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1 Introduction

There is much evidence that higher dimensional gravitational theories have black hole

solutions with exotic horizon topologies. This is supported by the existence of black rings

in 5-dimensions [1], the results in [2–6], as well as numerous near horizon calculations which

have unveiled large classes of unexpected horizon topologies [7–10]. Interest naturally

focuses on 10- and 11-dimensional supergravities which arise as the effective theories of

strings and M-theory. In particular, all near horizon geometries of heterotic supergravity

have been found, and those that preserve half of the spacetime supersymmetry have been

classified [7, 8]. In addition, the geometry of IIB horizons with 5-form flux preserving at

least 2 supersymmetries has been identified [10]. It is found under certain assumptions that

either the near horizon geometry1 is a product R
1,1 ×X8, where X8 is a special holonomy

manifold, or the spatial horizon section S is a Calabi-Yau manifold with skew-symmetric

1It is not apparent that all near horizon geometries can be extended to full black hole solutions, see

eg [8, 9] for a detailed discussion. In IIB supergravity there are examples of supersymmetric black holes for

which their near horizon geometries are those described in [10].
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torsion and the square of the Hermitian form ω is ∂∂̄-closed,2 i.e. ∂∂̄ω2 = 0. It is remarkable

that all the conditions on S which arise from the analysis of the field and Killing spinor

equations (KSEs) of IIB supergravity can be described in terms of a connection ∇̂ with

skew-symmetric torsion, hol(∇̂) ⊆ SU(4), even though the only active flux is the 5-form.

The presence of a connection with skew-symmetric torsion in IIB horizons with 5-form

flux, and so the apparent similarity of their geometries to those which arise in heterotic

supergravity, indicates that there may be a classification of the geometries of all IIB horizons

preserving any number of supersymmetries. This is in analogy with similar results that have

been obtained for the horizons of heterotic supergravity [7, 8]. However unlike for heterotic

supergravity [11–13], there is no complete classification of solutions to the KSEs of IIB

supergravity. The solution of the KSEs of IIB supergravity is known only for backgrounds

preserving one supersymmetry [14, 15] and for backgrounds with nearly maximal number

of supersymmetries [16–19]. The solution of the KSEs for all IIB horizons with 5-form flux

preserving more than 2 supersymmetries, and the corresponding understanding of their

geometries, will rely on the special form of the background.

In this paper we shall classify all IIB near horizon geometries with 5-form flux preserv-

ing more than 2 supersymmetries. We shall find that those preserving 4 supersymmetries

with non-vanishing flux are locally isometric to AdS3 × S3 × T 4 or AdS3 × S3 ×K3. The

associated spatial horizon sections are S1 × S3 × T 4 and S1 × S3 × K3, respectively. In

addition if any near horizon geometry preserves more than 4 supersymmetries, it is locally

isometric to R
1,1 × T 8.

We have obtained our results under certain assumptions. These assumptions have been

explained in detail in section 3.1. The main role of these assumption is to restrict the choice

of spinors that can appear as Killing spinors for IIB horizons. In particular, an assumption

is used to rule out the presence of a Killing spinor for IIB horizons which lies in the generic

SU(4) class of [10]. This is achieved by either imposing a certain non-vanishing condition

or setting a component of 5-form flux to vanish. In addition, it is assumed that the Killing

vector bi-linear of the Killing spinors coincides with the stationary Killing vector field of

the black hole.

Using these assumptions, we have shown that the Killing spinors of N = 4 IIB horizons

can be chosen to be pure spinors which have isotropy group ×2SU(2) ⋉ R
8 in Spin(9, 1).

In addition, the Killing spinors of N = 6 IIB horizons are again pure spinors with isotropy

group U(1) ⋉ R
8 in Spin(9, 1). In fact in both cases, the Killing spinors can be viewed as

Spin(8) spinors on the spatial 8-dimensional horizon sections S in which case the isotropy

groups are ×2SU(2) and U(1), respectively. These kinds of Killing spinors are reminiscent

of the Killing spinors that appear in supersymmetric backgrounds of heterotic supergravity,

see table 1 of [20]. This analogy between Killing spinors in IIB and heterotic supergravities

extends to the geometries of supersymmetric backgrounds. In particular, the spatial horizon

sections S of IIB horizons preserving 4 supersymmetries admit a hidden connection ∇̂ with

skew-symmetric torsion such that hol(∇̂) ⊆ ×2SU(2). This extends to the IIB horizons

2In the terminology of [10], S is a 2-strong Calabi-Yau with torsion manifold or 2-SCYT for short. The

Calabi-Yau condition requires that hol(∇̂) ⊆ SU(4) while the 2-strong structure refers to the restriction

∂∂̄ω
2 = 0 on the Hermitian form ω.
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preserving 6 supersymmetries. However in this case, 8-dimensional manifolds equipped

with a connection with skew-symmetric torsion whose holonomy such that hol(∇̂) ⊆ U(1)

have vanishing Riemann curvature [21].

