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The stability and resonant field response of current driven resistive wall modes are numerically
studied for DIII-D �J. L. Luxon, Nucl. Fusion 42, 614 �2002�� low pressure plasmas. The resonant
field response of the feedback-stabilized resistive wall mode is investigated both analytically and
numerically, and compared with the response from intrinsically stable or marginally stable modes.
The modeling qualitatively reproduces the experimental results. Furthermore, based on some recent
results and on the indirect numerical evidence in this work, it is suggested that the mode stability
behavior observed in DIII-D experiments is due to the kink-peeling mode stabilization by the
separatrix geometry. The phase inversion radius of the computed plasma displacement does not
generally coincide with the radial locations of rational surfaces, also supporting experimental
observations. �doi:10.1063/1.3455540�

I. INTRODUCTION

The resistive wall mode �RWM�, being a global magne-
tohydrodynamics �MHD� instability, is one of the key perfor-
mance limiting factors for many plasma scenarios in fusion
devices. Originating from the ideal external kink mode, the
RWM can be driven unstable either by the plasma equilib-
rium pressure �both magnitude and gradient� or by the
plasma equilibrium current �largely gradient�.

In the reversed field pinch �RFP� devices, the mode is
normally current driven and is associated with nonresonant
harmonics. This mode, when unstable, is the key factor re-
sponsible for an early termination of the discharge in many
RFP plasmas. Active control of the RWM has been convinc-
ingly demonstrated in several machines,1,2 where a large
number of magnetic coils are installed outside the thin
vacuum vessel. These experiments provide valuable knowl-
edge on how to control this mode using magnetic feedback,
not only for the RFPs but also for future tokamak devices
such as ITER.3

In present and future advanced tokamak operations, the
pressure driven RWM is a significant issue because the mode
limits the achievable plasma pressure and thus the fusion
power production. Feedback stabilization of the RWM is
foreseen as one of the critical routes to achieving high �,
steady state plasmas in ITER.4 This option has also been
extensively pursued in present tokamak experiments, in par-
ticular in DIII-D.5–8

The active control experiments in DIII-D high beta plas-
mas have been very successful. However, the RWM dynam-
ics in these experiments is often complicated, partly due to
the plasma rotation and/or the kinetic effects on the mode
stability,9 and also due to a rather rich interaction between
the RWM and other modes.8 In order to gain a “clean” un-

derstanding of the RWM behavior under the feedback con-
trol in tokamak conditions, specific, current driven RWMs
were formed and feedback controlled in DIII-D, at low
plasma pressure and slow plasma rotation.10 Under these
conditions, the kinetic effects on the mode are minimized.
From the control point of view, there is probably no critical
difference between the current and the pressure driven
RWMs. �There can be qualitative differences in the internal
mode structure �the plasma displacement�, as will be shown
in this work. The difference in the external mode structure
�the perturbed magnetic field�, which is what we measure to
feed into the control loop, is quantitative and not strongly
pronounced.� In fact, most of the analytic models11–14 for the
RWM feedback are either based on the current driven case,
or does not assume any nature of the mode instability. These
models seem to yield qualitatively the same predictions for
the mode control behavior as that for the pressure driven
case.

We point out, however, that even the current driven
RWM control is not truly clean. The DIII-D experiments10

show a strong interaction between the direct mode control
and the error field �EF� correction. Since this interaction also
occurs �probably in a more pronounced form� in the pressure
driven RWM control, understanding this issue is of crucial
importance for designing the feedback systems in future fu-
sion devices. This is one of the issues addressed in this mod-
eling work. In particular, we examine the plasma resonant
amplification �RFA� effect in the presence of a feedback-
stabilized RWM and compare this response with that of an
intrinsically stable mode. The RFA phenomena can have sig-
nificant impacts on many other plasma related issues, such as
the plasma momentum damping and the �dynamic� EF
correction.

