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Abstract

A peak to average power ratio (PAPR) reduction method is proposed that exploits the precoding or beamforming
mode in WiMAX. The method is applicable to any OFDM/A systems that implements beamforming using
dedicated pilots which use the same beamforming antenna weights for both pilots and data. Beamforming
performance depends on the relative phase shift between antennas, but is unaffected by a phase shift common to
all antennas. PAPR, on the other hand, changes with a common phase shift and this paper exploits that property.
An effective optimization technique based on sequential quadratic programming is proposed to compute the
common phase shift. The proposed technique has several advantages compared with traditional PAPR reduction
techniques in that it does not require any side-information and has no effect on power and bit-error-rate while
providing better PAPR reduction performance than most other methods.
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1. Introduction
Many recent wide-band digital communication systems
use a multi-carrier technology known as orthogonal-fre-
quency-division-multiplexing (OFDM), where the band
is divided into many narrow-band channels. A key bene-
fit of OFDM is that it can be efficiently implemented
using the fast-fourier-transform (FFT), and that the
receiver structure becomes simple since each channel or
sub-carrier can be treated as narrow-band instead of a
more complicated wide-band channel. Orthogonal-fre-
quency-division-multi-access (OFDMA) is a similar
technique, but the bands can be occupied by different
users.
Although OFDM and OFDMA have many benefits

contributing to its popularity, a well-known drawback is
that the amplitude of the resulting time domain signal
varies with the transmitted symbols in the frequency
domain. From OFDM symbol to OFDM symbol, the
maximum amplitude can vary dramatically depending
on the transmitted symbols. If the maximum amplitude
of the time domain signal is large, it may push the
amplifier into the non-linear region which creates many

problems that reduce performance. For example, it
breaks the orthogonality of the sub-carriers which will
result in a substantial increase in the error rate. A com-
mon practice to avoid this peak-to-average-power-ratio
(PAPR) problem is to reduce the operating point of the
amplifier with a back-off margin. This back-off margin
is selected so that it avoids most of the occurrences of
high peaks falling in the non-linear region of the ampli-
fier. Of course, it is desirable to have a minimum back-
off margin since operating the amplifier below full
power reduces the range of the system, as well as the
efficiency of the amplifier.
PAPR reduction is a well-known signal processing

topic in multi-carrier transmission and large number of
techniques have been proposed in the literature during
the past decades. These techniques include amplitude
clipping and filtering, coding [1], tone reservation (TR)
[2,3] and tone injection (TI) [2], active constellation
extension (ACE) [4,5], and multiple signal representa-
tion methods, such as partial transmit sequence (PTS),
selected mapping (SLM), and interleaving [6]. The exist-
ing approaches differ in terms of requirements and
restrictions they impose on the system. Therefore, care-
ful attention must be paid to choose a proper technique
for each specific communication system.* Correspondence: khseyran@gmail.com
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WiMAX mobile devices (MS) are commercially avail-
able and for the system to work, both mobile devices
and basestations need to adhere to the WiMAX stan-
dard. Hence, it is not possible to modify the basestation
transmission technique if it makes the transmission
non-compliant to the standard since existing MS would
not be able to decode the transmissions correctly. For
example, phase manipulation techniques such as PTS
and SLM [7-9], which require coded side information to
be transmitted would not be compatible or compliant to
the standard. One technique of inserting a PAPR redu-
cing sequence is part of the IEEE 802.16e standard. It is
activated using the PAPR reduction/sounding zone/
safety zone allocation IE. Using this technique reduces
the throughput since it requires sending additional
PAPR bits. It is also not a part of the WiMAX profile so
it is likely not supported by the majority of handsets.
Accordingly, each of the discussed techniques is asso-

ciated with a cost in terms of bandwidth or/and power.
The proposed technique in this paper neither require
additional bandwidth nor power while delivering equal
or better PAPR reduction gain compared with other
existing methods. The proposed algorithm makes use of
the antenna beamforming weights and dedicated pilots
at the transmitter [10]. It reduces the PAPR by modify-
ing the cluster weights in the WiMAX data structure in
a manner similar to the PTS method [7,8]. The main
benefits of the proposed technique are:

• It preserves the transmitted power by adjusting
only the phase of the beamforming weights per
cluster.
• No extra side information regarding the phase
change needs to be transmitted due to the property
of dedicated pilots.
• Not sending the phase coefficients allows for arbi-
trary phase shifts instead of a quantized set such as
used for PTS.
• A novel search algorithm based on gradient opti-
mization to find the optimum cluster weights phase
shifts.

The following presentation focuses on WiMAX, but
the same technique applies to any OFDM/OFDMA sys-
tem that uses a concept similar to dedicated pilots and
does not explicitly announce the multiplied weights to
the receiver.
The paper is organized as follows: in Sect.2 the PAPR

in an OFDM system is defined, also the data structure
in WiMAX profile and potential capabilities of the stan-
dard is explained. In Sect.3, the proposed PAPR reduc-
tion method is described based on the PTS technique
model and the phase optimization problem is formu-
lated. The optimization problem is written as a

conventional minimax problem with nonequality con-
straints in Sect.4 and then a sequential quadratic pro-
gramming (SQP) technique is proposed to solve the
minimax optimization. This approach breaks the com-
plex original problem into several convex quadratic sub-
problems with linear constraints. A pseudo code for a
tailored SQP approach is given in sect.4-C. Simulation
results in Sect.6 confirm the significant PAPR reduction
gain applying the SQP algorithm over other techniques,
and the complexity evaluation in Sect.5 reveals the
advantage of the new optimization method comparing
the exhaustive search approach in PTS. Finally, the
paper is concluded in Sect.7 with a summary and a brief
discussion on further research.

