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Abstract: Micrometer-sized iron oxide particles (MPIOs) attract increasing 

interest as contrast agents for cellular tracking by clinical Magnetic 

Resonance Imaging (MRI). Despite the great potential of MPIOs for in vivo 

imaging of labeled cells, little is known on the intracellular localization of 

these particles following uptake due to the lack of techniques with the 

ability to monitor the particle uptake in vivo at single-cell level. Here, we 

show that coherent anti-Stokes Raman scattering (CARS) microscopy 

enables non-invasive, label-free imaging of MPIOs in living cells with sub-

micron resolution in three dimensions. CARS allows simultaneous 

visualization of the cell framework and the MPIOs, where the particles can 

be readily distinguished from other cellular components of comparable 

dimensions, and localized inside the cell. 
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1. Introduction 

Cell transplantation using, e.g., stem cells, progenitor cells and adult cell lines constitutes a 

promising approach for treatment of several human diseases [1,2], and has already been tested 

for clinical treatment of cardiovascular, neurological, and metabolic disorders [1,3–6]. The 

advantages compared to whole organ transplantation are many: the less invasive treatment, the 

use of cryopreserved cells, and the possibility that an organ from a single donor can be used 

for treatment of multiple patients [7–9]. Substantial effort has been devoted to the 

development of techniques to image individual cells in live organisms, as monitoring cell 

transplantation is crucial for the success of the therapy. Such imaging allows the detection of 

the early stages of cell homing, tracking cell migration, and the visualization of complications 

such as microembolization of transplanted cells [10–13]. 

The outcome of cell transplantation in clinical trials has been investigated via biopsies 

from the target organ, using visualization by radioisotope imaging [14]. This approach has 

serious limitations, however: it is associated with a risk for the patient due to the invasive 

procedure and constrained by the fact that only a limited part of the organ can be investigated, 

and only at limited numbers of moments in time. Alternatively, optical labels have been tested 
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in the visualization with Near Infrared Fluorescence (NIRF) Optical Imaging of the 

development of transplanted cells in vivo in a preclinical rat-model [15]. A major drawback of 

this method is that NIRF-dyes are only detectable up to a tissue thickness of about 2 to 3 cm 

in vivo [16] and that the NIRF-dye must present antigen specificity. The discovery of 

immunospecific NMR contrast agents [17] has enabled magnetic resonance imaging (MRI) as 

a suitable tool for non-invasive tracking of transplanted labeled cells. The technique was first 

employed for imaging single cells in vitro [18,19] and has since been extended to cells in vivo 

[20,21]. MRI is currently the most common imaging technique for tracking in vivo labeled 

cells owing to its high resolution, and enhanced tissue contrast [22]. This technology further 

benefits from its widespread availability in clinical environments. The progress of the 

technique in vivo relies primarily on the choice of cell labels that are easily internalized by 

cells and can be readily visualized by MRI. However, to date it has remained challenging to 

fully elucidate the cellular uptake mechanism of these particles. In this study, we present a 

combination of resonant and nonresonant Coherent anti-Stokes Raman Scattering (CARS) 

microscopy as a useful tool for the visualization of MRI labels in living cells. 

Paramagnetic Gadolinium (Gd) chelates are commonly used as T1 contrast agents, 

although their low permeability through the cell membrane requires high concentrations 

combined with long incubation times for efficient internalization, and the detectability of 

labeled cells was found to be insufficient for clinical applications [23]. Gd-based 

metalloporphirins, e.g. gadophrin-2 [24], and amphiphilic chelates, e.g. Gadofluorine M [25], 

are readily internalized by cells, but high concentrations are still required for MRI detection. 

Perfluorocarbons have also been investigated as cell labels [26] with the advantage that 
19

F 

MRI provides background-free imaging of the cells. Regrettably, they exhibited inadequate 

signal levels. Superparamagnetic iron oxide (SPIO) nanoparticles have successfully been used 

as T2 and T2* contrast agents and exhibit higher contrast compared to normal paramagnetic 

particles [27,28]. SPIOs possess very high molar relaxivity, giving rise to contrast that well 

exceeds the physical dimensions of the particles in vitro. In addition, their magnetic properties 

can be tailored by modifying the particle size and aspect ratio [29]. These particles are 

negative contrast agents, appearing as pronounced hypointense regions in MR images. The 

major drawback of nanometer-sized SPIOs as labels is that a significant number of particles is 

required within a voxel for efficient detection. Thus, the dilution of the label as a result of cell 

division inevitably reduces the local concentration below the detection limit after a few life 

cycles of the cells [19]. SPIOs have primarily been used for detecting single cells in vitro [30] 

(For a general review on primary human hepatocytes see [31]), but also in vivo by clinical MR 

equipment [32]. Clinical MRI was found to be limited by the relatively low field strength and 

resolution compared to what was shown in experimental studies [33]. The conclusion from 

these efforts is that larger particles creating a greater magnetic moment within the cells would 

be desirable for efficient detection of labeled cells under clinical conditions. 

