
Automation Research Group
Department of Signals and Systems
Chalmers University of Technology

Efficient Supervisory Synthesis to Large-Scale
Discrete Event Systems Modeled as Extended

Finite Automata

Zhennan Fei and Sajed Miremadi

Date: March 15, 2012
Subject: Fundation of Automation
Mentors: Knut Åkesson and Bengt Lennartson
Project term: PhD Research
E-mail: zhennan@chalmers.se
ISSN: 1403-266X
Report No: R005/2012

Abstract

The state-space explosion problem, resulting from the reachability computation of the
synthesis task, is one of main obstacles preventing the supervisory control theory (SCT)
from having a major industrial breakthrough. To alleviate this problem, a well-known
strategy is to utilize binary decision diagrams (BDDs) to represent system transition
relations and compute supervisors symbolically. Based on this principle, we present in
this paper an efficient reachability approach to large-scale discrete event systems modeled
as finite automata with variables. By making use of the disjunctive partitioning tech-
nique, the proposed approach partitions the transition relation of a considered system
into a set of partial transition relations according to included events. Then those partial
transition relations are selected systematically to perform the reachability computation.
Consequently, more iterations might be required to compute the fixed point, but the inter-
mediate BDDs are smaller. As a supplement to prior framework, the approach has been
implemented in the supervisory control tool Supremica and the efficiency is demonstrated
on a set of industrially relevant benchmark problems.

1 Introduction

The analysis of discrete event systems (DESs) has been paid extensive attention by re-
searchers and scientists in the computer science community. One typical analysis approach is
to utilize formal verification techniques, such as model checking, to verify whether considered
systems fulfill given specifications or not. However, from the control engineering point of
view, instead of verifying the correctness of a DES model, a controller, which automatically
conducts the system behavior without violating specifications, is a necessity. The supervisory
control theory (SCT) [1, 2] provides a control-theoretic framework for control engineers to

1

design such a safety device, referred to as the supervisor of a system. Given a DES model to
be controlled, the plant, and the intended behavior, the specification, the supervisor can be
automatically synthesized, guaranteeing that the closed-loop system always achieves the given
specification. SCT has been applied to a variety of areas such as automated manufacturing
systems, communication networks and embedded systems [3, 4, 5].

When modeling and synthesizing large-scaled DESs by the supervisory control theory, a
typical issue is to how to compute such a control function efficiently and represent it ap-
propriately. The standard approach provided by SCT is to model the considered system by
finite automata, synthesize the supervisor and then represent all of reachable states in the
closed-loop system explicitly. However, regarding systems of industrially interesting sizes,
the standard approach reveals some drawbacks: (a) Modeling complex systems with ordinary
automata might make the model large and intractable; (b) The resultant supervisor, as a
single automaton, typically consists of a huge number of states, which makes it difficult for
users to understand thoroughly.

In prior work [6], a framework was presented where users can both model a system and
obtain the supervisor in the form of extended finite automata (EFAs) [7], which is an augmen-
tation of an ordinary automata extended with variables. By taking the advantage of EFAs,
more compact and comprehensible system models can be obtained. In addition, instead of
representing the supervisor as a single automaton, the guard generation procedure provided
in the framework can extract a set of logic formulas. Those extracted formulas, referred to
as guards, are attached to the corresponding transitions of original models, which results in
a modular representation of the supervisor.

Whereas the aforementioned framework allows compact representation of large state-
spaces, when it comes to analysis, the number of states are not affected and could potentially
cause the state-space explosion problem that typically occurs when the behavior of inter-
acting sub-systems is studied. Particularly, the state-space explosion problem arises from
the synthesis task which involves a series of reachability computations. As DESs becoming
more complicated, the traditional explicit state-space traversal algorithm may be intractable.
The state-space explosion problem actually is one of the main obstacles which prevent SCT
from having a major industrial breakthrough. Over decades, numerous researches have been
dedicated to it and thus a variety of fruitful approaches have been proposed. Among these
approaches to the state-space explosion problem, a well-known one is to symbolically rep-
resent system models and compute supervisors by using binary decision diagrams (BDDs)
[8, 9]. In [6], a symbolic synthesis approach was indeed presented. After constructing the
symbolic representation of the considered closed-loop system, the supervisor can be computed
iteratively. However, the main problem of such monolithic approach is that during the reach-
ability computations, the number of nodes in the intermediate BDDs might be significantly
large, which quickly becomes a serious impediment to efficient computation, even though the
final number of BDD nodes is manageable.

“To reach significant BDD reduction, it is crucial to explore the search space in an intel-
ligent way. The key is to impose structure on the state-space exploration” [10]. Moreover,
to realize such an intelligent state-space exploration, an important ingredient is the use of
partitioning techniques, which was rigorously defined in [11] and used in a number of contexts
[12, 13]. There also exists a number of papers dealing with the adaption of these techniques
to the verification or synthesis task of SCT. In [10] and [14], a straightforward but non-trivial
symbolic reachability approach was presented. The approach, based on the disjunctive parti-
tioning technique, represents the monolithic transition relation of a fully synchronized DES by

2

a collection of partial transition relations. In [15], an improved version of the algorithm from
[14] was proposed to deal with the restricted reachability state-space search where the set of
forbidden states is expanded and excluded iteratively. However, these approaches are based
on finite automata without the introduction of variables. At the time of writing this paper,
to the knowledge of the authors, yet no work has been presented to adapt these partitioning
techniques to DESs with variables.

In the context of the aforementioned research developments, motivated by the above
remarks, in this paper, we present an alternative symbolic reachability approach. By making
use of the disjunctive partitioning technique, the proposed approach partitions the transition
relation of a considered system into a set of partial transition relations according to included
events. Then those partial transition relations are selected systematically to perform the
reachability computation. Generally, the approach can be easily adapted or extended to other
alternative modeling formalisms such as [16, 17], even though in this paper, it is considered
as an important supplement to our modeling and synthesis framework.

The paper has three main contributions:

• Suggesting a new symbolic way to partition DESs modeled as EFAs by using the dis-
junctive partitioning technique. The proposed approach constructs partial transition
relations based on the alphabet of a DES. In addition, the correctness is formally proved.

• Proposing an alternative straightforward algorithm including the proof of correctness
to realize the structural state-space exploration.

• Integrating this approach with our modeling framework and demonstrating the efficiency
on a set of industrially relevant benchmark examples.

Generally, the approach proposed in this paper can be easily adapted or extended to
other alternative modeling formalisms such as [16, 17], even though it is being as an im-
portant supplement to our modeling and synthesis framework in this paper. As stated in
[6], the framework offers a number of advantages from different perspectives. By modeling
a system based on EFAs, a relatively compact representation of complex systems with huge
state-space can be potentially obtained. Another advantage is that the system is symbolically
represented using BDDs, and all the computations are based on BDD operations, making it
possible to handle large-scaled systems and overcome the state-space explosion problem in
many cases. Representing the supervisor by EFAs in a modular manner also makes it more
comprehensible and tractable for the users. In addition, typically, a modular supervisor con-
sumes less memory in a controller. The reason is that the synchronization will be performed
online in the controller (see [18, 19]). which can alleviate the problem of exponential growth
of the number of states in the synchronization. Furthermore, since EFAs include guards and
actions, they are often easier to interpret than purely ordinary modular automata. They can
also easily be converted to controller programming languages e.g., SFC or ladder diagrams.
EFA can also be easily be converted to well-known verification tools such as [20]. Also, from
an engineering perspective, EFAs are attractive models due to their similarities to UML and
state diagrams.

This paper is organized as follows: Section 2 provides some preliminaries including ex-
tended finite automata, binary decision diagrams and the supervisory control theory which are
the fundamental concepts in our work. Section 3 illustrates the modeling of a simple resource
allocation system configuration as EFAs and how to use BDDs to symbolically represent an

3

EFA. Section 4 and 5 present the main contributions by detailing the approach pursued by
this paper. In particular, Section 4 describes how to construct the partial transition rela-
tions, while Section 5 shows an alternative symbolic algorithm, which is used to explore the
state-space in a structural way. Section 6 shows the results of applying the approach to a
set of benchmark examples. Finally, Section 7 concludes the paper by summarizing the main
contributions and outlining some suggestions for the future work.

2 Preliminaries

In this section, some preliminaries used throughout the rest of the paper are provided and
briefly explained.

2.1 Extended Finite Automata

An EFA, introduced in [7], is an augmentation of the ordinary finite automaton (FA) with
guards predicates and actions functions. The guard predicates and actions are associated
to the transitions of the automaton. A transition in an EFA is enabled if and only if its
corresponding guard predicate is evaluated to true, and when a transition is taken, updating
actions of a set of variables may follow. Guard predicates can be realized by their characteristic
functions.

