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Abstract The influence of KCl, NaCl and CaCl2 on the oxidation of 304-type

(Fe18Cr10Ni) stainless steel at 600 �C in 5 %O2 ? 40 %H2O was investigated. Prior

to exposure, a small amount of the preferred salt (cation equivalent: 1.35 lmol/cm2)

was deposited on the samples. Exposure time was 1–168 h. The oxidized samples

were analyzed by SEM/EDX, XRD, FIB and IC. The presence of KCl and NaCl

strongly accelerates high temperature corrosion of 304L. Corrosion attack is initiated

by the formation of alkali chromate through the reaction of alkali with the protective

oxide. Chromate formation is a sink for chromium in the oxide and leads to a loss of its

protective properties. Subsequently a rapidly growing scale forms, consisting of an

outer hematite layer with chromate particles on top and an inner spinel oxide layer. In

contrast to NaCl and KCl, CaCl2 is not very corrosive. At temperature, CaCl2 is

rapidly converted to CaO. Small amounts of CaCrO4 form where CaO is in direct

contact with the scale. CaO also reacts with the scale to form Ca2Fe2O5.
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Introduction

The production of electricity from biomass and waste-fired power plants is

increasing all over the world. Unfortunately, the combustion of biomass and waste

results in the formation of corrosive deposits and gases. Besides water vapor and

carbon dioxide, the flue gas contains high concentrations of alkali chlorides and

hydrogen chloride while the sulphur dioxide content is typically low [1, 2]. Hence,

the deposits formed on the superheater tubes are often rich in alkali chlorides which

are known to cause accelerated corrosion of the superheater tubes [1–7]. The

corrosivity of alkali chlorides in the presence of O2 is often explained by applying

‘‘the chlorine cycle’’ mechanism [3, 5–10] where Cl2(g) plays a seminal role, acting

as a catalyst for corrosion. Thus, the mechanism supposes that Cl2 forms in a

reaction between O2 and alkali chloride at the scale/metal interface. Cl2 then

penetrates the scale and generates volatile transition metal chlorides at the scale/

metal interface. The transition metal chlorides then diffuse back to the scale/gas

interface where they are oxidized by O2, precipitating metal oxide and releasing

Cl2(g) which enters the process again.

Recently, a new, electrochemical, mechanism has been proposed to explain the

alkali chloride-induced corrosion of low-alloyed steel. In the new mechanism,

chloride ion is the diffusing chlorine species rather than Cl2 [11]. Also, it has been

reported recently that the potassium ion plays an important role in the initiation of

KCl-induced corrosion of stainless steels [12–16]. Thus, it was shown that K2CO3 is

equally corrosive as KCl towards stainless steel 304L at 600 �C. The corrosiveness

of the potassium ion was attributed to the formation of potassium chromate(VI) by

reaction with the oxide scale. The reaction depletes the oxide in chromium and

destroys its protective properties [17].

The present study investigates the corrosion effects of three chloride salts (KCl,

NaCl and CaCl2) on the austenitic stainless steel 304L (Fe18Cr10Ni) in 5 %O2 and

40 % H2O at 600 �C. The emphasis is on the early stages of corrosion and on

elucidating the sequence of events that cause the corrosion attack.

Experimental Procedures

Sample Preparation

The material investigated is the austenitic stainless steel, 304L, for chemical

composition see Table 1. The geometrical area of the samples was 5.56 cm2,

(15 9 15 9 2 mm3). For handling, a hole (u = 1.5 mm) was drilled, 2 and 7.5 mm

from the edges. Before exposure the samples were grinded on 320 grit SiC with

Table 1 Chemical composition of alloy 304L in wt%

Fe Cr Ni Mn Si Mo N C

304L Balance 18.5 10.2 1.41 0.55 0.49 0.075 0.027
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deionized water. The samples were then polished with 9, 3 and 1 lm diamond

solution and lubricating liquid on a polish cloth until a mirror-like surface appeared.

After polishing, the samples were degreased and cleaned in acetone and ethanol

using an ultrasonic bath. The samples were coated with the preferred salt (NaCl,

KCl or CaCl2) to a cation equivalent of 1.35 lmol/cm2. The salts were applied by

spraying the samples with a saturated solution of the prefer salt in water/ethanol.

NaCl and KCl sprayed samples were weight in order to calibrate the amount.

Because of the hygroscopic nature of CaCl2, the amount was calibrated with ion

chromatography. The samples were dried with air and stored in a desiccator prior to

exposure. The mass change of the samples was measured prior to and after exposure

using a six decimal SartoriusTM balance.

Exposures

All exposures were isothermal and performed in silica tube furnaces with ex-situ

recording of the weight (Fig. 1). The samples, three at time, were mounted on a

sample holder and positioned parallel to the gas flow direction. The temperature was

kept at 600 �C (±1 �C) and was calibrated before each exposure. The experiments

were carried out in 5 %O2 ? 40 %H2O and the flow rate was 2.5 cm/s. Nitrogen

was used as carrier gas. The flow rate was controlled with a Bios DC2 Flow

Calibrator. The dry gas was led through a humidifier and a temperature controlled

condenser to obtain the correct water concentration. The experiments lasted 1, 24,

72 or 168 h.

