of G
X̂,Ŷ,Z [f, g, h] with respect

to h becomes

δn

δh(z1) . . . δh(zn)
G

X̂,Ŷ,Z [f, g, h] =

G
X̂,Ŷ,Z [f, g, h]

n∏
i=1

(

∫
f(x)lX(zi|x)pDX(x)νX(x)dx+

∫
g(y)lY(zi|y)pDY(y)νY(y)dy)
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At this stage, we need Bayes formula for probability gen-
erating functionals, which is written as

GX,Y|Z [f, g|y1, . . . yn] =
δn

δh(y1)...δh(yn)
GX,Y,Z [f, g, h]

∣∣∣
h=0

δn

δh(y1)...δh(yn)
GX,Y,Z [1, 1, h]

∣∣∣
h=0

Its derivation is lengthy and requires a background in point
process theory which cannot be given here. Using this equa-
tion, and G

X̂,Ŷ,Z [f, g, 0] = G
X̂
[0]G

Ŷ
[0], we have

G
X̂,Ŷ|Z [f, g|z1 . . . zn] =

n∏
i=1

∫
f(x)lX(zi|x)pDX(x)νX(x)dx+ . . .∫

l(zi|x)pDX(x)νX(x)dx+ . . .

. . .
∫
g(y)lY(zi|y)pDY(y)νY(y)dy

. . .
∫
lY(zi|y)pDY(y)νY(y)dy

In the ordinary PHD filter the approximation of the (a
posteriori) point process with a Poisson process with same
intensity can bee seen as choosing the Poisson PP X̃ which
minimizes the Kullback Leibler divergence:∫

log
dPX

dP
X̃

dPX

or equivalently maximizes:∫
log (π

X̃
(x)) dPX

This is achieved by choosing ν
X̃
(x) = νX(x), which is proved

in lemma A.3 in [14]. Now if we want to approximate the
bivariate process X,Y with two independent Poisson PP X̃

and Ỹ, we must maximize∫
log (π

X̃
(x)) dPX,Y +

∫
log (π

Ỹ
(x)) dPX,Y

which is achieved by choosing the intensities of X̃ and Ỹ

as respective marginal intensity of the X,Y process. It is
quite easy to show, from the definition of the joint probability
generating functional, that

νX(x) =
δGX,Y [f, g]

δf(x)

∣∣∣∣
f=1,g=1

νY(y) =
δGX,Y [f, g]

δg(y)

∣∣∣∣
f=1,g=1

Now we can use the expression for G
X̂,Ŷ|Z [f, g|z1 . . . zn]

to find that:

ν
X̂|Z(x) =

n∑
i=1

lX(zi|x)pDX(x)νX(x)∫
l(zi|x)pDX(x)νX(x)dx+

∫
lY(zi|y)pDY(y)νY(y)dy

ν
Ŷ|Z(y) =

n∑
i=1

lY(zi|y)pDY(y)νY(y)∫
l(zi|x)pDX(x)νX(x)dx+

∫
lY(zi|y)pDY(y)νY(y)dy

which combined with the intensities for the undetected points
X̌ and Y̌ results in the expressions in the updating rule.
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