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Replica symmetry of
the minimum matching

By Johan Wästlund

Abstract

We establish the soundness of the replica symmetric ansatz introduced

by M. Mézard and G. Parisi for the minimum matching problem in the

pseudo-dimension d mean field model for d ≥ 1. The case d = 1 corresponds

to the π2/6-limit for the assignment problem proved by D. Aldous in 2001.

We introduce a game-theoretical framework by which we establish the

analogous limit also for d > 1.

1. Introduction

1.1. Background. It has been known for some time that methods of the

statistical mechanics of disordered systems apply to certain problems of com-

binatorial optimization. Much of the work in this direction stems directly or

indirectly from G. Parisi’s solution [30] of the Sherrington-Kirkpatrick model

[38] of spin glasses, established rigorously by M. Talagrand [40]. In [18], S. Kirk-

patrick and G. Toulouse suggested the mean field traveling salesman problem

(TSP) as an archetypal optimization problem sharing important features with

spin glasses. M. Mézard and G. Parisi [22], [24], [23], [25], [31] and Mézard

and W. Krauth [19] obtained several remarkably detailed predictions about

minimum matching and the TSP with the replica and cavity methods. These

predictions were based on the assumption of replica symmetry which is known

to fail at low temperatures for models of spin glasses. It became clear that

minimum matching and the TSP are different in this respect from models like

the Sherrington-Kirkpatrick model and random k-SAT. Several authors have

verified the consistency of the replica symmetric ansatz by testing its various

predictions numerically and theoretically [5], [9], [10], [11], [16], [27], [29], [32],

[34], [35], [39].
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Replica symmetry is interesting from an algorithmic point of view since

it is linked to the efficiency of Belief Propagation heuristics; see for instance

[26]. Recently J. Salez and D. Shah [37], [36] have obtained rigorous results

in this direction for the assignment problem, and in view of our results, their

conclusions should be valid in a broader range of random models.

In this paper we introduce a type of two-person game that we call Explo-

ration games, which are played on graphs with lengths assigned to the edges.

They are related to the family of Geography games that have been studied

from the perspective of combinatorial game theory [12].

Exploration in its simplest form corresponds in a certain way to the

minimum matching problem, while modifications of the rules will produce

games corresponding to other optimization problems. In particular, a so-called

comply-constrain version of Exploration corresponds to the TSP, but the anal-

ysis of such variations is beyond the scope of the present paper. We show that

on certain infinite graphs with random edge lengths, Exploration has an almost

surely well-defined game theoretical value, and we argue that this property is

the essence of replica symmetry for the minimum matching problem.

The paper is organized as follows. In the rest of Section 1 we give further

background, and in Section 1.3 we state our main result, Theorem 1.1. In

Section 2 we develop some tools necessary for the proof of this theorem. The

most important new concepts are the Exploration game and the analysis of

this game on certain random trees in Sections 2.5–2.6. In Section 3 we use the

results of Section 2 to conclude the proof of Theorem 1.1.

Acknowledgment. I thank the referees for suggestions that greatly im-

proved the presentation.

1.2. Random distance models. By a distance model we mean a graph

whose edges are assigned nonnegative real numbers that we think of as lengths.

A random distance model is simply a distance model chosen according to some

probability measure. In general, the underlying graph as well as the edge-

lengths may be random. If the underlying graph is a fixed graph G and the

edge-lengths are independent identically distributed according to a given mea-

sure, we say that the model is mean field. If the distribution of the edge-lengths

li,j is given by a density function ρ so that

P (a ≤ lij ≤ b) =

∫ b

a
ρ(l) dl

for 0 ≤ a ≤ b, then we denote the model by G[ρ].

A graph of particular interest is the complete graph Kn on n vertices. A

number of results have been established for Kn[ρ] when ρ satisfies

(1) lim
l→0+

ρ(l) = 1.
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It was shown by A. Frieze [13] that the total length of the minimum spanning

tree in Kn[ρ] converges in probability to ζ(3).

A perfect matching in a graph is a set of edges of which each vertex

is incident to exactly one. In a distance model G, the minimum matching

problem asks for the perfect matching of minimum total length. Assuming

that a perfect matching exists, we denote the total length of the minimum

matching by M(G). For the minimum matching problem on Kn[ρ] (assuming

n is even), it was conjectured by M. Mézard and G. Parisi [22] that the limit

of the total length M(Kn[ρ]) of the solution is π2/12. This was proved by

D. Aldous [2] in 2001. For the TSP, a similar limit was conjectured by Parisi,

Mézard and Krauth [19], [22], and proved in [42].

Starting with the famous paper [8] by J. Beardwood, J. H. Halton and

J. M. Hammersley, much work in the same direction has been done for euclidean

models, where the vertices are distributed randomly in the unit cube in Rd
and edge lengths are given by euclidean distance. It is interesting to compare

euclidean and mean field models [11], [16]. What is difficult in one model can

be easy in the other. The independence of the edge-lengths makes mean field

models tractable, while in euclidean models the geometry can be exploited.

This has motivated the study of mean field approximations of euclidean

models, where the idea is to choose the density function ρ in order to mimic

distances in d-dimensional space. In this context, (1) corresponds to a 1-dimen-

sional space, while in d dimensions, we expect the distribution of li,j to satisfy

(2) P (li,j < r) ∼ constant · rd

for small r, since the probability of a point being within distance r of another

should be proportional to the volume of a ball of radius r. We therefore say

that a mean field model has pseudo-dimension d if

(3)
ρ(l)

ld−1
→ c

for some nonzero constant c, as l→ 0.

In the context of mean field models, there is no reason to require d to be

an integer. In order to obtain a valid probability measure it suffices to assume

that d > 0.

1.3. Minimum matching and statement of the main theorem. The method

employed in [22] is applicable also for d 6= 1, and minimum matching seems to

be the simplest problem that allows those ideas to be displayed in a nontrivial

way. We start by discussing the normalization. We fix a density function ρ

satisfying (3) and study the asymptotics of M(Kn[ρ]). This obviously requires

n to be even unless we allow one vertex to be left out of the pairing, but this

is a minor issue since we are mainly interested in the large n asymptotics.
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It is not difficult to guess roughly how M(Kn[ρ]) scales with n. From an

arbitrary vertex, the order of the distance to the nearest neighbors is obtained

by setting P (li,j < r) ≈ 1/n. In view of (3),

P (li,j < r) =

∫ r

0
ρ(l) dl ≈ c ·

∫ r

0
ld−1 dl =

c

d
rd,

which leads to

(4) r ≈ constant · n−1/d.

To simplify, we may assume that the constant c in (3) is equal to d, so that

the constant in (4) is equal to 1 and P (li,j < r) ≈ rd. This leads to

ρ(l) ∼ dld−1

for small l, or to be precise,

(5) lim
l→0+

ρ(l)

dld−1
= 1.

If we believe that edge-lengths of order n−1/d will dominate the minimum

matching, then since a matching contains n/2 edges, we expect M(Kn[ρ]) to

scale with n like n1−1/d. It is natural to conjecture that M(Kn[ρ])/n1−1/d

converges in probability to a constant depending on d. Our main result is that

this is true for d ≥ 1.

Theorem 1.1. For every d ≥ 1, there is a number β(d) such that if ρ is

fixed and satisfies (5), then as n→∞,

(6)
M(Kn[ρ])

n1−1/d
p→ β(d).

Moreover, the proof leads to a method for computing β(d) numerically.

We believe that in principle the method applies also when 0 < d < 1, but we

have run into some difficulties that have so far prevented us from establishing

(6) in that case.

1.4. Examples. It is worth pointing out how the normalization works in

a couple of simple examples. Suppose we take the distribution of edge lengths

as l = max(U, V ), where U and V are independent and uniform in [0, 1]. Then

P (l < r) = P (U < r)2 = r2

if r ≤ 1, and therefore the distribution belongs to the case d = 2.