Corrosion Product Characterization

X-ray Diffraction, XRD

The crystalline corrosion products were analysed with Grazing-Incidence X-Ray

Diffraction (GI-XRD) using a Siemens D5000 powder diffractometer, equipped

Fig. 1 Experimental setup for exposures in a horizontal silica tube furnace

Oxid Met (2012) 78:83–102 85

123



with grazing—incidence beam attachment and a Göbel mirror. Cu K. w radiation

was used and the angle of incidence was 2�–5�. The measurement range was

20� \ 2h\ 70�.

Scanning Electron Microscopy, SEM/EDX

SEM imaging was performed using an FEI Quanta 200 ESEM FEG. The EDX

detector is linked with the SEM and an Oxford Inca EDX system was used. The

microscope was operated at 15–20 kV.

Ion Chromatography, IC

To determine the amount of water-soluble anions (Cl- and CrO4
2-) a Dionex ICS-

90 system was used. The anions were analysed with an IonPac AS4A-SC analytic

column and 1.8 mM Na2CO3/1.7 mM NaHCO3 was used as eluent. To determine

the amount of water-soluble cations (K?, Na? and Ca2?) a Dionex ICS-900 system

was used. The anions were analysed with an IonPac CS12A analytic column and

20 mM sulfonic acid was used as eluent. The flow rate was 2 mL/min for both

anions and cations analyses.

Results

Gravimetry

Figure 2 shows mass gain as a function of exposure time for 304L steel in

5 %O2 ? 40 %H2O environment at 600 �C in the presence of NaCl, KCl and

CaCl2. The graph includes a reference exposure performed in the absence of salt.

The results show that both NaCl and KCl strongly accelerate corrosion. While the
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Fig. 2 Mass gain versus exposure time for samples exposed in the presence of NaCl, KCl, CaCl2 in
5 %O2 ? 40 %H2O at 600 �C. Reference exposures in 40 %H2O at 600 �C are also included
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two mass gain curves are similar during later stages of the exposures, NaCl initially

causes higher mass gain than KCl. In contrast, exposure in the presence of CaCl2
does not result in a significantly increased mass gain.

Surface Morphology

The surface morphology was investigated by Scanning Electron Microscope (SEM).

Figure 3 shows plan view images after 1 and 24 h of exposure in the presence and in

the absence of salt. Figure 3a shows a SEM image of a reference sample exposed

for 1 h in O2 ? H2O at 600 �C. The environment results in the formation of large

iron-rich oxide island on the surface. Similar oxide islands were observed in

24h1h

O2 + H2O + KCl

O2 + H2O 

O2 + H2O + CaCl2 

O2 + H2O + NaCl

A E

B F

C G

D H

Fig. 3 SEM images of samples exposed for 1 and 24 h at 600 �C in a and e: 5 %O2 ? 40 %H2O, b and
f: 5 %O2 ? 40 %H2O ? NaCl, c and g: 5 %O2 ? 40 %H2O ? KCl, d and h: 5 %O2 ? 40 %
H2O ? CaCl2
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previous investigations of the oxidation of 304L in O2 ? H2O environment at

600 �C. The earlier studies show that the oxide islands have formed in the middle of

the underlying steel grains while the areas close to the steel boundaries remain

protective. Figure 3b and c show samples exposed for 1 h in the presence of NaCl

and KCl, respectively. In both cases, the salt particles are partly reacted and have

started to become overgrown by oxide. At this stage the NaCl treated sample exhibit

considerably more corrosion between the salt particles than in the case of KCl.

Figure 3d shows a sample exposed for 1 h in the presence of CaCl2. The salt

agglomerates have a roughly circular form and at this stage CaCl2 is partially

decomposed (see XRD and IC analysis below). The surface between the salt

agglomerations is relatively even. Oxide islands have started to form, similar to the

ones observed in the reference run (compare Fig. 3a). Furthermore, there is no

tendency for the salt agglomerations to become overgrown by oxide.

Figure 3e shows the surface after 24 h exposure in the absence of salt (reference

sample). The oxide islands have increased both in number and size while the areas

near the steel borders remain protective. Figure 3f and g show samples after 24 h

exposure in the presence of NaCl and KCl, respectively. At this stage the surface is

covered by thick scale, the former salt crystals being replaced by irregularly shaped

oxide agglomerations. The surface between the oxide agglomerations is very

uneven. The KCl treated samples exhibits an island-like scale morphology that

reflects the substrate grain structure. In the case of NaCl, the corrosion affects the

entire surface and no preferential corrosion of the grain centers is observed.

Figure 3h shows a sample after 24 h of exposure in the presence CaCl2, showing

roughly circular areas corresponding to the deposited salt. Between the circular

formations, the oxidation morphology resembles the reference sample (see Fig. 3e),

showing oxide islands. In the position of the former CaCl2 agglomerations the scale

tends to spall, see Fig. 4 for 45� tilted SEM image.

Increasing the exposure time from 24 to 168 h only produced minor changes in

corrosion morphology.

Corrosion Product Characterization

The surface of the exposed samples was investigated with respect to elemental

distribution and crystalline corrosion products using SEM/EDX together with XRD.