2. System Model
Consider an OFDM system, where the data is repre-
sented in the frequency domain. The time domain signal
s(n), n = 1, 2, ..., N, where N denotes the FFT size is cal-
culated from the frequency domain symbols D(k) using
an IFFT as [10].

s(n) =
1√
N

N−1∑
k=0

D(k)e

j2πkn
N . (1)

Note that the frequency domain signal D(k) typically
belong to QAM constellations. In the case of WiMAX;
QPSK, 16QAM and 64QAM constellations are used.
The metric that will be used to measure the peaks in
the time-domain signal is the PAPR metric defined as

PAPR =
max

0≤n≤N−1
|sn|2

E{|sn|2} . (2)

Although not explicitly written in Equation(2), it is
well known that oversampling is required to accurately
capture the peaks. In this paper, an oversampling of
four times is used.
The WiMAX protocol defines several different DL

transmission modes, of which the DL-PUSC mode is
the most widely used and is on focus here. The mini-
mum unit of scheduling a transmission is a sub-chan-
nel, which here spans multiple clusters. One cluster
spans 14 sub-carriers over two OFDM symbols con-
taining four pilots and 24 data symbols, which is illu-
strated in Figure 1. For a 10MHz system, there are a
total of 60 clusters. A sub-channel is spread over
eight or twelve clusters of which only two or three
data sub-carriers from each cluster are used. The sub-
channel carries 48 data symbols. For example, logical
sub-channel zero uses two data sub-carriers from 12
clusters over two OFDM symbols to reach 48 data
symbols.
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To extract frequency diversity, the WiMAX protocol
specifies that the clusters in a sub-channel are spread
out across the band, i.e., a distributed permutation.
The WiMAX standard further specifies two main
modes of transmitting pilots: common pilots and dedi-
cated pilots. Here, dedicated pilots allow per-cluster
beamforming since channel estimation is performed
per-cluster, whereas for common pilots channel esti-
mation across the whole band is allowed. The presen-
tation so far has ignored a practical detail of guard
bands which are inserted to reduce spectral leakage. In
WiMAX, a number of sub-carriers in the beginning
and the end of the available bandwidth do not carry
any signal, leaving Nusable sub-carriers that carrie data
and pilots. Although this number depends on band-
width and transmission modes, weights that are con-
stant across each cluster are simply applied to only the
Nusable sub-carriers.

3. Proposed Technique
The proposed technique exploits dedicated pilots for
beamforming, which is a common feature in next gen-
eration wireless systems. For example, in several 4G sys-
tems such as WiMAX [10] precoding or beamforming
weights is not explicitly announced, but instead both
pilots and data are beamformed using the same weights.
In the WiMAX downlink (DL), beamforming weights
are applied in units of clusters (14 sub-carriers), and in
the uplink (UL) in units of tiles (four sub-carriers).
Beamforming in this context is defined as sending the
same message from different antennas, but using differ-
ent weights per antenna. For a four-antenna BS, the
weights can be written as wo = [ejφo, 1 , ejφo, 2 , ejφo, 3 , ejφo, 4 ]T

where jo,1 usually is set to zero for normalization pur-
poses. The beamforming gain for a 4 × 1 channel h
becomes |wH

o h|2. It is clear that we get the same beam-
forming gain for the vector w = ejj wo since a phase

Figure 1 Structure of DL-PUSC permutation in WiMAX, where the transmission bandwidth is divided into 60 clusters of 14 sub-carriers
over two symbols each.
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rotation common to all elements does not change
squared product |wHh|2 = |wH

o h|2. However, the com-
mon phase rotation has a large impact on the PAPR.
Writing the resulting expression for the time-domain
signal of the first antenna at tone n using the normaliza-
tion jo,1 = 0 yields

s1(n) =
1√
N

N−1∑
k=0

D(k)Ws(k)e

j2πkn
N , (3)

where Ws(k) denotes the beamforming weight on sub-
carrier k, i.e., Ws(k) = ejj(k). Since the channel is esti-
mated using the pilots in each cluster, the beamforming
weights need to be constant over each cluster, but can
change from cluster to cluster, i.e., Ws(k0) = Ws(k0 + 1)
= ... = Ws(k0 + 13), where k0 denotes the first sub-carrier
in a particular cluster. In the following, we will focus on
the scenario of a single transmission antenna since it
simplifies the expressions. However, the method can
easily be extended to scenarios with multiple transmit
antennas, which is the normal mode of dedicated pilots
and beamforming.
For the case of wideband weights, i.e., the beamforming

weights are the same across the whole band, the PAPR
reduction method is identical and performed only once.
For the typical case of narrowband weights, a different
beamforming weight per cluster is used so that the PAPR
reduction method is applied in a joint fashion over the
transmitted signal from all antennas. Furthermore, the
technique is readily extendable to single and multi-user
MIMO systems using the same concept of dedicated
pilots. Although there are now multiple streams, the
basestation has to transmit pilots beamformed in the
same way as the data. Hence, the same technique as out-
lined above can be applied. For a basestation sending
multiple streams to one or many receivers, the weight
optimization now has to be performed jointly over the
streams, but otherwise the concept is the same.
The optimization problem of calculating the weights

that minimize the PAPR can now be formulated as

Ws = arg min
Ws

max
n

∣∣∣∣∣∣∣
N−1∑
k=0

D(k)Ws(k)e

j2πkn
N

∣∣∣∣∣∣∣

2

. (4)

Note that for a 10 MHz WiMAX system, there are 60
clusters so there are 60 phase shifts Ws(k) = ejj(k) where
j(k) Î [0, 2π) and k = 1, 2, ..., 60.
The PAPR reduction technique proposed here is

transparent to the receiver and thus does not require
any modification to existing receivers and wireless stan-
dards. This is clear by writing the received signal z at
the handset as

z = hejφs = h’s, (5)

where h’ = hejj denotes the effective channel. The
BER performance of the effective channel is identical to
the original channel. Furthermore, since both pilots and
data are transmitted with the same phase shift, the
channel estimation performance is also identical. In the
proposed technique, the dedicated pilots for channel
estimation is used, without interfering with their original
job, as an indicator to inform the receiver about the
phase rotation at the transmitter. So, the known symbols
at allocated subcarriers are phase rotated, as well as data
subcarriers. Note that pilot symbols already exists in
current design of WiMAX and other similar wireless
standards, so we do not reduce the bandwidth for PAPR
reduction. The receiver is implicitly informed while the
information is hidden at the known pilot symbols. The
channel coefficients are estimated for equalization based
on received pilots while the PAPR phase rotation is
interpreted as the channel effect.
Moreover, the proposed technique does not impact

the transmitted power since it is only a phase-modifica-
tion. In essence, the technique is similar to partial-trans-
mit-sequence (PTS), but without the drawback of
requiring side-information which would make it impos-
sible to apply in existing communication standards such
as WiMAX. These advantages makes it a very attractive
technique to reduce PAPR.
The dedicated pilot feature is designed for beamform-

ing and the standard explicitly states that only the
beamformed pilots inside the beamformed clusters can
be used for channel estimation and equalization. The
weights are different from cluster to cluster. Since only
those pilots can be used, there is no other side informa-
tion that could be used since in the WiMAX case, the
phase-change is incorporated into the channel just as
any other type of beamforming weights would. Remem-
ber that there is no difference between our beamforming
weights and normal beamforming weights from a chan-
nel estimation perspective. In both cases, there is no
need for extra side information. Note that it is possible
to design a system different from the WiMAX dedicated
pilots setting that could use more side-information, but
that is outside the scope of the this paper since it is
focusing on WiMAX.
In conclusion, cluster weights can be used to decrease

the PAPR of the OFDM symbol. To preserve the aver-
age transmitted power, only the phase of the clusters
are changed. These phase weights can be multiplied
either before IFFT blocks or after it, and the result will
be the same due to the linear property of the IFFT
operation. However, it is more efficient for the optimiza-
tion algorithm to apply the phase coefficients after the
IFFT block. This is exactly the same approach as the
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PTS which is explained with a description. However,
there are still substantial differences regarding the phase
selection, sub-block partitioning, etc.