We can think of β(d) as the average cost per vertex of obtaining a perfect

matching, measured in a unit r0 of length such that the expected number of

neighbors within distance r0 of a given vertex is 1.
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The unit r0 will depend on n, and we can determine r0 asymptotically by

putting P (li,j < r0) ∼ 1/n, which gives

r0 ∼
1√
n
.

Since there are n vertices, the total length of the minimum matching is asymp-

totically

β(2)
√
n.

If on the other hand we take the edge-lengths to be distributed like U+V ,

then P (l < r) ∼ r2/2, and the unit of length is given by r20/2 = 1/n or

equivalently

r0 =

√
2√
n
.

In that case the asymptotical total length of the minimum matching is

β(2)
√

2n.

Although it does not follow from Theorem 1.1, our results apply, through a

modification of Proposition 2.2, also to the assignment problem, in other words

minimum matching on the complete bipartite graph Kn,n. In this model, each

vertex is connected to n other vertices and therefore the nearest neighbor

distances scale with n in the same way as in Kn, but the difference is that

there are 2n vertices instead of n. With the two distributions max(U, V ) and

U + V , the minimum assignments will therefore have lengths asymptotically

2β(2)
√
n and 2β(2)

√
2n respectively.

1.5. Replica predictions. Within the framework of the replica method,

Mézard and Parisi obtained an analytical characterization of β(d) which is

conjectured to be correct for all d > 0. They arrived at an integral equation

equivalent to

(7) F (x) = exp

Å
−d

∫ ∞
0

ld−1F (l − x) dl

ã
,

from which β(d) is obtained as

β(d) =
d2

2

∫ ∫
−∞<x,y<∞
x+y≥0

(x+ y)d−1F (x)F (y) dx dy.

The method is inherently nonrigorous, and it has not been established that (7)

has a unique solution except in the case d = 1, where the solution

F (x) =
1

1 + ex

leads to β(1) = π2/12.
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Numerical estimates of β(d) for small integral d have been obtained in

[16], [22]. Through an approximate solution of (7), we have found that

β(2) ≈ 0.57175904959888.

We have no theoretical estimate of the error, but these decimals seem to be

stable. Although we still do not know whether (7) has a solution, the numerical

result can be regarded as an approximation of the fixed point of Vλ (see §2.7)

for an appropriately chosen λ, and therefore apart from the numerical error

the result is backed up rigorously.

1.6. Rigorous results. On the mathematical side there has been consider-

able progress on the case d = 1. In particular, the π2/6-limit in the assignment

problem has received several different proofs [2], [20], [28], [41]. From our point

of view the result corresponds to the statement that for d = 1, the limit in

(6) exists and β(1) = π2/12, but the asymptotic equivalence between assign-

ment and matching on the complete graph is by no means trivial and does

not follow from [20], [28], [41]. The proofs together provide a quite detailed

picture of the distribution of the total length as well as various local statistics

of the optimum solution, and the analogous result for the TSP was established

in [42]. However, the proofs in [20], [28], [41], [42] are very different from the

approach in the physics literature and do not seem to generalize to d 6= 1.

The original proof by Aldous [2] is the one that comes closest to justifying the

replica symmetric ansatz (particularly in view of additional results in [6], [37]),

but it seems to rely on finding a solution to (7).

In the present paper we show that the calculations in [22] are sound for

quite general reasons. We prove that for d ≥ 1, (6) holds, and we characterize

β(d) analytically in terms of certain integral equations similar to (7). Although

we cannot find explicit solutions to these equations when d 6= 1, our results

show that the numerical computation of β(2) in [22] is correct in principle.

For d = 1, much more detailed results can be obtained. A more precise

analysis of the d = 1 case with the present method and a clarification of its

relation to the results of [42] is given in joint work with G. Parisi [33].

Our approach is “zero temperature,” but similar to the statistical physics

method in that we reach the optimum solution through a limiting process. We

introduce a parameter λ and study “diluted” problems where partial matchings

are allowed but receive a penalty of λ for each missing edge. The original

problem is recovered in the limit λ→∞. The parameter λ plays a role similar

to the inverse temperature in statistical physics. Finite λ allows for a certain

local freedom that destroys all long-range interactions. In particular, adding

or deleting a vertex has only a local effect on the optimum solution. In [22]

a similar assumption seems to be crucial for the renormalization that leads

to (7).
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2. Local convergence and the Exploration game

2.1. Rooted distance models and total variation distance. The first step

towards proving Theorem 1.1 is to establish a certain local convergence result

for Kn[ρ]. The idea is the same as in the papers [1], [2] by Aldous, but we use

a stronger convergence concept which is more convenient in our approach.

We first introduce rooted distance models and the total variation distance,

which defines our concept of convergence. To obtain local convergence, we then

have to rescale the model Kn[ρ] essentially by setting the “unit of distance” r0
equal to 1. It seems that we could have done this immediately and formulated

Theorem 1.1 accordingly. However, this would involve letting ρ depend on n.

The problem is that in order for Theorem 1.1 to hold, it is not enough to

assume that (3) holds for every n. Some uniformity in n is required, and

therefore the present setting seems the most natural after all.

A rooted distance model is a distance model where one of the vertices is

distinguished as the root. More generally, if m is a nonnegative integer, an m-

rooted distance model is a distance model with m labeled roots. Technically,

the “rooting” is a function from {1, . . . ,m} to the vertex set, and thus we

do not a priori require the roots to be distinct. When we speak of rooted

random distance models, we always assume that the number m of roots is

fixed (nonrandom).

Two m-rooted distance models are isomorphic if there is a bijection be-

tween their vertex sets and a compatible bijection between their edge sets such

that the i:th roots are mapped to each other for 1 ≤ i ≤ m and the graph struc-

ture and edge-lengths are preserved. We say that a property E of m-rooted

distance models is invariant if it depends only on the isomorphism type of the

model.

Suppose G and H are random m-rooted distance models. If E is an

invariant property, then provided E is measurable in both G and H, the two

random processes G and H will assign probabilities PG(E) and PH(E) to E.

We will not discuss issues of measurability here, since all events that we actually

consider will be measurable in all our models. We define a total variation metric

on rooted random distance models as follows.

Definition 2.1. Let G and H be rooted random distance models (with the

same number of roots). The total variation distance between G and H is

dTV(G,H) = sup
E invariant

|PG(E)− PH(E)| .

Here taking absolute values in the right-hand side is strictly not necessary,

since replacing E by its complementary event will change the sign of PG(E)−
PH(E). The total variation metric gives us a concept of convergence. We say

that Gn → G in total variation if Gn is a sequence of (rooted) random distance

models whose total variation distance to G tends to zero.
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There is another way to look at the total variation distance, which is

convenient although formally not necessary. The statement that dTV(G,H)

≤ ε is equivalent to the existence of a coupling of the two processes G and H

with the property that with probability at least 1−ε, G and H are isomorphic.

This equivalence holds generally and can be established for finite probability

spaces by a simple inductive argument. For general probability spaces, the

proof requires some measure theory that we will not discuss here.

2.2. Rescaling and local convergence. To obtain local convergence, we will

work with a rescaled version of the pseudo-dimension d mean field model. On

the graph Kn, we take the edge-lengths to be n1/dl′i,j , where the variables l′i,j
are given by a density function ρ satisfying (5). To avoid excessive indexing,

we will suppress the dependence on d and ρ, and just write Kn for this model,

and Km
n when it is rooted in m distinct arbitrarily chosen vertices.

If k is a nonnegative integer and λ > 0, we define the (k, λ)-truncation of

an m-rooted distance model to be the union of all paths of at most k edges,

each of length at most λ, starting from some root. We let Km
n (k, λ) denote the

(k, λ)-truncation of Km
n .