EDX analyses (not shown) reveal that much of the NaCl and KCl added remains

unreacted after 1 h at 600 �C. Accordingly, XRD (Figs. 5, 6) features strong

diffraction peak from the salts. The crystalline corrosion products identified after 1 h

of exposure were hematite (Fe2O3), spinel type oxide (Me3O4) and alkali chromate

(Na2CrO4 or K2CrO4) indicating that the protective oxide has started to be converted

to a poorly protective iron-rich oxide. However, strong diffraction from the steel

substrate indicates that much of the surface is still covered by very thin oxide.

In contrast to the behavior of NaCl and KCl, the EDX analyses shows that CaCl2
has largely decomposed after 1 h, the former CaCl2 agglomerates exhibiting just a

few percent of chlorine (not shown). XRD (Fig. 7) shows no evidence for CaCl2 or

its hydrates. There was very weak diffraction from CaO and the corrosion product
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detected were Fe2O3, spinel type oxide (Me3O4) and small amounts of dicalcium

ferrate (III), Ca2Fe2O5. Also in this case there was strong diffraction from the steel

indicating the presence of a very thin oxide scale.
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Fig. 5 Combined diffractogram for 304L samples exposed in 5 %O2 ? 40 %H2O ? NaCl at 600 �C
after 1 and 24 h. The upper diffractogram shows the sample exposed for 24 h and the under diffractogram
shows the sample exposed for 1 h. The matching peaks in both diffractogram are marked in the upper
diffractogram. The peaks that are only presence after 1 h are marked in the under one

Fig. 4 45� tilted SEM image showing spallation of a former CaCl2 salt crystal on the sample exposed for
24 h in the presence of CaCl2 at 600 �C in 5 %O2 ? 40 %H2O
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The fact that only small amounts of crystalline calcium-containing substances

(Ca2Fe2O5 and CaO) were identified implies that other, non-crystalline or poorly

crystalline, calcium containing compounds is present at this stage. It is proposed that

these compounds are products of the thermal decomposition of CaCl2, consisting of

hydroxy-chlorides (e.g., Ca(OH)Cl) or oxy-chlorides (e.g., Ca2OCl2) [18].
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Fig. 6 Combined diffractogram for 304L samples exposed in 5 %O2 ? 40 %H2O ? KCl at 600 �C after
1 and 24 h. The upper diffractogram shows the sample exposed for 24 h and the under diffractogram
shows the sample exposed for 1 h. The matching peaks in both diffractogram are marked in the upper
diffractogram. The peaks that are only presence after 1 h are marked in the under one
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Fig. 7 Combined diffractogram for 304L samples exposed in 5 %O2 ? 40 %H2O ? CaCl2 at 600 �C
after 1 and 24 h. The upper diffractogram shows the sample exposed for 24 h and the under diffractogram
shows the sample exposed for 1 h. The matching peaks in both diffractogram are marked in the upper
diffractogram. The peaks that are only presence after 1 h are marked in the under one
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Figures 8 and 9 show the surface after 24 h exposure in the presence of NaCl and

KCl, respectively. In both cases, the surface is covered by iron-rich oxide. While the

XRD results (Figs. 5, 6) show the same corrosion products as after 1 h, there is no

diffraction from KCl or NaCl at this stage, indicating that the salts have reacted

completely and/or evaporated. There is no or very weak diffraction from the steel

substrate which indicates that most of the surface is covered by a thick oxide scale.

Morphological features reminiscent of the original salt particles and consisting of

corrosion product agglomerations are present on the surface. Areas rich in sodium

and potassium are found in and between these features. Both elements are correlated

to chromium and oxygen in the EDX maps. Sodium chromate (Na2CrO4) and

potassium chromate (K2CrO4) were identified by XRD on the NaCl- and KCl-

treated samples, respectively. Hence, the Na- and K-rich areas are attributed to

sodium chromate and potassium chromate. In addition, EDX point analyses of NaCl

treated samples (not shown) reveal that the amount of Na detected exceeds the

amount of chromate in some areas. Furthermore, EDX and XRD analysis gave no

evidence for transition metal chlorides.

After 24 h exposure in the presence of CaCl2, the corrosion morphology is very

different from that of the NaCl and KCl treated samples, see Fig. 10. In this case

Fig. 8 EDX images of a sample exposed for 24 h in presence of NaCl at 600 �C in 5 %O2 ? 40 %H2O

Fig. 9 EDX images of a sample exposed for 24 h in presence of KCl at 600 �C in 5 %O2 ? 40 %H2O
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there are no corrosion product agglomerations. The area between the original salt

particles is partly covered by thin, iron-rich oxide islands. The image shows a

network pattern consisting of thin oxide scale, corresponding to the grain boundaries

in the steel substrate. The presence of thin oxide is in accordance with the detection

of strong X-ray diffraction from the steel substrate (see Fig. 7). EDX indicated that

there is no Ca in this area. XRD shows very strong diffraction from CaO and

relatively strong diffraction from Ca2Fe2O5 at this stage. This implies that the

decomposition of calcium chloride is now complete. EDX mapping shows that CaO

forms patches that correspond to the original agglomerations of CaCl2 particles

(compare also Fig. 3h). Ca2Fe2O5 is located in the periphery of the CaO patches.