A. Partial Transmit Sequence (PTS)
Based on the PTS technique, an input data block of N
symbols is partitioned into several disjoint sub-blocks
[6]. All elements in each sub-block are weighted by a
phase factor associated with it, where these phase fac-
tors are selected such that the PAPR of the combined
signal is minimized. Figure 2 shows the block diagram
of the PTS technique. In the conventional PTS, the
input data block D is partitioned into M disjoint sub-
blocks Dm = [Dm,0, Dm,1, ..., Dm,N-1]

T, m = 1, 2, ..., M,
such that

∑M
m=1 Dm = D, and the sub-blocks are com-

bined to minimize the PAPR in the time domain. The
L-times over-sampled time domain signal of Dm is
obtained by taking an IDFT of length NL on Dm conca-
tenated with (L - 1)N zeros, and is denoted by bm =
[bm,0, bm,1, ..., bm,LN-1]

T, m = 1, 2, ..., M; these are called
the partial transmit sequences. Complex phase factors,
Wm = ejφm , m = 1, 2, · · · , M are introduced to combine
the PTSs which are represented as a vector W = [W1,
W2, ..., WM]T in the block diagram. The time domain
signal after combination is given by

s(n) =
M∑

m=1

Wmbm(n). (6)

The objective is to find a set of phase factors that
minimize the PAPR. In general, the selection of the
phase factors is limited to a set with a finite number of

elements to reduce the search complexity. The set of
possible phase factors is written as

P = e

j2π l
K l = 0, 1, · · · , K − 1,

where K is the number of

allowed phases. The first phase weight is set to 1 with-
out any loss of performance, so a search for choosing
the best one is performed over the (M - 1) remaining
places. The complexity increases exponentially with the
number of sub-blocks M, since KM-1 possible phase vec-
tors are searched to find the optimum set of phases.
Also, PTS needs M times IDFT operations for each data
block, and the number of required side information bits
is log2(K

M-1) to send to the receiver. The amount of
PAPR reduction depends on the number of sub blocks
and the number of allowed phase factors [9].
For each sub-block which is rotated at the transmitter,

the applied phase coefficient is sent using a code book
to the receiver as an explicit side information which
reduce the spectral efficiency. on the other hand, the
receiver use the same code book to retrieve the applied
phase at the transmitter from side information bits. So
the code book needs to be compromised between trans-
mitter and receiver at the system design phase.
PTS performs an exhaustive search among a combina-

tion of phase vectors to resolve the optimum weights.
For example a permutation of ±1 for two allowed phase
factors is performed; in this case, the whole search
space for 60 clusters will be 260 alternative vectors,
which takes a tremendous amount of computations.
Here, we propose a realistic optimization algorithm
based on the basic configuration of the PTS sub-blocks.

Figure 2 Block diagram of PTS technique with M disjoint sub-blocks and phase weights to produce a minimized PAPR signal,
quantized phase weights W are selected by exhaustive search among possible combinations.
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B. Formulation of the Phase Optimization Problem
The proposed PAPR reduction method is established
based on the PTS model when beamforming weights in
WiMAX are the alternatives for phase weights in PTS
and the sub-blocks represent the clusters. The matrix B
is defined as a NL × M array; it contains the summation
of IFFT weights within a cluster. The columns of B are
the IFFT output samples of PTS sub-blocks, whose
length shows the number of disjoint sub-blocks, and
each of them is multiplied with a separate phase weight.
A direct calculation to form matrix B costs 60 IFFT
blocks of size 1024 which means 60(1024/2) log2(1024)
≈ 3 × 105 complex multiplications. This can be reduced
effectively by some interleaving and the Cooley-Tukey
FFT algorithm, which is proposed in [11]. The trans-
mitted sequence s is illustrated as a multiplication of
matrices B and j in Equation(7).

s =

⎡
⎢⎢⎢⎢⎢⎣

b1,1 b1,2 · · · b1,M

b2,1 b2,2 · · · b2,M

b3,1 b3,2 · · · b3,M
...

...
. . .

...
bLN,1 bLN,2 · · · bLN,M

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ejφ1

ejφ2

ejφ3

...
ejφM

⎤
⎥⎥⎥⎥⎥⎦ . (7)

Here, we rewrite the optimization problem to Iind the
optimum phase set j as

φ = arg min
φm

max
n

|s(n)|2, (8)

where

s(n) =
M∑

m=1

bn,mejφm . (9)

The s(n)s are complex values and jns are continuous
phases between [0, 2π). Substituting bn,m = Rn,m + jIn,m
and ejjm = cos jm + j sin jm in Equation(9) and taking the
square of |s(n)| results in Equation(10), when Rn,m and In,
m stands for ℜ{bn,m} and ℑ{bn,m} respectively. This is a
very important equation, which shows the square of the
norm or the power of output sub-carriers that are trans-
mitted; a multi-variable cost function to be minimized
when the largest |s(n)| specifies the PAPR of the system.
To emphasis on the role of objective function, the |s(n)|2

is replaced with fn(j) as expressed in Equation(10).
Clearly, the multi-variable objective function is contin-

uous and differentiable over [0, 2π), so its gradient can
be derived analytically and this is a key property to
develop a solution. Knowing the gradient of

fn(φ) =
(

(Rn,1 cos φ1 + · · · + Rn,M cos φM) − (In,1 sin φ1 + · · · + In,M sin φM)
)2

︸ ︷︷ ︸
A

+
(

(Rn,1 sin φ1 + · · · + Rn,M sin φM) + (In,1 cos φ1 + · · · + In,M cos φM)
)2

︸ ︷︷ ︸
B

(10)

∂fn(φ)
∂φm

= −2A
(
Rn,m sin φm + In,m cos φm

)
+ 2B

(
Rn,m cos φm − In,m sin φm

)
(11)

the objective function, the problem can be solved
using a wide range of gradient - based optimization
methods. The gradient of |s(n)|2 as a function of phase
vector j = [j1, j2, ..., jM ] is defined as the vector

∇fn = [ ∂ fn
∂φ1

, ∂ fn
∂φ2

, · · · , ∂ fn
∂φM

]T. The Jacobian matrix is

defined in Equation(12), where M is the number of sub-
blocks and LN is the length of the vector s (oversampled
OFDM symbol). The nth row of this matrix is the gradi-
ent of the fn(j).