For fixed d, m, k and λ, the sequence Km
n (k, λ) converges in total variation

to a certain limit model which we now describe. Readers familiar with the

papers [1], [2] by Aldous and [4] by Aldous and J. M. Steele will recognize that

for m = d = 1, the limit is the (k, λ)-truncation of a Poisson Weighted Infinite

Tree (PWIT). Here we do not need the full PWIT, and therefore describe the

limit object directly.

The d-dimensional m-rooted (k, λ)-forest Tm(k, λ) is constructed as fol-

lows. First we let each of the m roots give rise to a Galton-Watson process

with Poisson(λd) offspring distribution, which is truncated after k generations,

meaning that the vertices k steps away from the roots, if there are any, do

not give rise to further offspring. Finally all edges are assigned independent

lengths distributed like X1/d for X uniformly distributed on [0, λd].

There are a couple of other equivalent ways of defining Tm(k, λ). It can

be defined as the (k, λ)-truncation of m independent d-dimensional PWITs

[4]. In particular, instead of first constructing the graph and then assigning

edge-lengths, we can generate the children of each new vertex through an in-

homogeneous Poisson point process of rate dld−1 on the interval 0 ≤ l ≤ λ that

simultaneously produces the children and the lengths l of the corresponding

edges. The fact that the various ways of constructing Tm(k, λ) are equivalent

follows from elementary properties of the Poisson process.

Proposition 2.2. As n→∞,

Km
n (k, λ)→ Tm(k, λ)

in total variation.
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We do not prove Proposition 2.2 in detail. In principle it follows from the

results of [1], and a similar argument in the context of Erdös-Rényi graphs is

carried out in detail in [17, §5.2]. A sketch of the idea of the proof is as follows.

First consider the structure of the underlying graph. Here it suffices to show

that each finite m-rooted forest occurs as the underlying graph of Km
n (k, λ)

with asymptotically the same probability as in Tm(k, λ) when n→∞. There is

a countable infinity of such forests, but since their probabilities in Tm(k, λ) add

to 1, convergence is automatically uniform. Then consider the edge-lengths.

First specify a finite m-rooted forest, and for each edge, a subinterval of [0, λ]

where the length of the edge is supposed to be. Then one can show that the

event of Km
n (k, λ) being this particular forest with edge-lengths in the given

intervals has asymptotically the correct probability.

2.3. The Exploration game. The following two-person zero-sum game that

we call Exploration was invented in an attempt to find a mathematically sound

interpretation of (7). We are given a distance model with a particular vertex

v chosen as a starting point, and a nonnegative parameter λ. Alice and Bob

take turns choosing the next edge of a self-avoiding walk, with Alice starting

the game from v. The player who makes a move pays an amount equal to the

length of the chosen edge to the opponent. At each turn, the player who is

about to move also has the option of, instead of moving, terminating the game

and paying a penalty of λ/2 to the opponent. If the game terminates, each

player’s payoff is the total amount they received from the opponent minus the

total amount they paid to the opponent. Each player tries to maximize their

own payoff.

Notice that there is no randomness in the game. The players are assumed

to have perfect information about the graph and the edge-lengths. We can

immediately make the following observations:

(1) If the graph is finite, then there is a well-defined game-theoretical value

(payoff under mutual optimal play). By convention, the value of a

position in the game is the future payoff under optimal play for the

player who moved to the position. Thus for consistency, the value of

the starting position is Bob’s payoff under optimal play.

(2) If the graph is infinite, there may or may not be such a value. For

instance, if the graph is an infinite path where all edges have the same

length l < λ, then each player will receive a better payoff if the other

one terminates the game. It therefore appears that no player will ever

terminate, but then there will not even be a well-defined payoff, let

alone payoff under optimal play.

(3) Edges of length more than λ are irrelevant to the game. If Alice moves

along such an edge, then Bob can terminate the game, and even though
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this may not be Bob’s best option, it would still have been better for

Alice to terminate in the first place.

2.4. The diluted matching problem. There is a relaxation of the minimum

matching problem that we refer to as the diluted matching problem. Instead of

requiring each vertex to be covered by the matching, we allow for any partial

matching, with a penalty of λ/2 for each unmatched vertex. This idea was

considered in the context of multi-index matchings in [21].

For the moment we regard the parameter λ as fixed. IfG is a finite distance

model, we let Mλ(G) be the cost of the diluted matching problem on G. More

precisely, Mλ(G) is the minimum, taken over all partial matchings, of the sum

of the edge lengths in the matching plus λ/2 times the number of unmatched

vertices. Moreover, we let f(G, v) be Bob’s payoff under mutual optimal play

in Exploration on G with v as starting point.

Proposition 2.3. Let G be a finite distance model, and let v be a vertex

of G. Then

f(G, v) = Mλ(G)−Mλ(G− v).

Proof. Suppose that the neighbors of v are v1, . . . , vk and that the edges

from v to these neighbors have lengths l1, . . . , lk. We first claim that f can be

recursively characterized by

(8) f(G, v) = min(λ/2, li − f(G− v, vi)).

Here the right-hand side is the minimum of λ/2, which is Bob’s payoff if Alice

chooses to terminate immediately, and li−f(G−v, vi), for 1 ≤ i ≤ k, which we

claim is Bob’s payoff if Alice chooses to go from v to vi in her first move and

the rest of the game is played optimally. When Alice moves to vi Bob receives

a payment of li, and the rest of the game is played on the graph G − v with

vi as starting point. In that game, Bob has the role of the first player, so his

payoff in the rest of the game will be −f(G − v, vi), and for the whole game,

li− f(G− v, vi). Since Alice wants to maximize her own payoff, she will make

the choice that minimizes Bob’s payoff, and this establishes (8).

On the other hand, the cost of the diluted matching problem satisfies the

similar recursion

(9) Mλ(G) = min(λ/2 +Mλ(G− v), li +Mλ(G− v − vi)).

Here we minimize over the options of leaving v unmatched, which will result

in a total cost of λ/2 +Mλ(G− v), or matching v to vi, which leads to a total

cost of li + Mλ(G − v − vi). Subtracting Mλ(G − v) from both sides of (9)

yields

Mλ(G)−Mλ(G− v) = min(λ/2, li − (Mλ(G− v)−Mλ(G− v − vi))).
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Comparing this to (8), we see that f(G, v) and Mλ(G)−Mλ(G−v) satisfy the

same recursion, and it follows by induction that they are equal. �

It is clear from Proposition 2.3 and its proof that Alice achieves optimal

payoff by starting along the edge of the optimum diluted matching if there

is such an edge from v, and by terminating immediately if v is unmatched.

By induction it follows that consistently playing along edges of the optimum

diluted matching, and terminating when no such edge is available, is minimax

optimal. Therefore under mutual optimal play, the path described by the game

is the symmetric difference of the optimum diluted matchings on G and G−v.

Since the diluted matching problem can be solved efficiently by standard

matching algorithms, it follows that Exploration can be played optimally with

a polynomial time algorithm, but from our perspective this is beside the point.

The advantage of introducing the game is that if the graph is infinite, there may

still be a well-defined game-theoretical value. This value then replaces Mλ(G)−
Mλ(G − v) and allows for the equivalent of the renormalization argument of

[22] in a mathematically consistent way.

2.5. Exploration on T 1(k, λ). We now fix d and λ and assume that d≥1,

although some of the results hold also for 0 < d < 1. In view of the results of

Section 2.2 it makes sense to study Exploration played on the d-dimensional

(k, λ)-tree T 1(k, λ). Our arguments will involve letting k → ∞, and they are

easiest to formulate on the potentially infinite tree obtained in the same way as

T 1(k, λ) but avoiding the truncation after k generations. We denote this tree

by T , suppressing the dependence of λ. Hence T is a Galton-Watson tree

based on Poisson(λd)-distribution, with independent identically distributed

edge-lengths distributed as the d:th root of a variable of uniform distribution

on [0, λd].

If v is a vertex of T , we let T (v) be the subgraph that can be reached

from v by downward paths. (Here and in the following, we think of the trees

as growing downwards, so that the root is at the top, and “down” means away

from the root.)

