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Abstract—In this paper, we propose a sequential, fast DOA
tracking technique using the measurements of a uniform linear
sensor array in the far field of a set of narrow band sources. Our
approach is based on sparse approximation technique LASSO
(Least Absolute Shrincage and Selection Operator), which has re-
cently gained considerable interest for DOA and other estimation
problems. Considering the LASSO optimization as a Bayesian
estimation, we first define a class of prior distributions suitable
for the sparse representation of the model and discuss its relation
to the priors over DOAs and waveforms. Inspired by the Kalman
filtering method, we introduce a nonlinear sequential filter on
this family of distributions. We derive the filter for a simple
random walk motion model of the DOAs. The method consists
of consecutive implementation of weighted LASSO optimizations
using each new measurement and updating the LASSO weights
for the next step.

I. INTRODUCTION

The Direction of Arrival (DOA) tracking problem has been

a central research topic for a long time due to its wide range

of application. The problem considered here is to estimate

a sequence of DOAs using a model consisting of the mea-

surement and time evolution rules. As an estimation problem,

one may obviously apply the classical estimation rules such

as the ML method to obtain the DOA estimates. However,

this is generally a complex method. Furthermore, one may be

interested in a sequential estimating technique to be able to

follow time-varying scenarios.

The DOA tracking problem is closely related to the simpler

problem of DOA estimation in which it is assumed that there

is no DOA evolution. One obvious tracking technique in a

general case is to use a DOA estimator for each individual

measurement and try to correct them by the movement model.

From a statistical point of view, the primal DOA estimates

play the role of prior knowledge for the estimation over the

evolution model. Such a method also needs a long compu-

tational time because of the data association problem. Still,

a good tracking technique can be achieved by generalizing

the one-snapshot DOA estimation to multiple snapshots. A

widely used methodology is to follow the ideas of Kalman

filtering. The idea is to represent the knowledge of previous

measurements by a conditional distribution, which serves as a

prior for the DOA estimation at the current time. The DOA

estimation technique is then generalized to admit the prior as

a Bayesian estimator. In [1], a subspace method is introduced

as a sequential estimator.

In the context of DOA estimation, the Least Absolute and

Shrinkage Operator (LASSO) sparse regression technique [2]

has recently been utilized by reformulating the measurement

model in a sparse framework [3]. This representation resolves

the permutation problem. In [4] the LASSO is introduced

as a Bayesian DOA estimation by a Laplacian prior. The

LASSO based DOA estimator consists of representing the

discretized measurement model as a noisy under-determined

linear regression. It is solved by the LASSO technique, which

is a linear least square problem regularized by the ℓ1 norm

of the parameter vector as a measure of sparsity. In [5], the

possibility of re-weighting the LASSO technique for a better

estimation is discussed.

Following the Kalman methodology, we try to generalize

the LASSO technique to admit an adaptive prior through

weighting the regularization parameters. Clearly the calcula-

tion time increases linearly with the number of snapshots. We

express the past information at the current time by a weight

updating rule. This can be done by applying the Bayes rule

for the sparse parameter vector with a Laplacian distribution.

However, since the time evolution model is represented by

the DOA parameters, we introduce a rule to rearrange the

distribution in different representation domains.

II. SYSTEM MODEL

Suppose a uniform linear array of m sensors in the far field

of a set of n sources, each sending a narrow band signal

with complex envelope samples si(t) , i = 1, 2, . . . , n, and

t = 1, 2, . . .. The sensors are separated by d in wavelengths.

The sources are also characterized by their position angle

θi(t) with respect to the array axis at the tth sampling

time. Then, neglecting the Doppler effect, constant phase

shift, delay and scaling, the measured signal vector x(t) =
[x1(t) x2(t) . . . xm(t)]T 1 at time t by the array can be written

as

x(t) = A(θ(t))s(t) + n(t), (1)

where θ(t) = [θ1(t) θ2(t) . . . θn(t)]
T , s(t) =

[s1(t) s2(t) . . . sn(t)]
T , n(t) is the zero-mean, circularly

symmetric (E [n(t)nT (t))] = 0) Gaussian measurement noise

vector with covariance matrix E [n(t)nH(t))] = σ2
I

and A(θ) = [a(θ1) a(θ2) . . .a(θn)] is the matrix

of steering vectors at the DOA vector θ with

a(θ) = [1 ej2πd cos θ ej4πd cos θ . . . ej2π(m−1)d cos θ]T as

the steering vector. We also define φ = 2πd cos θ as the

electrical angle.