Labeling with micrometer-sized iron oxide particles (MPIO) with higher magnetic 

relaxation compared to SPIOs constitutes a promising approach towards optimized imaging 

capabilities. It has been shown that MPIOs exhibit increased relaxation compared to 

nanometer-sized particles with the same total iron content per unit sample volume [34]. 

MPIOs can be easily internalized by several types of cells and allow for labeling capacity up 

to hundreds of picograms of iron per cell without affecting cellular viability [35]. For 

instance, primary human hepatocytes can be labeled with MPIOs without negative effects on 

cellular integrity or metabolic activity [36]. MPIOs have been used for MR imaging of cells 

both in vitro [19,34] and in vivo [21], and it has been shown that even single MPIO can be 

detected by MRI at a resolution of 100 µm [35]. Single particle sensitivity implies that MRI 

detection is not compromised by cell division due to dilution of the label. 

Efficient uptake of the label is a crucial step for cell tracking, and an understanding of the 

underlying mechanisms is crucial for optimizing the labeling process. Also, unambiguous 

determination of the average number of MPIOs taken up per cell is crucial to evaluate MRI 
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results and adapt the labeling protocol. Much research is expected to be dedicated to structural 

and functional modifications of the particles in order to achieve both better MRI contrast and 

specific cellular uptake. Any imaging technique that would support these studies must fulfill 

quite stringent requirements. The technique must be firstly non-invasive in order not to affect 

the health of the cells, and label-free in order to study the interaction between the cell and the 

MPIOs under realistic and biologically relevant conditions: all invasive forms of sample 

preparation such as staining and sectioning are undesirable; finally, it must offer sub-cellular 

resolution, three-dimensional imaging capabilities and contrast from both MPIOs and cells. 

The ability of present technology to monitor intracellular localization of MPIO is still 

rudimentary due to the difficulties of colocalizing the particles with cellular components 

without the use of labels. 

Conventional brightfield microscopy based on light transmission is the fastest and least 

invasive approach for visualizing the particles in vitro [35,36], but unfortunately provides 

neither chemical selectivity nor sufficient axial resolution. In this technique, MPIOs are 

identified from their shape, with the risk of false positive identifications from large lipid 

droplets or other circular organelles in the cell. Due to the limited axial resolution, it is 

challenging to retrieve information on the localization of the particles relative to intracellular 

features from this approach. Knowledge of the location of particles is especially important 

relative to the external cellular membrane; brightfield microscopy is not able to differentiate 

between a microparticle sitting outside the cell from one that has been internalized but still 

located in proximity to the membrane. Multi-channel confocal and two-photon fluorescence 

microscopies provide a viable alternative, allowing for visualization of fluorescently labeled 

components of the cells and labeled particles [21]. For instance, one among many possible 

options is double staining for cytoplasmic proteins and nucleus, combined with additional 

staining of MPIOs [36]. While multi-channel fluorescence microscopy overcomes the spatial 

resolution issues of light microscopy [37], the approach is limited to the visualization of the 

particles relative to one or a few intracellular components, which in addition are studied under 

artificial conditions in the presence of multiple fluorescent marker molecules. In systems so 

critically dependent on local chemical and physical properties as the nano-bio interface, the 

presence of additional labels is undesirable as it can perturb the nature and dynamics of 

biological and physical interactions. Transmission electron microscopy (TEM) has also been 

used to visualize the uptake of MPIOs [38]. TEM has the ability to resolve both particles and 

cellular components on nanometer length scales. However, significant limitations of this 

approach may be noted, including the time-consuming and highly invasive sample preparation 

associated with potential artifacts [39]; cell fixation, resin embedding and slicing of the cells. 

This technique also precludes studies of the temporal characteristics of the particle integration 

process. 