Definition 2.1 (Characteristic Function). Let W be a finite set so that W ⊆ U , where U is
the finite universal set. A characteristic function χW : U → B is defined by

χW (a) =

{
1 iff a ∈ W
0 iff a /∈ W

. (1)

Let n be the number of elements in U , in practice its elements are represented with
numbers in Zn or binary m-tuples in B

m(m = �logn2 �). For binary characteristic functions,
an injective function θ : U → B

m is used to map the elements in U to elements in B
m. In

general, χW (a) is constructed as

χW (a) =
∨

w∈W
a ↔ θ(w), (2)

where ↔ on two m-tuples v1 and v2 is defined as

v1 ↔ v2 �
∧

0≤i<m

(vi1 ↔ vi2), (3)

where vi denotes the i:th element in the binary m-tuple v. As we will see later, characteristic
functions can also be used to represent BDDs.

Definition 2.2 (Extended Finite Automata). An extended finite automaton E is a 6-tuple

E = 〈LE × V,ΣE,G,A,→, (�E0 , v0)〉,
where:

• LE ×V is the extended finite set of states, denoted by Q, where LE is a set of locations
and V is the domain of definition of the variables;

4

• ΣE is a non-empty finite set of events;

• G = {χW | W ∈ 2V } is the set of guard predicates over V ;

• A = {a | a : V → V } is a collection of action functions;

• →⊆ LE × ΣE × G ×A× LE is the transition relation;

• (�E0 , v0) ∈ LE × V is the initial state.

The finite set V = V 1 × . . . × V n is the domain of definition of an n-tuple of variables
v = (v1, . . . , vn) with the initial values v0 = (v10 , . . . , v

n
0) ∈ V . A guard g(v) is a predicate

over the variables that relate each element of V to either 1 (true) or 0 (false). Actions are
written as

v́ : = a(v) = (a1(v), . . . , an(v)),where v́ ∈ V.

The symbol ξ is used to denote implicit actions that do not update the values of variables.
For instance, if ai(v) = ξ, it means that action ai does not update variable vi, i.e. v́i = vi.

The transition relation can be written as �
σ→g/a �́, where �, �́ ∈ L, σ ∈ Σ, g ∈ G and

a ∈ A. If g is absent, denoted by �
σ→a �́, it is assumed that g always evaluates to true. If a

is absent, denoted by �
σ→g �́, it is assumed that a(v) = Ξ, where Ξ is the vector notation for

(ξ, ξ, . . . , ξ), indicating that no variable is updated during the transition.
For convenience, the states (locations and variable values) can be explicitly written out

in system transitions according to the following definition.

Definition 2.3 (Explicit State Transition Relation). Let E = 〈LE × V,ΣE , 	→, (�E0 , v0)〉 be
an EFA. The explicit state transition relation of E is defined as

	→E � {(�E , v, σ, �́E , v́) ∈ LE × V × Σ× LE × V |
∃�E σ→g/a �́E : v ∈ SATG(g) ∧ (v, v́ ∈ SATA(a))},

where v and v́ are the values of the variables before and after executing the transition,
respectively; SATG denotes the set of variable assignments that satisfies the guard g(v),

SATG(g) � {v ∈ V | v � g}; (4)

and SATA denotes the following set:

SATA(a) � {(v, v́) ∈ V × V | v́ = a(v)}. (5)

For brevity, we denote the explicit representation of a transition �
σ→g/a �́ by 	→

�
σ→g/a �́

.

Definition 2.4 (Deterministic EFA). An EFA E = 〈LE × V,Σ, 	→, (�E0 , v0)〉 is deterministic

if (�E , v)
σ	→ (�́E, v́) and (�E, v)

σ	→ (�̀E , v̀) always implies (�́E, v́) = (�̀E , v̀).

Since we are interested in deterministic systems, we merely focus on deterministic EFAs.
In the sequel, for the sake of brevity, we simply write EFAs for deterministic EFAs.

The composition of two EFAs is defined by the extended full synchronous composition
(EFSC).

5

Definition 2.5 (Extended Full Synchronous Composition). Let Ek = 〈LEk × V,ΣEk ,→Ek

, (�Ek
0 , v0)〉, k = 1, 2, be two EFAs with the shared variables v = (v1, . . . , vn). The Extended

Full Synchronous Composition (EFSC) of E1 and E2 is

E1 ‖ E2 = 〈LE1 × LE2 × V,ΣE1 ∪ ΣE2 ,→, (�E1
0 , �E2

0 , v0)〉

where the state transition relation → is defined as

1. (�E1 , �E2)
σ→g/a (�́E1 , �́E2), σ ∈ Σ1 ∩ Σ2 if

∃�E1
σ→g1/a1 �́E1 ∈→E1 and

∃�E2
σ→g2/a2 �́E2 ∈→E2 such that:

• g = g1 ∧ g2,

• For i = 1, . . . , n and ∀v ∈ V :

ai(v) =




ai1(v) if ai1(v) = ai2(v)
ai1(v) if ai2(v) = ξ
ai2(v) if ai1(v) = ξ
vi otherwise

2. (�E1 , �E2)
σ→g/a (�́E1 , �́E2), σ ∈ Σ1\Σ2 if

(�E1 , σ, g, a, �E1) ∈→E1 and �E2 = �́E2 ;

3. (�E1 , �E2)
σ→g/a (�́E1 , �́E2), σ ∈ Σ2\Σ1 if

(�E2 , σ, g, a, �E2) ∈→E2 and �E1 = �́E1 .

The EFSC operator is both commutative and associative. Note that, in the case where
the action functions of E1 and E2 explicitly try to update a shared variable to different values,
we assume that the variable is not updated. It can indeed be discussed whether the transition
should be executed. In that case, the definition of EFSC need to be more modified compared
to FSC, which is not desired. In addition, a situation where two values are conflicting, is
usually a consequence of bad modeling, and thus it is more reasonable to inform the user
by a message rather than disabling the transition. For more details about EFAs, refer to [7]
including the procedure of converting an EFA model to an FA model.

2.2 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) [8, 9] are powerful data structures for representing Boolean
functions. For large systems where the number of states grows exponentially, BDDs can
improve the efficiency of set and Boolean operations performed on the state sets dramatically
[14, 21, 22, 23].

Given a set of Boolean variables B, a BDD is a Boolean function h : 2B → {0, 1}, which
can be expressed using Shannon’s decomposition [24]:

h = (¬bj ∧ h|bj=0 ∨ (bj ∧ h|bj=1)) bj ∈ B

where h |bj=0 and h |bj=1 refer to assignment 0 and 1 to all occurrences of the Boolean variable
bj , respectively. A BDD is represented as a directed acyclic graph, which consists of two types
of nodes: decision nodes and terminal nodes. A terminal node can either be 0-terminal or

6

1-terminal. Each decision node is labeled by a Boolean variable and has two edges to its low-
child and high-child. The low- and high-child corresponds to the cases in the above equation
where bj is 0 (graphically represented by a dotted line) and 1 (graphically represented by a
solid line), respectively. The size of a BDD refers to the number of decision nodes.

The power of BDDs lies in their simplicity and efficiency to perform binary operations. A
binary operator op between two BDDs h and g can be computed as

h op g = [¬bj ∧ (h|bj=0 op g|bj=0)]∨
[bj ∧ (h|bj=1 op g|bj=1)].

If the operator is implemented based on dynamic programming, the time complexity of
the algorithm will be O(|h| · |g|), where |h| and |g| are the sizes of the BDDs referring to the
number of nodes excluding the terminal nodes. A BDD operation that is used extensively in
our implementation is the existential quantification over Boolean variables:

∃ b.h = h|bj=0 ∨ h|bj=1.

The time complexity for quantification is exponential in the worst case. The implementation
of the BDD operators has been discussed in more detail in [25].

The corresponding BDD for a finite set W ⊆ U (U is the universal set), can be represented
using the characteristic function χ in (1).

In a BDD graph, a variable b1 has a lower (higher) order than variable b2 if b1 is closer
(further) to the root and is denoted by b1 ≺ b2(b2 � b1). The variable ordering will impact the
size of the BDD, however, finding an optimal variable ordering of a BDD is an NP-complete
problem [26].

In the framework, a static BDD variable ordering is computed based on the method
presented in [27]. In this method, the variable ordering is influenced by the ordering of
interacting automata based on weighted search in the Process Communication Graph (PCG).
A PCG for a set of automata is a weighted undirected graph, where the weight between two
automata A1 and A2 is defined as |ΣA1 ∩ ΣA2 |. With respect to the DESs modeled as finite
automata with variables, such as EFAs, the interaction of automata is affected not only by
the alphabets but also the global variables (all variables in EFAs are global). To handle this
issue, we add additional weights to the PCG by inspecting the guard predicates and actions
functions of each transition. This is however beyond the scope of this paper.