CaO is absent in some of the smaller circular areas, implying that it has been

consumed by reaction with the scale, forming Ca2Fe2O5. The overlap between Ca

and Cr at the edges of the circular patches indicates the presence of CaCrO4.

In order to further investigate the oxide scale, FIB cross sections were prepared

from samples exposed for 24 h in the presence of salt, see Figs. 11, 12, and 13. In

the case of NaCl and KCl, the FIB cross sections were prepared through a former

salt particle. In the case of CaCl2, the FIB cross section was performed at the edge

of the former CaCl2 agglomerates including both the area originally covered by salt

Fig. 10 EDX images of a sample exposed for 24 h in presence of CaCl2 at 600 �C in 5 %O2 ?
40 %H2O

Fig. 11 EDX images of a FIB cross section through a former salt crystal on a sample exposed for 24 h in
presence of NaCl at 600 �C in 5 %O2 ? 40 %H2O
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and the surrounding area. A platinum layer was first deposited on the selected area

in order to protect the oxide.

Figure 11 shows a FIB cross section prepared through a former NaCl crystal after

24 h exposure at 600 �C. The shape of the former NaCl crystal can still be discerned

but neither Na nor Cl is detected within its shape. A thick layered oxide scale has

formed beneath the former NaCl crystal. The upper part of the scale consists of

almost pure iron oxide while the bottom part shows high concentrations of

chromium, iron and nickel. While iron and chromium are evenly distributed in the

bottom part of the scale the nickel distribution is more uneven. Local enrichments of

metallic nickel are also present in the alloy substrate immediately below the scale.

No chlorine was detected. Based on this information and on the evidence from XRD

(see Fig. 5) it is concluded that the upper iron-rich oxide corresponds to hematite

while the bottom part of the scale is made up of spinel type oxide.

Figure 12 shows a corresponding sample exposed in presence of KCl. The

corrosion morphology is similar to the NaCl case. Thus, a two layered oxide scale

has formed beneath the former salt particle, consisting of an outer iron-rich layer

and an inner layer containing iron, chromium and nickel. Again, the distribution of

Ni in the bottom part of the scale is very uneven. In this case the oxygen map

Fig. 12 EDX images of a FIB cross section through a former salt crystal on a sample exposed for 24 h in
presence of KCl at 600 �C in 5 %O2 ? 40 %H2O

Fig. 13 45� tilted EDX images of a FIB cross section partly through a former salt crystal on a sample
exposed for 24 h in presence of CaCl2 at 600 �C in 5 %O2 ? 40 %H2O
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implies that at least some of the Ni in the lower part of the scale is metallic. An area

rich in potassium, chromium and oxygen is detected within the former salt particle.

Based on XRD (see Fig. 6) and EDX point analysis it is concluded that this is

potassium chromate (K2CrO4). Again, no chlorine was detected.

Figure 13 shows a sample exposed for 24 h in presence of CaCl2. The FIB cross

section includes part of the former CaCl2 agglomerate and the surrounding area. The

metal not covered by CaCl2 has formed a two-layered oxide scale consisting of an iron

oxide top layer and a bottom layer containing oxygen, iron, chromium and nickel.

Again, it is suggested that the top and bottom parts are made up of hematite and spinel

oxide respectively, both phases being detected by XRD. The area formerly covered by

CaCl2 exhibits a scale consisting of three distinctive layers. The outer part is rich in iron

and calcium, the middle part is iron-rich together with small amounts of chromium

while the bottom part contains iron, chromium and nickel. The combination of SEM/

EDX and the XRD analysis (see Fig. 7) allows us to attribute the upper iron-calcium-

rich oxide to dicalcium ferrate(III) (Ca2Fe2O5). Similarly, it is considered that the

middle, iron-rich oxide most consists of hematite while the bottom part of the scale is

made up of spinel type oxide. As in the case of NaCl and KCl treated samples, nickel is

unevenly distributed in the scale while there is an even distribution of chromium and

iron. According to the EDX analysis of the FIB cross section, some areas at the metal/

oxide interface contain chlorine and no calcium. These areas are suggested to contain

transition metal chlorides although no such compounds were detected by XRD.

Analysis of Water Soluble Compounds

Tables 2, 3, 4 show the results from the ion chromatography (IC) analysis of the salt

treated samples after 1, 24 and 168 h exposure. Tables 2 and 3 show the results for

the samples exposed in the presence NaCl and KCl. After 1 h of exposure, the

results are similar for the two salts. About 80 % of the applied alkali and about

60 % of the added chlorine is detected. The discrepancy between the amounts of

alkali and chlorine found is attributed to the formation of alkali chromate with the

simultaneous release of HCl(g) (see ‘‘Discussion’’ section).

After 24 h of exposure 44 % of the applied Na? was retrieved while the

corresponding value for K? was only 19 %. Very little chlorine remained on the two

samples. In the case of KCl the amount of potassium ions found after 24 h

corresponds to the amount of chromate detected. In contrast, after 24 h the amount

of sodium ions found on the NaCl treated samples exceeds the amount of chromate.