As we will show here, the combination of resonant and non-resonant CARS microscopy 

represents a useful label-free approach to the visualization of MPIOs in living cells. The 

particles are readily distinguished from micrometer sized cellular features such as 

cytoplasmatic lipid bodies based on their high density of electrons. The approach is shown to 

provide accurate localization of the particles with respect with the cell body. Due to the multi-

photon nature of the CARS process, high spatial resolution is ensured both laterally (~300 

nm) and axially (~1 µm) with three-dimensional imaging capabilities [40]. We refer here to 

CARS as a special case of Four Wave Mixing (FWM) where three incident fields, two with 

degenerate frequency ω1 (pump/probe beam), and a third with frequency ω2 (Stokes beam), 

interact through the third-order susceptibility of the probed material, generating a blue shifted 

fourth field at the anti-Stokes frequency ωAS = 2ω1- ω2. 

The intensity of the detected CARS field is proportional to the induced third order 

polarization P
(3)

, which in turn depends on the intensity of the incident fields and on the 

squared modulus of the third order susceptibility χ
(3)

 at the anti-Stokes frequency: 
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The general expression of the third order molecular susceptibility 
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contains a resonant (R) and a non-resonant (NR) term. The non-resonant contribution arises 

from the intrinsic electronic polarizability of the material (see energy diagram in Fig. 1a-b). 

For the wavelengths and limited spectral window used here, the non-resonant term is real, 

nonzero and frequency-invariant. The resonant term can be written as [41] 
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χ ω

ω ω
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where Aj, Ωj and Γj are the amplitude, spectral position and Raman linewidth of the j-th 

vibrational resonance respectively. The resonant component is thus enhanced when the 

frequency difference of the incoming fields is in resonance with a vibrational eigenfrequency 

of a specific molecular bond, as illustrated in the energy diagram in Fig. 1c. 

The bioorganic molecules of the cell and the inorganic oxide of the MPIOs can be 

visualized by tuning the frequency difference of the fields to be on- (ω1 – ω2 = 2845 cm
−1

) and 

off-resonance (ω1 – ω2 = 3000 cm
−1

) with the symmetric stretch vibration of the CH2 groups 

(see spectrum in Fig. 1d). On-resonant excitation yields an enhanced CARS signal from lipid-

rich components of the cells [42], accompanied by a strong non-resonant electronic signal 

from the MPIOs due to the high electron density of the iron oxide. Off-resonant excitation 

provides a weak non-resonant signal from the cells, but the strong non-resonant electronic 

signal from the MPIOs remains. The difference in the magnitude of the non-resonant signals 

arises from the large difference of the electronic susceptibility of iron oxide (4 x 10
−10

 esu 

[43]) compared to that of biological matter (typically 10
−13

 esu [44]). It is important to 

underline that due to the large dimensions of MPIOs, the particles have the same physical 

properties of bulk iron oxide. Owing to the very small bandgap of this material (Egap = 0.14  

 

 

Fig. 1. Energy schemes of the nonresonant (a and b) and resonant CARS (c) process. (d) 

Normalized CARS spectrum of tripalmitin; the arrows at 2845 cm−1 and 3000 cm−1 indicate the 

typical response of biological matter at the frequencies used for on- and off-resonance CARS 

measurements. 
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eV, corresponding to a band edge absorption of 8.8 µm), the optical response in the visible 

and near-IR wavelength range is largely frequency independent. The results obtained here for 

our CARS set-up with its specific combination of wavelengths should therefore be generally 

applicable to other CARS setups as well, as this wavelength range includes the excitation 

wavelengths of the beams normally employed in CARS experiments. As the contrast is 

derived from molecular properties, no additional staining of the sample is required for 

imaging [45,46]. Additionally, the use of excitation beams in the near-infrared is particularly 

suitable for imaging biological samples as the absorption cross-section of water is low in this 

region [47]. 

CARS has previously been employed to visualize gold nanoparticles in cells [48], as well 

as wide bandgap semiconductor oxide nanoparticles in biological systems [49,50]. In the latter 

works, the energy of bandgap absorption of a material is matched by the second harmonic of 

one of the excitation beams, resulting in a third term that contributes to the molecular 

susceptibility arising from two-photon electronic resonance in Eq. (2). The response of these 

particles is enhanced and gives rise to very high signals that allow to readily distinguish the 

particles from their environment [51]. The enhancement is nevertheless limited to the 

coupling of the two photons to the electronic states in the vicinity of the energy gap, where the 

effects of excitons are expected to be larger [52,53]. This effect is negligible in magnetite as, 

contrary to other oxides, this material has a small bandgap of 0.14 eV. 