For a more elaborate and verbose exposition of BDDs and the implementation of different
operators, refer to [25, 28].

2.3 Supervisory Control Theory

As described in Section 1, SCT is a general theory to, given a plant P and specification Sp,
automatically synthesize a minimally restrictive supervisor S restricting the plant towards
the specification. Notice that if the plant is given as a number of sub-plants P1, . . . , Pn, the
plant P = P1 ‖ . . . ‖ Pn. Similarly, Sp = Sp1 ‖ . . . ‖ Spm. For each sub-specification Spi,
ΣSpi ⊆ ΣP , meaning the specification can not specify more than what the plant can achieve.
Within the theory, some states of an automaton E, typically a specification, are identified as
marked states QE

m. The marked states are these states that can be reached from the initial
state. The set of marked states of a composed automaton E1 ‖ E2 is the cartesian product
of the corresponding sets of marked states. In addition, events in the alphabet, Σ, can either

7

be controllable or uncontrollable. Thus the alphabet can be divided into two disjoint subsets,
the controllable event set Σc, and the uncontrollable event set Σu.

In SCT, the supervisor of a DES to be synthesized is assumed be minimally restrictive,
meaning that the plant is give the greatest amount of freedom to generate events. Moreover,
there are two properties that the supervisor ought to have:

• Controllability : The supervisor S is never allowed to disable any uncontrollable event
that might be generated by the plant P . This safety property can be formally expressed
in terms of languages as:

L(Sp ‖ P)Σu ∩ L(P) ⊆ L(Sp ‖ P).

• Non-blocking : The supervisor S guarantees that at least one marked state can be
reached from every state in the closed-loop system S ‖ P . In terms of languages,
the property can be described as:

L(Sp ‖ P) = Lm(Sp ‖ P).

The supervisory synthesis starts by generating the system S0 = P ‖ Sp and detecting a set
of initiallly uncontrollable states. Through a series of reachability computations, forbidden
states are iteratively excluded from QS0 until the remaining states are both controllable and
nonblocking. The resulting system is the supervisor S and all of the included states are
hereby called safe states, denoted by QS . For a more formal and detailed explanation of this
approach, refer to [14].

3 A Motivation Example

As an example illustrating EFA modeling and BDD encoding, consider a following simple
resource allocation system configuration in Fig. 1, which is borrowed from [29].

Example (A Simple Resource Allocation System). The considered resource allocation system
is constituted by two process types P1 and P2, each of which consists of three processing
stages performing the linear structure. The system resource set is R = {R1, R2, R3}, with
the capacity Ci = 1, i = 1, 2, 3. Each processing stage Ξij(i = 1, 2; j = 1, 2, 3) requests one
single unit of one resource type.

P1 : Ξ11

R1(1)

Ξ12

R2(1)

Ξ13

R3(1)

P2 : Ξ21

R3(1)

Ξ22

R2(1)

Ξ23

R1(1)

C1 = C2 = C3 = 1

Figure 1: A flexibly automated robotic cell example in Section 2

In [30], an approach to modeling sequential allocation systems using EFA is presented. As
a result, Figure. 2 shows the EFA model of this simple sequential resource allocation system,

8

where each EFA models one process type. To support the multiple instance execution, each
EFA is defined to only have one location (both initial and marked) and all transitions labeled
by events, for instance P1 book R1, are added as self-loops. For each resource Ri, i = 1, 2, 3,
the corresponding resource variable vRi is declared to denote the number of available units
of Ri. The domain of vRi is denoted to be {0, . . . , Ci}, where both of the initial and marked
values of vRi are equal to Ci. Moreover, for each processing stage except the last one of each
process type. One instance variable is declared to denote the number of instances executing at
the corresponding stage. Finally the resource and instance variables are used to construct the
guards and actions. Guards are local formulae determining whether a process instance can
advance to the next processing stage while actions are used to update the available resource
units and instances for various processing stages. For a more detailed discussion, refer to [30].
In the sequel, we elaborate how to symbolically represent the transition relation of an EFA
by using BDDs. For the sake of brevity, only the first EFA shown in Fig. 2 is considered.

P1

P1 book R1
g : vR1 ≥ 1

a : vR1 = vR1 − 1; v11 := v11 + 1

P1 book R3 release R2
g : vR3 ≥ 1 ∧ v12 ≥ 1
a : vR2 := vR2 + 1;

v12 := v12 − 1

P1 book R2 release R1
g : vR2 ≥ 1 ∧ v11 ≥ 1
a : vR2 := vR2 − 1;

vR1 := vR1 + 1;
v11 := v11 − 1;
v12 := v12 + 1

P2

P2 book R3
g : vR3 ≥ 1

a : vR3 = vR3 − 1; v21 := v21 + 1

P2 book R1 release R2
g : vR1 ≥ 1 ∧ v22 ≥ 1
a : vR2 := vR2 + 1;

v22 := v22 − 1

P2 book R2 release R3
g : vR2 ≥ 1 ∧ v21 ≥ 1
a : vR2 := vR2 − 1;

vR1 := vR1 + 1;
v21 := v11 − 1;
v22 := v12 + 1

Figure 2: The EFA model of Example 3

As mentioned before, the characteristic functions can be used to represent the transition
relation of an EFA. Based on Definition 2.1 and 2.3, the characteristic function of the explicit

9

state transition relation 	→
�
σ→g/a�́

can be rewritten as:

χ �→
�
σ→g/a�́

(bV
1
, . . . , bV

n
, b́V

1
, . . . , b́V

n
, bL, b́L, bΣ) =

 ∨
(v,v́)∈SATA(a)|v∈SATG(g)

n∧
i=1

(
bV

i ↔ θ(vi) ∧ b́V
i ↔ θ(v́i)

)) ∧

bL ↔ θ(�) ∧ b́L ↔ θ(�́) ∧ bΣ ↔ θ(σ),

(6)

where bΣ denotes the Boolean variables representing the alphabet while bL and b́L are two
different sets of Boolean variables representing the current and updated locations. For an EFA
where n variables are defined, bV

i
and b́V

i
denote the current and updated integer values of

variables. In our framework, integers are represented in the two’s complement system as
array of BDDs [31]. In practice, it is very often that values of variables are defined as or
updated to non-negative integers. In that case, for computational purposes, the BDD variable
representing the sign-bit of a non-negative integer is omitted and thus only the magnitude is
encoded. Besides, we assume that overflows are not allowed and thus we omit the cases where
an overflow occurs. This is performed by removing all the variable assignments that result in
values outside the domain of the variables. Consequently, the characteristic function of the
transition relation of an EFA E will be

χ �→E
=

∨
�
σ→g/a �́∈→E

χ �→
�
σ→g/a�́

∧

n∧
i=1

χV i(bV
i
) ∧

n∧
i=1

χV i(b́V
i
).

(7)

Regarding the EFA model of process type P1 of Example 3, Fig. 3 shows the corresponding
transition relation and Table 1 shows the location and event encoding. The BDD variables
in the figure are labeled with indices as follows:

bΣ = (bΣ1 , b
Σ
0) = (‘1’, ‘0’),

bL = (bL0) = (‘2’), b́L = (b́L0) = (‘3’),

bvR1 = bvR1
0 = (‘4’), b́vR1 = (b́vR1

0) = (‘5’),

bvR2 = bvR2
0 = (‘6’), b́vR2 = (b́vR2

0) = (‘7’),

bvR3 = bvR3
0 = (‘8’), b́vR3 = (b́vR3

0) = (‘9’),

bv11 = bv110 = (‘10’), b́v11 = (b́v110) = (‘11’),

bv12 = bv120 = (‘12’), b́v12 = (b́v120) = (‘13’),

where b0 is the least significant bit.
Note that for all of the variables defined within the model, the Boolean variables repre-

senting the sign-bit of variable values are omitted since they are all non-negative. Besides,
because of (7), the BDD does not contain the cases where variable values are beyond the
domains.

10

As it can be observed, the BDD in this example is larger than its corresponding EFA,
however, for larger models the BDDs typically become much more compact.

01

0

1 1

2 2 2

3 3

4

5

6

7 7

8

99

10

11

12

1313

4

5

6

7

8

99

10

11

12

3

4

55

6

7

8

9

10

1111

12

Figure 3: The corresponding BDD for the transition relation of the first EFA in Fig. 2

Table 1: Event and current location encoding for the first EFA in Fig. 2

Event bΣ1 b
Σ
0 Location bL0

P1 book R1 0 0 P1 0

P1 book R2 release R1 1 0

P1 book R3 release R2 0 1

4 Partitioning of the full synchronous composition

Not surprisingly, reachability (co-reachability) computations turn out to be the bottle-neck
of the SCT synthesis algorithm. Adopting the symbolic representation using binary decision
diagrams, we can partially solve this problem. However, with more complicated DESs, the
BDD representation of the monolithic transition relation, χ �→S0

, might be extremely large
to be constructed. More importantly, even though such BDD representing the monolithic
transition relation is managed to be constructed, the reachability computation may still suffer
from the state-space explosion due to the large intermediate BDDs. In this section, we present
a way to partition DESs modeled by EFAs by using the disjunctive partitioning technique
and in Section 5, a straightforward but nontrivial algorithm, based on the partitioned BDDs,
is presented to guide the state-space exploration.