Compared to the classical current driven kink analysis
studied by Shafranov15 and Wesson,16 we consider the real-a�Electronic mail: yueqiang.liu@ccfe.ac.uk.
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istic toroidal geometry with strongly shaped plasma �realistic
plasma equilibria�. The single fluid, ideal MHD code MARS-F

�Ref. 17� is used for the modeling. The computed plasma
internal structure �displacement� and the current ratio in the
feedback and the dynamic EF correction coils allow a direct
comparison with experiments.

Section II describes the plasma equilibrium and geom-
etry used in the modeling. Section III reports the kink stabil-
ity computations and the internal mode structure for these
current driven modes in DIII-D. The internal structures are
compared with that of a pressure driven kink mode. Section
IV is devoted to the study of the RWM response. In particu-
lar, the RFA response of feedback-stabilized RWM is ana-
lyzed. Section V draws conclusions.

II. EQUILIBRIUM AND GEOMETRY

We consider an equilibrium reconstructed from the
DIII-D discharge 133021. Figure 1 shows the plasma bound-
ary shapes and the surface-averaged equilibrium toroidal cur-
rent profiles. The experimental plasma shape has an upper
X-point. Our numerical code, based on a flux coordinate,
cannot resolve exactly the X-point, so we instead smooth the
plasma boundary near that singularity. This procedure modi-
fies the stability of the kink-peeling mode, as will be dis-
cussed later. The experimental plasma current profile has a
finite surface current density. We consider both the experi-
mental profile and a profile with a vanishing plasma edge
current density �dashed curve in Fig. 1�b��. The safety factor
q has a monotonic radial profile. The equilibrium plasma
pressure nearly vanishes, so that the kink instability is driven
by the plasma current gradient. In the numerical investiga-
tion, we consider a series of equilibria by varying the total
plasma current, and hence the edge q value, keeping the
current density profile �as well as the plasma boundary
shape� fixed.

For the RWM response computations, we use both the
internal and the external �with respect to the wall� sets of

coils as shown in Fig. 1�a�. These coils have the same geo-
metrical locations in the �R ,Z�-plane, as the DIII-D I-coils
and C-coils. As for the sensor signal, we assume an internal
poloidal field sensor or a pointwise radial field sensor, lo-
cated at the outboard midplane and at the wall minor radius,
as shown in Fig. 1�a�.

Figure 2 shows the measured toroidal rotation profile,
based on the charge exchange recombination spectroscopy
using carbon-VI emission line. This profile is also used in
the RWM modeling in this work. The rotation frequency
�rot here is normalized by the Alfvén frequency
�A�B0 / �R0

��0�0�, with B0, R0, and �0 being the toroidal
magnetic field, the major radius, and the density at the
plasma center, respectively. The plasma rotates rather slowly
in these experiments.
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FIG. 1. �Color online� The equilibrium and geometry used in the RWM modeling for DIII-D. �a� The plasma boundary shape with an X-point �thin line� in
the experiment and the smoothed boundary �thick line� used in the modeling, the wall shape, the locations of the upper and lower sets of I-coils �just inside
the wall� and the C-coils �outside the wall�, and the pointwise sensor coil location �“x”�. �b� Two profiles of the surface averaged toroidal equilibrium current
density used in the modeling. The solid line corresponds to the experimental profile. �p is the normalized poloidal flux.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

ψ
p

1/2

ω
ro

t/ω
A

FIG. 2. �Color online� The toroidal rotation profile from DIII-D 133021.
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III. KINK STABILITY AND MODE STRUCTURE

A. Stability

Using the smoothed plasma boundary shape and the ex-
perimental current profile �finite edge current density�, we
first compute the stability of the ideal external kink mode by
scanning over the edge q value qa �i.e., scaling the total
plasma current�. The growth rates �, normalized by the
Alfvén time �A�1 /�A, are plotted in Fig. 3�a�. The stability
is compared without a wall and with an ideal conducting
wall having the DIII-D wall shape shown in Fig. 1�a�. These
results resemble that from the classical kink-peeling analysis.