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂φ1

∂f1
∂φ2

· · · ∂f1
∂φM

∂f2
∂φ1

∂f2
∂φ2

· · · ∂f2
∂φM

...
...

. . .
...

∂fLN

∂φ1

∂fLN

∂φ2
· · · ∂fLN

∂φM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

The elements of Jacobian matrix is expressed in Equa-
tion (11).
Minimax Approach. The minimax optimization in

Equation(8) minimizes the largest value in a set of
multi-variable functions. An initial estimate of the solu-
tion is made to start with, and the algorithm proceeds
by moving towards the minimum; this is generally
defined as,

minimize max{fn(φ)}
φ 1 ≤ n ≤ N

(13)

To minimize the PAPR, the objective of the optimiza-
tion problem is to minimize the greatest value of |s(n)|2

in Equation(9) which is analogous to max{fn(j)} in
Equation(13). Here, we reformulate the problem into an
equivalent non-linear programming problem in order to
solve it using a sequential quadratic programming (SQP)
technique

minimize f (φ)
φ

subject to
fn(φ) ≤ f (φ)

(14)

In agreement with this new setting, the objective func-
tion f(j) is the maximum of fn(j), or equivalently it is
the greatest IFFT sample in the whole OFDM sequence
which characterizes the PAPR value. The remaining
samples are appended as additional constraints, in the
form of fn(j) ≤ f (j). In fact, the f (j) is minimized over
j using SQP, and the additional constraints are consid-
ered because we do not want other fns pop out when
the maximum value is being minimized. In this way, the
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whole OFDM sequence is kept smaller than the value
that is being minimized during iterations.

4. Solving the Optimization Problem
The proposed PAPR reduction technique has unique
features of exploiting the dedicated pilots and channel
estimation procedure while choosing the best phase
coefficients still is a new challenge. In PTS the optimum
weights are selected by performing the exhaustive search
among the quantized set of phase options, where here
there is no restriction on phase coefficients and they
can be selected between continuous interval of (0, 2π].
So an efficient optimization algorithm should be used to
extract the proper phase choices; the proposed algo-
rithm is a gradient-based method and modified and
adapted for the phase optimization problem of the
PAPR reduction technique.

A. Sequential Quadratic Programming
SQP is one of the most popular and robust algorithms
for non-linear constraint optimization. Here, it is modi-
fied and simplified for the phase optimization problem
of PAPR reduction, but the basic configuration is as
same as general SQP. The algorithm proceeds based on
solving a set of subproblems created to minimize a
quadratic model of the objective, subject to a lineariza-
tion of the constraints. The SQP method has been used
successfully to many practical problems, see [12-14] for
an overview. An efficient implementation with good per-
formance in many sample problems is described in [15].
The Kuhn-Tucker (KT) equations are the necessary

conditions for optimality for a constrained optimization
problem. If the problem is a convex programming pro-
blem, then the KT equations are both necessary and suf-
ficient for a global solution point [16]. The KT
equations for the phase optimization problem are stated
as the following expression, where lns are the Lagrange
multipliers of the constraints.

∇f (φ) +
N∑

n=1

λn · ∇fn(φ) = 0, (15)

λn ≥ 0. (16)

These equations are used to form quasi Newton
updating step which is an important step outlined
below. The quasi Newton steps are implemented by
accumulating second-order information of KT criteria
and also checking for optimality during iterations.
The SQP implementation consists of two loops: the

phase solution is updated at each fiiteration in major
loop with k as the counter, while itself contains an
inner QP loop to solve for optimum search direction
dk.

Major loop to find j which minimize the f(j):
while k < maximum number of iterations do
jk+1 = jk + dk,
QP loop to determine dk for major loop:
while optimal dk found do
dl+1 = dl + adl,

end while
end while
The step length a is determined within the QP itera-

tions which is distinguished from major iterations by
index l as the counter.
The Hessian of the Lagrange function is required to

form the quadratic objective function. Fortunately, it is
not necessary to calculate this Hessian matrix explicitly
since it can be approximated at each major iteration
using a quasi Newton updating method, where the Hes-
sian matrix is estimated using the information specified
by gradient evaluations. The Broyden Fletcher Goldfarb
Shanno (BFGS) is one of the most attractive members
of quasi Newton methods and frequently used in non-
linear optimization. It approximates the second deriva-
tive of the objective function using Equation(17).
Quasi Newton methods are a generalization of the

secant method to find the root of the first derivative for
multidimensional problems [17]. Convergence of the
multi-variable function f(j) can be observed dynamically
by evaluating the norm of the gradient |∇f(j)|. Practi-
cally, the first Hessian can be initialized with an identity
matrix (H0 = I), so that the first step is equivalent to a
gradient descent, while further steps are gradually
refined by Hk, which is the approximation to the Hes-
sian [18]. The updating formula for the Hessian matrix
H in each major iteration is given by,

Hk+1 = Hk +
qkq

T
k

qT
k sk

− HT
k Hk

sT
k Hksk

. (17)

where H is M × M matrix and ln is the Lagrange
multipliers of the objective function f (j).

qk = ∇f (φk+1) +
∑N

n=1
λn · ∇fn(φk+1)

− ∇f (φk) +
∑N

n=1
λn · ∇fn(φk).

(18)

sk = φk+1 − φk. (19)

The Lagrange multipliers [according to Equation (16)]
is non-zero and positive for active set constraints, and
zero for others. The ∇fn(jk) is the gradient of nth con-
straints at the kth major iteration. The Hessian is main-
tained positive definite at the solution point if qT

k sk is
positive at each update. Here, we modifya qk on an ele-
ment-by-element basis so that qT

k sk > 0 as proposed in
[19].
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After the above update at each major iteration, a QP
problem is solved to find the step length dk, which mini-
mizes the SQP objective function f(j). The complex
nonlinear problem in Equation(14) is broken down to
several convex optimization sub problems which can be
solved with known programming techniques. The quad-
ratic objective function q(d) can be written as

minimize q(d) =
1
2

dTHkd + ∇f (φk)Td

d ∈ �n

subject to
∇fn(φk)Td + fn(φk) ≤ 0

(20)

We generally refer to the constraints of the QP sub-
problem as G(d) = A d - a, where ∇fn(jk)

T and - fn(jk)
are the nth row and element of the matrix A and vector
a respectively.
The quadratic objective function q(d) reflects the local

properties of the original objective function and the
main reason to use a quadratic function is that such
problems are easy to solve yet mimics the nonlinear
behavior of the initial problem. The reasonable choice
for the objective function is the local quadratic approxi-
mation of f(jk) at the current solution point and the
obvious option for the constraints is the linearization of
current constraints in original problem around jk to
form a convex optimization problem. In the next section
we explain the QP algorithm which is solved iteratively
by updating the initial solution. The notation in the fol-
lowing section is summarized here for convince.