11

Since S0 is the synchronization of a number of sub-plants and sub-specifications in the
form of EFAs, in all of the following computations we focus on N ≥ 2 EFAs and let E =
{E1, E2, . . . , EN}.

Partitioning of the transition relation as introduced by [11] has become the standard
guideline to alleviate the state-space problem. By splitting the transition relation into a set
of partial transition relations, connected by either disjunction or conjunction. In [14, 10], an
adaption of the disjunctive partitioning technique to finite automata under full synchronous
composition was introduced. Informally, this automaton-based approach constructs the dis-
junctive partial transition relation of each sub-automaton directly from its transition relation
and dependency set that can be derived from the PCG graph. For the formal definition
and proof, refer to [10]. However, when it comes to the systems modeled by EFAs. The
automaton-based partitioning approach does not work any more, because the interaction of
automata not only depends on the shared events in the alphabet, but also the updates of
global variables. In addition, the automaton-based approach cannot be able to keep track of
the variables that are not updated. By definition, these variables need to remain the previous
values during the transitions.

In this paper, we take a slightly different way and construct the partial transition relation
based on events instead of automata. For each event σ ∈ ΣE where E = E1 ‖ . . . ‖ EN , the
corresponding disjunctive partial transition relation χ σ�→E

under full synchronous composition
can be constructed in the following steps:

1. Compute a characteristic function of
σ	→E† , denoted by χ σ�→

E†
where E† = E†

1 ‖ . . . ‖ E†
m

and σ ∈ ΣE†
1 ∩ . . . ∩ΣE†

m .

2. Compute a characteristic function of
σ	→E‡ , denoted by χ σ�→

E‡
where E‡ = E‡

1 ‖ . . . ‖ E‡
m′

and {E‡
1, . . . , E

‡
m′} = E\{E†

1, . . . , E
†
m}.

Regarding step 1, computing
σ	→E† , two further steps need to be performed in advance:

• Compute χ′
σ�→

E†
, which denotes the characteristic function of

σ	→E† excluding the action

functions of EFA variables,

• Compute χ σ�→v

E† denoting the update of EFA variables.

To compute χ′
σ�→

E†
, we make use of the following two propositions.

Proposition 1. For an EFA E† and an event σ ∈ ΣE†
, the characteristic function repre-

senting the explicit transition relation through σ of E†, denoted by

χ σ�→
E†

= χ �→
E† ∧ χσ,

where χσ is the characteristic function of the event σ and χ �→
E† is the transition relation of

the EFA E†.

Proposition 2. Let E†
1, . . . , E

†
m be m ≥ 2 EFAs and σ ∈ ΣE†

1 ∩ . . . ∩ ΣE†
m. Then

χ′
σ�→

E
†
1‖...‖E

†
m

=

m∧
k=1

(∃ b́V
i
.χ σ�→

E
†
k

). (8)

12

Subsequently, we compute χ σ�→v

E† , which represents the update of EFA variables after the

occurrence of σ. In the following computations, we focus on the update of a single variable
between two EFAs and extend it to all variables for all EFAs in the model.

Definition 4.1 (Updated Transition Relation Through σ). For an EFA E and a single variable
vi, the updated transition relation for vi through σ, denoted by

σ	→vi,E, can be defined as

σ	→vi,E= {(�, v, σ, �́, v́) | ∀(�, v, σ, �́, v́) ∈ σ	→E ∧ v́i �= vi}.

Recall that,from Definition 2.5, the result of ai(v) can be divided into four if-then con-
structs, which we denote by Cj . Each Cj consists of an if part, denoted by Ij, and a then

part, denoted by Tj :

• I1 : a
i
1 = ai2; both actions update vi to the same value.

• T1 : a
i(v) = ai1 or ai(v) = ai2.

• I2 : a
i
2 = ξ; the first action updates vi but not the second action.

• T2 : a
i(v) = ai1.

• I3 : a
i
1 = ξ; the second action updates vi but not the first action.

• T3 : a
i(v) = ai2.

• I4 : otherwise; either none of the actions updates vi, or the actions update the variable
to different values.

• T4 : a
i(v) = vi.

Definition 4.2 (Interaction Transition Relation Through σ). For two EFAs E1 and E2, and a
variable vi, the interaction transition relation through the event σ, denoted by Cj(

σ	→vi,E1‖E2
),

can be defined as

C1(
σ	→vi,E1‖E2

) �{((�E1 , �E2), v, σ, (�́E1 , �́E2), v́) |
(�E1 , v, σ, �́E1 , v́) ∈ σ	→vi,E1

∧
(�E2 , v, σ, �́E2 , v́) ∈ σ	→vi,E2

},

C2(
σ	→vi,E1‖E2

) �{((�E1 , �E2), v, σ, (�́E1 , �́E2), v́) |
(�E1 , v, σ, �́E1 , v́) ∈ σ	→vi,E1

∧
(�E2 , v, σ, �́E2 , ν́) ∈ σ	→E2 \ σ	→vi,E2

},

C3(
σ	→vi,E1‖E2

) �{((�E1 , �E2), v, σ, (�́E1 , �́E2), v́) |
(�E1 , v, σ, �́E1 , ν́) ∈ σ	→E1 \ σ	→vi,E1

∧
(�E2 , v, σ, �́E2 , v́) ∈ σ	→vi,E2

},

13

C4(
σ	→vi,E1‖E2

) �{((�E1 , �E2), v, σ, (�́E1 , �́E2), v́) |
((�E1 , �E2), v, σ, (�́E1 , �́E2), v́) /∈
3⋃

j=1

(Cj
σ	→vi,E1‖E2

),

where ν́ = (v́1, . . . , v́i−1, ξ, v́i+1, . . . , v́n).
Hence, by definition we have:

χ σ�→vi,E1‖E2

=

4∨
j=1

χ
Cj(

σ�→vi,E1‖E2
)
.

Based on Definition 4.2, χ σ�→v

E† can be computed as follows:

χ σ�→v

E† =
n∧

i=1

χ σ�→
vi,E†

. (9)

Moreover, χ σ�→
E†

can be computed according to (8) and (9):

χ σ�→
E†

= χ′
σ�→

E†
∧ χ σ�→v

E† . (10)

At this stage, we are done with step 1.

Remark. Recall from Definition 2.5, that if there exists an event σ, such that σ ∈ ΣE1\ΣE2 ,
on the occurrence of σ, E2 would remain the previous location, i.e. ∀�, �́ ∈ LE2 , � = �́. On
the other hand, the values of variables are updated according to the transitions labeled by σ
in E1.

Definition 4.3 (Remained Transition Relation of σ). For an EFA E and an event σ /∈ ΣE ,

the remained transition relation of σ for E, denoted by
σ
�E can be defined by

σ
�E= {(�, σ, �́) | ∀�, �́ ∈ LE ∧ � = �́}.

Therefore, the characteristic function representing
σ	→E‡ can be computed according to the

following proposition.

Proposition 3. Let E‡
1, . . . , E

‡
m′ be m′ ≥ 2 EFAs and σ /∈ ΣE‡

1 ∪ . . . ∪ ΣE‡
m′ , then

χ σ�→
E‡

=

m′∧
k=1

χ σ
�

E
‡
k

, (11)

where E‡ = E‡
1 ‖ . . . ‖ E‡

m′ .

At this moment, we have done the first two steps. Sequentially, computing the character-
istic function of

σ	→E, can be performed based on (10) and (11):

χ σ�→E
= χ σ�→

E†
∧ χ σ�→

E‡
(12)

As the final step, we prove that the union of these partitioned characteristic functions
χ σ�→E

based on each event σ ∈ ΣE is equivalent to the characteristic function χ �→E
.

Here we introduce Definition 4.4 and 4.5, which were defined in [6].

14

Definition 4.4 (Extended Explicit Transition Relation �Ek
). For N ≥ 2 EFAs E1, . . . , EN ,

the extended explicit transition relation of Ek, denoted by �Ek
, represents the explicit tran-

sition relation of Ek together with self-loops on all states with events that are not in the
alphabet of Ek

�Ek
� 	→Ek

∪ {(�, v, σ, �́, v́i) | ∀� ∈ LEk ,∀v, v́ ∈ V :

σ ∈ (ΣE1‖...‖EN \ΣEk) ∧ � = �́}.