However, the DIII-D experimental data suggest that the
mode is stable at q95	4,18 contradicting the above numerical
prediction. �Because of the boundary smoothing used in the
modeling, the qa value from the modeling roughly corre-
sponds to the experimental q95.� One plausible reason is the
stabilizing effect of the separatrix on the kink-peeling
mode,19,20 whose instability is caused by the finite surface
current density. Indeed, as shown in Ref. 20, the peeling
mode growth rate �
�q /q�. As q� approaches infinity faster
than q toward the separatrix �→0, i.e., the peeling mode
becomes marginally stable in the presence of an X-point.

In the modeling, one possible approach to eliminate the
peeling mode contribution, without inclusion of the separa-

trix geometry, is to make the edge current density vanish.
This approach is adopted in this work. Certainly this ap-
proach does not model the “true” plasma in the experiments.
However, we argue that from the viewpoint of the RWM
control and response calculations, which is the topic of this
study, this procedure is reasonable. One reason is that the
peeling component normally has a rather localized mode
structure near the plasma edge, as shown in Sec. III B. More-
over, being associated normally with a high poloidal har-
monic number, the field perturbation from the peeling com-
ponent decays very fast outside the plasma surface, leaving
an insignificant interaction with the resistive wall. The latter
is also evident from Fig. 3�a�, showing that the ideal
�DIII-D� wall brings little stabilizing effect on the mode for
qa exceeding 4.

By assuming a current profile with vanishing edge den-
sity, shown by the dashed line in Fig. 1�b�, the instability of
the ideal kink mode is significantly reduced for both qa	4
and qa�4. This is shown in Fig. 3�b�. Only a marginally
unstable kink mode is obtained at qa close to 5. These sta-
bility results seem to agree better with experimental obser-
vations. We emphasize again that in experiments, the mode is
stable not due to elimination of the drive term �edge current
density�, but probably thanks to the X-point stabilization.

TABLE I. Three cases for comparison of the mode structure.

Case no.

A B C

	J�
 �a 	0 =0 	0

qmin 2.38 1.78 2.16

qa 4.61 3.78 5.95

�N 0.10 0.14 3.55

�p
�q� �p

�3,4�=0.543,0.898 �p
�2,3�=0.332,0.913 �p

�3,4,5�=0.392,0.708,0.895

Mode Current driven kink-peeling Current driven kink Pressure driven kink

��A 0.143 0.024 0.120
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FIG. 3. �Color online� The MARS-F computed growth rate of the ideal kink mode vs the plasma edge safety factor qa, with �solid� and without �dashed� the ideal
wall, for �a� the equilibrium with the experimental current density profile �finite plasma surface current density� and �b� the equilibrium with vanishing current
density at the plasma edge. These two current density profiles are shown in Fig. 1�b�. Thick solid lines in �b� indicate regions of standard RFA regime for the
intrinsically stable mode and regions of feedback-stabilized regime for the RWM, respectively.
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Thick lines in Fig. 3�b� indicate two different RFA regimes—
the standard regime where the mode is intrinsically stable,
and the feedback-stabilized regime where the RWM is un-
stable without active control. The plasma response in these
two regimes will be compared in Sec. IV. As a final remark,
we point out here that for a pressure driven RWM, the un-
stable RWM can be stabilized either by feedback, or by
plasma toroidal rotation and/or drift kinetic effects. In the
latter case, we expect the standard RFA response also in the
RWM regime.

B. Internal mode structure

We present here a comparison of the internal mode struc-
ture �the plasma normal displacement� between the current
driven ideal kink-peeling mode and the kink mode, as well as
the pressure driven kink mode. Some of the qualitative fea-
tures can be measured in experiments, e.g., by the electron-
cyclotron emission �ECE�, and compared with the modeling
results.