• dk is a search direction in the major loop while d́l
is the search direction in the QP loop.
• k is used as an iteration counter in the major loop
and l is the counter in the QP loop.
• jk is the minimization variable in the major loop,
it is the phase vector in this problem.
• dl is the minimization variable in the QP problem.
• fn(jk) is the nth constraint of the original minimax
problem at a solution point jk.
• G(dl) = A dl - a is the matrix represents the con-
straint of the QP sub-problem at a solution point dl
and gn(dl) is the nth constraint.

B. Quadratic Programming
In a quadratic programming (QP) problem, a multi-vari-
able quadratic function is maximized or minimized, sub-
ject to a set of linear constraints on these variables.
Basically, the quadratic programming problem can be
formulated as: minimizing f(x) = 1/2 xT C x+ cT x with
respect to x, with linear constraints Ax ≤ a ,which
shows that every element of the vector Ax is ≤ to the
corresponding element of the vector a .

The quadratic program has a global minimizer if there
exists some feasible vector x satisfying the constraints,
provided that f(x) is bounded in constraints on the feasi-
ble region; this is true when the matrix C is positive
definite. Naturally, the quadratic objective function f(x)
is convex, so as long as the constraints are linear we can
conclude the problem has a feasible solution and a
unique global minimizer. If C is zero, then the problem
becomes a linear programming [20].
A variety of methods are commonly used for solving a

QP problem; the active set strategy has been applied in
the phase optimization algorithm. We will see how this
method is suitable for problems with a large number of
constraints.
In general, the active set strategy includes an objective

function to optimize and a set of constraints which is
defined as g1(d) ≤ 0, g2(d) ≤ 0, ..., gn(d) ≤ 0 here. That is
a collection of all d, which introduce a feasible region to
search for the optimal solution. Given a point d in the
feasible region, a constraint gn(d) ≤ 0 called active at d
if gn(d) = 0 and inactive at d if gn(d) < 0.b. The active
set at d is made up of those constraints gn(d) that are
active at the current solution point.
The active set specifies which constraints will parti-

cularly control the final result of the optimization, so
they are very important in the optimization. For exam-
ple, in quadratic programming as the solution is not
necessarily on one of the edges of the bounding poly-
gon, specification of the active set creates a subset of
inequalities to search the solution within [21-23]. As a
result, the complexity of the search is reduced effec-
tively. That is why non-linearly constrained problems
can often be solved in fewer iterations than uncon-
strained problems using SQP, because of the limits on
the feasible area.
In the phase optimization problem, the QP subpro-

blem is solved to find the dk vector which is used to
form a new j vector in the kth major iteration, jk+1 =
jk + dk . The matrix Q in the general problem is
replaced with a positive definite Hessian as discussed
earlier, the QP sub-problem is a convex optimization
problem which has a unique global minimizer. This has
been tested practically in the simulation results, when
the dk which minimizes a QP problem with specific set-
ting is always identical, regardless of the initial guess.
The QP subproblem is solved by iterations when at

each step the solution is given by dl+1 = dl + αd́l. An
active set constraints at lth iteration, Ál is used to set a
basis for a search direction dl. This constitutes an esti-
mate of the constraint boundaries at the solution point,
and it is updated at each QP iteration. When a new
constraint joins the active set, the dimension of the
search space is reduced as expected.
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The d́l is the notation for the variable in the QP itera-
tion; it is different from dk in the major iteration of the
SQP, but it has the same role which shows the direction
to move towards the minimum. The search direction d́l
in each QP iteration is remaining on any active con-
straint boundaries while it is calculated to minimize the
quadratic objective function.
The possible subspace for d́l is built from a basis Zl,

whose columns are orthogonal to the active set Ál, ÁlZl

= 0. Therefore, any linear combination of the Zl col-
umns constitutes a search direction, which is assured to
remain on the boundaries of the active constraints.
The Zl matrix is formed from the last M - P columns

of the QR decomposition of the matrix Á
T
l
Equation(21)

and is given by: Zl = Q[:, P + 1: M ]. Here, P is the
number of active constraints and M shows the number
of design parameters in the optimization problem,
which is the number of sub-blocks in the PAPR pro-
blem.

QT Á
T
l =

[
R
0

]
. (21)

The active constraints must be linearly independent,
so the maximum number of possible independent equa-
tions is equal to the number of design variables; in
other words, P <M. For more details see [19].
Finally, there exists two possible situations when the

search is terminated in QP subproblem and the mini-
mum is found; either the step length is 1 or the opti-
mum dl is sought in the current subspace whose
Lagrange multipliers are all positive.

C. SQP Pseudo Code
Here, a pseudo code is provided for the SQP implemen-
tation and we will refer to it in the complexity evalua-
tion section. As discussed in the previous parts, the
algorithm consists of two loops.
Step0 Initialization of the variables before starting the

SQP algorithm

• An extra element (slack variable) is appended to
the variables so j = [j0, j1, j2, ..., jM ]. The objec-
tive function is defined as f(j) = jM and is initialized
with zero, other elements can be any random guess.
• The initial Hessian is an identity matrix H0 = I,
and the gradient of the objective function is ∇f(jK)

T

= [0, 0, ..., 1].

Step1 Enter the major loop and repeat until the
defined maximum number of iterations is exceeded.