Before we proceed with the analysis, it is worth noting that our assumptions rule out

certain near horizon geometries which are known to exist preserving more than 2 super-

symmetries. One example such example is AdS5×S5 which is a maximally supersymmetric

background. This is included in the N = 2 supersymmetric near horizon geometries of [10].

But it is excluded in the classification we give for near horizon geometries with more than

2 supersymmetries.

This paper has been organized as follows. In section 2, the analysis of the IIB KSEs for

near horizon geometries with generic SU(4) invariant Killing spinors is revisited. In section

3, we explain the assumptions that we use to examine the IIB near horizon geometries with

extended supersymmetry and explore some of their consequences. In section 4, we classify

all near horizon geometries with 5-form flux and describe the similarities with heterotic

geometries. In section 5, we show that all IIB near horizon geometries with 5-form flux

preserving more than 4 supersymmetries are locally isometric to R
1,1 × T 8.

2 N=2 IIB horizons revisited

2.1 Killing spinor equations

The analysis of the Killing spinor equations has been made in [10]. Here we shall summarize

some of the results that will be used in the rest of the paper. The metric and 5-form field

strength of the near horizon geometry written in Gaussian null co-ordinates are

ds2 = 2e+e− + δije
iej ,

F = re+ ∧ (dY − h ∧ Y ) + e+ ∧ e− ∧ Y + ⋆8Y , (2.1)

where

e+ = du, e− = dr + rh− 1

2
r2∆du, ei = eiIdy

I , (2.2)

and the r, u-dependence of the components is explicitly stated. Therefore ∆, h and Y

depend only on the coordinates, y, of the spatial horizon section, S. S is the co-dimension

2 submanifold defined by r = u = 0 and it is assumed to be closed, i.e. compact without

boundary. For more explanation about our conventions see [10].

The KSE equation of IIB supergravity [22–24] with only 5-form flux is

∇Mǫ+
i

48
FMN1N2N3N4

ΓN1N2N3N4ǫ = 0 , (2.3)

where ∇ is the spin connection associated with the frame (2.2) and ǫ is a spinor in the

positive chirality complex Weyl representation of Spin(9, 1). To solve the KSE, we first

identify the dual 1-forms

V = −1

2
r2∆e+ + e− , (2.4)
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and

Z = 〈B(Cǫ∗)∗,ΓAǫ〉 = 〈Γ0ǫ,ΓM ǫ〉 eA . (2.5)

of the two Killing vector fields. The first vector field is the stationary Killing vector field

∂u of the black hole, and the other is the Killing vector field constructed as a Killing spinor

bi-linear. In such case, the KSE can be solved along the light-cone directions to find that

the Killing spinor can be expressed as

ǫ = η+ + rΓ−

(

1

4
hiΓ

i +
i

12
Yn1n2n3

Γn1n2n3

)

η+ , Γ+η+ = 0 , (2.6)

where η+ is an even-chirality Spin(8) spinor which depends only on the coordinates of S.

Up to Spin(8) r, u-independent gauge transformations [14, 15], one can take without

loss of generality3

η+ = p+ qe1234 , (2.7)

where p, q are complex functions of S. In such a case, one finds that |p|2 + |q|2 must be a

(non-zero) constant and

hi = −|p|2 − |q|2
|p|2 + |q|2Yiℓ1ℓ2ω

ℓ1ℓ2 , (2.8)

where the Hermitian form ω on S is

ω = −e1 ∧ e6 − e2 ∧ e7 − e3 ∧ e8 − e4 ∧ e9 . (2.9)

Moreover,

∆ =
2

3
Ŷℓ1ℓ2ℓ3 Ŷ

ℓ1ℓ2ℓ3 , (2.10)

where

Ŷℓ1ℓ2ℓ3 = (Y(0,3) + Y(3,0))ℓ1ℓ2ℓ3

− i

8(|p|2 + |q|2)Ymn1n2
ωn1n2

(

pq̄χmℓ1ℓ2ℓ3 − p̄qχ̄mℓ1ℓ2ℓ3

)

, (2.11)

and

χ = (e1 + ie6) ∧ (e2 + ie7) ∧ (e3 + ie8) ∧ (e4 + ie9) , (2.12)

is the (4, 0) form on S. So ∆ ≥ 0, as expected.