We choose three cases �equilibria�, summarized in Table
I. The finite surface current density 	J�
 �a	0 corresponds to
the current profile shown by the solid curve in Fig. 1�b�. The
vanishing surface current density 	J�
 �a=0 corresponds to
the current profile shown by the dashed curve. The radial
location of the rational surfaces �for the toroidal mode n=1�

is denoted by �p
�q�. The equilibrium C is obtained by scaling

the plasma pressure amplitude, fixing the pressure and cur-
rent profiles.

Figures 4�a�–4�c� compare the MARS-F computed eigen-
mode structure for the three equilibria from Table I. Plotted
are the radial profiles of the poloidal Fourier harmonics, for
the plasma radial displacement, in the PEST-like straight-
field-line flux coordinates, in which Jacobian J�R2.21 Case
A has a dominant peelinglike component, with the poloidal
mode number m=5. The other harmonics have much lower
amplitudes. Case B is a normal, current driven ideal external
kink mode. The dominant mode �m=4� has smaller mode
number. �This is partially caused by the fact that qa is smaller
for this case.� The other harmonics have larger amplitudes
toward the plasma core region. Finally, case C results in an
unstable pressure driven ideal kink mode. The eigenmode
has much richer poloidal spectrum, with all the harmonics
having the same sign along the minor radius.

Figures 5�a�–5�c� compare the radial profiles of the
plasma displacement, summed over all Fourier harmonics,
from the low-field-side �LFS� �at poloidal angle �=0� and
from the high-field-side �HFS� ��=
�. A fixed toroidal angle
�=0 is chosen. We notice several qualitative features: �i�
there are multiple zero-crossings, corresponding to the phase
inversion for the displacement or the perturbed temperature;
�ii� for the current driven kink mode �cases A and B�, the
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FIG. 4. �Color online� The poloidal Fourier harmonics of the computed plasma displacement �1�� ·�s for the three equilibria from Table I: �a� case A, �b�
case B, and �c� case C. �p is the normalized equilibrium poloidal flux. The numbers in the plots indicate the poloidal harmonic number. Only dominant
harmonics are shown. A PEST-like straight-field-line coordinate system is used.
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FIG. 5. �Color online� The computed LFS and HFS normal plasma displacement �n�� ·�s / �s� for the three equilibria from Table I: �a� case A, �b� case B, and
�c� case C. �p is the normalized equilibrium poloidal flux. The dashed vertical lines indicate the radial location of q=m�n=1� rational surfaces.
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phase inversion occurs on both the LFS and HFS; for the
pressure driven kink mode, the phase inversion occurs only
on the HFS; �iii� the radial location, where the phase inver-
sion occurs �i.e., the inversion radius�, does not generally
coincide with the location of rational surfaces. �The HFS
displacement for case A accidentally coincides with the
q=3 surface location; however, a systematic qa scan shows
that this is not generally the case�; and �iv� for current driven
kink or kink-peeling mode, the phase inversion normally oc-
curs near one of the rational surfaces.

The above features are also observed in the two-
dimensional �2D� contour plots in the R−Z plane, shown in
Figs. 6�a�–6�c�. These features seem to confirm the experi-
mental ECE measurements for the internal structure.10 In ad-
dition, Figs. 6�a� and 6�b� show that the current driven kink
mode causes maximal plasma displacement near the top and
bottom regions of the plasma cross section. The pressure
driven kink mode �Fig. 6�c�� causes large displacement also
near the midplane LFS, reflecting the kink-ballooning nature
of the mode. No phase inversion occurs in a large poloidal
section at the LFS.

So far we have been showing the mode structure at a
specific toroidal angle �=0. Figure 7 shows the 2D plots in
a constant Z plane cutting through the magnetic axis. Again
the inversion radius for ideal modes does not generally co-
incide with the rational surface radius. The distance between
these two radii varies with the toroidal angle.

The computed internal mode structure may help inter-
preting experimental data obtained, e.g., from ECE measure-
ments. �We assume that ECE can measure the temperature
perturbation �T=� ·�T0, with the equilibrium temperature T0

being a monotonic function of the minor radius.� For high
pressure plasmas, a phase inversion of the measured tem-
perature perturbation, in the LFS, should indicate a resistive
mode, whereas the absence of the phase inversion should
suggest an ideal mode. However, it is questionable to reach
the same mode identification, if the ECE measurement is
taken from the HFS. Moreover, the inversion radius may not
actually indicate the location of the rational surface.