• Calculate the objective function and constraints
according to Equation(10)

• Calculate the Jacobian matrix Equation(11)
• Update the Hessian based on Equation(17) and
make sure it is positive definite.
• Call the QP algorithm to find dk

Step2 Initialization of the variables before starting the
QP iterations,

• Find a feasible starting point for
d0 = [d0

0, d1
0, · · · , dM

0 ] and d́0 = [d́0
0, d́1

0, · · · , d́M
0 ];

Check that the constraints in the initial working setc

are not dependent, otherwise find a new initial point d0
which satisfies this initial working set.
Calculate the initial constraints A d0 - a,

if max(constraints) >ε then
The constraints are violated and the new d0

needs to be searched
end if

• Initialize the Q, R and Z and compute initial pro-
jected gradient ∇q(d0) and initial search direction d0
Step3 Enter the QP loop and repeat until the mini-

mum is found
• Find the distance in the search direction we can

move before violating a constraint

gsd = Ad́l (Gradient with respect to the search
direction)
ind = find (gsdn >threshold)
if isempty(ind) then

Set the distance to the nearest constraint as zero
and put a = 1

else
Find the distance to the nearest constrain as fol-
lows

α = min
1≤n≤N

{−(Andl − an)

And́l

}
. (22)

Add the constraint Ai
d to the active set Ál

Decompose the active set as (21)
Compute the subspace Zl = Q[:, P + 1: M ]

end if

• Update dl+1 = dl + αd́l
• Calculate the gradient objective at this point Δq(dl)
• Check if the current solution is optimale

if a = 1 || length (Ál) = M then
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Calculate the l of active set by solving

−Rlλl = (QT
l ∗ ∇q(dl)). (23)

end if
if all li >0 then

return dk
else

Remove the constraints with li < 0
end if

• Compute the QP search direction according to the
Newton step criteria,

d́l = −Zl
(
(ZT

l HkZl)\(ZT
l ∇q(dl))

)
, (24)

Where the (ZT
l HkZl) is projected Hessian, see A.

Step4 Update the solution j for the kth iteration; jk+1

= jk + dk and go back to Step 1

5. Complexity Analysis
The SQP algorithm has a quite complicated mathemati-
cal concept, and it can be implemented with different
modifications. Therefore, the complexity evaluation is
not straightforward. The number of QP iterations is not
fixedf and is different for each OFDM symbol; here, the
average number of QP iterations is considered to evalu-
ate the complexity. For 60 sub-blocks, 1024 sub-carriers
and 64 QAM, the average is obtained as 80 iterations
for each major SQP iteration.
Another difficulty to compute the required operation

is the length of the active set, which alters during itera-
tions starting from 1 to at most M at the end of loop.
Consequently, the size of R in the QR decomposition
and Z the basis for the search subspace are not fixed
during the process so the complexity cannot be assessed
directly for each QP iteration and some numerical esti-
mations are necessary.
To evaluate the amount of computation needed for

this technique, all steps in the pseudopod are reviewed
in detail and an explicit expression is given for each
part. First, the complexity of the major loop is assessed
in Steps 1 and 4, and then the QP loop is evaluated
separately. Finally, the complexity is derived in terms of
the number of sub-blocks and major iterations with
some approximation and numerical analysis.
Major loop. Steps 1 & 4
1) Objective function and constraints from Equation

(10):

4M × N multiplications and the same amount of
addition, N comparisons to find the maximum of
constraints

2) Jacobian matrix from Equation(11):

6M × N multiplications, 4M × N additions

3) Hessian update Equation(17):

2M × N multiplications, 2M × (N + 1) additions to
calculate Equation(19),
3(M + 1) additions and M multiplications for
matrices of size M × 1 to compute qk and qk, 2M
divisions and M additions are required to update H

4) The solution j is updated, which requires M
additions.
QP loop. Step 3
1) Gradient with respect to the search direction:

4M × N multiplications and additions to calculate
gsd , N comparisons to find the maximum

2) Distance to the nearest constraint from Equation
(22):

2M × N multiplications and additions, N compari-
sons to find the minimum

3) Addition of constraint to the active set:

Assume the active set has length L - 1, then the new
constraint is inserted and the matrix size becomes
M × L. To compute the QR decomposition of this
matrix, 2L2(M - L/3) operations are needed [24].

4) Update the solution dl which needs M additions.
5) The gradient objective at the new solution point

needs M2 multiplications and M2 + 1 additions
6) The Lagrange multipliers are obtained by solving a

linear system of equations, and this impose a complexity
in the order of M3 [24].
7) Remove the constraint in case of li < 0:
Removing the constraint and recalculation of QR

decomposition requires 2L2(M - L/3) operations.
8) Search direction according to Equation(24):
It is a solution to a system of linear equations. The

size of Z varies during the iterations, and starts from M
× M and reduces to an M × 1 matrix at the end.
Accordingly, the complexity in a QP iteration can be
stated as 2S2(M + S/3) where S is the number of col-
umns in Z at each step.
At first, the computation which is required for the

major loop is obtained as 22NM + 9M + N. Next, the
amount of computation in the QP loop is divided into
fixed and variable partsg; there are (6M + 2)N + 2M2 +
M operations which are performed in parts numerated
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by 1, 2, 4 and 5 in every iterations. Besides there are
amount of uncertain operations in other parts which are
evaluated separately.
To resolve the search direction in Equation(24) two

states is possible: the first M times needs 0.4167M4+
0.6667M3 + 0.25M2 operations, which is derived by
numerical analysis and polynomial fitting, and for
further iterations each needs 2M operations. Therefore
the required number of flops can be approximated as
0.4M3+0.7M2+0.2M for each iteration. In the QR
decomposition part, which is certainly done in every
iterations, the procedure is the same. It means that for
the first M iteration, 0.25M4 - 0.3333M3 + 0.0833M2

operations and for the extra ones 4/3M3 flops are done.
So the amount of major computation is approximated
to be 0.25M3 for each QP iteration by dividing the total
operations over M.
With an acceptable approximation, we claim that the

Lagrange multipliers calculation can be neglected in
comparison with other dominant parts of computations,
because it mostly appears after M +1 iterations; this
occurs when the active constraints are full (M con-
straints are added to the active set), or sometimes when
the exact step to the minimum is found. To sum up, the
total number of operations needed for each QP iteration
is roughly expressed as 0.65M3 + 2.7M2 + 6NM + 2N,
and the total complexity is shown in Table 1, where k
and l are the number of major and QP iterations
respectively.
There are other optimization methods that can be

used to find the best phase weights. PSO is one of the
proposed methods for PTS phase search algorithm and
many modifications have been introduced to simplify
the technique [25]. But the numerical optimization tech-
niques like PSO are only applicable for PTS with limited
number of sub-blocks and subcarriers (at most 256 sub-
carriers and 16 sub-blocks) so that the algorithm con-
verges fast enough to the optimal solution. But here
there are 60 sub-blocks and when the allowed phase set
is just ±1, the initial generated solutions span 260 possi-
ble options. To reduce the convergence time of the

optimization technique, the number of randomly gener-
ated solutions needs to be a reasonable proportion of all
possible solutions, while the complexity is increased lin-
early with the number of particles in the initial swarm
population. The continuous version of PSO is imple-
mented and simulation result is shown in Figure 7 when
the number of computations is almost equal to the gen-
erated SQP curve.
The complexity of PSO is expressed as the number of