We study Exploration played on T starting from the root, which we denote

by φ. Since T is potentially infinite, it is not clear that concepts like optimal

play are well defined. We would like to define a function f describing the value

of having moved to a vertex v. More precisely, f(v) should be the payoff under

optimal play for the player who does not start, if the game is played on T (v)

starting from v. If such a value f(v) can be defined consistently, then by an

argument similar to the proof of Proposition 2.3, f must satisfy

(10) f(v) = min(λ/2, li − f(vi)),
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where li is the length of the edge to the i:th child vi of v, and the minimum

is taken over λ/2 and the sequence of li − f(vi) as vi ranges over all children

of v.

For a given realization of T , we say that a function f from its vertices to

the real numbers is a valuation if it satisfies (10). A valuation can be regarded

as a consistent way for a player to assess the positions of the game. We observe

the following:

• A valuation must satisfy −λ/2 ≤ f(v) ≤ λ/2 at every vertex v.

• If v is a leaf of T , then f(v) = λ/2.

• If T is finite, then there is a unique valuation f , and f(φ) is Bob’s

payoff under optimal play.

A partial valuation is a function that takes arbitrary values in [−λ/2, λ/2]

on the vertices k steps away from the root, and which is defined recursively

on all vertices closer to the root by (10). For each k, we define the two partial

valuations fkA and fkB to be those that predict values most in favor of Alice

and Bob respectively. More precisely, fkA is obtained by assigning values λ/2

at distance k from the root if k is odd and values −λ/2 if k is even, and fkB is

obtained by assigning values the opposite way.

There is a simple interpretation of fkA and fkB. Given a realization of T ,

fkA and fkB are the bounds we get on any valuation if we examine T only to

depth at most k. This is because if the rest of T is unknown to us, then from

the perspective of a certain player, say Alice, the best possible scenario for the

rest of T is that if Bob is to move from a vertex at distance k, then that vertex

has no children, while if Alice is about to move, then it has an edge of zero

length to a vertex that in turn has no children.

Proposition 2.4. For every realization of T , there exists a valuation.

Proof. As k increases, the values fkB(v) form a monotone sequence at each

vertex v (decreasing at even levels, increasing at odd levels). Therefore there

is a pointwise limit

fB(v) = lim
k→∞

fkB(v),

and it is easily verified that fB is a valuation. �

Informally, the valuation fB can be thought of as the “optimistic” valua-

tion from Bob’s point of view, since it predicts the largest payoff for Bob which

is consistent with the tree T . Similarly there is a limit valuation fA of fkA which

is “optimistic” from Alice’s point of view. We can order the valuations from

Bob’s point of view by saying that f1 ≤ f2 if whenever v is at even distance

from the root, f1(v) ≤ f2(v), and whenever v is at odd distance from the root,

f1(v) ≥ f2(v). In this ordering fA is the unique minimal element and fB is the

unique maximal element. (In fact this ordering is a lattice.)
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We are aiming to show that almost surely fA = fB, or equivalently, there

is only one valuation. This holds trivially in the range λ ≤ 1, since T is almost

surely finite. For λ > 1, T is infinite with positive probability, and the scenario

that we wish to exclude is that at some value of λ there occurs a “symmetry

breaking” after which fA is distinct from fB with positive probability.

2.6. The branching of near-optimal play. For the moment we take fB as

our default valuation. This defines a strategy in an obvious way: From a

vertex v, terminate if fB(v) = λ/2, and otherwise move to the child vi for

which fB(v) = li − fB(vi). There seems to be the possibility of a tie in which

several move options would be consistent with fB, but fB has the property that

fB(vi) depends only on T (vi). Therefore li−fB(vi) has continuous distribution

and is independent of lj − fB(vj) for i 6= j. It follows that the probability of a

tie between move options is zero.

Let δ > 0. We say that a move from v to vi is optimal (with respect to

fB) if li−fB(vi) = fB(v) and δ-reasonable if li−fB(vi) ≤ fB(v) + δ. Let R be

the subtree of T formed by all paths from the root consisting of δ-reasonable

moves by Alice and optimal moves by Bob. Let Rk be the set of vertices of R

at distance k from the root.

Proposition 2.5. If δ is sufficiently small, then R is almost surely finite.

In order to prove this proposition, we introduce the quantity

(11) Nk = # {v ∈ Rk : fB(v) < λ/2}+
1

2
·# {v ∈ Rk : fB(v) = λ/2} ,

which essentially counts the vertices in Rk but gives weight 1/2 to the vertices

v where fB(v) = λ/2. The proof of Proposition 2.5 consists in showing that

for sufficiently small δ, ENk → 0 as k →∞.

In the following, we will speak of an “arbitrary” vertex v of T and exploit

the fact that T (v) is equal in distribution to T itself. This seems clear from the

way T is constructed, but the problem is that since v owes its very existence

to the process that generates T , there is no way to choose v independently of

T except if v is the root of T . Therefore, speaking of an arbitrary vertex v

of T always technically involves conditioning on T . We simply think of T as

constructed from the root and downwards so that conditioning on v being in

T never involves the structure of T (v). Now let v be an arbitrary vertex of

T . Denote its children by vi and the corresponding edge-lengths by li. By the

l-f -square we mean the square [0, λ]× [−λ/2, λ/2].

Lemma 2.6. The points (li, fB(vi)) constitute a two-dimensional inhomo-

geneous Poisson point process on the l-f -square.

Proof. The sequence of edge lengths li is a Poisson point process on [0, λ]

with rate dld−1. Since fB(vi) depends only on T (vi), the fB(vi)’s are in-

dependent of each other and of the li’s. This makes the joint process of
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pairs (li, fB(vi)) a Poisson process whose intensity measure is a product mea-

sure of the density dld−1 of li on [0, λ] and the probability measure of fB on

[−λ/2, λ/2]. �

We let µv be the intensity measure on the l-f -square associated with the

Poisson process of pairs (li, fB(vi)). What we are trying to prove will imply

that µv is the same for all v, but from what we have established so far it is

conceivable that µv depends on whether v is at even or odd distance from the

root.

We will need the following properties of the measure µv:

• The line f = λ/2 has positive measure; more precisely,

(12) µv(f = λ/2) = P (fB(vi) = λ/2) ≥ P (v is a leaf in T ) = exp(−λd).

• If −λ/2 ≤ a ≤ b ≤ λ/2, then

(13) µv(l − f ∈ [a, b]) ≤ µv(a+ λ/2 ≤ l ≤ b+ λ/2).

Proof. Since d ≥ 1, the density dld−1 of l is increasing. Conditioning on f ,

we therefore have P (a+ f ≤ l ≤ b+ f) ≤ P (a+ λ/2 ≤ l ≤ b+ λ/2). �

To bound ENk+1 in terms of ENk we bound the expected number of moves

in R from a vertex v ∈ Rk in four cases, depending on whether Alice or Bob

is about to move and conditioning either on fB(v) < λ/2 or on fB(v) = λ/2.

We first consider the case that Alice is about to move from a vertex v ∈ Rk,
where thus k is even. Suppose first that fB(v) < λ/2. This means that Alice’s

optimal move is given by a point (li, fB(vi)) above the diagonal l − f = λ/2

in the l-f -square. If we condition on fB(vi) ∈ [a, b] for some a, b such that

−λ/2 ≤ a ≤ b < λ/2, then

(14) P (fB(vi) = λ/2) =
µv(f = λ/2 & a+ λ/2 ≤ l ≤ b+ λ/2)

µv(l − f ∈ [a, b])

≥ µv(f = λ/2 & a+ λ/2 ≤ l ≤ b+ λ/2)

µv(a+ λ/2 ≤ l ≤ b+ λ/2)
(by (13))

= µv(f = λ/2) (since µv is a product measure)

≥ exp(−λd) (by (12)).