Two consecutive CARS measurements, on and off-resonance, are hence necessary to 

distinguish MPIOs from the biological components. This apparent drawback turns out to be an 

advantage as the overlay of on- and off-resonance CARS measurements of the same region 

provides unambiguous determination of the location of each MPIO within the cell, and 

intrinsically discriminates between them and micrometer-size lipid structures that may easily 

be confused in brightfield images of the cells. 

2. Materials and methods 

2.1. CARS microscope 

The microscopy setup is based on a picosecond laser system generating two synchronized 

beams collinearly aligned into an inverted microscope (Eclipse TE-2000, Nikon, Tokyo, 

Japan) via a beam scanning unit (C1, Nikon). A fraction of the fundamental output of a 

Nd:Van laser (Picotrain, HighQ Lasers GmbH, Hohenems, Austria) at 1064 nm is directly 

coupled into the microscope as the Stokes beam. The remaining fraction is frequency-doubled 

(532 nm) and used to synchronously pump an Optical Parametric Oscillator (Emerald OPO, 

APE GmbH, Berlin, Germany). The OPO provides a wavelength tunable output beam, in this 

work set either to 817 nm or 807 nm in order to form a beating excitation field with the Stokes 

beam at the frequencies of 2845 cm
−1

 and 3000 cm
−1

 respectively. The Raman shift of 2845 

cm
−1

 corresponds to the symmetric stretch vibration of the CH2 group in the acyl chain of 

lipids, whereas the Raman shift of 3000 cm
−1

 corresponds to a spectral region where lipid 

structures present a low response. This can be seen in the CARS spectrum in Fig. 1d collected 

from a tripalmitin crystal as an example of a typical saturated fatty acid compound, where the 

intensity of the response at the above frequencies is marked with arrows. CARS 

measurements at 2845 cm
−1

 and 3000 cm
−1

 are in the following text referred to as on-

resonance and off-resonance respectively. The laser beams were focused on the sample with 

an oil immersion objective (Plan Fluor 40× , NA 1.30, Nikon), resulting in a power of 10 mW 

for each of the beams at the sample position. Prior to the imaging measurements, we tested the 

optimal experimental conditions and found that this laser power combined with an imaging 

time of 20 s per image (256x256 pixels) provided optimal results in that both the cells and the 

particles are clearly visible in the images without compromising the viability of the cells. The 

CARS signal was collected by an aspherical lens (NA 0.68) in the forward direction and 

detected by a single-photon counting photomultiplier tube (PMC-100, Hamamatsu) connected 
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to a time-correlated single-photon counting unit (SPCM-830, Becker and Hickl). Bandpass 

filters in front of the detector suppressed the radiation at the laser wavelengths and transmitted 

the generated CARS signal. A detailed outline of the setup is given by Enejder et al. [42]. 

Three-dimensional imaging was achieved by scanning a sequence of horizontal planes at 

different vertical positions by translating the objective with a motorized stage. Samples were 

first imaged in brightfield mode and the regions of interest, typically covering an area of 

30x30 µm
2
 (256x256 pixels), were then measured by CARS, and eventually imaged at 

different vertical positions with 1 micron spacing. On-resonance and off-resonance images of 

the same region of the sample were collected consecutively by changing the wavelength of the 

OPO and allowing for ~1 minute stabilization of the laser system. The output of the OPO was 

optimized for the on-resonance measurement, and the same settings were kept in the off-

resonance measurement resulting in a small loss of power. The total acquisition time for each 

layer was 20 s at each wavelength. The tripalmitin CARS spectrum of Fig. 1d was measured 

under similar experimental conditions as the cell studies, images were collected on a 

tripalmitin crystal with the OPO tuned to wavelengths in the range 802-823 nm, thus probing 

frequencies between 2750 and 3050 cm
−1

. For each tripalmitin image a corresponding 

reference image of the sample cover glass was measured for CARS signal normalization, and 

the spectrum shows the average normalized crystal signal versus probed frequency. 

2.2. Micron-sized iron oxide particles 

MPIOs were obtained from Microparticles GmbH (Berlin, Germany). The average diameter 

of each microparticle is 1.18 +/− 0.08 µm. Microspheres consist of a silica based matrix with 

homogeneously incorporated iron oxide nanoparticles (40 vol-%). A hydrophilic polymer 

layer surrounds the core to prevent leaching of iron species. Additionally streptavidin 

functionality was introduced to the surface of the particles via 1-ethyl-3-(3-

dimethylaniminopropryl) carbodiimide (EDC)-coupling. The particles have a narrow size 

distribution, are superparamagnetic and show a very good colloidal stability in phosphate 

buffered saline (PBS) solution. The concentration of the particles in 1% w/v aqueous stock 

suspension was 7.088 x 10
9
 particles per mL, resulting in an iron content of approximately 

2.88 mg/mL. Subsamples from the stock solution were dissolved with PBS to suspension 

concentration of 10
7
 particles/mL and stored at 4°C under sterile conditions until cell 

incubation. 