required flops in Table 1 where k is the number of itera-
tions and n is the number of initial solutions or the
swarm population. For more details on the complexity
of PSO, see [26].
The complexity of SQP is graphically illustrated,

showing the number of operations in the SQP algorithm
for two OFDM symbols in time with 1024 sub-carriers.
Figure 3 indicates the trend when the number of itera-
tions increases. Predictably, when more sub-blocks are
chosen to be phase rotated, then the complexity is
raised with sharper slope versus the number of itera-
tions, because M3 is the coefficient which dominantly
defines the slope of l. Figure 4 shows how the complex-
ity grows almost linearly with the number of sub-blocks
for less number of iterations, while it tends to a cubic
curve for larger number of iterations.
The exhaustive search whose complexity is shown in

the first row of Table 1 is used in conventional optimal
PTS and has a significantly higher cost compared to the
proposed algorithm. Moreover, the performance is not
as good as SQP, since the phase coefficients are opti-
mized among a quantized phase set. The whole calcula-
tion in Equation(7) has to be repeated for every
combination of phase vectors, and this requires KM ×
MN times additions and multiplications, where K is the
number of allowed phases and M is the number of sub-
blocks. Additionally, KM × (N + 1) comparisons are
needed to find the largest sample among each produced
transmit sequence, and also between all PAPRs to
choose the minimum.
To have a better perception of the PTS complexity in

this context, assume the allowed phase set is ±1, so K = 2
and no phase rotation required. Also, the number of sub-
blocks is M = 60 and the same setting preserved as the
SQP; then approximately, 1023 additions and 1021 compar-
isons have to be performed to find the optimum phase
which is clearly impractical. In contrast, the SQP requires
108 flops for 60 sub-blocks which is roughly equivalent to
the PTS exhaustive search with only 12 sub-blocks and
two phase options. According to the recent developments
in DSP technology and time schedule in WiMAX and
LTE standard, this amount of computation is affordable.
There are many methods in the literature which is

dedicated to develop sub-optimal PTS schemes to
reduce the complexity of exhaustive search in

Table 1 The complexity of different algorithms to search
optimum phase set.

Algorithm Operations

OPT PTS 2KM × MN
PSO 2kn × (M + 1)N

SQP
k ×

(
(0.65M3 + 2.7M2 + 6NM + 2N) × l

+(22NM + 9M + N)
)
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conventional PTS technique, in cost of performance
degradation. In this paper, we introduced a systematic
optimization technique to achieve the optimal solu-
tion of phase rotation approach for PAPR reduction,

which has not been studied before. Also, the proposed
technique does not require any common costs in
terms of increasing BER in the receiver or transmit
power, so the costly part is just the optimization
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procedure. While in every other PTS techniques, the
side information is sent to the receiver which cause
the spectral efficiency reduction, increasing the trans-
mit power or even BER degradation in case of trans-
mission error.
There are not many options for PAPR reduction tech-

niques without side information and it is not fair to
compare SQP technique with other PTS phase optimiza-
tion approaches which require explicit information to be
sent to the receiver.

6. Simulation Results
The proposed PAPR reduction technique for an
OFDMA system with 1024 sub-carriers and 64 QAM
modulation is simulated for a WiMAX data structure as
explained in Figure 1. The cumulative distribution func-
tion (CDF) of the PAPR is one of the most frequently
used performance measures for PAPR reduction techni-
ques. The complementary CDF (CCDF) is used here to
evaluate different methods, which denotes the probabil-
ity that the PAPR of a data block exceeds a given
threshold and is expressed as CCDF = 1 - CDF.
To have a better perception of the PAPR cost func-

tion, a 3-D plot is provided in Figure 5, which illustrates
the variation of PAPR, or equivalently the maximum
amplitude of one OFDM symbol partitioned into two
disjoint sub-blocks, versus two phase coefficients. Pre-
dictably, two sub-blocks cannot do much for the PAPR
reduction purpose and this is just to give a visual

impression of the cost function to be minimized in the
SQP optimization algorithm.
As can be seen, there are many local minima which

have slightly different levels; that is one of the promising
properties of this optimization problem because reach-
ing a local minimum satisfies the PAPR reduction aim
even though the global minimum is not found. As a
result, the performance of the proposed algorithm is
relatively insensitive to the initialization of the
optimization.
The time domain signal of two 1024-OFDM symbol is

shown in Figure 6, before and after the signal processing
algorithm. It is clear that the proposed method reduces
the magnitude variations dramatically and that the back-
off margin can be much smaller.

A. Performance of Different Algorithms
The performance of four different optimization tech-
niques is illustrated in Figure 7 by CCDF curves.
Once the Jacobian of the cost function is defined, the
optimization problem can be treated with different
optimization methods. The SQP is the best solution
for the problem in terms of PAPR reduction perfor-
mance, but the least square error (LSE) approach can
also be used to reduce the peak amplitude of the sig-
nal with much less complexity. However, the perfor-
mance is not as good as the SQP algorithm but still
comparable with existing PAPR reduction techniques
[6].
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Figure 5 3D power cost function of PAPR for a random OFDM symbol which is divided into two sub-blocks with corresponding phase
coefficients j1 and j2.
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The LSE algorithm minimizes the objective function f
(x) = (f1(x))

2+(f2(x))
2+ ... +(fN (x))2, which is the sum of

the OFDM sub-carriers amplitudesh. The components
are forced to be equal to minimize the sum, so the large

samples are pushed to a specific level, whereas the smal-
ler ones become larger. One of the examined optimiza-
tion methods to search the phase coefficients in PTS is
particle swarm optimization (PSO) [27]. The achieved

a)

b)

Figure 6 The comparison between the time domain OFDM symbol before and after the PAPR reduction procedure for 60 clusters and
ten iterations. (a) Original OFDM signal (b) Reduced PAPR signal
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gain for PSO is slightly better than LSE, but it is expen-
sive to implement especially when the number of sub-
blocks is large. The simulation results shows for the
same amount of computation the PSO is 2dB worse
than SQP, when the initial particle number is n = 100
and k = 50 iterations [26].
If the search for the global minimum can be per-

formed in each OFDM symbol, then the CCDF curve
improves to some degree. In our test, each OFDM sym-
bol has been processed 100 times with different initial
guesses and the one with the smallest PAPR is selected.
The result in Figure 7 (advanced SQP) shows an overall
improvement of about 0.5 dB. In this case, the PAPR of
the system can almost be considered as a deterministic
value since the CCDF curve is almost vertical.