Conditioning on v ∈ Rk and fB(v) < λ/2, we therefore have P (fB(vi) =

λ/2) ≥ exp(−λd). Therefore with conditional probability at least exp(−λd),
Alice’s optimal move from v will go to a vertex vi that contributes to ENk+1

by only 1/2. Hence, still conditioning on v ∈ Rk and fB(v) < λ/2, Alice’s

optimal move from v contributes to ENk+1 by at most 1− exp(−λd)/2.

The expected number of nonoptimal δ-reasonable moves is at most

δ · dλd−1 = o(1).
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By o(1) we mean a term that can be made as small as we please by making

δ small. Hence the expected contribution to Nk+1 when Alice moves from a

vertex v such that fB(v) < λ/2 is at most

1− 1

2
exp(−λd) + o(1).

Consider now the case where Alice moves from a vertex v ∈ Rk with

fB(v) = λ/2. Then there is no optimal move (the optimal decision is to

terminate), and again the expected number of δ-reasonable moves is at most

δ · dλd−1 = o(1). It follows that

ENk+1

ENk
≤ max

Ç
1− 1

2
exp(−λd) + o(1),

o(1)

1/2

å
≤ 1− 1

2
exp(−λd) + o(1).

When Bob moves, there is no optimal move if fB(v) = λ/2 and at most one if

fB(v) < λ/2. Therefore the “growth factor” for Nk over a pair of moves, one

by Alice and one by Bob, satisfies

ENk+2

ENk
≤ 1− 1

2
exp(−λd) + o(1) < 1

uniformly in k if δ is sufficiently small. It follows that ENk → 0 as k → ∞,

and this completes the proof of Proposition 2.5.

The upper bounds on the expected contributions to Nk+1 when moving

from a vertex v ∈ Rk are summarized in the following table:

Player to move Vertex Contribution to ENk+1

Alice fB(v) < λ/2 1− 1/2 · exp(−λd) + o(1)

fB(v) = λ/2 o(1)

Bob fB(v) < λ/2 1

fB(v) = λ/2 0

Lemma 2.7. For sufficiently small δ, there is almost surely no infinite

path starting anywhere in T and consisting of optimal moves by Bob and

δ-reasonable moves by Alice.

Proof. If such a path started from the root, it would be a subset of R, and

R is almost surely finite. This event therefore has probability zero, and since

T is countable, it follows that the probability of such a path anywhere in T is

also zero. �

Proposition 2.8. There is almost surely only one valuation.

Proof. It suffices to show that almost surely fA(φ) = fB(φ). Suppose

therefore that fA(φ) < fB(φ). We want to demonstrate that some event of

probability zero is a consequence of this assumption. We therefore let Alice

play according to fA and Bob according to fB. Informally we can think of this
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as “optimistic” play, both players being convinced that a reward of λ/2 awaits

them at infinity.

Alice’s strategy guarantees that if the game terminates, Bob’s payoff is at

most fA(φ). On the other hand Bob’s strategy guarantees that his payoff if the

game terminates is at least fB(φ). Therefore strict inequality fA(φ) < fB(φ)

implies that play has to continue forever.

Let u0, u1, u2, . . . be the path that the game follows (in particular u0 = φ),

and let l01, l12, . . . be the lengths of the edges of this path. We have

fB(u0) ≤ l01 − fB(u1) = l01 − l12 + fB(u2) ≤ l01 − l12 + l23 − fB(u3) = . . . ,

and similarly

fA(u0) = l01 − fA(u1) ≤ l01 − l12 + fA(u2) = l01 − l12 + l23 − fA(u3) ≤ . . . .

It follows that the absolute difference between fA and fB along the path of the

game is nondecreasing (with the sign of the difference alternating):

fB(u0)− fA(u0) ≤ fA(u1)− fB(u1) ≤ fB(u2)− fA(u2) ≤ . . . .

On the other hand the sequence |fA(ui)− fB(ui)| is obviously bounded since

both fA and fB take values in [−λ/2, λ/2]. Fix δ > 0 sufficiently small for the

conclusion of Lemma 2.7 to hold. It follows that there is some k such that

(15) |fA(uk)− fB(uk)| ≥ lim
i→∞
|fA(ui)− fB(ui)| − δ.

When Alice moves from some ui with i ≥ k, then i is even, and by (15),

fB(ui)− fA(ui) ≥ fA(ui+1)− fB(ui+1)− δ.

Rearranging this inequality and using the fact that by the definition of Alice’s

strategy, fA(ui+1) = li,i+1 − fA(ui), we obtain

fB(ui) + δ ≥ li,i+1 − fB(ui+1).

This means that Alice’s move from ui to ui+1 is δ-reasonable with respect to

fB. Hence the path uk, uk+1, . . . has the property that with respect to fB,

Bob’s moves are optimal and Alice’s moves are δ-reasonable. By Lemma 2.7,

the existence of such a path is an event of probability zero. �

We need no longer distinguish between fA and fB, and we denote the

almost surely unique valuation by f . Now recall the partial valuations fkA
and fkB.

Proposition 2.9. E
Ä
fkB(φ)− fkA(φ)

ä
→ 0 as k →∞.

Proof. We have established that almost surely there is only one valuation.

This means that almost surely, fkB(φ)−fkA(φ)→ 0 monotonely as k →∞. The

statement now follows from the monotone convergence theorem. �
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2.7. Interpretation in terms of integral equations. We want to obtain, to

the extent possible, an analytical characterization of the distributions of fkA(φ),

fkB(φ), and their common limit f(φ). We have

(16) fk+1
A (φ) = min(λ/2, li − fk+1

A (vi)),

where vi ranges over the children of the root. Notice that

(17) fk+1
A (vi)

d
= fkB(φ).

Clearly the same holds with the roles of Alice and Bob interchanged.

Suppose now that we describe the distribution of fkB(φ) by the function

Gk(x) = P (fkB(φ) ≥ x),

and similarly

Fk+1(x) = P (fk+1
A (φ) ≥ x).

Then for −λ/2 ≤ x ≤ λ/2, Fk+1(x) is the probability that there is no event

in the inhomogeneous Poisson process of vi such that li − fk+1
A (vi) < x, or

equivalently, that there is no li such that fk+1
A (vi) > li − x. Here it does not

matter whether the inequality is strict or not, so for given x and li, in view of

(17),

P
Ä
fk+1
A (vi) > li − x

ä
= Gk(li − x).

The sequence of li such that fk+1
A (vi) > li − x is therefore the set of points in

a thinned Poisson point process of rate dld−1Gk(l − x), and it follows that

Fk+1(x) = exp

Ç
−d

∫ λ/2+x

0
ld−1Gk(l − x) dl

å
.

Therefore we define an operator Vλ on functions on the interval [−λ/2, λ/2] by

(18) (VλF )(x) = exp

Ç
−d

∫ λ/2+x

0
ld−1F (l − x) dl

å
.

Proposition 2.10. The operator Vλ has a unique fixed point F , and

(19) F (x) = P (f(φ) ≥ x).

Proof. We have Fk+1 = Vλ(Gk), and by reversing the roles of Alice and

Bob, Gk+1 = Vλ(Fk). The distributions of fkA(φ) and fkB(φ) are thus obtained

by starting from F0 = 0 and G0 = 1 (on the interval [−λ/2, λ/2]) and iterating

the operator Vλ. But since G1 = G0, it follows inductively that F2 = F1, G3 =

G2 and so on. Therefore, in reality, there is only one sequence of functions,

obtained by iterating Vλ starting from the zero function.

The operator Vλ is decreasing in the sense that if F (x) ≤ G(x) for every

x, then (VλF )(x) ≥ (VλG)(x) for every x. It follows that if we start from

the function that is identically zero (or identically 1) and iterate, the sequence

of functions must either converge to a fixed point or approach an attractor
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of period 2. By Proposition 2.8 the sequence converges to a fixed point F

that satisfies (19). Actually it follows that if we start from any real integrable

function, then after two iterations we have a function which takes values in

[0, 1], in other words lies between F0 and G0. Therefore the subsequent iterates

will be squeezed between Fk and Gk and thus converge to the same fixed point.