2.3. Cell cultures and incubation with MPIOs 

Cryopreserved HuH7 cells, from a well-differentiated human hepatoma cell line, were 

purchased from JCRB Cell Bank (Osaka, Japan). Cells were thawed in a water bath and 

cultured in 25mm
2
 culture flasks (Sarstedt, Nürnberg, Germany) using Dulbecco’s minimal 

essential medium (Biochrom AG, Berlin, Germany), supplemented with 10% fetal bovine 

serum (FBS), 1% L- Alanyl- L- Glutamine (200mM), 1% sodium pyruvat (100mM) and 1% 

penicillin-streptomycin at 37°C with 5% CO2 atmosphere and 100% humidity. The cultures 

were passaged until a confluent layer was formed. Cells were washed with PBS and then 

released from the flask by incubating with 0,05% trypsin/0,02% EDTA for 4 min. at 37°C. 

Growth medium at 4 °C with 10% FBS was added to the cell suspension in order to stop the 

enzyme activity. A representative number of HuH7 cells were stained with Tryphan blue and 

counted in a hemocytometer. 100,000 living cells were seeded on sterile WillCo petri dishes 

(series GWSt-5030) with a 0.17 mm thick glass bottom and allowed to attach for 1 h at 37°C 

in 5% CO2. Cells were washed and fresh medium was supplied. 

Particles were gently resuspended prior to incubation, and 1mL particle solution was 

added to 1 mL growth medium in the dish. The MPIO amounted to100 beads per cell. The 

cells were incubated for 4h at 37°C in 5% CO2. As controls, native cells were treated 

identically, but without particles. To remove free particles after incubation, the cells were 

extensively washed with PBS. The slides with the living cells were immediately transferred to 
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the microscope for imaging. After the procedure it was visually confirmed that the cells were 

still intact. The time span between seeding the cells, particle incubation and CARS 

measurements lasted no longer than 48h. 

3. Results and discussion 

3.1. Imaging of dried MPIO solution 

To ascertain selective imaging of MPIOs in cells, on-resonance and off-resonance images 

were first collected on a reference sample of pure MPIOs. A droplet of solution containing 10
8
 

particles/mL of MPIOs was left to dry for one hour on a conventional microscope cover slip 

before imaging with both brightfield and CARS microscopy. 

Figure 1a shows a brightfield microscopy image of a region of the sample where three 

MPIOs can be identified. The same region was consecutively imaged with CARS, first with 

the pump and Stokes beams tuned to match the excitation energy of CH2 bonds (on-resonance 

measurement), presented in Fig. 2b, and then with the beams tuned away from the resonance 

(off-resonance measurement), presented in Fig. 2c. Each of the three images covers an area of 

10 × 30 µm
2
. 

 

Fig. 2. Brightfield microscopy (a), on-resonance (b) and off-resonance (c) CARS images of a 

10 × 30 µm2 –sized region of dried solution of MPIOs. Scale bar 5 µm. The normalized 

intensity of the signal measured from MPIOs on- and off resonance is identical within the 

variations that result from frequency tuning. 

By overlaying the on- and off-resonance CARS images in Figs. 2b and 2c, perfect 

colocalization of the features is obtained. Due to the lack of resonant signal together with a 

strong non-resonant contribution, the three particles are clearly visible in both CARS images, 

indicating that the optical contrast is not of vibrational origin but is related to a purely 

electronic response. Hence, for the measurements reported in Figs. 2b and 2c, one would 

expect the same signal strength. The decrease in signal intensity in off-resonance mode (Fig. 

2c) is not of physical origin but can be ascribed to the experimental procedure; the set-up is 

initially optimized for the on-resonance measurements. To minimize the time between the two 

consecutive measurements no additional optimization was performed after tuning the 

instrument to off-resonance excitation wavelength, resulting in a power loss in the output of 

the OPO. This can be confirmed by observing that also the reference signal measured from the 

glass cover slip is reduced accordingly between the two measurements. Within the signal 

fluctuation and variations resulting from frequency tuning, the signal intensities measured on- 

and off-resonance are identical after normalization by the reference response measured in 

glass. 
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We conclude from the CARS images presented in Fig. 2 that the contrast, or signal to 

background ratio, is in both cases (on- and off-resonance) large enough to enable precise 

identification of the particles. Since the dimensions of the particles are larger than the 

excitation wavelengths, detection of the CARS signal occurs here in forward direction. 