Furthermore the remaining components of the KSE imply that

∇̃iη+ − 1

4
hiη+ − i

12
Yℓ1ℓ2ℓ3Γ

ℓ1ℓ2ℓ3Γiη+ = 0 , (2.13)

3For our spinor conventions as well as for the definition of form spinor bi-linears see [14, 15].
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and
([

1

4
∇̃jhi −

1

8
hihj +

1

4
Yiq1q2Yj

q1q2

]

Γj +

[

i

12
(∇̃iYℓ1ℓ2ℓ3 − (dY )iℓ1ℓ2ℓ3)

+
i

24

(

(h ∧ Y ) + ⋆8(h ∧ Y )
)

iℓ1ℓ2ℓ3
− 1

144
Yim1m2

Ym3m4m5
ǫm1m2m3m4m5

ℓ1ℓ2ℓ3

−1

4
Ym[ℓ1ℓ2Yℓ3]i

m

]

Γℓ1ℓ2ℓ3
)

η+ = 0 ,

(2.14)

where ∇̃ denotes the Levi-Civita connection on S.

Also, on expanding out (2.13), one obtains the conditions:

∂αp+

(

1

2
Ωα,β

β − iYαβ
β − 1

4
hα

)

p = 0

∂αp̄+

(

− 1

2
Ωα,β

β − 1

4
hα

)

p̄− i

3
ǫαγ1γ2γ3Y

γ1γ2γ3 q̄ = 0

∂αq +

(

− 1

2
Ωα,β

β − 1

4
hα

)

q +
i

3
ǫαγ1γ2γ3Y

γ1γ2γ3p = 0

∂αq̄ +

(

1

2
Ωα,β

β + iYαβ
β − 1

4
hα

)

q̄ = 0 (2.15)

and

Ωα,γ1γ2ǫ
γ1γ2

δ̄1δ̄2
=

4pq̄

|p|2 + |q|2 Ωα,δ̄1δ̄2

iYαδ̄1δ̄2 − iδα[δ̄1Yδ̄2]β
β =

(|p|2 − |q|2)
2(|p|2 + |q|2)Ωα,δ̄1δ̄2

. (2.16)

There are three special cases to consider which are distinguished by the choice η+

which in turn put restrictions on the functions p and q. In what follows we shall focus on

the generic SU(4) case for which the spinor η+ is chosen as

η+ = p 1 + qe1234, p 6= 0 , q 6= 0 , |p|2 − |q|2 6= 0 . (2.17)

The remaining two cases have been exhaustively examined in [10].

2.2 Generic SU(4) invariant Killing spinors revisited

For solutions for which η+ is a generic SU(4) invariant Killing spinor, we proceed by

considering the +- component of the Einstein equation [10]. This equation can be rewritten,

on using (2.10), as

∇̃ihi = −2

(

|p|2|q|2 − 1
2

)

(

|p|2 − |q|2
)2 h2 − 8Yδ̄σ1σ2

Y δ̄σ1σ2

+
4i

3(|p|2 − |q|2)

(

pq̄ǫδ̄1δ̄2δ̄3δ̄4hδ̄1Yδ̄2δ̄3δ̄4 − p̄qǫδ1δ2δ3δ4hδ1Yδ2δ3δ4

)

. (2.18)

– 5 –
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We make use of the following identities obtained from (2.15) and (2.16):

hα = (|q|2 − |p|2)∂α log

(

p

q̄

)

, Ωγ̄,
γ̄
α =

1

2(|q|2 − |p|2)∂α log

(

p

q̄

)

, (2.19)

and

Yδ1δ2δ3 = − i

2
pq̄ǫδ1δ2δ3

ᾱ∂ᾱ log

(

p

q̄

)

, (2.20)

and set

p = |p|eiφ, q = |q|eiψ , (2.21)

for real φ,ψ. On substituting these expressions back into (2.18), one finds, after some

manipulation, that

∇̃2

(

(

|p|2|q|2
)−

1

4

)

=
(

|p|2|q|2
)−

1

4

(

1

4
(|p|2 − |q|2)2∇̃i(φ+ ψ)∇̃i(φ+ ψ)

+
h2

12(|p|2 − |q|2)2 + 4Ỹδ̄σ1σ2
Ỹ δ̄σ1σ2

+
1

2|p|2|q|2(|p|2 − |q|2)2 ∇̃i(|p|2|q|2)∇̃i(|p|2|q|2)
)

, (2.22)

where Ỹ denotes the traceless part of the (1, 2) + (2, 1) of Y . Note also that we have

extracted the trace terms from the term quadratic in Y in (2.18) and rewritten their

contribution in terms of h2.