The DOA sequence is a process which follows an evolution

model. Normally, the process is Markov. This means that for

1We denote the transpose, conjugate transpose (Hermitian), and statistical
expectation operators by (. )T , (. )H , and E [. ] respectively.
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each sequence t1, t2, . . . , tT of increasing sample times, we

have

p(θ(1), θ(2), . . . ,θ(T )) = p(θ(1))
T
∏

i=2

p(θ(i)|θ(i− 1)), (2)

where p(. ) denotes the PDF (Probability Density Function) of

the argument. The problem is to estimate a sequence of DOAs

θ̂(t) given a sequence of observations x(t). One may try to

solve the problem using statistical methods [6]. Practically, this

is hard to perform. Note that the model p(θ(t)|θ(t − 1)) is

related to a continuous evolution. This implies that the model

is represented by a measure of closeness over the ordered set θ.

This makes the problem complicated because of an unknown

permutation in the representation of θ, which brings up the

computationally costly problem of data association. To avoid

this problem, we introduce the sparse representation which is

used with the LASSO based DOA estimation method [7].

III. SPARSE REPRESENTATION

Like [7], we discretize the problem using a finite grid θ
G =

{θg1 , θ
g
2 , . . . , θ

g
N} with a sufficiently large number of elements

N . Assuming θ
g
i1
(t), θgi2 (t), . . . θ

g
in
(t) as the closest points in

the grid to the true DOAs θ1, θ2, . . . , θn, and defining

s
g
k(t) =

{

sl(t) k = il(t)
0 otherwise

, (3)

we observe from (1) that

x(t) ≈ A
g
s
g(t) + n(t), (4)

where A
g = A(θG) = [a(θg1) a(θg2) . . . a(θ

g
N )] and s

g(t) =
[sg1(t) s

g
2(t) . . . s

g
N (t)]T . The approximation improves as θ

G

becomes denser. The problem can be solved for one snapshot

without the evolution model by minimizing the following

function [3], known as the LASSO method

L (sg) =
1

2
‖x−A

g
s
g‖22 + λ‖sg‖1, (5)

where ‖sg‖1 =
N
∑

i=1

|sgi | is the ℓ1 norm of s
g . We neglect the

time arguments since there is only one snapshot. In [5] it is

shown that the performance of such a method might be im-

proved by weighting the second term, so that the minimization

is over

Lw(s
g) =

1

2
‖x−A

g
s
g‖22 +

N
∑

i=1

λi|s
g
i |. (6)

The optimizations such as (5) and (6) are convex and can be

solved by relatively fast convex optimization techniques [8].

A. Weighted LASSO as a Bayesian Estimator

In [7], the LASSO technique has also been interpreted as a

Maximum A posteriori Probability estimator with a Laplacian

prior. However, there are ambiguities in this definition, since

the sparse points are unlikely to happen in such a Laplacian

model. In this section we try to illustrate the situation.

Note that increasing λi in (6) increases the relative impor-

tance of the absolute value of the ith source, and thus decreases

the chance of this source to be nonzero. We conclude that

there exists a relation between the weights λi and the prior

knowledge about the DOAs. Now, we start by a natural way

of imposing prior considerations in the sparse representation,

by assuming independent Bernoulli priors with very small

probability of occurrence pi for each DOA θ
g
i in θ

G. This

method is further discussed in [9]. For such a prior, the

negative logarithm of the likelihood function can be written

as

− ln p(x|sg) =
1

2σ2
‖x−A

g
s
g‖22 −

N
∑

i=1

γ(si) ln
pi

1− pi
+ c,

(7)

where c is a constant and

γ(s) =

{

1 s 6= 0
0 s = 0

, (8)

is the indicator function. Comparing (7) and (6) we observe

that the absolute value |s| plays the role of a term proportional

to the indicator function, while

− ln
pi

1− pi
≃ λλi. (9)

Where λ is suitable normalizing factor. We use this relation

later to exchange the Laplacian priors with Bernoulli ones

whenever it is necessary.