In particular, Vλ has only one fixed point. �

The following observation of the fixed point functions F will be useful in

Section 3.3.

Proposition 2.11. For fixed d, as λ→∞, F (λ/2)→ 0.

To avoid confusion, notice that here F depends on λ.

Proof. It follows from (18) and the fact that F is decreasing that

(20)

F (λ/2) = exp

Ç
−d

∫ λ

0
ld−1F (l − λ/2) dl

å
≤ exp

Ç
−d

∫ λ

0
ld−1F (λ/2) dl

å
= exp(−λdF (λ/2)).

By (20) in turn,

λ ≤
Ç
− logF (λ/2)

F (λ/2)

å1/d

,

from which the claim follows. �

The connection from optimization problems, via local convergence, to

fixed point equations for integral operators is clear in the physics literature

from the 1980’s (see [27] and its references) despite the lack of explicit con-

vergence results. These “recursive distributional equations” have been studied

extensively in [3], [4], and a number of examples where symmetry breaking

occurs for some values of a parameter corresponding to our λ were studied in

[7], [15], [43].

The similarity of (18) to the Mézard-Parisi integral equation (7) is clearly

visible. Naturally we may define an operator V∞ by

(V∞F )(x) = exp

Å
−d

∫ ∞
0

ld−1F (l − x) dl

ã
.

It seems clear, both from numerical evidence and in view of the results we have

established, that as λ→∞, the fixed points F of Vλ should converge uniformly

to a limit function which is a unique fixed point to V∞, in other words a unique

solution to the Mézard-Parisi equation (7). We certainly believe that a more

detailed analysis will show this to be the case (possibly the ideas of [37] can

be extended to d > 1), but we leave it as an open conjecture since it is not

necessary for our proof of Theorem 1.1. Moreover, the natural way to obtain
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numerical results from (7) is to approximate F (x) by 1 for large negative x and

by 0 for large positive x. Therefore, in practice, the numerical results based

on (7) reduce to solving the equation Vλ(F ) = F on a bounded interval.

3. Applications to minimum matching problems

3.1. The density of the minimum diluted matching. We now return to the

(rescaled) mean field model Kn on n vertices. Suppose that λ and d ≥ 1 are

fixed, and let the random variable qn be the proportion of vertices that are

not matched (for which we pay the penalty of λ/2) in the optimum diluted

matching. Again we let F be the fixed point of Vλ.

Proposition 3.1. As n→∞, qn
p→ F (λ/2).

Proof. We show that Eqn → F (λ/2) and var(qn) → 0. Let v be an

arbitrary vertex of Kn, and notice that Eqn = P (v is not matched). Let k be

a positive integer. We now compare Kn (rooted at v) to T (k, λ). It follows

from local convergence that we can couple Kn to T (k, λ) in such a way that

asymptotically almost surely as n → ∞, the game theoretical value f(Kn, v)

of Exploration on Kn starting at v satisfies

fkA(φ) ≤ f(Kn, v) ≤ fkB(φ).

Therefore as n→∞,

P (fkA(φ) = λ/2)− o(1) ≤ P (f(Kn, v) = λ/2)(21)

≤ P (fkB(φ) = λ/2) + o(1).

But f(Kn, v) = λ/2 is equivalent to v not being matched, and both sides of

(21) converge to F (λ/2) as k →∞. This shows that Eqn → F (λ/2).

To bound the variance of qn we simply take two vertices v1 and v2 of

Kn and estimate the probability that neither is matched. To do this we ap-

ply Proposition 2.2 with m = 2. By local convergence we can approximate

the (k, λ)-truncation of Kn rooted at v1 and v2 by T 2(k, λ), which can be re-

garded as two independent copies of T (k, λ). It follows that the probability

that neither of v1 and v2 is matched converges to F (λ/2)2, which means that

var(qn)→ 0. �

3.2. The length of the minimum diluted matching. We wish to find the nor-

malized limit cost of the minimum diluted matching. This cost splits naturally

into the length of the participating edges and the cost of the penalties for the

unmatched vertices. The penalties depend only on the number of unmatched

vertices, which was discussed in the previous section, and therefore we concen-

trate on the participating edges. Still working in the rescaled model, we let
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M?
λ(Kn) be the total length of the edges participating in the optimum diluted

matching (while Mλ, as defined earlier, is the total cost including penalties).

Theorem 3.2. For each λ and d ≥ 1, there is a number βλ(d) such that

(22)
M?
λ(Kn)

n

p→ βλ(d).

To prove Theorem 3.2, we use the same method as in [2], [22] to calculate

the expected contribution of an edge to the optimum diluted matching. We

consider the edge between two arbitrary vertices u and v. First we want to use

Proposition 2.2 to conclude that the neighborhoods of u and v look like two

independent (k, λ)-trees except for the edge between u and v.

First let k be an arbitrary integer that will eventually tend to infinity.

We now apply Proposition 2.2 with m = 2 and u and v being the roots. The

conclusion is that if we assume that the (k, λ)-neighborhoods of u and v behave

like independent (k, λ)-trees, the error in any probability will tend to zero as

n→∞.

Now we want to condition on the length of the edge between u and v

without interfering with this conclusion. Technically what we do is to reran-

domize the length of the edge between u and v; that is, we replace it by a new

random variable of the same distribution. This obviously does not change the

distance model in distribution; it is only an artificial trick to be able to apply

Proposition 2.2. We now want to estimate the expected contribution of the

new edge between u and v to the total length of the edges in the optimum

diluted matching.

Recall that the rescaled edge-lengths are n1/dl′i,j , where the density func-

tion ρ of l′i,j satisfies ρ(l) ∼ dld−1 as l→ 0. We let

(23) ρn(l) = n−1/dρ(n−1/dl)

be the density function of the rescaled length n1/dl′i,j . Since we are interested

in the diluted matching problem, we are only concerned with the behavior of

ρn on the interval [0, λ].

Lemma 3.3. As n→∞, nρn(l)→ dld−1 uniformly on the interval [0, λ].

Proof. It suffices to show that

nρn(l)

dld−1
→ 1

uniformly on 0 ≤ l ≤ λ. By (23), we have

nρn(l)

dld−1
=
n1−1/dρ(n−1/dl)

dld−1
,
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which in view of (5) converges to 1 as n → ∞. The convergence is uniform

since as n→∞, n−1/dl→ 0 uniformly on 0 ≤ l ≤ λ. �

The expectation of M?
λ(Kn) is the total number of edges in the graph

times the expected contribution to M?
λ(Kn) from a single edge. Let h(l) be

the probability that an edge participates in the optimum diluted matching

conditioning on its length being l. Then

(24) EM?
λ(Kn) =

Ç
n

2

å
·
∫ λ

0
lρn(l) · h(l) dl.

By Lemma 3.3 we can replace ρn(l) by dld−1/n. Normalizing to obtain a

quantity of order 1, we get

(25)
EM?

λ(Kn)

n
=
d

2
·
∫ λ

0
ld · h(l) dl + o(1).

Now we regard the (k, λ)-neighborhoods of u and v as two independent

trees distributed like T (k, λ) whose roots u and v are connected by an edge of

length l. By Proposition 2.2 this will only introduce small errors in probabilities

as n→∞.

We denote these trees by Tu and Tv, and define the partial valuations

fkA and fkB as in Section 2.5 on each of these trees. Suppose that we play

Exploration starting at u (or v) and with the edge between u and v removed.

Then the true payoff to the second player will be between fkA(u) and fkB(u),

since it can in principle be calculated by assigning values to each vertex w at

distance k equal to the payoff under optimal subsequent play given that the

first k moves are the unique path to w in Tu (Tv).