Definition 4.5 (Updated Transition Relation, �vi,E). For an EFA E and a variable vi, the
updated transition relation for variable vi, denoted by �vi,E, represents the set of transition
relations in E on which the variable vi is updated:

�vi,E� {(�, v, σ, �́, v́) | ∀(�, v, σ, �́, v́) ∈ �E ∧ �́i = vi}.

Remark. In [6], for the symbolic monolithic approach, authors have proved that

χ�E
=

n∧
i=1

χ�vi,E
∧ χ′

�E
. (13)

where n is the number of EFA variables of a model and E = E1 ‖ . . . ‖ EN .

Thus, to prove Theorem 4.1, we can prove that

χ�E
=

n∧
i=1

χ�vi,E
∧ χ′

�E

=
∨

σ∈⋃N
k=1 Σ

Ek

χ σ�→E
.

Lemma 4.1. By Definition 4.4 and 4.5, (13) can be rewritten as

χ �→E
=

n∧
i=1

χ �→vi,E
∧ χ′

�→E
(14)

Proof. Since E1, . . . , EN are defined as the set of EFAs of a model, the second term (disjunct)
of the definition of �E is omitted. Therefore we have.

�E= 	→E .

The other two cases can be similarly proved.

Theorem 4.1. For N ≥ 2 EFAs E1, . . . , EN and an n-tuple of variables vi, . . . , vn, the
following statement holds:

χ �→E
=

∨
σ∈⋃N

k=1 Σ
Ek

χ σ�→E
, (15)

where E = E1 ‖ . . . ‖ EN .

15

Proof. Based on Lemma 4.1, in order to prove (15), we can instead prove

n∧
i=1

χ �→vi,E
∧ χ′

�→E
=

∨
σ∈⋃N

k=1 Σ
Ek

χ σ�→E

Since

n∧
i=1

χ �→vi,E
∧ χ′

�→E

=
∨

σ∈⋃N
k=1 Σ

Ek

(n∧
i=1

χ σ�→vi,E

) ∧ ∨
σ∈⋃N

k=1 Σ
Ek

χ′
σ�→E

=
∨

σ∈⋃N
k=1 Σ

Ek

(n∧
i=1

χ σ�→vi,E
∧ χ′

σ�→E

)
, (16)

for each σ ∈ ΣE1 ∪ . . . ∪ ΣEN , there exists a subset of EFAs E† = {E†
1, . . . , E

†
m} ⊆

{E1, . . . , EN} such that σ ∈ ΣE†
1 ∩ . . . ∩ ΣE†

m. In addition, we denote E‡ = {E‡
1, . . . , E

‡
m′} =

{E1, . . . , EN}\{E†
1 , . . . , E

†
m}. Let E† = E†

1 ‖ . . . ‖ E†
m and E‡ = E‡

1 ‖ . . . ‖ E‡
m′ , by (12), (11),

(10) and (9), we have ∨
σ∈⋃N

k=1 Σ
Ek

χ σ�→E

=
∨

σ∈⋃N
k=1 Σ

Ek

(
χ σ�→

E†
∧ χ σ�→

E‡

)

=
∨

σ∈⋃N
k=1 Σ

Ek

(
χ σ�→

E†
∧

m′∧
k=1

χ σ
�Ek

)

=
∨

σ∈⋃N
k=1 Σ

Ek

(
χ′

σ�→
E†

∧ χ σ�→v

E† ∧
m′∧
k=1

χ σ
�Ek

)

=
∨

σ∈⋃N
k=1 Σ

Ek

(
χ′

σ�→
E†

∧
n∧

i=1

χ σ�→
vi,E†

∧
m′∧
k=1

χ σ
�Ek

)

=
∨

σ∈⋃N
k=1 Σ

Ek

((
χ′

σ�→
E†

∧
m′∧
k=1

χ σ
�Ek

)∧

=
(n∧
i=1

χ σ�→
vi,E†

∧
m′∧
k=1

χ σ
�Ek

))

=
∨

σ∈⋃N
k=1 Σ

Ek

(
χ′

σ�→E
∧

n∧
i=1

χ σ�→
vi,E

)
(17)

Because of (16) and (17), Theorem 4.1 is proved.

16

5 Efficient Reachability Computation

Following the previous section, we conclude that in order to design successful BDD-based
reachability algorithms for large-scaled systems, it is vital to traverse the state-space in a
structural way. As mentioned before, the interaction between two EFAs is not only affected
by the shared events, but also the update of EFA variables. For instance, after an occurrence
of an event, the values of variables are updated. These updated variables may lead to the
guard of another transition from the second EFA to be evaluated to be true, even though this
transition is labeled by a different event. When designing the algorithm, this issue should
be taken into account. Otherwise, the algorithm might either explore the state-space in an
incorrect way or is not an exhaustive exploration.

In this section, we present another algorithm which is structurally similar to the work-
set algorithm with the difference that it works for the systems modeled as extended finite
automata. Sequentially, the correctness of the algorithm is formally proved. Finally, we
conclude the section by briefly commenting on alternative variations on this algorithm.

5.1 An Event-based Forward Reachability Algorithm

Recall from Section 4 that the system under full synchronous composition is split into a set
of event-based BDDs by applying the disjunctive partitioning technique. As Algorithm 1
shows, taking as input the initial state and the set of partial transition relations of which
each corresponds to each event, the algorithm maintains a set of active partial transition
relations, Wk. For each iteration, one partial transition relation is selected and a saturated
reachability search (Algorithm 2) is performed on it. If more reachable states are found, the
event and variable dependent transition relation sets of σ, defined as follows, are appended to
the workset. The algorithm terminates as long as there is no transition relation in Wk.

Definition 5.1 (Event Dependent Transition Relation Set of σ). For N ≥ 2 EFAs, E =
{E1, . . . , EN}, the event dependent transition relation sets of σ, denoted by De(

σ	→E1‖...‖EN
)

is defined as:

De(
σ	→E1‖...‖EN

) = { σ′	→E1‖...‖EN
| σ′ ∈ De(σ) ∧ σ′ �= σ},

where

De(σ) ={σ′ | ∃Ei ∈ E, �, �́, �̌ ∈ LEi , v, v́, v̌ ∈ V

such that (�, v, σ, �́, v́) ∈ 	→Ei ∧(�́, v́, σ′, �̌, v̌) ∈ 	→Ei}.
Definition 5.2 (Variable Dependent Transition Relation Set of σ). ForN ≥ 2 EFAs E1, . . . , EN

and a n-tuple of variables v1, . . . , vn, the variable dependent transition relation sets of σ, de-
noted by Dv(

σ	→E1‖...‖EN
), is defined as:

Dv(
σ	→E1‖...‖EN

) = { σ′	→E1‖...‖EN
| σ′ ∈ Dv(σ) ∧ σ′ �= σ},

where

Dv(σ) ={σ′ | ∃(�, σ′, g, a, �́) ∈ →E1‖...‖EN
,∀χvi ∈ g

such that ∃(�, v, σ, �́, v́) ∈ σ	→E1‖...‖EN
∧ vi �= v́i)}

17

Algorithm 1 Event-based Forward Reachability

1: input q0 := (�E1
0 × . . .× �EN

0 × v0),

W0 := { σ	→E1‖...‖EN
| ∀σ ∈ ΣE1 ∪ . . . ∪ΣEN }

2: let Q0 := {q0}, k := 0
3: repeat
4: Pick and remove

σ	→E1‖...‖EN
∈ Wk

5: k := k + 1
6: Qk := Qk−1 ∪ Reachability(Qk−1,

σ	→E1‖...‖EN
)

7: if Qk �= Qk−1 then
8: Wk := Wk−1 ∪De(

σ	→E1‖...‖EN
) ∪Dv(

σ	→E1‖...‖EN
)

9: end if
10: until Wk = ∅
11: return Qk

Algorithm 2 Reachability

1: input Q,
σ	→E1‖...‖EN

2: let Q0 := Q, k := 0
3: repeat
4: k := k + 1
5: Qk := Qk−1 ∪ {(q́, v́) | (q́, v́) ∈ Qk such that

∃(q, v) ∈ Qk−1 ∧ (q, v, σ, q́, v́) ∈ σ	→E1‖...‖EN
}

6: until Qk = Qk−1

7: return Q

18

5.2 The Proposed Algorithm is Correct

In this sub-section, we establish the correctness of the algorithm. The algorithm is based on
a rather involved scheme of enabling and disabling a subset of partial transition relations. To
prove the algorithm correctness, the important point is to be able to guarantee that what
is output by the algorithm really is the set of all reachable states. The proof strategy of
this event-based algorithm is similar to that of the original workset algorithm [10], which is
automaton-based.