B. Evaluation of Effective Parameters in SQP Performance
Figure 8 shows the performance of the SQP algorithm at
the point Pr{PAPR > PAPR0} = 10-4 for 10,000 random
OFDM symbol with 64 QAM modulation versus differ-
ent number of major iterations. The vertical axis repre-
sents the PAPR reduction gain in dB, which is the
difference between the original CCDF curve and the
processed signal curve at the probability as indicated in
Figure 7. As noticed here, most of the job is done in the
first iteration and after more than ten iterations the pro-
gress tends to be slower.
Figure 9 shows the PAPR reduction degradation, when

the number of sub-blocks are reduced. As explained

earlier, each cluster can be phase rotated and this will
be reversed at the receiver in the channel equalization
process. To bring down the complexity, the same phase
coefficients are assigned to several adjacent clusters to
simplify the optimization algorithm. In fact, 30 sub-
blocks means two clusters within one sub-block and
each sub-block is weighted with specific phase coeffi-
cient. In practice, there cannot be 120 phase coefficients
or sub-blocks, because it means that one cluster has two
phase weights and this is not possible to compensate at
the receiver according to the WiMAX standard. But in
Figure 9, a 120 sub-blocks configuration is simulated to
show the trend of PAPR reduction gain versus the num-
ber of sub-blocks.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

PA
P

R
re

du
ct

io
n

ga
in

(d
B

)

Number of iterations

Figure 8 SQP PAPR reduction gain versus number of major
iterations when Pr{PAPR > PAPR0} = 10-4.

5 6 7 8 9 10 11 12 13
10

−4

10
−3

10
−2

10
−1

 

 

PAPR (dB)

P
(P

A
P

R
>

P
A

P
R

0
)

PAPR reduction gain (dB)

Default
Advanced-SQP
SQP
PSO
LSE

Figure 7 The comparison between CCDF curves of different PAPR reduction algorithms, advanced-SQP outperforms other methods
with 6.2dB gain while the LSE gives the least PAPR reduction gain of 3.4dB.

Khademi et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:38
http://asp.eurasipjournals.com/content/2011/1/38

Page 15 of 18



Finally, the PAPR reduction performance in terms of
CCDF curve is not changed with different initial guesses,
because the maximum of all 10, 000 simulated OFDM
symbols defines the CCDF curve in low probability of
Pr{PAPR > PAPR0}, and this does not depend on the
initial solution. But in each OFDM symbol the mini-
mum can be found by examination of various starting
points and the performance can be improved as Figure
7 illustrates in advanced-SQP curve.

7. Concluding Remarks
We introduced a precoding PAPR reduction technique
that is applicable to OFDM/A communication systems
using dedicated pilots. We developed the technique for
a WiMAX system but it is applicable to OFDM/A sys-
tems in general where dedicated pilots and data both
are beamformed. Beamforming performance depends on
the relative phase shift between antennas but is unaf-
fected by a phase shift common to all antennas. PAPR,
on the other hand, changes with a common phase shift,
and the PAPR reduction technique proposed in this
paper was based on this property. Each cluster within
the WiMAX data structure are weighted with proper
phase coefficients, which are optimized to minimize the
PAPR of the time domain transmitted signal.
The proposed technique comes with interesting

unique features, making it a very appealing method
especially for standard constrained applications. No side
information is sent to the receiver so the throughput is
not affected and transmitted power and bit error rate
does not increase which otherwise are common draw-
backs in many PAPR reduction techniques. Moreover,
an optimization technique for finding the best weights
was proposed. The PAPR reduction problem was formu-
lated as a minimax problem that was solved by deriving
the gradient analytically and modifying the SQP algo-
rithm to solve the optimization.
The SQP algorithm works effectively with a large

PAPR reduction gain. At the cost of a smaller PAPR

reduction gain, it is possible to reduce the computa-
tional complexity of the technique by using other gradi-
ent-based optimization techniques. Even lower
complexity can be achieved using a least squares-based
formulation, but simulation results indicated a substan-
tial performance loss compared with the SQP approach.
The SQP itself can be implemented in different ways to
simplify the algorithm and several steps can be done in
parallel for a more practical hardware implementation.

Appendix A
Calculation of the search direction d́l
The procedure of deriving search direction of the QP is
explained in [19] and included here for convenience.
Once Zl is derived, a new search direction d́l is updated
that minimizes the QP objective function q(d), which is
a linear combination of the columns of Zl and located
in the null space of the active constraints. Thus, the
quadratic objective function can be reformulated as a
function of some vector b by substituting for d́l = Zlb,
in general QP problem.

q(b) =
1
2

bTZT
l HZl b + cTZlb, (25)

Differentiating with respect to b yields,
∇q(b) = ZT

l HZlbT + ZT
l c where ∇q(b) is referred to as

the projected gradient of the quadratic function, because
it is the gradient projected to the subspace defined by
Zl. The minimum of the function q(b) in the subspace
defined by Zl occurs when ∇q(b) = 0, which is the solu-
tion of the system of linear equations.

ZT
l HZl b = −ZT

l c. (26)

Solving Equation(26) for b at each QP iteration gives
the d́l, then the step is taken as dl+1 = dl + αd́l. Since the
objective is a quadratic function, there are only two
choices of step length a; it is either 1 along search
direction d́l or < 1. If the step length 1 can be taken
without violation of the constraints, then this is the
exact step to the minimum of the quadratic function.
Otherwise, the distance to the nearest constraint should
be found and the solution is moved along it as in Equa-
tion(22).

Endnotes
aThe general aim of this modification is to distort the
elements of qk, which contribute to a positive definite
update, as little as possible. Therefore, in the initial
phase of the modification, the most negative element of
qT

k sk is repeatedly halved. This procedure is continued

until qT
k sk is greater than or equal to a small negative

tolerance. If, after this procedure, qT
k sk is still not
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Figure 9 SQP PAPR reduction performance versus number of
sub-blocks when Pr{PAPR > PAPR0} = 10-4
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positive, modify qk by adding a vector v multiplied by a
constant scalar w, and increase w systematically until
qT

k sk becomes positive see [19]. bEquality constraints are
always active but there is no equality constraints in this
phase optimization problem. cWhen it is not the first
major iteration, the active set is not empty. dWhere i is
the index of minimum in (22) which indicates the active
constraint to be added. eThe term “length” indicates the
number of rows in Al or equivalently the number of
active constraints. fThe QP is a convex optimization
problem, so the iterations proceed till the optimum is
found, but a modification of the algorithm can be used
when the number of iterations are fixed. gThe fixed
operations belong to those matrices whose sizes do not
change during the iterations while there are other
matrices like Z that has variable size and hence different
complexity during iterations. hThis is the simplest sce-
nario, but other modifications can be made to develop a
more elaborate version of LSE.
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