Suppose now that we play Exploration starting at u on the graph including

the edge of length l between u and v. The first player’s payoff if moving to v

satisfies

(26) − l + fkA(v) ≤ payoff on moving (u→ v) ≤ −l + fkB(v).

The reason that we are talking about the “first player” is that if moving

to v, the first player gets the role of “Bob” in Tv. If on the other hand the

first player moves to another vertex (or terminates), the game will not leave

Tu until at least k moves have been played. Then the first player will have the

role of “Alice” in Tu, and therefore

(27) − fkB(u) ≤ payoff on not moving (u→ v) ≤ −fkA(u).

If the right-hand side of (27) is smaller than the left-hand side of (26),

then moving to v in the first move is clearly optimal. Conversely if the right-

hand side of (26) is smaller than the left-hand side of (27), then moving to v
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is not optimal. The move to v being optimal is equivalent to the edge (u, v) of

lenght l participating in the optimum diluted matching. Hence

P
Ä
fkA(u) + fkA(v) ≥ l

ä
≤ h(l) ≤ P

Ä
fkB(u) + fkB(v) ≥ l

ä
.

If k →∞ with n, then by Proposition 2.9 we can replace fkA(u) and fkB(u)

by a limit f(u) and similarly replace fkA(v) and fkB(v) by f(v). Hence (25) is

equal to

d

2
·
∫ λ

0
ld · P (l ≤ f(u) + f(v)) dl + o(1)

for f(u) and f(v) independent and satisfying P (f ≥ x) = F (x), where F is

the fixed point of Vλ. By partial integration it follows that

(28)
EM?

λ(Kn)

n
→ d2

2
·

∫ ∫
−λ/2<x,y<λ/2

x+y≥0

(x+ y)d−1F (x)F (y) dx dy.

Therefore βλ(d) is equal to the right-hand side of (28). To see that (28)

can be strengthened to convergence in probability as stated in (22) we again

apply Proposition 2.2, this time with m = 4. It follows that the expected

contribution from an arbitrary pair of edges to M?
λ(Kn)2 is asymptotically the

same as the square of the expected contribution of one edge, and that therefore

var(M?
λ(Kn)) = o(n2). This concludes the proof of Theorem 3.2.

3.3. Perfect matching. Assuming that n is even, we study the length of

the minimum perfect matching in Kn. Naturally we expect perfect matching

to correspond to infinite λ, and the remaining step in the proof of Theorem 1.1

essentially amounts to showing that we can interchange the order in which n

and λ go to infinity. For the bipartite graph and d = 1, this was proved in [1].

Without claims of originality we give a self-contained proof based on expander

properties of random graphs along the lines of [14]. I thank David Aldous for

pointing out that the method applies here.

Recall that βλ(d) is defined as the right-hand side of (28). In view of (22),

βλ(d) is increasing in λ. We define

β(d) = lim
λ→∞

βλ(d).

We have not yet established that β(d) is finite, but this will follow from Propo-

sition 3.4 below. Theorem 1.1 states that if ρ satisfies (5), then as n → ∞
through even values,

(29)
M(Kn[ρ])

n1−1/d
p→ β(d).

Since for every λ the cost of the λ-diluted matching problem is a lower

bound on the cost of a perfect matching, Theorem 3.2 already establishes the
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required lower bound on M(Kn[ρ]), and what remains in order to prove (29)

is to show that for every ε > 0, as n→∞,

(30) P

Ç
M(Kn[ρ])

n1−1/d
≤ β(d) + ε

å
→ 1.

It turns out that certain properties of the exponential distribution are

convenient in the proof. Therefore we start by establishing (30) for a spe-

cial distribution of edge-lengths based on the exponential distribution. It is

obtained by taking edge-lengths l = X1/d, where X is a mean 1 exponential

variable. Equivalently, the density function is given by

(31) ξ(l) = dld−1 exp(−ld).

We establish the following slightly stronger result stating that a matching

yielding (30) can be constructed using only short edges. The generalization

in Section 3.4 to an arbitrary density function ρ satisfying (5) will then be a

relatively simple matter.

Proposition 3.4. For every ε > 0 and x > 0, there is a λ such that

asymptotically almost surely as n → ∞ through even values, there exists a

perfect matching in Kn[ξ] that has total length at most n1−1/d(βλ(d) + ε) and

contains no edge longer than x.

The rest of Section 3.3 is devoted to the proof of Proposition 3.4. We will

work with a random distance model involving an infinite sequence of edges

between each pair of vertices. For each pair of vertices, consider a rate 1

Poisson point process Xi (i ≥ 1) on the positive real numbers (independent

processes for each pair of vertices), and let the sequence of edges have lengths

X
1/d
i .

Since X1 has exponential distribution, the length of the shortest edge

between any two vertices is distributed according to ξ. Therefore it suffices to

establish Proposition 3.4 for this “Poisson model.”

We randomly color every edge red or green, where the probability of red is

1−p and the probability of green is p. Notice that for each pair of vertices, the

two color classes of edges have lengths given by independent Poisson processes.

The red edges have lengths Y
1/d
i where Yi are the points of a rate 1−p Poisson

point process, and similarly the lengths of the green edges are Z
1/d
i where Zi

are given by a process of rate p.

Let MRed be the minimum λ-diluted matching on the red edges, where

λ will be chosen later depending on ε. The length Y
1/d
1 of the first red edge

between two vertices is equal in distribution to 1/(1−p)1/d times the first edge

without regard to color. Therefore the λ-diluted matching problem on the red

edges is equal in distribution to a λ′-diluted matching problem in the original
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model scaled up by a factor 1/(1− p)1/d, where λ′ = λ · (1− p)1/d. Hence if p

is chosen so that

(32)
β(d)

(1− p)1/d
< β(d) + ε/2,

then since βλ′(d) < β(d) regardless of λ, the total length of MRed is at most

n1−1/d(β(d) + ε/2) asymptotically almost surely as n→∞.

Our aim is to show that we can combine a subset of the edges of MRed

with a set of relatively few green edges to obtain a perfect matching where the

total length of the green edges is at most ε/2 · n1−1/d. Before looking at the

lengths of the green edges, we choose arbitrarily a partition of the vertices into

two sets A and B of size m = n/2 such that every edge of MRed connects a

vertex of A to a vertex of B. Then we consider the green edges that connect

A to B and give each of them a random orientation by independent coin flips.

We let D be the set consisting of the 13 cheapest green edges directed from

each vertex to the opposite side of the partition.

If S is a set of vertices, we let S′ denote the set of vertices that are

connected to some vertex in S by an edge in D.

Lemma 3.5. Asymptotically almost surely as n→∞, D has the following

expander property : If S is a set of vertices from one side of the partition and

1 ≤ |S| ≤ m/3, then |S′| > 2 |S|.

Proof. If this condition is violated, then there is a positive integer s ≤ m/3
and a set of s vertices on one side of the partition such that all its 13s edges

go into a certain set of 2s vertices on the other side. The probability that this

happens is at most

(33) 2 ·
∑

1≤s≤m/3

Ç
m

s

åÇ
m

2s

åÅ
2s

m

ã13s
.

Using the standard inequality Ç
m

k

å
≤
Å
me

k

ãk
,

we find that (33) is at most

2 ·
∑

1≤s≤m/3
e3s211s

Å
s

m

ã10s
.

By log-convexity of the summand, the maximum of the terms is attained

either by the first term or by the last one. The first term (s = 1) is O(1/m10)

and the last one is at most Ç
e3211

310

åm/3
≤ 0.9m.
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For large m, the first term will dominate, and since there are O(m) = O(n)

terms, the failure probability of the expander property is O(1/n9). �

Having established the high probability expander property, we no longer

need the orientations of the edges in D.