Lemma 5.1. At iteration k of the event-based forward reachability algorithm, the set Wk

contains all active transition relations which are sufficient for the current reachable state set
Qk to reach more states in one step.

Proof. The lemma can be proved by induction.
The basic step: We start by showing that the lemma holds before the first loop iteration,

when k = 0. The current reachable state set Q0 consists of only the initial state while W0

contains all of partial transition relations. Therefore, the partial transition relations in Wk

contains all partial transition relations sufficient to reach more states from Q0 in one step
(trivially).

The inductive step: We assume that at iteration k, the lemma holds. Next we prove
that the lemma still holds at the iteration k+1. For this step, we can prove by contradiction.
We assume that at iteration k + 1, there exists one transition relation

σ	→E1‖...‖EN
/∈ Wk but

more reachable states can be found from Qk with
σ	→E1‖...‖EN

. And then we prove such

assumption can lead to a contradiction. At the iteration k + 1,
σ	→E1‖...‖EN

/∈ Wk means that
the transition relation has been removed before and has not been put back into the transition
relation set. Since at iteration k, the lemma holds, that is Wk contains all transition relations
leading to states reachable from Qk. Here we separate the relations in Wk into two sets. The
first set consists of all relations where more reachable states can be found by Qk, denoted by
SR while the second set is Wk\SR.

(i) Firstly, let us consider the case that
σ	→E1‖...‖EN

is selected and removed before the

iteration k. At the iteration k of the algorithm, suppose a relation
σ′	→E1‖...‖EN

is removed
at line 4 of Algorithm 1. Next the value of k is increased by 1 and the current reachable
state is now Qk−1. Then an exhaustive reachability search is performed on the relation. If
σ′	→E1‖...‖EN

∈ SR, new reachable states can be found by Algorithm 2 and then the algorithm

puts Dv(
σ′	→E1‖...‖EN

) and De(
σ′	→E1‖...‖EN

) into the relation set. Otherwise, the reachable state

set is unchanged, i.e. Qk = Qk−1. By assumption, the relation
σ	→E1‖...‖EN

is not in Wk+1. If
σ′	→E1‖...‖EN

∈ SR, only the transition relations in De(
σ′	→E1‖...‖EN

) or De(
σ′	→E1‖...‖EN

) might be

qualified and added in SR at the iteration k + 1 but
σ	→E1‖...‖EN

is in neither one of them. In

this case, it can be deduce for
σ	→E1‖...‖EN

/∈ Wk+1, there does not exist more states reachable

from Qk+1, which contradicts the assumption. If
σ′	→E1‖...‖EN

/∈ SR, the reachable state set is
unchanged since the iteration k. Then all transition relations leading to states reachable from
Qk+1 are all in Wk+1. This also contradicts the assumption we made before.

(ii) Secondly, we consider the case that
σ	→E1‖...‖EN

is selected and removed at the iteration

k. Similar as the first case, here Wk is separated as two set: SR and Wk\SR. If
σ	→E1‖...‖EN

∈
SR, there exists some states which can be reached in one step from Qk. But for the next

19

iteration k + 1, there cannot be more states found in
σ	→E1‖...‖EN

∈ SR, since Algorithm 2 is a

exhaustive search. This contradicts the assumption that for
σ	→E1‖...‖EN

/∈ Wk+1, there exists

more reachable states leading to states reachable from Qk+1 in one step. If
σ	→E1‖...‖EN

/∈ SR,
then this transition relation is removed at iteration k and the reachable state set is unchanged.
At iteration k + 1,

σ	→E1‖...‖EN
/∈ Wk+1 cannot be used to find more reachable states from the

old reachable state set from the iteration k, which again contradicts the assumption.
To sum up, based on the two cases above. We can prove that the lemma holds at the

iteration k + 1.

Theorem 5.1. The event-based forward reachability algorithm terminates in a finite time
and the output is the complete set of reachable states.

Proof. In each step of the event-based forward reachability algorithm, zero or more states are
added to the set of reachable states. The total set of states is finite, so the set of reachable
states can grow only finitely many times. In each iteration when no new states are found,
exactly one transition relation is removed from the set of active relations Wk. The set Wk is
also finite and hence the algorithm will terminate in finite time.

Assume now that the algorithm has terminated. By Lemma 5.1, we know that Wk holds
all transition relations which can be used to find all states reachable from Qk. However, since
the algorithm has terminated, Wk is empty and thus no more states are reachable from Qk,
i.e. Qk is the set of all reachable states.states.

5.3 Several Variants Of The Algorithm

One drawback of the aforementioned event-based algorithm is that in some cases more iter-
ations are needed to reach the fixed point in the reachability task, especially for large-scaled
systems involving a large number of events in the alphabet. To make such reachability com-
putations more efficient, thus reducing the number of iterations, it is possible to combine
multiple partial transition relations. This idea is originally presented in the literature [11],
referring to as clustering. Based on this general principle, here we briefly introduce and
comment on three intuitive variants of the algorithm, which have been implemented:

• Greedy clustering with a static threshold: in this variant, a static threshold is set
manually to denote the maximal number of BDD nodes for a cluster. As soon as
the construction of partial transition relations is completed, multiple partial transition
relations are randomly chosen and combined until the number of nodes in the joint BDD
exceeds this threshold. The performance of this approach is largely dependent on the
value of the static threshold.

• Clustering based on the alphabet of each EFA: in this approach, the combination of
multiple partial transition relations is performed based on the alphabet of each EFA.
In other words, corresponding to each EFA Ei ∈ E,E = {E1, . . . , EN} in the model, one
cluster, denoted by C(Ei), is constructed, which is defined is as follows:

C(Ei) = { σ	→E1‖...‖EN
| Ei ∈ E ∧ ∀σ ∈ ΣEi}.

Empirically, this variant of the algorithm seems work well for real-world applications
and shows a better performance than others.

20

• Clustering based on the update of variables: for each EFA variable vi in the n-tuple
variables vi, . . . , vn of a system E = {E1, . . . , EN}, a cluster, denoted by C(vi), can be
constructed based on the update of vi at any EFA Ei ∈ E:

C(vi) ={ σ	→E1‖...‖EN
| ∃Ei ∈ E,∃(�, σ, g, a, �́) ∈→Ei

such that ∀ai(v) ∈ a ∧ ai(v) �= ξ}.

6 Case Studies

In this section, the proposed algorithm is applied to a set of academic and industrial bench-
mark examples to demonstrate the efficiency.

6.1 Benchmark Examples

We first present the benchmark examples to be analyzed. Since the proposed partitioning
method and reachability algorithm also applies to systems modeled as ordinary automata, we
also include some examples of this category.

6.1.1 Resource Allocation System (RAS)

Consider a flexible manufacturing system, shown in Fig. 4, introduced in [32]. The RAS
is constituted of three process types and seven resource types R = {R1, . . . , R7} with the
corresponding capacities and resource request shown in Fig. 4. Such RAS can be modeled
as three EFAs of which each represents one process type Πi, i = 1, 2, 3. For more exposition
of the modeling approach, refer to [30]. The task is to synthesize a maximally permissive
non-blocking supervisor from such EFA model to avoid dead-lock situation.

Π1 : Ξ11

R1

Ξ12

R6

Ξ13

R2

Ξ14

R7

Ξ15

R3

Ξ16

R4

Ξ17

R2

Ξ18

R5

Π2 : Ξ21

R2

Ξ22

R5

Ξ23

R2

Π3 : Ξ31

R3

Ξ32

R7

Ξ33

R2

Ξ34

R6

Ξ35

R1

C1 = C2 = C3 = 1 C4 = C5 = C6 = C7 = 2

Figure 4: The flexible manufacturing system configuration in [32]

6.1.2 Resource Allocation Systems with Error Handling (RAS-EH)

Because in many contemporary resource allocation applications, it is necessary to have some
form of error handling. As a second RAS example, shown in Fig. 5, we consider the situation
where errors can occur at some processing stages. In particular, we suppose that errors might
occur at Ξ22 or Ξ41 and thus the repair needs to be performed. To model the error handling
mechanism, alternative branches labeled by uncontrollable events are introduced after the

21

necessary processing stages. Being different from the above RAS where all of the resource
allocation events are controllable and can be disabled by the supervisor, the supervisor of
the RAS with the error handling cannot influence which branch to choose. Hereby, it must
assume that there exists a non-blocking path for every branch it may take dynamically.