To explore the consequences of (2.22), one needs that
(

|p|2|q|2
)−

1

4 is a smooth function

on S. For this p and q must be smooth no-where vanishing functions on S. The spatial

horizon section S admits an SU(4) structure. So having chosen a trivialization using

the globally defined sections 1 and e1234 of the spinor bundle, p and q can be chosen as

globally defined smooth functions on S. Moreover, the parallel transport equation (2.15)

implies that |p|2 + |q|2 is constant. So although p and q cannot simultaneously vanish

as |p|2 + |q|2 6= 0, in general the parallel transport equation (2.15) allows for p or q to

have a vanishing locus on S. To exclude this possibility, one has to make an additional

assumption. For this, one can simply assume that η+ is a no-where pure spinor on S.

Alternatively, one can use the parallel transport equation (2.15) and set the (3,0) part of

Y to zero, Y 3,0 = 0. In such case, the parallel transport equation (2.15) factorizes to one

for p and another one for q. So if p or q vanish at one point, then they vanish everywhere

on S. Thus if Y 3,0 = 0 and η+ is generic, then it is no-where pure.

Assuming that
(

|p|2|q|2
)−

1

4 is smooth, noting that the r.h.s. of (2.22) is non-negative

and using the maximum principle on (2.22), one finds that |p|, |q| and ψ + φ are constant.

Furthermore h = 0 and Ỹ = 0, and so the (2, 1) part of Y vanishes. On substituting all of

these conditions back into (2.15), one also finds that the (3, 0) part of Y vanishes as well.

So Y = 0, and hence ∆ = 0.

Thus we have shown that if η+ = p1+qe1234 is a generic SU(4) invariant no-where pure

spinor, then p, q must be constant and the flux F vanishes. The spacetime is a product

R
1,1 × S, where S is a compact Calabi-Yau 4-fold.

– 6 –
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3 Horizons with more than 2 supersymmetries

3.1 Additional Killing spinors

The solutions of the KSEs of IIB supergravity for backgrounds with more than 2 supersym-

metries have not been classified, other than in cases for which the amount of supersymmetry

preserved is near-maximal. Nevertheless, we can solve the KSEs of IIB supergravity for

near horizon geometries preserving more than 2 supersymmetries by relying on the spe-

cial form of the backgrounds and on some additional assumptions that we shall make. In

particular, we take that

(i) the 1-form bilinears of all the Killing spinors, and so their linear combinations, are

proportional to the 1-form whose dual vector field is ∂
∂u

,

(ii) and all of the Killing spinors and their linear combinations are constructed from pure

spinors η+.

The first assumption is needed in order for the analysis we have done for one linearly

independent Killing spinor in [10] to apply for all additional Killing spinors. As has been

explained, the starting point of the analysis of the KSE of backgrounds with 2 supersym-

metries is the identification of the Killing spinor 1-form bilinear with the 1-form dual to

the stationary Killing vector field of the black hole solution ∂u.

The second assumption is motivated by the results of the previous section. Any ad-

ditional Killing spinor ǫ must be associated with either a Spin(7) invariant, or a generic

SU(4) invariant, or a pure SU(4) invariant spinor η+. In the first case, the horizon is a

product with vanishing 5-form flux. The same is true for the second case provided the

assumptions we have made in the previous section are valid. Thus the only possibility that

can arise yielding non-product horizons is that for which the Killing spinor is constructed

from a pure SU(4) invariant spinor η+. Hence assumption (ii) follows from assumption (i)

and the hypothesis used in the previous section to understand the near horizons geometries

associated with generic SU(4) invariant spinors η+.

Utilizing both (i) and (ii), any additional Killing spinor ǫ of a near horizon geometry

is r and u independent. In particular, ǫ = η+, and so from the results of [10], it satisfies

(

hiΓ
i +

i

3
Yℓ1ℓ2ℓ3Γ

ℓ1ℓ2ℓ3
)

ǫ = 0 , (3.1)

dhijΓ
ijǫ = 0 , (3.2)

∇̃iǫ+

(

− 1

2
hi −

i

2
YimnΓ

mn − 1

4
hjΓi

j

)

ǫ = 0 . (3.3)

Note that ∆ = 0.

3.2 N=2 solutions

We briefly summarize the N=2 solutions [10], working in a holomorphic basis on S which

will be convenient for subsequent analysis. The N = 2 solutions have Killing spinors which

can be taken, without loss of generality to be

ǫ1 = 1, ǫ2 = i1 (3.4)

– 7 –



J
H
E
P
0
9
(
2
0
1
1
)
0
4
7

The conditions obtained on h, Y and the spin connection are as follows:

dhαβ = 0, dhα
α = 0 (3.5)

Yα1α2α3
= 0, Ωα,β

β − iYαβ
β = 0, iYαβ

β +
1

2
hα = 0 , (3.6)

Ωα,β1β2
= 0 , Ωβ̄,

β̄
α + Ωα,β

β = 0 , (3.7)

and

Y =
1

4

(

dω − h ∧ ω
)

, (3.8)

where

ω = −i
(

e1 ∧ e1̄ + e2 ∧ e2̄ + e3 ∧ e3̄ + e4 ∧ e4̄
)

. (3.9)

As has been explained in [10] the spatial horizon section S has a hidden Calabi-Yau with

torsion structure.