For low pressure plasmas, the situation can be more
complicated at both HFS and LFS. It is possible that a phase
inversion occurs for either ideal or resistive modes. Since for

FIG. 6. �Color online� The 2D contour plot, in the R−Z plane, of the computed normal plasma displacement �n�� ·�s / �s� for the three equilibria from Table
I: �a� case A, �b� case B, and �c� case C. The thin dashed lines indicate the rational surfaces. The thick solid lines correspond to contour curves of �n=0.

FIG. 7. �Color online� The 2D contour plot, in the Z=const=Zaxis plane, of the computed normal plasma displacement �n�� ·�s / �s� for the three equilibria
from Table I: �a� case A, �b� case B, and �c� case C. The thin dashed lines indicate the rational surfaces. The thick solid lines correspond to contour curves
of �n=0.
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the ideal mode, the inversion radius generally does not
coincide with the location of the rational surface, an indepen-
dent measurement, such as the q profile, helps to identify
whether the mode is a resistive mode. In case the ideal mode
�e.g., the RWM� has different frequency than the resistive
mode, the frequency measurement provides additional mode
identification.

Finally, we mention that the zero-crossing of the normal
displacement for ideal modes has been studied in the litera-
ture. For instance, for a cylindrical plasma, Newcomb’s
theorem states that the configuration is stable if and only if
the normal displacement has no zero in each subinterval be-
tween two adjacent rational surfaces,22 meaning that an un-
stable mode allows zero-crossing outside rational surfaces. It
has been noticed in Ref. 23 that an m=1 internal kink mode
can have multiple zero-crossings �nodes� depending on the
mode growth rate. These nodes are near the rational surface
location but do not necessarily coincide with it.

IV. RESPONSE OF FEEDBACK-STABILIZED RWM

Figure 3�b� shows that by decreasing the qa value �e.g.,
during a current ramp-up�, the plasma first experiences a
stable response to EFs or external fields produced by coil
currents. As qa is below 4, there can be a response of mar-
ginally stable RWM. Further decrease of qa �below 3� causes
a strongly unstable kink mode �or RWM for 2.277�qa

�2.556�. The DIII-D experiments show that these modes
can be feedback-stabilized using the I-coils. A particular in-
terest is to understand the RFA response of the feedback-
stabilized RWM. We first present an analytic model for a
cylindrical circular plasma, followed by detailed numerical
results for the DIII-D equilibria.

A. A cylindrical model

Consider a cylindrical plasma with the circular cross sec-
tion. Figure 8 shows the coil configuration. The feedback

coil, with the coil current If, spans a poloidal angle of 2� f.
The RFA coil, with the coil current Ic, spans a poloidal angle
of 2�c. A pointwise sensor is located at a poloidal angle
�=�s. The minor radii of the plasma boundary, the wall, the
feedback, and the RFA coils are denoted by a, rw, rf, and rc,
respectively. We assume that the sensor is located on the
wall.

We derive rigorously the RFA response transfer function
of the feedback-stabilized RWM on this cylindrical example.
The case, with a�rw�rf �rc and with the pointwise radial
sensor, is considered. The other cases �various radial loca-
tions of the feedback and RFA coils with respect to the wall,
radial versus internal/external poloidal sensors� can be de-
rived in a similar fashion.

The following list of conditions is our starting point for
the derivation.13,14

�i� The ideal force balance condition at the plasma-
vacuum interface

� rbrm�

brm
�

a+
= Cm, �1�

where Cm is a constant to be determined.
�ii� The field jump condition across the thin wall

� r�brm� �
brm

�
rw

= 2s�w, �2�

where s is the Laplace variable and �w is the penetra-
tion time of the m=1 field through the wall.