After 168 h the NaCl treated samples showed essentially the same amounts of

soluble ions as after 24 h. In contrast, the KCl treated samples show a decrease in

the amount of chromate and of potassium from 24 to 168 h of exposure.

Table 4 shows the IC analysis of the samples exposed in the presence CaCl2. After

1 h of exposure 52 % of the applied Ca2? was detected. There is a strong decrease in

the amount of chloride ions (12 % of the added amount being detected) which is

attributed to the thermal decomposition and reaction of CaCl2, forming CaO,

Ca2Fe2O5 and HCl(g). A small amount of CrO4
2- has formed, corresponding to 2 %

of the theoretical yield of CaCrO4. After 24 h the amount of chromate has increased
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slightly but is still just a few percent of the theoretical yield. It is suggested that CaCl2
has decomposed completely at this stage. Thus, the small amount of chlorine found is

Table 2 Water soluble ions by ion chromatography after 1, 24 and 168 h exposure at 600 �C in

5 %O2 ? 40 %H2O in the presence of NaCl

1 h 24 h 168 h

Fraction of Cl-

remaining

65 % 4 % 3 %

Fraction of Na?

remaining

79 % 44 % 48 %

Chromate (CrO4
2-)

formation, (percent

of theoretical yield)

16 % 30 % 33 %

Fraction of added Na?

not accounted fora
21 % 56 % 52 %

Fraction of added Cl-

not accounted fora
19 % 66 % 64 %

Suggested molar

balance for added

NaCl

64 % NaCl, 16 %

Na2CrO4, 20 %

lost as NaCl(g)

4 % NaCl, 30 % Na2CrO4,

10 % ‘‘Na2Fe2O4’’,

56 % lost as NaCl(g)

3 % NaCl, 33 % Na2CrO4,

12 % ‘‘Na2Fe2O4’’,

52 % lost as NaCl(g)

1.35 lmol Na?/cm2 was added per sample. The amount of ions found is expressed as the percentage

remaining of the amount added or (for CrO4
2-) in percent of the theoretical yield

a The NaCl not accounted for by the IC analysis is attributed to vaporization of NaCl. Small amounts of

NaCl may also be lost during handling. The relative standard deviation of the analysis corresponds to

about ±5 %

Table 3 Water soluble ions by ion chromatography after 1, 24 and 168 h exposure at 600 �C in

5 %O2 ? 40 %H2O in the presence of KCl

1 h 24 h 168 h

Fraction of Cl-

remaining

59 % 2 % 2 %

Fraction of K?

remaining

78 % 19 % 12 %

Chromate (CrO4
2-)

formation, (percent of

theoretical yield)

18 % 20 % 11 %

Fraction of added K? not

accounted fora
22 % 81 % 88 %

Fraction of added Cl-

not accounted fora
42 % 78 % 87 %

Suggested approximate

molar balance for

added KCl

60 % KCl, 18 %

K2CrO4, 22 %

lost as KCl(g)

2 % KCl, 18 %

K2CrO4, 80 %

lost as KCl(g)

1 % KCl, 11 % K2CrO4, 88 %

lost as KCl(g) and by

decomposition of K2CrO4

1.35 lmol of K? was added per sample. The amount of ions found is expressed as the percentage

remaining of the amount added or (for CrO4
2-) in percent of the theoretical yield

a The KCl not accounted for by the IC analysis is attributed to vaporization of KCl. Small amounts of KCl

may also be lost during handling. The relative standard deviation of the analysis corresponds to about ±5 %
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attributed to the transition metal chlorides detected by SEM/EDX (see Fig. 13).

Extending the exposure time to 168 h does not change the results appreciably.

Discussion

Previous studies show that 304L initially forms a smooth, thin (\200 nm) Cr-rich (Fe,

Cr)2O3 protective scale in dry O2 at 600 �C [19–21]. In the presence of water vapor

chromium is volatilized by formation of CrO2(OH)2 on the oxide surface [19, 20, 22]:

Cr2O3ðsÞ þ 2H2OðgÞ þ 1:5O2ðgÞ� 2CrO2ðOHÞ2ðgÞ
DG ¼ 105 kJ=mol; peqðCrO2ðOHÞ2Þ
¼ 0:02� 10�6 bar at 600 �C; 5 %O2; 40 %H2O

ð1Þ

Chromium volatilization depletes the protective oxide and the steel substrate in

chromium. If the chromium content drops below a critical level the oxide loses its

protective properties and an iron-rich, rapidly growing oxide forms. Therefore, the

supply of chromium to the oxide by diffusion in the metal must match the

Table 4 Water soluble ions by ion chromatography after 1, 24 and 168 h exposure at 600 �C in

5 %O2 ? 40 %H2O in the presence of CaCl2

1 h 24 h 168 h

Fraction of Cl-

remaining

12 % 2 % 1 %

Fraction of soluble

Ca2? remaining

52 % 44 % 43 %

Chromate (CrO4
2-)

formation,

(percent of

theoretical yield)

2 % 4 % 5 %

Fraction of added

Ca2? not

accounted fora

48 % 56 % 57 %

Fraction of added

Cl- not

accounted forb

88 % 98 % 99 %

Suggested molar

balance for Ca2?
2 % CaCrO4, 50 % as partially

decomposed CaCl2 and CaO,

48 % Ca2Fe2O5 and lost by

spallation

4 % CaCrO4, 39 %

CaO, 56 %

Ca2Fe2O5 and lost

by spallation

5 % CaCrO4, 38 %

CaO and 57 %

Ca2Fe2O5 and lost

by spallation

Suggested molar

balance for Cl-
12 % present as partially dec.