4 N=4 horizons

4.1 Additional Killing spinors

The first two Killing spinors of N = 4 solutions are identified with those of N = 2 back-

grounds. As we have demonstrated a basis for these can be chosen as ǫ1 = 1, ǫ2 = iǫ1.

As the IIB KSEs with only 5-form flux are linear over the complex numbers, if the third

Killing spinor is ǫ3, then the fourth can be chosen as ǫ4 = iǫ3. Therefore in order to identify

the two additional Killing spinors, it suffices to choose the third. For this first observe that

because of the assumptions we have made in the previous section any additional Killing

spinor must be pure. As a consequence a Killing spinor ǫ is identified with the associated

spinor η+ on the spatial horizon section S. Thus the third Killing spinor can be chosen

up to gauge transformations of the spatial horizon section. As the first two Killing spinors

have isotropy group SU(4), the third Killing spinor can be chosen up to SU(4) gauge trans-

formations. In particular, an analysis of the orbits of SU(4) on the positive chirality Spin(8)

spinors reveals that

ǫ3 = p 1 + q e1234 + α e12 + β e34 , (4.1)

where p, q, α and β are complex functions on S.

The spinor ǫ3 can be simplified using the assumptions of section 3.1. In particular we

require that ǫ3 + λ ǫ1 must be a pure spinor for any choice of constant complex parameter

λ. This restriction can be imposed by setting the 1-form4 spinor bilinear

〈B(ǫ3 + λ ǫ1)∗,ΓA(ǫ3 + λ ǫ1)〉 eA , (4.2)

4Since the spinors are complex, one can construct three independent 1-form spinor bilinears. One of

them is associated with the Killing vector of supersymmetric IIB backgrounds and the other two vanish for

pure spinors. Compare (4.2) with the bilinear associated with the Killing vector (2.5).

– 8 –
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to vanish for all λ. This implies that

q = 0, αβ = 0 . (4.3)

However, it is furthermore straightforward to show that p 1 + αe12 and p 1 + β e34 are in

the same orbit of SU(4). Hence, without loss of generality, we take

ǫ3 = p 1 + α e12 . (4.4)

Some further simplification is possible. For this, we compute the 1-form spinor bilinear

κ = 〈B(C ∗ (ǫ3 + λ ǫ1))∗,ΓA(ǫ3 + λ, ǫ1)〉 eA = −
√

2(|p + λ|2 + |α|2)e− , (4.5)

which is dual to a Killing vector field for any choice of constant parameter λ. The Killing

vector equations imply that |p + λ|2 + |α|2 is independent of the coordinates of S and so

constant for any λ. This in turn implies that p and α are constant. Hence up to a SU(4)

gauge transformation, a basis of the four Killing spinors can be chosen as

ǫ1 = 1 , ǫ2 = i 1 , ǫ3 = e12 , ǫ4 = i e12 . (4.6)

The isotropy group of the 4 Killing spinors in Spin(9, 1) is ×2SU(2) ⋉ R
8 while in Spin(8)

is ×2SU(2).

4.2 Solution of KSEs

To continue with the analysis, we have to solve the KSEs for the spinor ǫ3 = e12. This can

be done directly as for the N = 2 backgrounds. However because of the simplicity of ǫ3,

it is possible to just read off the restrictions imposed by the KSE on the fields from those

of backgrounds with two supersymmetries. For this observe that all restrictions that arise

from the KSE in N = 2 backgrounds can be expressed as conditions on the fields written

in a holomorphic basis with respect to a Hermitian form ω which is computed from the

3-form Killing spinor bi-linear. These are summarized in section 3.2.

To find the conditions on the fields imposed by the e12 Killing spinor, we calculate the

3-form bi-linear of e12 to find

Θ =
√

2ie− ∧ ω′ , (4.7)

where

ω′ = i
(

e1 ∧ e1̄ + e2 ∧ e2̄ − e3 ∧ e3̄ − e4 ∧ e4̄
)

. (4.8)

It is clear that the Hermitian forms ω and ω′ are related by a rotation which exchanges

the first two holomorphic directions with the corresponding anti-holomorphic ones. The

associated complex structures commute. Therefore the conditions imposed by the Killing

spinor ǫ3 are as those in section 3.2 for the spinor ǫ1 but now with the first two holomorphic

indices replaced by anti-holomorphic ones and vice versa. To implement this, we split the

holomorphic indices as α = (a, µ) for a = 1, 2, µ = 3, 4, however, middle Roman indices

i, j and the first Greek indices α, β, γ are reserved for real indices and all the holomorphic

indices on S, respectively. The conditions that arise from the KSE imposed on ǫ1 are those

summarized in section 3.2 by simply setting α = (a, µ) and similarly for the rest of the

indices. While the conditions that arise from the KSE imposed on ǫ3 are again given by

those in 3.2 by now for α = (ā, µ) and similarly for the rest of the indices.