IV. KALMAN FILTERING

The idea of Kalman filtering applied to sparse regression

problems [10] is to concentrate the DOA information from past

observations into a PDF (in our case pi), which can be imposed

to the estimation by the current observation and a Bayesian

method. For our case and for the Bernoulli interpretation we

can introduce

pi(t|t) = p(θi(t)|x(1),x(2), . . . ,x(t))

pi(t|t− 1) = p(θi(t)|x(1),x(2), . . . ,x(t− 1)). (10)

The updating steps can be found using the Bayes rule. Note

that having pi(t|t− 1) at hand we can find the corresponding

Laplacian prior using (9). Then,

p(sg(t)|x(1),x(2), . . . ,x(t)) ∝

p(x(t)|sg(t))p(sg(t)|x(1),x(2), . . . ,x(t− 1)). (11)

Using (9) again, we can find pi(t|t). For the next step of

computing pi(t+1|t) from pi(t|t) we need a motion model. We

assume a simple random walk model, in which the probability

of a source at angle θj to move to θi is given by p(θi|θj).
Using the Markov property in (2) , the first order expansion

of pi(t+ 1|t) can be written as

pi(t+ 1|t) ≈ K

N
∑

j=1

p(θi|θj)pj(t|t) (12)

where K is a constant. The approximation means that we

neglect the probability that two or more sources gather to the

same point at the next time, which is practically acceptable.
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A. A LASSO based Sequential Bayesian Estimator

Generalizing the LASSO idea at each time, we assume a

Laplacian prior of the form

− ln p(sg(t)|x(1),x(2), . . . ,x(t− 1)) =

N
∑

i=1

µi(t)|s
g
i |+ c,

(13)

where c is a constant, and estimate directions using (6). The

idea is to find a proper prior in this family for the next

time using (10), (11), and (12). However, this turns out to

be difficult without reasonable approximations. Using (11) we

have

− 1
σ2 ln p(s

g(t)|x(1),x(2), . . . ,x(t))

= 1
2‖x(t)−A

g
s
g(t)‖22 +

N
∑

i=1

λi(t)|s
g
i |+ c′, (14)

where λi(t) = σ2µi(t) and c′ is another constant. Running the

LASSO optimization we find out the MAP estimates ŝ
g(t).

The negative log-likelihood function can then be expanded

about this point. Introducing I = {i1, i2, . . . , in} as the

set of all active indexes with nonzero ŝi
g(t), we get after

straightforward calculations

− 1
σ2 ln p(sg(t)|x(1),x(2), . . . ,x(t))

≈ Lw(ŝ
g(t))

+
∑

i/∈I

λi(t)|s
g
i (t)|+Re(sgi (t)

∗
a
H(θgi )n̂(t)) + c′

=
∑

i/∈I

|sgi (t)|(λi + νi(t) cos(φi − ρi(t))) + c′′, (15)

where Lw(. ) is given in (6), n̂(t) = x(t) − A
g
ŝ
g(t),

νi(t)e
jρi(t) = a

H(θgi )n̂(t), and s
g
i (t) = |sgi (t)|e

jφi . However,

(15) is not of the Laplacian form, which can be transformed

to a Bernoulli one over the DOAs. This means that the

measurement not only gives information about the DOAs,

but it also provides information about the waveforms which

should be integrated out. It is straightforward to generalize (9)

for this new case by replacing the absolute function with the

normalized indicator function. We skip some computational

steps that eventually leads to

pi(t|t)

1− pi(t|t)
=

∫ 2π

0

e−λ(λi+νi cos(φ−ρ)dφ

= e−λλiI0(λνi) ≈ e−λ(λi(t)−νi(t)), (16)

where λ is a constant and I0(. ) is the zeroth order modified

Bessel function [11]. The approximation comes from the fact

that the Bernoulli probabilities are very small. Thus, λ is very

large and the Bessel function reaches its asymptotic value.

Note that because pi(t|t) is small we can also write

pi(t|t) ≈ e−λ(λi−νi), (17)

which completes the measurement update state. Next, we can

use (12) to compute pi(t+ 1|t).

B. DOA Tracking For a Simple Motion Model

Now we simplify (12) for the simple but important case of

a random walk with finite lags l. Suppose p(θ′|θ) is given by

p(θk|θi) =

{

αk−i |k − i| ≤ l

0 otherwise
, (18)

with
∑l

i=−l αi = 1. Then, from (9), (17), and (12), consider-

ing small values for the Bernoulli probabilities we get

λi(t+ 1) ∝ − ln
[

K
∑l

k=−l αke
−λ(λi+k(t)−νi+k(t))

]

≃ max
k∈{−l,...,l}

− ln(Kαk) + λ(λi+k(t)− νi+k(t)), (19)

where we used the fact that λ is large in the approximation.