CaCl2, 88 % lost as HCl(g) by

th.dec. of CaCl2

2 % present as

FeCl2, 98 % lost as

HCl(g) by th.dec.

of CaCl2

1 % present as FeCl2,

99 % lost as

HCl(g) by th.dec. of

CaCl2

1.35 lmol Ca2?/cm2 was added per sample. The amount of ions found is expressed as the percentage

remaining of the amount added or (for CrO4
2-) in percent of the theoretical yield

The relative standard deviation of the analysis corresponds to about ±5 %
a The Ca2? not accounted for by IC is attributed mainly to formation of Ca2Fe2O5. There were also

substantial losses by scale spallation
b The chloride not accounted for by IC is attributed mainly to thermal dec. of CaCl2
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evaporation rate to maintain the protective properties of the oxide. At the alloy grain

boundaries the diffusion is higher compared to the center of the steel grains. Hence,

the oxidation behavior of the steel surface depends on the distance to a grain

boundary. This explains why ‘‘islands’’ consisting of thick oxide form on central

parts of the underlying steel grains while the areas close to a grain boundary retain a

thin slow-growing oxide (see Fig. 3a, e). The oxide islands consist of an outer

hematite (Fe2O3) and inner spinel-type ((Fe, Cr, Ni)3O4) layer [23].

In general, any process that depletes the protective oxide and the steel substrate

in chromium is expected to make the stainless steel more vulnerable to high

temperature corrosion. The present study explores chromate formation as a

mechanism for chromium depletion, showing that both NaCl or KCl can trigger a

breakdown of the protective oxide on 304L by formation of Na2CrO4 and K2CrO4,

respectively (see Figs. 5, 6, 8, 9 and Tables 2, 3) [24]:

Cr2O3ðsÞ þ 4NaClðsÞ þ 2H2OðgÞ þ 3=2O2ðgÞ� 2Na2CrO4ðsÞ þ 4HClðgÞ
DG ¼ 163 kJ=mol; peqðHClÞ ¼ 740� 10�6 bar at 600 �C; 5 %O2; 40 %H2O

ð2Þ

Cr2O3ðsÞ þ 4KClðsÞ þ 2H2OðgÞ þ 3=2O2ðgÞ� 2K2CrO4ðsÞ þ 4HClðgÞ
DG ¼ 147 kJ=mol; peqðHClÞ ¼ 1303� 10�6 bar at 600 �C; 5 %O2; 40 %H2O

ð3Þ

The results show that chromate formation starts during the first exposure hour. After

24 h, chromates can be detected all over the surface which indicates that both KCl

and NaCl diffuses out from the salt particle and react with the protective oxide that

initially forms. It is proposed that chromium depletion of the protective oxide by

reactions (2) and (3) result in a breakdown of the protective properties of the oxide,

triggering the formation of a rapidly growing iron-rich scale. This is in accordance

with earlier reports on the influence of KCl on the high temperature corrosion of

304L [12–14]. The resulting thick scale consists of an outer hematite layer and an

underlying (Fe, Cr, Ni) spinel type oxide (see Figs. 11, 12) [16]. It is expected that

this two-layered scale is poorly protective and the formation appears to be much

faster compared to the breakdown triggered by chromium oxide hydroxide vola-

tilization in the absence of salt.

As shown in Tables 2 and 3, about 60 % of the salts is still unreacted after 1 h.

Furthermore, considerable amounts of alkali chromate have formed already during

this first hour. However, about 20 % of the salts are not accounted for by the IC

analysis and it is suggested that this is because of vaporization of the salts. The

equilibrium partial pressure of NaCl and KCl at 600 �C are 1.4 9 10-6 bar and

3.3 9 10-6 bar, respectively [24]. The results show that chromate formation and

volatilization of the salt continues during the first 24 h. It may be noted that the

amount of chromate on the surface is similar after 24 and 168 h in the case of NaCl.