Π1 : Ξ11

R1(1)

Ξ12

R4(2)

Ξ13

R7(1)

Ξ14

R2(1)

Ξ15

R7(1)

Ξ16

R3(1)

Π2 : Ξ21

R1(1)

Ξ22

R4(2)

Ξ23

R5(2)

Ξ24

R6(2)

Ξ25

R3(1)

Π3 : Ξ31

R1(1)

Ξ32

R5(1) ∨R7(2)

Ξ33

R2(1)

Π4 : Ξ41

R2(2)

Ξ42

R1(1)

Ξ43 R3(1) ∧R7(1)

Ξ44

R6(2)

Ξ45

R2(1)

Π5 : Ξ51

R8(1)

Ξ52

R9(1)

Ξ53

R2(1)

C1 = 1, C2 = 4, C3 = C5 = 2,
C4 = C6 = C7 = C8 = C9 = 2

Figure 5: A extension of RAS of Fig. 4 with error handling

6.1.3 Ball Sorting Process (BSP)

The process under control of this example is shown in Fig. 6. The goal is to sort steel balls
that are placed in a queue at the process gate. Each ball enters the process one the gate is
open and then it moves to the first lift. The lift brings the ball to the measuring station. Once
the size of the ball is measured it is pushed out and moves up to the second lift. Depending
on the size, the ball is transported to the first or second level. At the destination level, each
ball is pushed out of the lift and moves towards the position where it can be picked up by the
rotating hand. The robot hand is responsible for transporting balls back to the home position
in front of the gate. Two types of balls are handled by the process, the small and the big
ones. The small balls should be moved to the first level and the big balls to the second level.
In [33], an EFA model for its execution model in the IEC 61449 standard has been generated
and used to developed the control logic.

6.1.4 Automated Guided Vehicles (AGV)

A model of a flexible manufacturing cell was introduced in [34]. The cell consists of three
workstations, two input stations and one output station and five Automated Guided Vehicles
(AGVs), each one responsible to route some parts through the cell by following certain paths.

22

gate

measu ring liftgate sorting lift

arm

measuring

level-1

level-2

Figure 6: Ball Sorting Process

The control problem is that the routes intersect to are very close to each other and thus there
are zones in which no two AGVs are allowed to be at the same time.

6.1.5 Parallel Manufacturing Example (PME)

The Parallel Manufacturing Example, introduced in [35] consists of three manufacturing units
running in parallel. The system is modeled in three layers in a hierarchical interface-based
manner. See the thesis [35] for more information.

6.1.6 Cat and Mouse Tower (CMT)

Consider the cat and mouse problem presented by [1]. Assume that these five rooms maze
is just the first level of a tower composed by n identical levels. A controllable bidirectional
passageway connects room j of level 5 ∗ i + j to room j of 5 ∗ i + j + 1 for (i = 0, 1, 2, 3, . . .
and j = 1, 2, 3, 4, 5). The first level is only connected with the second and the last only with
the last-but-one. There are initially k cats in room 1 of the first level and k mice in room 5
of the last level.

There are various ways to model this problem but they are beyond the scope of this paper.
Here we adopt the model presented in [22]. With a few modifications, the presented model
can be converted to the corresponding EFA model, which results in a compact representation
comparing to its ordinary automata counterpart. For example, Fig. 7 shows the EFA which
models room 2 of level 2, for n = 3 and k = 3. Two variables c �2r2 and m �2r2 are declared
to denote the number of cats and mouse of this room respectively.

6.1.7 Extended Dinning Philosophers (EDP)

The case generalizes the classic dining philosophers problem by allowing philosophers to go
through a number of intermediate states after picking up the left fork but before picking up
the right one. Assuming that there are n philosophers sitting around the table and each
philosopher needs to go through k intermediate states to start to dine. Besides, it is assumed

23

�2r2c �2r2e
�2r2m

F

C.�2r2 �2r1

C.�2r2 �2r1
C.�2r2 �2r4

C.�2r2 �2r4

C.�2r2 �3r2

C.�2r2 �3r2

C.�2r3 �2r2

C.�2r3 �2r2
C.�2r4 �2r2

C.�2r4 �2r2

C.�2r4 �2r2

C.�3r2 �2r2

C.�3r2 �2r2
M.�2r1 �2r2

M.�2r1 �2r2

M.�2r2 �2r3

M.�2r2 �2r3
M.�2r2 �3r2

M.�2r2 �3r2

M.�3r2 �2r2

M.�3r2 �2r2

c �2r2 == 0

c �2r2 += 1

c �2r2 += 1

c �2r2 == 1
c �2r2 -= 3

c �2r2 -= 3

c �2r2 < 3

c �2r2 > 1

m �2r2 == 0
m �2r2 += 1

m �2r2 += 1

m �2r2 == 1
m �2r2 -= 1

m �2r2 -= 1

m �2r2 < 3

m �2r2 > 1

Figure 7: EFA model for room 2 of level 2 (k = 3, n = 3)

that the event “philosopher i takes the left fork” is modeled as an uncontrollable event if i is
even. Design a maximally permissive non-blocking supervisor.

For this problem, we consider an EFA (plant) for each philosopher and an ordinary au-
tomaton (specification) for each fork. Fig. 8 shows the EFA of Philosopher 2 (plant) and
an automaton of Fork 2 (specification), for 2 philosophers and 4 intermediate steps. It can
be observed that for each philosopher, the number of intermediate steps are modeled as a
variables and corresponding guards and actions are constructed and attached to the transi-
tions. The EFA models shows the same behavior as the ordinary automata in [22] but with
the compact and trackable representation.

think

eatlu

take2.2
put2

take2.1
intermediate2

p2 < 4
p2 == 4
p2 = 0

p2 += 1

(a) Philosopher 2

0

1

take2.2

put2
put1

take1.2

(b) Fork 2

Figure 8: Models of Philosopher 2 (plant) and Fork 2 (specification)

6.2 Results

The proposed partitioning and traversal algorithm in this paper has been implemented and
integrated in the supervisory control tool Supremica [36] which uses JavaBDD [37] as the
BDD package. Experiments are carried out on a standard PC (Intel Core 2 Quad CPU
@ 2.4 GHz and 3GB RAM) running Windows 7 and the result is shown in Table 2. For
each benchmark example, the maximally permissive supervisor generated by the algorithm is
reachable, non-blocking and controllable.

It can be observed that both the monolithic and partitioning approaches can handle AGV,
for which the number of reachable states is up to 107. However, by comparing the maximal
number of BDD nodes during the reachability computation, which can express the maximal

24

Table 2: Comparison Between Two Symbolic Synthesis Approaches

BDD Monolithic Approach BDD Partitioning Approach

Model Reachable States Supervisor states BDD Peak (R) Computation Time (s) BDD Peak (R) Computation Time (s)

RAS 1.19 × 104 0.88 × 104 2826 0.49 215 0.13

RAS-EH 1.84 × 106 0.68 × 106 42314 18.67 2275 0.87

BSP 706 706 M.O. − 16640 10.48

AGV 2.29 × 107 1.15 × 107 9663 3.60 1001 0.87

PME 8.13 × 105 0.46 × 105 1022 0.24 225 0.14

CMT (1,5) 605 579 447 0.01 255 0.02

CMT (5,1) 1056 76 635 0.06 590 0.04

CMT (1,7) 1198 1156 801 0.10 321 0.39

CMT (7,1) 2710 155 1074 0.15 974 0.06

CMT (3,3) 2.96 × 105 1.64 × 105 16770 24 5070 4.1

CMT (5,5) 1.07× 1010 3.15 × 109 M.O. − 65102 79

EDP (5,10) 167761 1596 1157 0.5 134 0.4

EDP (5,50) 3.46 × 108 1.38 × 105 7743 1.25 178 0.55

EDP (5,100) 1.05× 1010 1.05 × 106 − T.O. 192 1.3

EDP (5,200) 3.28× 1011 8.20 × 106 − T.O. 206 6.5

M.O. indicates memory out during reachability search (due to large intermediate BDDs) and
T.O. indicates time out (10 min).

memory usage, the monolithic approach needs 9 times more memory than the partitioning
approach. Regarding the example Ball Sorting Process, event though the final number of su-
pervisor states is only 706, the intermediate BDDs during the state-space exploration, on the
other hand, are large due to the high interactive complexity of the system. The monolithic
approach fails to explore the state-space while the partitioning approach can survive and
synthesize the supervisor within 11 seconds. As mentioned before, since the proposed parti-
tioning algorithm is based on the alphabet which might contain a large number of events, more
iterations than the standard algorithm are needed to reach the final fixed point. However,
the intermediate BDDs produced during the computation are smaller, leading to improved
memory and runtime efficiency. Finally, with respect to the last two benchmark examples,
Cat and Mouse Tower and Extended Dining Philosophers, the partitioning approach can also
handle some relatively large problem instances with the acceptable time. However, with the
values of parameters growing, both the computation time and memory used increase rapidly.

7 Conclusions

In this paper, we presented an alternative symbolic approach to large-scaled systems modeled
as extended finite automata. The proposed approach first partitions the closed-loop system
under full synchronous composition based on the disjunctive partitioning technique and then
depends on an efficient algorithm to explore the state-space in a structural way.