– 9 –
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4.3 Analysis of the conditions

Using the procedure explained in the previous section for solving the KSE for both spinors

ǫ1 and ǫ3, we find that condition that the (3,0) part of Y vanishes in (3.6) with respect

to both complex structures implies that the only non-vanishing components of Y up to

complex conjugation are

Yab̄1 b̄2 , Yab̄µ̄ , Yāµν̄ , Yµν̄1ν̄2 . (4.9)

In particular, Yaµ̄ν̄ = 0. In addition the last condition in (3.6) implies that

Yia
a = 0, hi = −2iYiµ

µ . (4.10)

To proceed further, it will be convenient to set

ω1 = −i
(

e1 ∧ e1̄ + e2 ∧ e2̄
)

, ω2 = −i
(

e3 ∧ e3̄ + e4 ∧ e4̄
)

, (4.11)

and decompose

h = h1 + h2 . (4.12)

where (h1)µ = 0, (h2)a = 0. We also write

Y = Y̊ − φ ∧ ω2 , φ =
1

4
h1 +

1

2
h2 , (4.13)

such that Y̊ is traceless w.r.t both ω1 and ω2.

Next, consider the +− component of the Einstein equations [10], which for ∆ = 0, is

∇̃ihi = h2 − 4

3
Yi1i2i3Y

i1i2i3 . (4.14)

This can be rewritten as

∇̃ihi = −(h2)
2 − 4

3
Y̊i1i2i3 Y̊

i1i2i3 . (4.15)

Integrating over S and using that S is compact without boundary, one finds that

∇̃ihi = 0 , (4.16)

and

h2 = 0, Y̊ = 0 . (4.17)

Using these results, Y can be expressed as

Y = −1

4
h ∧ ω2 , h = h1 . (4.18)

Furthermore Y can be expressed both in terms of ω and ω′ (3.8). Writing the two

expressions in terms of ω1 and ω2 and comparing them with (4.18), one finds that

dω2 = 0, dω1 − h ∧ ω1 = 0 . (4.19)

– 10 –
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Combining, the first condition in (3.7) for both complex structures with the first condition

in (4.19), one finds that the non-vanishing components of the frame connection Ω up to a

complex conjugation are

Ωa,bc̄ , Ωa,b̄c̄ , Ωa,µν̄ , Ωµ,ab̄ , Ωµ,νλ̄ . (4.20)

These are in addition restricted by the second equation in (3.7) for both complex structures.

In particular, one finds that

Ωi,ν
ν = Ωµ,a

a = 0 , Ων,µ
ν = Ωā,µ

ā = Ωa,µ
a = 0 , Ωa,b

b − Ωb̄,a
b̄ = 0 . (4.21)

It is clear from these that

d(e3 ∧ e4) = 0 , (4.22)

and also

d(e1 ∧ e2) − h ∧ (e1 ∧ e2) = 0 . (4.23)

The integrability conditions of (4.19) and (4.23) imply that

dh ∧ ω1 = 0, dh ∧ e1 ∧ e2 = 0 , (4.24)

and so

dh = dhab̄ e
a ∧ eb̄, dha

a = 0 . (4.25)

The rotation is further restricted. In fact, h is a parallel 1-form on S. For this note

that

⋆ dh =
1

2
dh ∧ ω2 ∧ ω2 . (4.26)

Using this, one has that

I =
1

2

∫

S

dhijdh
ij =

∫

S

dh ∧ ⋆dh =
1

2

∫

S

dh ∧ dh ∧ ω2 ∧ ω2 = 0 , (4.27)

where in the last step we have used that dω2 = 0. Hence

dh = 0 , (4.28)

and so h is closed. Since h is also co-closed, it implies that h is harmonic.