Extending this imaging approach to nanometer sized magnetite particles would instead be 

likely to benefit from epi-detection of the signal, as backward collection geometry is 

preferable for the visualization of objects with lateral dimensions comparable or smaller than 

the excitation wavelength [54]. The intensity profile taken along the diameter of any of the 

three round shapes fits well with the response expected from a 1.2 µm sized particle (data not 

shown). 

3.2. Imaging of HuH7 cells in absence of MPIOs 

Before interpreting the images of HuH7 cells incubated with the microparticles, the typical 

CARS response of these cells was characterized and compared with conventional brightfield 

microscopy. Figure 3a shows a brightfield microscopy image of a single cell. The cell is flat 

and spread over a large area, with peripheral terminals visible at its edge, giving rise to 

additional contact between the cell and the glass support. The nucleus is visible in the center 

of the image. Its irregular shape is typical for tumor cell lines. Cellular features have low 

contrast, except for the many anonymous circular features with diameters of ~1 µm that 

surround the nucleus. From this image it is clear that MPIOs will be difficult to distinguish 

from other intracellular features by conventional brightfield microscopy. The on-resonance 

CARS response of the same area (30 × 30 µm
2
), imaged at an axial position ~2 µm above the 

glass surface is shown in Fig. 3b. This image appears similar to the brightfield microscopy, 

but it is important to underline that the CARS image is not merely a map of density or light 

transmission variations, but contains local chemical information as the intensity of the 

response is correlated to the concentration of CH2 bonds within the focal volume. The 

peripheral terminals are not as clearly visible in the CARS image, indicating that these are 

located at an axial position closer to the supporting glass. Several features with particularly 

high intensities appear, leading us to conclude that these are lipid bodies, known to exhibit 

large CARS signals in this frequency range. The number of droplets is significantly smaller 

than the number of micron-sized features in the brightfield image, which illustrates an 

important limitation of conventional microscopy; the brightfield image is a projection of the 

entire cell volume showing all cellular features irrespective of their chemical composition or 

axial position. The CARS image instead gives a chemically specific picture of the distribution 

of lipids within a 1-µm thick focal plane. These lipids are present both in dense lipid droplets 

and in the cytoplasm (see Fig. 3b). The on-resonance CARS signal is particularly helpful to 

identify the outline of the cell and the nucleus. The nucleus can be identified in an indirect 

way as the round region in the center of the cell where the high intensity features indicating 

the presence of lipid-rich aggregates are not present.. The nucleolus is barely visible, 

indicating that it is located at a different axial position (compare Fig. 4a). These imaging 

capabilities of CARS microscopy are of particular importance in order to determine whether 

the MPIOs actually have entered the cells, and if so, to distinguish the particles from natural 

intracellular components of similar size. The off-resonance CARS image of the area is 

presented in Fig. 3c. The image appears as a negative of the on-resonance image, with 

intensities lower or similar to that of the medium surrounding the cell. The appearance of the 

lipid bodies as dark regions in Fig. 3c – i.e. giving a lower CARS signal off-resonance than 

both the water surrounding the cell and the aqueous solution inside the cell – can be traced to 

the relatively large signal from the water at the off-resonance frequency (3000 cm
−1

) that 

arises from the flank of the broad OH stretch, and hence presents low but non-zero CARS 

response. In the lipid bodies, where no (or very little) water is present, the CARS response is 

truly off-resonance; in both water environments the tail of the water response gives rise to 

small, but finite signal. It is particularly remarkable how this effect makes the edges of cell 
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and nucleus well defined and readily visible in comparison with the background. This 

negative-like response is useful as it still gives an indication on the localization of cellular 

components in the off-resonance measurements where primarily MPIOs are detected. It is 

important to note that the lipid bodies in the cytoplasm are likely to slightly change their 

position over time, but in most cases the time between different CARS images is short enough 

so that the lipid bodies can be tracked in time. 