�iii� In the absence of the feedback and RFA coils �If = Ic

=0�, we have s=�m, the growth/damping rate of the
RWM. This growth/damping rate can be computed
analytically for certain cylindrical equilibria.13 We as-
sume here that �m is a known quantity.

�iv� For the case of the feedback-stabilized RWM, when
an external current Ic, at a real frequency �c, is ap-
plied to the plasma, the mode evolution should follow
the excitation frequency. Thus, at steady state, we
have s= i�c.

�v� Finally, a feedback logic needs to be specified. We
assume a current control scheme, with the following
feedback law:

b0
f = − Kbr

s, �3�

where the feedback gain K is chosen to stabilize the
mode. b0

f is the free-space field produced by the feed-
back coil current If, as shown in Fig. 8, at the location
�r=rw , �=0�. We use this quantity for the normaliza-
tion purposes, as well as for denoting the feedback
current in the control law. The poloidal component of
this free-space field is calculated via a geometrical
factor fm

f �Ref. 13�,

brm
f = fm

f b0
f ,

�4�

fm
f �

m

2�m�
sin�m� f�

sin � f

rw
2 + rf

2 − 2rwrf cos � f

rf
2 .
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FIG. 8. �Color online� A sketch of the coils geometry in a cylindrical model
for the RFA response of feedback-stabilized RWM. Both feedback coils
�with current If� and the RFA coils �with current Ic� are present.
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In Eq. �3�, br
s denotes the radial sensor signal, which is

the sum of all the poloidal Fourier harmonics at the poloidal
location of the sensor

br
s = 


m

brm
s exp�im�s� . �5�

Our goal is to calculate the response model P of the
feedback-stabilized RWM, defined as

P�i�c� �
br

s�i�c�
b0

c , �6�

where b0
c is the free-space field produced by the RFA coil

current Ic at the location �r=rw , �=0�. The poloidal compo-
nent of this field is calculated in a similar way as for b0

f ,

brm
c = fm

c b0
c, fm

c �
m

2�m�
sin�m�c�

sin �c

rw
2 + rc

2 − 2rwrc cos �c

rc
2 .

�7�

We first consider the general case with If �0 and Ic�0.
The total radial field in the vacuum region between the
plasma and the wall is

brm�r� = brm
p � r

a
�−�−1

+ brm
w � r

rw
��−1

+ brm
f � r

rf
��−1

+ brm
c � r

rc
��−1

, �8�

where ���m�. Condition �i� gives

� − 1 − Cm

� + 1 + Cm
� a

rw
��−1

=
brm

p

bm
, �9�

bm � brm
w + brm

f � rw

rf
��−1

+ brm
c � rw

rc
��−1

. �10�

Condition �ii� leads to

− 2�brm
w = 2s�wbrm

s = 2s�w�bm + brm
p � a

rw
��+1� . �11�

In the special case with If = Ic=0, bm=brm
w , and s=�m, Eqs.

�9� and �11� are combined to yield

� − 1 − Cm

� + 1 + Cm
� a

rw
�2�

= −
�m�w + �

�m�w
. �12�

In the general case with If �0, Ic�0, and s= i�c, Eqs.
�9� and �12� give

brm
p

bm
= −

�m�w + �

�m�w
� a

rw
�−�−1

. �13�

Hence

brm
s = bm + brm

p � a

rw
��+1

= −
�

�m�w
bm = −

�

i�c�w
brm

w , �14�

where Eq. �11� has been taken into account. The last equality
in Eq. �14�, together with the definition of bm in Eq. �10�,
results in

brm
w =

− i�c

i�c − �m
�brm

f � rw

rf
��−1

+ brm
c � rw

rc
��−1� . �15�

This leads to an update of the feedback law �3�,

b0
f = − K


m

�

i�c�w − �m�w
�� rw

rf
��−1

fm
f b0

f

+ � rw

rc
��−1

fm
c b0

c�exp�im�s� , �16�

=− K�Pf�i�c�b0
f + Pc�i�c�b0

c� , �17�

where

Pg�s� � 

m

��rw/rg��−1

s�w − �m�w
fm

g , g = f ,c �18�

is precisely the transfer function of the plasma response
model as defined in Refs. 13 and 14, for external active coils
with radial sensors.