To proceed, consider the i, j component of the Einstein equations [10], which can be

expressed as

R̃ij = −∇̃(ihj) +
1

2
hihj − 4Yin1n2

Yj
n1n2 +

2

3
δijYn1n2n3

Y n1n2n3 (4.29)

and define

Ĩ =

∫

S

∇̃(ihj)∇̃(ihj) . (4.30)

– 11 –
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On integrating by parts, and using dh = 0, ∇̃ihi = 0, one finds that

Ĩ = −1

2

∫

S

(

hi∇̃2hi + R̃ijh
ihj

)

= −
∫

S

R̃ijh
ihj . (4.31)

Using the Einstein equation to express the Ricci tensor in terms of the fluxes and the

expression of Y in terms of h (4.18), we have

R̃ijh
ihj = −1

2
∇̃i(h

2hi) . (4.32)

Thus Ĩ = 0 and so h is Killing. But also dh = 0, and so h is parallel

∇̃h = 0 . (4.33)

To proceed, we decompose the metric of spatial horizon section as

ds2 = ds21 + ds22 , ds21 = 2e1e1̄ + 2e2e2̄ , ds22 = 2e3e3̄ + 2e4e4̄ . (4.34)

This is a product decomposition, i.e. S locally metrically decomposes into a product of two

hyper-Hermitian 4-dimensional manifolds S = X × Y , where X is equipped with metric

ds21, Hermitian ω1 and (2,0) e1 ∧ e2 forms, and similarly for Y . This can be easily seen

from (4.20). In particular the metric ds21, as well as the associated Hermitian forms, are

invariant under the action spanned by the dual vector fields spanned by the frames e3 and

e4 and their conjugates, and similarly for the metric ds22 and its associated Hermitian forms.

Furthermore Y is hyper-Kähler. This can be seen from dω2 = d(e3 ∧ e4) = 0 or

alternatively from dω2 = 0 and by showing that it is Ricci flat. The latter follows from the

Einstein field equations. Therefore Y is locally isometric to either T 4 or K3.

To identify X, we first observe that h is a parallel 1-form on X. As a result, if h 6= 0,

the metric decomposes as

ds21 = k−2h⊗ h+ ds2(Σ) , (4.35)

where k2 is the constant square length of h. It remains to identify the 3-dimensional

manifold Σ. For this, we evaluate the Ricci tensor along the directions in X perpendicular

to h to find

R̃ijV
iW j =

1

2
k2δijV

iW j , hiV
i = hiW

j = 0 . (4.36)

Thus Σ has constant positive curvature and so it is locally isometric to S3. It is well known

that S1 × S3 admits an HKT and so hyper-Hermitian structure. Thus the spatial horizon

section is locally isometric to the product S = S1 × S3 × Y , where Y = T 4 or K3. In

turn the near horizon geometry is isometric to either AdS3 × S3 × T 4 or AdS3 × S3 ×K3.

Adapting local coordinates as h = dφ, the full spacetime metric is

ds2 = 2du(dr + k2rdφ) + k2dφ2 + k−2
(

(σ1)2 + (σ2)2 + (σ3)2
)

+ ds22 , (4.37)

where σr, r = 1, 2, 3 is the left-invariant frame on S3, i.e. dσ1 = σ2 ∧σ3 and cyclicly in 1, 2

and 3. Observe that the radii of AdS3 and S3 are equal.

– 12 –
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4.4 Hidden torsion

We have demonstrated in [10] that the spatial horizon sections of near horizon geometries

which preserve two supersymmetries admit a 2-SCYT structure. This structure describes

the full set of conditions imposed by the KSEs and the field equations of the supergravity

theory on the spatial horizon sections. To see whether this is the case for spatial horizon

sections admitting four supersymmetries consider 8-dimensional manifolds M equipped

with a connection ∇̂ with skew-symmetric torsion H such that hol(∇̂) ⊆ ×2SU(2). The

holonomy has been chosen to be ×2SU(2) because it is the isotropy group of the Killing

spinors in Spin(8). Such manifolds admit two commuting almost complex structures I

and I ′ which we shall assume are simultaneously integrable. In such a case, it has been

shown in [21] that M locally metrically decomposes as M = X × Y , where X and Y are

4-dimensional KT manifolds. Since the holonomy is in ×2SU(2), it turns out that X and

Y are HKT manifolds. The skew-symmetric torsion H is given by

H = −iIdω , (4.38)

where ω is the Hermitian form of I.

It is now clear that the spatial horizon sections S admit a connection with skew-

symmetric torsion ∇̂ and hol(∇̂) ⊆ ×2SU(2). The shew-symmetric torsion is given

in (4.38). However, the geometry of S is further restricted because of the field equa-

tions. These force Y to be hyper-Kähler and X to be locally isometric to S1×S3 equipped

with the HKT structure.

The existence of hidden skew-symmetric torsion compatible with the geometric data

of spatial horizon sections preserving 4 supersymmetries leads to a prediction. If there is a

hidden skew-symmetric torsion structure for spatial horizon sections preserving more than

4 supersymmetries, then the near horizon geometry is flat. This conclusion can be reached

from the results of [21]. In particular, it has been proven that complex manifolds equipped

with a connection with skew-symmetric torsion whose holonomy is a suitable subgroup of

×2SU(2) are flat. The subgroup in ×2SU(2) is an isotropy group of Killing spinors. We

shall see that this is indeed the case. Provided that the assumptions of section 3.1 hold,

all near horizon geometries preserving more than 4 supersymmetries are flat.