 

Fig. 3. (a) Brightfield microscopy, (b) on-resonance CARS and(c) off-resonance CARS images 

of a HuH7 cell in absence of MPIOs labels. Grayscale values vary from 3 to 60 in (b) and from 

6 to 20 in (c) 

3.3. Imaging of HuH7 cells incubated with MPIOs 

The localization of MPIOs in cells was investigated after incubating the HuH7 cells with a 

1mL solution of iron oxide particles at a concentration of 10
7
 particles/mL and 1mL growth 

medium. The low concentration ensured that a limited number of particles were taken up by 

the cell. We note that the use of MPIO solutions with higher concentration imposes no 

additional complications to the imaging process. Figure 4a shows the on-resonance CARS 

image of a 30 × 30 µm
2
 region depicting an isolated cell of elongated shape. The outside 

membrane of the cell is visible, as well as the contour of the nucleus. The image was collected 

from a focal plane near the center of the cell. The very large, circularly shaped nucleus can be 

identified by the lack of C-H signal, indicating lipids-rich aggregates are not present. The 

nucleus region presents uniform signal with intensity comparable to the surrounding aqueous  

 

 

Fig. 4. (a) On-resonance and (b) off-resonance CARS images of a HuH7 cell incubated with 

MPIO solution. (c) is the overlay of the on- and off-resonance images where the former appears 

in red, and the background corrected off-resonance response appears in green. Grayscale values 

vary from 3 to 40 in (a) and from 3 to 25 in (b). The overlay image obtained from on and off-

resonance measurements allows identification of a single iron oxide particle in the lower part of 

the cell (green spot). 
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growth medium. As shown previously in Ref. [55], the bright region inside the nucleus can be 

identified as the nucleolus, containing high densities of proteins and nucleic acids generating 

intense CARS signals. Several round features with a diameter of ~1 µm can be identified 

inside the cytoplasm. The challenge of our imaging approach is exemplified by this image; are 

we able to resolve which of the features in Fig. 4a are MPIOs and distinguish them from lipid-

rich cell components? The CARS response in Fig. 4b shows that only one such features also 

presents a high intensity also in the off-resonance image of the cell, indicating the presence of 

an iron oxide particle. All other cellular features appear in the negative-like fashion similar to 

that in Fig. 3c; the cell is still visible with negative contrast relative to the water background. 

In this case also the nucleolus is visible as a dark region in the center of the nucleus. 

Visual inspection already reveals that the bright feature in the off-resonance image finds 

immediate correspondence in the on-resonance image. This observation is confirmed by the 

color-coded overlay of the two images presented in Fig. 4c, where the on- and off-resonance 

images were added after subtraction of the background in Fig. 4b, where the background is 

defined as the average value of the intensity of the signal collected from the medium 

surrounding the cell. The on-resonance image of the cell appears in red, superimposed with 

the MPIO signature obtained from the off-resonance image in green. The identification of the 

particle is here unambiguous despite the many morphologically similar lipid droplets present 

in the cell, and we have obtained a label-free and non-invasive fast image of the intracellular 

distribution of MPIOs. The particle has been internalized by the cell, and is located within the 

cytoplasm in the proximity of the cellular membrane in an axial plane that contains as well the 

nucleus and the nucleolus located ~2 µm above the surface of the glass support. 

We can infer, a posteriori, that one feature of the MPIO allows a first-hand identification 

already in the on-resonance image, as the high intensity spot where the particle is located is 

surrounded by a dark halo. This effect is due to the large refractive index mismatch between 

the particle and the surrounding medium, resulting in a distortion of the beams foci that alters 

the CARS response at the interface [56]. This effect is instead not present in the brightfield 

images of cells incubated with MPIOs. 

3.4. Three-dimensional intracellular localization of MPIOs 

The optical sectioning capabilities of CARS are best exploited in three-dimensional images of 

the cell. Such 3D-images allow direct inspection of the spatial distribution of MPIOs within 

the cells. The brightfield microscopy image shown in Fig. 5a shows a projection of a cell with 

the nucleus located to the left and a collection of circular features are visible to the right in the 

cell, some of them presenting a diameter in the order of 1 µm. Again, it is not straightforward 

to distinguish MPIOs from lipid bodies in the image and from the optical image no 

information is available on the vertical position of the different structures relative to the upper 

and lower boundaries of the cell. In fact, inspection of Fig. 5a does not allow one to conclude 

that particles have been internalized by the cell, rather than being located at the outside of the 

membrane. Figures 5b-f are a sequence of overlays of on-resonance (red) and off-resonance 

(green) CARS images of the cell taken at descending vertical positions separated by 1 µm. 