Equation �17� facilitates the last step to obtain the
plasma RFA response of the feedback-stabilized RWM,

P�i�c� �
br

s

b0
c =

1

b0
c

− b0
f

K
=

Pc�i�c�
1 + KPf�i�c�

. �19�

Knowing the transfer functions Pf�s� and Pc�s�, the plasma
RFA response P�i�c� is easily computed using Eq. �19�, pro-
vided that the controller gain K is chosen such that the closed
loop system is stable. The same Eq. �19� can be derived for
various geometrical configurations of the feedback/RFA coils
and the sensor types.

Equation �19� allows a transparent physics interpretation
for the case of a single mode plasma response. Assuming
there is only one mode in the plasma, with the open-loop
growth rate �0, the transfer functions Pf�s� and Pc�s� can
then be written as

Pf�s� =
Rf

s�w − �0�w
, Pc�s� =

Rc

s�w − �0�w
, �20�

where the residues Rf and Rc characterize the �geometrical�
coupling between the mode and the feedback and RFA coils,
respectively. The RFA response of the feedback-stabilized
mode, according to Eq. �19�, becomes

P�i�c� =
Rc

i�c�w − �0�w + KRf
=

Rc

i�c�w − � f�w
, �21�

where � f ��0−KRf /�w is the damping rate of a new mode
that responds to the RFA coils. On the other hand, by solving
the characteristic equation 1+KPf�s�=0 for the closed loop
system, we find that the damping rate of the feedback-
stabilized RWM, at large enough feedback gain, does coin-
cide with � f. This agrees with our physics understanding of
the RFA response for a generic stable mode.

B. Toroidal results

Equation �19�, though derived in a cylindrical geometry,
also holds for toroidal plasmas. This can be understood by
realizing that the total sensor signal bs, in the presence of
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both feedback and RFA coils, is the sum of the plasma re-
sponse bf

s caused by the feedback current, and the plasma
response bc

s caused by the RFA coil current. Hence

b0
f = − Kbs = − K�bf

s + bc
s� = − K�b0

f Pf + b0
cPc� , �22�

resulting in Eq. �19�.
Furthermore, denoting the free-space mutual inductance

between the feedback �RFA� coil and the sensor coil by Mfs

�Mcs�, we have

b0
f = MfsIf, b0

c = MfsIc. �23�

Substituting Eq. �23� into Eq. �22�, we obtain the current
ratio between the feedback current and the RFA coil current

If

Ic
= −

Mcs

Mfs

KPc

1 + KPf
, �24�

valid for general toroidal cases.
Equation �19� shows that in a general toroidal geometry,

by computing the transfer functions Pf�s� and Pc�s� for the
feedback coils and RFA coils separately, we can construct the
plasma response from a feedback-stabilized RWM. In the
following, these transfer functions are computed using the
MARS-F code for both the DIII-D I-coils and C-coils. We
choose three equilibria from Fig. 3�b�, with qa=4.5, 3.664,
and 2.416, corresponding to a stable, marginally stable, and
unstable RWM, respectively. The choice of qa=2.416 leads
to a RWM mode that is halfway between the no-wall and the
ideal-wall limits in terms of qa �see Fig. 3�b��. The choice of
these three cases is motivated by DIII-D experiments,18

where different stability/instability domains are accessed
with the qa variation. We mention that in experiments, a
robust feedback stabilization of the mode at q95 below 3 is
still challenging.