The proposed approach has been implemented and integrated into the prior work. Besides,
it is applied to a set of academic and industrial examples to demonstrate the efficiency.
Overall, the whole framework provides the convenience for users to model systems and obtain
control functions in the same model domain. All computations are performed symbolically by
BDDs, which are transparent and the only interface users deal with is the EFA framework.

There are several directions towards which we could extend and improve the framework
in future. For instance, there is a potential to improve the BDD variable ordering. It is

25

believed that a sub-optimal but well-functioning BDD variable ordering can still dramatically
enhance the performance of the symbolic algorithm proposed in this paper and thus larger and
more complicated systems can be handled. Moreover, it is possible to combine our symbolic
approach with some sophisticated synthesis techniques, such as compositional techniques, to
improve the efficiency of the synthesis task further.

References

[1] P. J. G. Ramadge and W. M. Wonham, “The control of discrete event systems,” Pro-
ceedings of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[2] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems, 2nd ed.
Springer, 2008.

[3] K. Andersson, J. Richardsson, B. Lennartson, and M. Fabian, “Hierarchical Control Ap-
plying Supervisor Synthesis and relation Extraction,” in International Congress ANIPLA
2006 - Methodologies for Emerging Technologies in Automation, Rome, Italy, Nov. 2006.

[4] S. Balemi, G. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. Franklin, “Supervisory control
of a rapid thermal multiprocessor,” IEEE Transactions on Automatic Control, vol. 38,
no. 7, pp. 1040–1059, 1993.

[5] L. Feng, W. M. Wonham, and P. S. Thiagarajan, “Designing communicating transaction
processes by supervisory control theory,” Form. Methods Syst. Des., vol. 30, no. 2, pp.
117–141, 2007.

[6] S. Miremadi, B. Lennartson, and K. Åkesson, “A BDD-based Approach for Modeling
Plant and Supervisor by Extended Finite Automata,” accepted for IEEE Transactions
on Control Systems Technology, 2011.

[7] M. Sköldstam, K. Åkesson, and M. Fabian, “Modeling of discrete event systems using
finite automata with variables,” Decision and Control, 2007 46th IEEE Conference on,
pp. 3387–3392, 2007.

[8] S. B. Akers, “Binary Decision Diagrams,” IEEE Transactions on Computers, vol. 27, pp.
509–516, June 1978.

[9] R. Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE Trans-
actions on Computers, vol. 35, no. 8, pp. 677–691, 1986.

[10] M. Byröd, B. Lennartson, A. Vahidi, and K. Åkesson, “Efficient Reachability analysis on
Modular Discrete-Event Systems using Binary Decision Diagrams,” in 8th international
Workshop on Discrete Event Systems, WODES’06, Ann Arbor, MI, USA, July 2006, pp.
288–293.

[11] J. R. Burch, E. M. Clarke, D. E. Long, K. L. Mcmillan, and D. L. Dill, “Symbolic Model
Checking for Sequential Circuit Verification,” IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems, vol. 13, no. 4, pp. 401–424, 1994.

26

[12] J. Geldenhuys and A. Valmari, “Techniques for smaller intermediary bdds,” in 12th
International Conference on Concurrency Theory, ser. Lecture Notes in Computer Sci-
ence, K. Larsen and M. Nielsen, Eds. Springer Berlin / Heidelberg, 2001, vol. 2154, pp.
233–247.

[13] G. Cabodi, P. Camurati, L. Lavagno, and S. Quer, “Disjunctive Partitioning and Partial
Iterative Squaring: An Effective Approach for Symbolic Traversal of Large Circuits,” in
34th Design Automation Conference. ACM Press, 1997, pp. 728–733.

[14] A. Vahidi, M. Fabian, and B. Lennartson, “Efficient supervisory synthesis of large sys-
tems,” Control Engineering Practice, vol. 14, no. 10, pp. 1157–1167, Oct. 2006.

[15] Z. Fei, K. Åkesson, and B. Lennartson, “Symbolic reachability computation using the
disjunctive partitioning technique in supervisory control theory,” in IEEE International
Conference on Robotics and Automation, 2011, pp. 4364–4369.

[16] Y.-L. Chen and F. Lin, “Modeling of discrete event systems using finite state machines
with parameters,” in IEEE International Conference on Control Applications, CCA’00,
Sept. 2000, pp. 941–946.

[17] B. Gaudin and P. H. Deussen, “Supervisory Control on Concurrent Discrete Event Sys-
tems with Variables,” in American Control Conference, 2007. ACC ’07. New York, NY,
USA: IEEE, 2007, pp. 4274 – 4279.

[18] A. Hellgren, B. Lennartson, and M. Fabian, “Modelling and PLC-based implementa-
tion of modular supervisory control,” in 6th international Workshop on Discrete Event
Systems, 2002, pp. 371–376.

[19] K. Åkesson, “Methods and tools in supervisory control theory: operator aspects, com-
putation efficiency and applications,” Ph.D. dissertation, Signals and Systems,Chalmers
University of Technology, Göteborg, Sweden, 2002.

[20] A. Voronov and K. Akesson, “Verification of process operations using model checking,” in
5th IEEE International Conference on Automation Science and Engineering, aug. 2009,
pp. 415 –420.

[21] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang, “Symbolic Model
Checking: 1020 States and Beyond,” in 5th IEEE Symposium on Logic in Computer
Science, 1990. LICS ’90,, June 1990, pp. 428–439.

[22] S. Miremadi, K. Åkesson, M. Fabian, A. Vahidi, and B. Lennartson, “Solving two super-
visory control benchmark problems using Supremica,” in 9th International Workshop on
Discrete Event Systems, 2008, WODES 08., May 2008, pp. 131–136.

[23] C. Ma and W. M. Wonham, “STSLib and its application to two benchmarks,” in 9th
International Workshop on Discrete Event Systems, 2008, WODES’08., May 2008, pp.
119–124.

[24] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell System Technical
Journal, vol. 27, pp. 379–423,625–656, 1948.

27

[25] H. Andersen, “An introduction to binary decision diagrams,” Department of Information
Technology, Technical University of Denmark, Tech. Rep., 1999.

[26] B. Bollig and I. Wegener, “Improving the Variable Ordering of OBDDs Is NP-Complete,”
IEEE Transactions on Computers, vol. 45, no. 9, pp. 993–1002, 1996.

[27] A. Aziz, S. Tasiran, and R. K. Brayton, “BDD variable ordering for interacting finite
state machines,” in 31st annual Design Automation Conference, DAC ’94. New York,
NY, USA: ACM, 1994, pp. 283–288.

[28] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary-decision diagrams,”
ACM Computing Surveys, vol. 24, no. 3, pp. 293–318, 1992.

[29] S. A. Reveliotis, Real-Time Management of Resource Allocation Systems: A Discrete
Event Systems Approach (International Series in Operations Research & Management
Science). Springer, December 2004.

[30] Z. Fei, S. Miremadi, and K. Åkesson, “Modeling sequential resource allocation systems
using extended finite automata,” in 7th IEEE International Conference on Automation
Science and Engineering, Trieste, 2011, pp. 444–449.

[31] E. M. Clarke, K. L. Mcmillan, X. Zhao, M. Fujita, and J. Yang, “Spectral Transforms
for Large Boolean Functions with Applications to Technology Mapping,” Form. Methods
Syst. Des., vol. 10, no. 2-3, pp. 137–148, 1997.

[32] J. Ezpeleta, J. Colom, and J. Martinez, “A petri net based deadlock prevention policy
for flexible manufacturing systems,” IEEE Transactions on Robotics and Automation,
vol. 11, no. 2, pp. 173 –184, 1995.

[33] G. Cengi, “A Control Software Development Method Using IEC 61499 Function Blocks
, Simulation and Formal Verification,” in the 17th IFAC World Congress, 2008.

[34] L. E. Holloway and B. H. Krogh, “Synthesis of Feedback Control Logic for a Class of
Controlled {P}etri Nets,” IEEE Transactions on Automatic Control, vol. 35, no. 5, pp.
514–523, 1990.

[35] R. J. Leduc, “Hierarchical interface-based supervisory control,” Ph.D. dissertation, De-
partment of Electrical and Computer Engineering, University of Toronto, 2002.

[36] K. Åkesson, M. Fabian, H. Flordal, and R. Malik, “Supremica—an integrated environ-
ment for verification, synthesis and simulation of discrete event systems,” in Proceedings
of the 8th international Workshop on Discrete Event Systems, WODES’08, Ann Arbor,
MI, USA, 2006, pp. 384–385.

[37] “JavaBDD.” [Online]. Available: http://javabdd.sourceforge.net

28