Lemma 3.6. Suppose D has the expander property of Lemma 3.5. Let M

be a matching consisting of m− k edges of arbitrary color connecting vertices

in A to vertices in B. Then there is a matching of m− k+ 1 edges in D ∪M ,

of which all but at most 2 log2(m/k) +O(1) belong to M .

Proof. Let A0 and B0 be the sets of vertices in A and B respectively that

are not matched by M . Consider paths starting from some vertex in A0 and

using alternatingly edges from D and M . Let Ai be the set of vertices in A

that can be reached by such a path of length at most 2i, in other words, in

at most i steps, where each step consists of one edge in D and one in M . As

before let S′ denote the set of D-neighbors of S.

We have

|Ai+1| = k +
∣∣A′i −B0

∣∣ ≥ k +
∣∣A′i∣∣− k =

∣∣A′i∣∣ ≥ min

Å
2

3
m, 2 |Ai|

ã
.

It follows inductively that |Ai| ≥ min(23m, k2i), and similarly if Bi is the set of

vertices that can be reached by an alternating path from B0 in at most i steps,

then |Bi| ≥ min(23m, k2i). Therefore there exists an i ≤ log2(m/k)+O(1) such

that Ai and Bi are connected by an edge of D. This means that there is an

alternating path connecting A0 to B0 in at most 2 log2(m/k) +O(1) steps.

The required matching is now simply the symmetric difference of this path

with M . �

We introduce yet another small positive parameter q to be chosen later as

a function of ε.

Lemma 3.7. Suppose that the expander property of Lemma 3.5 holds

for D. If M is a matching connecting vertices in A to vertices in B and

containing at least (1− q)m edges, then there is a perfect matching consisting

of edges in M ∪D where all but at most O(qm log(1/q)) edges belong to M .

Proof. We successively apply Lemma 3.6 for k from bqmc down to 1,

replacing the original matching M by matchings combining edges in M with

edges in D. The total number of new edges needed to obtain a perfect matching

is at most

2 ·
qm∑
k=1

Å
log2

Å
m

k

ã
+O(1)

ã
= O (qm log(1/q)) . �

Provided that MRed matches all but at most qn vertices and the expander

property of Lemma 3.5 holds forD, we can therefore completeMRed to a perfect
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matching by combining some edges in MRed with at most O(qn log(1/q)) green

edges. (Recall that m = n/2.)

The choice of edges in D that we use to complete the matching is done

independently of their lengths so that the expected total length of the green

edges in the matching is O(nq log(1/q)) times the expected length of an edge

in D, which is O((1/np)1/d). Therefore assuming the expander property holds,

with high probability as n → ∞ the total length of the green edges in the

matching is

O

Ç
nq log(1/q)

(np)1/d

å
≤ K · n1−1/d · q log(1/q)

p1/d

for some constant K.

We now choose q so that

K · q log(1/q)

p1/d
≤ ε

2
.

In view of (32), this shows that provided MRed contains all but at most qn

vertices, we can find the required perfect matching of total length at most

n1−1/d(β(d) + ε) with high probability as n→∞.

Now, once p and q are fixed, it follows from Proposition 3.1 in combination

with Proposition 2.11 that by taking λ large enough, with high probability

MRed has density at least 1 − q. The matching MRed corresponds to a λ′-

diluted matching, but λ′ only differs from λ by a constant factor (1− p)1/d.
This establishes that with high probability there is a perfect matching of

total length at most n1−1/d(β(d)+ε), which is the first claim of Proposition 3.4.

What remains is to show that with high probability, the longest edge in the

matching we have constructed is o(1) as n→∞. This property of the matching

will be useful in completing the proof of Theorem 1.1.

The lengths of the edges in MRed are bounded by n−1/dλ, and λ was

chosen independently of n, so we need only check the length of the longest

green edge. Each green edge that is used is among the 13 cheapest green edges

directed from some vertex into the opposite vertex-set in the partition. If we

fix a vertex v, then for each vertex u on the other side of the partition, the

green edges directed from v to u have lengths Z
1/d
i , where Zi are the points

of a Poisson process of rate p/2. Since there are n/2 vertices in the opposite

part of v in the partition, the totality of green edges directed from v into the

opposite part are given by the d:th roots of a Poisson process of rate pn/4.

The maximum length of an edge in D is therefore the d:th root of the time it

takes until each of n independent Poisson processes of rate pn/4 has had at

least 13 events. This time is asymptotically almost surely

O

Å
log n

np

ã
.
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Therefore if we fix ε and thereby p, the perfect matching that we construct

will asymptotically almost surely contain no edge longer than

O

(Å
log n

n

ã1/d)
,

where we allow the implied constant to depend on ε. This completes the proof

of Proposition 3.4. �

3.4. Proof of Theorem 1.1. We have shown that (30) holds in the special

case of the density function ξ(l) = dld−1 exp(−ld). To complete the proof

of Theorem 1.1 we need to generalize this to an arbitrary density function ρ

satsifying (5).

Since the probability distributions given by ρ and ξ are both continuous,

we can find an order preserving coupling between them. Let us denote such

a coupling by l 7→ l′, where l has distribution given by ξ and l′ is distributed

according to ρ. This coupling has the property that the quotient l′/l will tend

to 1 as l→ 0.

To obtain with high probability a perfect matching in Kn[ρ] of length at

most n1−1/d(β(d) + ε), we first find an x such that

l′

l
≤ β(d) + ε

β(d) + ε/2

whenever l ≤ x. Then we apply Proposition 3.4 with ε replaced by ε/2. This

will give us a perfect matching in Kn[ξ] of total length at most n1−1/d(β(d) +

ε/2) and no edge longer than x, which in turn gives us the desired perfect

matching in Kn[ρ] through the coupling.

3.5. The π2/12-limit for d = 1. The case d = 1 corresponds to the model

studied by Aldous in [1], [2]. In our terminology his result (conjectured in

[22]) is that β(1) = π2/12. We briefly show how this follows from our present

approach. In [2], [22] the calculations start from equation (7), which has the

solution F (x) = 1/(1+ex). This corresponds to infinite λ, but in our approach

we arrive at the equation Vλ(F ) = F for finite λ, which for d = 1 becomes

F (x) = exp

Ç
−
∫ λ/2+x

0
F (l − x) dl

å
.

Since we know that the equation has a unique solution, it suffices to verify that

it is satisfied by

F (x) =
1 + q

1 + e(1+q)x
,

where q is given by

λ =
−2 log q

1 + q
.
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Through (28) it can then be verified that the limit total length of the edges in

the diluted matching for finite λ is given by

(34) βλ(1) =

∫ 1

q

− log t

1 + t
dt,

from which the π2/12-result is obtained by putting q = 0. The limit (34) for

the minimum density 1− q matching also follows in a completely different way

from the results of [42]. A more streamlined derivation along the present lines

is given in [33].

3.6. Concluding remarks. It is easy to generalize Theorem 1.1 to length

distributions satisfying (2) but not necessarily having a density function. This

is simply because each distribution satisfying (2) is stochastically dominated

by such a distribution that has a density function, and conversely dominates

some other such distribution.

More interesting is to generalize the local convergence result to other types

of graphs. The method of proof indicated for Proposition 2.2 works equally

well for the complete bipartite graph Kn,n, provided the rescaling is done

correctly. More generally it works for dense regular graphs, meaning graphs

on n vertices where the degree of each vertex is αn+O(1) for some fixed α > 0.

Hence all our results on the diluted matching problem will generalize to such

graphs. It seems that the completion to a perfect matching can be achieved by

a modification of the arguments of Section 3.3 as long as α > 1/2 but clearly

cannot work if α < 1/2.

There are several other optimization problems that yield to similar anal-

ysis. Analogs of Theorem 1.1 for the TSP and some other problems will be

presented in forthcoming papers. There is a large family of problems, including

matching and TSP, for which the case d = 1 can be analyzed with the method

of [42]. It would be interesting to know if, for some general reason, replica

symmetry must hold for all problems amenable to such methods.
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