In contrast, the amount of chromate decreases significantly with time in the case of

KCl, suggesting that K2CrO4 tends to decompose. The decomposition of potassium

chromate by reaction with water is not thermodynamically favoured: permeable for

oxide and chloride ions. Thus, the scale structure is similar to the oxide islands
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formed on 304L in O2 ? H2O environment in the absence of salt. The destruction of

the protective scale by chromate [24]

K2CrO4ðsÞ þ 2H2OðgÞ� 2KOHðlÞ þ CrO2ðOHÞ2ðgÞ
DG ¼ 348 kJ=mol; peqðCrO2ðOHÞ2Þ ¼ 8� 10�23 bar at 600 �C; 40 %H2O

ð4Þ

Decomposition to Cr2O3 by water is also not favoured [24]:

K2CrO4ðsÞ þ H2OðgÞ� 2KOHðlÞ þ 1=2Cr2O3ðsÞ þ 3=4O2ðgÞ
DG ¼ 231 kJ=mol; at 600 �C; 40 %H2O

ð5Þ

Instead, it is argued that potassium chromate decomposes electrochemically. The

oxidation of metals in oxygen gas at high temperature is usually described in terms

of a mechanism where molecular oxygen is reduced on the scale surface while metal

is being oxidized at the scale/metal interface, the two reactions being coupled by

electronic and ionic currents through the scale. In this scenario oxygen is thus

cathodically reduced at the scale surface. It is argued that in the present case the

reduction of alkali chromate provides an alternative cathodic process:

K2CrO4ðsÞ þ 3e� þ H2OðgÞ� 2KOHðlÞ þ 1=2Cr2O3ðsÞ ð6Þ

The cathodic current is provided by metal oxidation:

FeðsÞ� Fe2þ þ 2e� ð7Þ

CrðsÞ�Cr3þ þ 3e� ð8Þ

The potassium hydroxide formed in this way can either react with the surface oxide

or be volatilized [24]:

2KOHðlÞ þ Fe2O3ðsÞ�K2Fe2O4ðsÞ þ H2OðgÞ
DG ¼ �44:7 kJ at 600 �C

ð9Þ

KOHðlÞ�KOHðgÞ
DG ¼ 72 kJ; peqðKOHðgÞÞ ¼ 4:9� 10�5 bar at 600 �C

ð10Þ

Because of its high equilibrium vapour pressure, KOH is not likely to be present in

pure form at 600 �C.

Considering its similarity to K2CrO4 it is expected that Na2CrO4 would

decompose in a similar way (i.e. forming NaOH):

Na2CrO4ðsÞ þ 3e� þ H2OðgÞ� 2NaOHðlÞ þ 1=2Cr2O3ðsÞ ð11Þ

However, the results show that the amount of sodium chromate does not decrease

with time as in the case of potassium chromate. Another significant difference

between the effects of KCl and NaCl is that while the amount of K? corresponds to

the number of moles of chromate and chloride detected, the amount of Na? exceeds

the number of moles of chromate and chloride found, suggesting alkaline condition

on the surface. The disparity between Na and chromate ? chlorine was confirmed

by EDX point analysis. It is suggested that these differences are explained by the
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lower volatility of NaOH compared to KOH. Thus, the equilibrium vapour pressure

over the corresponding pure condensed phase at 600 �C is 5.3 9 10-7 and

4.9 9 10-5 bar for NaOH and KOH respectively. This means that while the

decomposition of K2CrO4 produces KOH, which is easily vaporized, the NaOH

formed by decomposition of Na2CrO4 is expected to accumulate on the surface, in

accordance with our observations. The alkaline environment created in this way is

suggested to slow down the decomposition of Na2CrO4 (11).

The sodium hydroxide accumulated on the surface may react with iron oxide,

forming sodium ferrate(III) [24]:

2NaOHðlÞ þ Fe2O3ðsÞ�Na2Fe2O4ðsÞ þ H2OðgÞ
DG ¼ �61 kJ at 600 �C

ð12Þ

Alkali ferrate(III) may also form by reaction of the applied salt with hematite [24]:

2NaClðsÞ þ Fe2O3ðsÞ þ H2OðgÞ�Na2Fe2O4ðsÞ þ 2HClðgÞ
DG ¼ 191 kJ=mol; pðHClÞ ¼ 1:2� 10�6 bar at 600 �C; 40 %H2O

ð13Þ

2KClðsÞ þ Fe2O3ðsÞ þ H2OðgÞ�K2Fe2O4ðsÞ þ 2HClðgÞ
DG ¼ 260 kJ=mol; pðHClÞ ¼ 1:03� 10�8 bar at 600 �C; 40 %H2O

ð14Þ

It may be noted that the formation of sodium ferrate is much more favoured

compared to potassium ferrate. It is therefore suggested that the greater stability of

sodium chromate in comparison to potassium chromate can be attributed to the

more alkaline conditions that prevail on the NaCl-treated samples.

In spite of these differences regarding corrosion chemistry, it is important to note

that the corrosion effect of NaCl and KCl are generally speaking quite similar in

these conditions.

In contrast to NaCl and KCl, CaCl2 is only slightly corrosive under the exposure

conditions. One explanation is that CaCl2 is readily converted to CaO [24]:

2CaCl2 þ H2O�CaOþ 2HClðgÞ
DG ¼ 119 kJ; pHCl ¼ 169� 10�6 bar at 600 �C; 40 %H2O:

ð15Þ

Accordingly, the quantitative analysis of the samples after oxidation (Table 4) show

that only 12 % of the added chloride remains on the surface after 1 h of oxidation.

This indicates that most of the CaCl2 has been converted to CaO at this stage.