The full outline of the cell can be observed. In Fig. 5f the interface between the cell and the 

underlying glass support is imaged. From Figs. 5c-d we conclude that the nucleus as well as 

the collection of lipid droplets on the right side of the cell are both located in the mid-sections 

of the cell. The colocalization with the non-resonant image also allows the identification of 

the volume distribution of MPIOs, which is particularly important in order to determine 

whether the internalization process has been successful. Two particles can be observed, the 

leftmost of which located in the upper region of the cell (see Figs. 5b-d) and the rightmost in 

the lower region of the cell closer to the glass substrate (see Figs. 5c-e). Hence, from this 3-

dimensional CARS image we can conclude with certainty that two particles have been 

successfully internalized, appearing with a maximum signal at locations 2 µm (lower right 

particle, Fig. 5d) and 3 µm (upper left particle, Fig. 5c) above the glass support. The signature 
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of the particles clearly extends beyond their physical dimensions, as the axial resolution is 

larger (~1 µm) than the lateral resolution (~0.3 nm). The slight discrepancy between the 

location of the MPIOs in the on- and off-resonance images is most likely due to a slight 

relocation of the particles between the two measurement series. We can rule out the possibility 

that the change in position is due to optical tweezing by noting that this effect is not present in 

the combination of single layer images where the time interval between consecutive 

measurements is shorter. The set of on/off resonance CARS images provides unambiguous 

insight into the presence and three dimensional distribution of single MPIOs, granting access 

to information that is otherwise impossible to obtain from the brightfield image in Fig. 5a. 

 

Fig. 5. (a) Brightfield microscopy image of a HuH7 cell incubated with MPIOs. (b-f) Overlay 

of on-resonance (red) and off-resonance (green) CARS images of the same cell with 

descending axial position (separated by 1 µm). Two internalized iron oxide particles (green) 

can be identified from the overlay images. 

These results demonstrate that CARS microscopy enables objective verification of the 

particle uptake in living cells. This is of particular interest, since the particles and lipid 

droplets present similar morphology under brightfield microscopy, making the evaluation of 

their uptake dependent on the experience of the investigator. Moreover, the access to the exact 

intracellular localization of incorporated particles enables investigations of the interactions 

between particles and cell organelles, paving the way for long-term toxicity studies of 

importance from a clinical perspective. 

4. Conclusion 

We have shown that CARS microscopy is a suitable tool for intracellular visualization of 

micrometer-sized iron oxide particles and has the potential to become an important instrument 

for the development of tracers for cell tracking in clinical MRI. Compared to other techniques 

available for this purpose, CARS has the advantage of being a label-free non-invasive 

technique that gives sufficient contrast both for the visualization of the particles and the 

cellular environment without need of additional labels. 
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As magnetite is a small bandgap semiconductor, the four-wave mixing response of the 

particle does not benefit from additional enhancement of two-photon electronic excitation 

when the excitation beams are tuned to match the lipid CH stretches used for achieving 

contrast from the cellular body, hence the particles are not unambiguously identifiable from 

the on-resonance image of the cell alone. However, as non-resonant CARS is almost 

frequency-invariant, MPIOs are easily distinguished in the off-resonance image of the system. 

Overlays of the on- and off-resonant measurements enable the visualization of the position of 

the particles in the cells with sub-micron accuracy. 

The immediate advantages of the use of CARS for this task are the chemical specificity 

that allows us to distinguish unambiguously the MPIOs from intracellular lipid-bodies of 

comparable dimensions, as well as the intrinsic three-dimensional imaging capabilities that 

allows us to identify the axial position of the particles in the cell with high precision. 

The issues that CARS microscopy is capable of addressing are fundamental questions that 

naturally arise in the development stages of engineered particles, where physical properties of 

the particles are modified and additional surface functionalizations are added, modifying the 

interaction between the particles and the cell at the molecular level. Besides quantitative 

assessment of the efficacy of the internalization, additional information on the exact 

intracellular position of the MPIOs in comparison with other cell components are readily 

available in three-dimensions. It is easy to imagine scenarios where this information is 

particularly relevant if, e.g. nucleus penetration is desirable. 

As an important outlook, we note that the CARS approach allows for following the 

kinetics of the particle uptake in real-time. Moreover, other subcellular components can be 

selectively visualized in CARS by probing molecular vibrations characteristic for e.g. 

mitochondria or nucleic acids [47], allowing the co-localization of the particles with other cell 

components with high specificity and without labeling. Also, CARS measurements can 

readily be combined with two-photon fluorescence (2PF) on most CARS setups. Hence, using 

markers for specific internalization processes and combining CARS and 2PF, information on 

the process responsible for the uptake of the particles can be obtained. 
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