5 N ≥ 6 horizons

5.1 Killing spinors

To begin, consider near horizon geometries preserving 6 supersymmetries. Provided that

the assumptions of section 3.1 hold, the first 4 Killing spinors can be chosen as those for

the N = 4 solutions, i.e. a basis is {1, i 1, e12 , ie12}. Because of the linearity of the KSEs

over the complex numbers, if the 5th Killing spinor is ǫ5, then the 6th can be chosen as

iǫ5. Using again the assumptions in section 3.1, ǫ5 is a Spin(8) even chirality pure spinor

on S. Thus it can be written as

ǫ5 = p 1 + q e1234 +
1

2
zαβeαβ , (5.1)
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where p, q, z are complex functions on S. Since any linear combination of the Killing spinors

must be pure, we first require that ǫ5 + λ 1 + µ e12 should be pure, for all possible choices

of constant complex parameters λ, µ. This implies that the 1-form spinor bi-linear

〈B(ǫ5 + λ 1 + µ e12)
∗,ΓA(ǫ5 + λ 1 + µ e12)〉 eA (5.2)

must vanish. This gives that

− (p+ λ)q + (µ+ z12)z34 − z13z24 + z14z23 = 0 , (5.3)

for every λ and µ. As a result, one has that that q = 0, z34 = 0. A ×2SU(2) transformation,

which leaves 1 and e12 invariant, can be used to set, without loss of generality, z23 = 0.

Thus

ǫ5 = p 1 + z12e12 + z13e13 + z14e14 + z24e24 . (5.4)

Next, computing the 1-form bilinear associated with the Killing vector one finds

κ = 〈B(C ∗ (ǫ5 + λ.1 + µe12))
∗,ΓA(ǫ5 + λ.1 + µe12)〉 eA

= −
√

2
(

|p+ λ|2 + |z12 + µ|2 + |z13|2 + |z14|2 + |z24|2
)

e− . (5.5)

Since the dual vector field must be Killing the function multiplying e− must be constant

for all constants λ, µ. This forces p and z12 to be constant as well. As a result, the 5th

Killing spinor can be chosen as

ǫ5 = z13e13 + z14e14 + z24e24 . (5.6)

Using (5.3), one finds that z13z24 = 0. Thus either z13 or z24 must vanish. In either case, a

×2SU(2) transformation can be used, which leaves 1 and e12 invariant, such that without

loss of generality,

ǫ5 = µe13 . (5.7)

Examination of the component κ− in (5.5) implies that |µ|2 is constant. As one can

set µ ∈ R using an appropriately chosen ×2SU(2) transformation, one can without loss

of generality set µ = 1, and ǫ5 = e13. Therefore a basis of the 6 Killing spinors is

{1, i 1, e12 , i e12, e13, i e13}. These spinors have isotropy group U(1) ⋉ R
8 in Spin(9, 1) or

U(1) in Spin(8).

5.2 Analysis of conditions

The analysis of the additional conditions imposed by requiring that ǫ = e13 be a Killing

spinor proceeds in exactly the same fashion as for e12 in the N = 4 case. Recall that in

the N = 4 case, having e12 as a Killing spinor forced h3 = h4 = 0 as a consequence of

the +− component of the Killing spinor and compactness of S. Similarly, requiring that

e13 be a Killing spinor implies that h2 = 0 as well. Using the same reasoning, and from

examination of (4.18), we must also have

Y =
1

4

(

h1e
1 + h1̄e

1̄
)

∧
(

ie3 ∧ e3̄ + ie4 ∧ e4̄
)

=
1

4

(

h1e
1 + h1̄e

1̄
)

∧
(

ie2 ∧ e2̄ + ie4 ∧ e4̄
)

. (5.8)
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It follows that h1 = 0 as well, so h = 0. From [10], it follows that the 5-form must vanish.

Moreover, since there are no Berger manifolds with such holonomy5 U(1) ⊂ ×2SU(2),

the only solutions are flat and so the spatial horizon section is T 8. Note also that this

is compatible with the existence of a hidden structure with skew-symmetric torsion. In

particular, it has been shown in [21] that 8-dimensional KT manifolds with holonomy

hol(∇̂) ⊆ U(1) ⊂ ×2SU(2) have vanishing Riemann curvature.

We remark that the same analysis forces all solutions with N > 6 to have h = 0 and

F = 0 as well, modulo the assumptions (i) and (ii) made in section 3.1.
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