However, XRD analysis gave only weak diffraction from CaO while no evidence

was found for CaCl2 or its hydrates. The thermal decomposition of CaCl2 to CaO is

known to proceed through intermediate steps and several calcium-hydroxychlorides

and -oxychlorides have been described (e.g. Ca(OH)Cl) [18]. These compounds are

metastable and tend to be poorly crystalline. Thus, the chloride remaining on the

surface after 1 h of exposure is mainly attributed to calcium-hydroxychlorides and

–oxychlorides. After 24 h only 2 % of the added chloride remains. At this stage

there is strong diffraction from CaO and Ca2Fe2O5. The latter compound corre-

sponds to the iron- and calcium-rich band seen in Fig. 10, encircling a former CaCl2
agglomeration. Apparently, reaction (15) is now completed and parts of the CaO
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formed has reacted further with iron oxide at the scale/gas interface (reaction 16)

[24].

Fe2O3ðsÞ þ 2CaOðsÞ�Ca2Fe2O5ðsÞ
DG ¼ �63 kJ=mol at 600 �C

ð16Þ

Because of its rapid thermal decomposition, CaCl2 does not have the opportunity

to react extensively with the chromium-rich oxide as is the case for NaCl and KCl.

However, small amounts of calcium chromate are detected around the former CaCl2
agglomerates (reaction 17).

Cr2O3ðsÞ þ 2CaCl2ðsÞ þ 2H2OðgÞ þ 3=2O2ðgÞ� 2CaCrO4ðsÞ þ 4HClðgÞ
DG ¼ 127 kJ=mol; pHCl : 2602� 10�6 bar at 600 �C; 5 %O2; 40 %H2O

ð17Þ

Calcium chromate can also form by reaction with CaO (reaction 18). Because of

the poor mobility of CaO, Ca does not spread over the surface and the reaction

between Ca and the protective oxide is limited [24].

Cr2O3ðsÞ þ CaOðsÞ þ 3=2O2ðgÞ� 2CaCrO4ðsÞ
DG ¼ �112 kJ=mol at 600 �C; 5 %O2

ð18Þ

Because of the small extent of chromate formation, the protective oxide is not

chromium depleted in a major way, explaining why exposure in the presence of

CaCl2 does not result in accelerated corrosion, compared to the reference exposure,

in the absence of salt. Accordingly, the oxidation morphology is similar to that

observed in 5 %O2 ? 40 %H2O environment in the absence of salt [23]. Thus,

Fig. 13 shows a two-layered oxide consisting of an outer iron-rich part and an inner

layer that contains iron, chromium and nickel. In the area previously covered by

CaCl2, three scale layers can be detected. The outer part is rich in Fe and Ca

(corresponding to Ca2Fe2O5). The middle and bottom parts correspond to the scale

formed away from the salt agglomeration. Thus, the middle part is iron-rich together

with small amounts of chromium (probably corresponding to Fe2O3) while the inner

part contains iron, chromium and nickel (spinel oxide, (Fe, Cr, Ni)3O4). Noticeable

is that the bottom spinel oxide layer is thinner than the corresponding oxide formed

adjacent to the former salt agglomerate. This may indicate that the top Ca2Fe2O5

layer acts as a barrier. The slightly lower mass gain of the CaCl2 exposed samples

compared to the salt free exposures is not considered to be significant because of the

occurrence of substantial scale spallation at the location of the former CaCl2
agglomerations (see Fig. 4). Spallation is also suggested to explain why the Ca2?

content decreases with time, see Table 4. In addition, the thermal decomposition of

CaCl2 forming CaO and HCl(g) also contributes to a lower mass gain. All the

chlorine added corresponds to 0.09 mg/cm2.

Figure 13 also shows two small areas enriched in chlorine at the metal/oxide

interface. This corresponds to sub-scale transition metal chlorides formed by the

alloy. It is suggested that the small amounts of chloride detected by IC analysis can

be attributed to such sub-scale chlorides. It appears that the chloride accumulations

do not influence corrosion in a major way in the present case.
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Conclusions

The presence of KCl and NaCl strongly accelerates the high temperature corrosion

of 304L stainless steel in 5 %O2 ? 40 %H2O environment. The corrosion is

initiated by the formation of alkali chromate(VI) through the reaction of alkali with

the protective oxide. Chromate formation is a sink for chromium in the oxide and

leads to a loss of its protective properties. Subsequently a rapidly growing scale

forms, consisting of an outer hematite layer with chromate particles on top and an

inner layer consisting of spinel oxide, (Fe, Cr, Ni)3O4. While the extent of corrosion

attack is similar for samples exposed to NaCl and KCl, some differences are

observed. Thus, the amount of Na2CrO4 formed was higher compared to K2CrO4,

the latter compound decomposing with time. Furthermore, the samples exposed in

the presence of NaCl formed a corrosion product containing Na, Fe and O, possibly

Na2Fe2O4. In contrast, the only alkali-containing product forming on the KCl-

treated samples was K2CrO4. These differences are attributed to the greater

volatility of KOH compared to NaOH.

In contrast to NaCl and KCl, CaCl2 is not very corrosive. Under the exposure

conditions CaCl2 is rapidly converted to CaO. Because of the poor mobility of CaO,

only small amounts of CaCrO4 form where CaO is in direct contact with the scale.

CaO also reacts with the scale to form Ca2Fe2O5.
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