Note that to achieve the right weights, the proportionality

constant in (19) should be of the order of λ, which makes

the first term negligible in (19). Thus, we get

λi(t+ 1) ≈ λ′ max
k∈{−l,...,l}

(λi+k(t)− νi+k(t)), (20)

We can now summarize the proposed method. Given a

sequence of weights λi(t) at time instant t, and receiving

the measurement vector x(t) we can implement (6) to get

the DOA estimates at time t. The weights may need to be

multiplied by a constant in order to get the true number of

sources. This is almost similar to the problem of regularization

parameter selection in [7], which can also be solved by greedy

algorithms [12] when the number of sources is known or

model order selection methods [13] otherwise. By this method

we actually solve for the λ′ in (20). At this point we get new

weights λ′λi(t). Then, we can form νi(t) in (15) and update

the weights by

λi(t+ 1) = max
k∈{−l,...,l}

(λ′λi+k(t)− νi+k(t)). (21)

we are now ready for the next measurement etc.

V. NUMERICAL RESULTS

We implemented the proposed technique by a greedy

weighted LASSO algorithm at each step. We examine our

method in two cases. First, we assume a scenario in which

the sources do not move and the SNR is low. Second, we try

a moving scenario with higher SNRs. We compare the results

to the separate DOA estimation method (i.e. without using a

tracking technique).

Figure 1 shows the weights for the low-noise fixed sources

case with l = 3 in (18). As can be seen, the weights

corresponding to the true directions keep small values while

the other weights start to increase. This shows a kind of

increasing certainty about the DOAs, which makes a different

choice unlikely. Practically, at each step, λ′ gets smaller since

the weights increase. This affects the performance of the

greedy algorithm. To avoid such a situation we introduce a

normalization step after (21). Note that it does not affect the

estimates but the robustness of the greedy method. Although

in such a case the combination method in [3] may give better

results, the proposed method’s complexity grows linearly with

the number of snapshots while that of the method in [3]
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Fig. 1. The LASSO weights for SNR=10dB and 3 sources at fixed DOAs
50, 80, and 150 degrees. The weights grow larger by time.
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Fig. 2. The contour plot of the LASSO based DOA spatial spectrogram
for multiple snapshots of moving objects at SNR=0 dB. The motion starts
from DOAs 50, 80, and 150 degrees with velocity v = [−1 1 0] degrees
per snapshot. Figure (a) shows the disjoint process while Figure (b) show the
proposed method.

increases polynomially. The results are obviously better than

the disjoint process.

Figure 2(b) shows the result of applying the LASSO based

DOA tracking method to the multiple snapshot case with the

true DOAs moving with velocity v = [−1 1 0] degrees per

snapshot. One may compare the results to the separate process

in Figure 2(a). Clearly, the proposed method is more robust

to the measurement noise.

VI. CONCLUDING REMARKS

In this paper we discussed the possibility of combining the

multiple measurement information to obtain a low-complexity

sequential estimation method. We assumed a narrow-band far-

field array measurement and a simple random walk evolution

model over time. We obtained a sequential Bayesian estimator

by updating the weights in the weighted LASSO based DOA

estimator in each snapshot. This was done by reinterpreting

the Laplacian prior in the LASSO as an approximation to the

more accurate Bernoulli model.

We showed that the method decreases the uncertainty by

increasing the difference between weights of active and non-

active generalized sources at each time innovation up to a limit

defined by the evolution model uncertainty. We observe that

the first order Bernoulli approximation works well. At low

SNRs, the method occasionally fails due to the fact that there

might not be any solution with a correct number of sources.

This shows the main drawback of assuming a fixed number

of sources and achieving such a solution by a greedy method.

Furthermore, there is no possibility of adding or removing new

sources, which is a benefit of using the Bernoulli model. The

solution with a certain level of sparsity is sometimes hard to

follow by the algorithm. In this manner a model order selection

technique can be applied in each step. The current method also

fails when the sources get too close to each other. It might be

further enhanced by improving the approximation in (10) or

the model in (17).
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