Figures 9�a� and 9�b� plot the MARS-F computed transfer
function Pg�i�c� in the complex plane, as the excitation fre-
quency �c varies from −� to +�. �The transfer function from
toroidal computations is defined in the similar way to the
cylindrical theory �6�.� The thin lines indicate negative
�c�0 and the thick lines indicate positive �c. The open

circles ��� indicate �c=0. The symbol g denotes either the
I-coils �a� or C-coils �b�. Internal poloidal sensors are as-
sumed. For an unstable mode, the Nyquist diagram of the
open-loop transfer function determines whether the closed
feedback loop can be stable with a proportional controller.
Both unstable cases shown in Figs. 9�a� and 9�b� can be
stabilized by a sufficiently large proportional gain. The maxi-
mal amplitude of Pg�i�c� shows how strong the plasma �the
RWM� responds to the coils. Clearly the I-coil currents ex-
cite a much larger response than the C-coils. The deeply
stable RWM �dashed-dotted lines� causes little plasma re-
sponse with either I-coils or C-coils.

Similar computations have been performed assuming
pointwise radial sensors. The corresponding Nyquist dia-
grams are shown in Fig. 10. The unstable mode can still be
stabilized, with a proper choice of proportional gains, with
the I-coils. The same mode cannot be feedback-stabilized
with the C-coils. Again the �unstable or stable� plasma re-
sponse to the I-coils is generally stronger than that to the
C-coils. For the deeply stable mode �the dashed-dotted
lines�, the response is close to a unit circle, reflecting the fact
that most of the �radial� sensor signal comes from the free-
space field of the coils.

We mention that the results shown in Figs. 9 and 10 are
not sensitive to the equilibria that we choose. Qualitatively,
the same results are obtained by considering three cases
�stable, unstable, and marginally stable� from Fig. 3�a�.

The difference in the response for stable, marginal, and
unstable cases, shown in Figs. 9 and 10, is primarily associ-
ated with the mode eigenvalue. In addition, due to the differ-
ence in the equilibria �e.g., the qa value� for these three
cases, we expect certain difference in the mode structure,
which should also play a role in the plasma response. Figure
11 compares the normal field component for three cases, sub-
ject to a unit dc current excitation in I-coils or C-coils. In
order to clearly show the response of the mode, we sub-
tracted the free-space field, produced by the same unit cur-
rent in the coils, from the total response. �We mention that
Figs. 9 and 10 show the total plasma response �at the sensor
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FIG. 9. �Color online� Nyquist plots of the plasma response transfer functions for stable �dashed-dotted, qa=4.5�, marginally stable �dashed, qa=3.664�, and
unstable �solid, qa=2.416� RWM. The equilibria correspond to Fig. 3�b�. The internal poloidal sensor, located just inside the DIII-D vacuum vessel �see Fig.
1�a��, is considered in combination with �a� the I-coils and �b� the C-coils. The toroidal phase difference between the upper and the lower sets of I-coils is
assumed to be 240°. The stable �dashed-dotted� response shown in �b� is amplified by a factor of 5.
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location� without the subtraction of the vacuum field.� Be-
sides the difference in the mode amplitude �the deeply stable
case has one order of magnitude weaker response, the un-
stable case responds with an opposite sign�, we notice indeed
certain difference in the mode structure. In particular, the
marginally stable mode has a larger response at the HFS
�poloidal angle close to �180°�. The mode structure near the
outboard midplane �poloidal angle of about 0°� is similar for
all three cases. Comparing Figs. 11�a� and 11�b�, we notice
that the amplitude of the mode response to the I-coils is
roughly 4.5 times larger than that to the C-coils, for all three
cases. However, the excited mode poloidal structure is al-
most identical for I-coils and C-coils.

With a dc current excitation as in Fig. 11, no eddy cur-
rent is induced in the wall, hence the wall does not affect the
mode response. With an ac excitation, however, the wall
eddy current also affects the mode response. This is demon-
strated in Fig. 12, where a traveling wave, with a frequency
�c�w=2 normalized by the longest decay time �w of the
n=1 wall eddy current, is launched in either I-coils or

C-coils. Assuming a wall time of 5 ms for DIII-D, this cor-
responds to an excitation frequency of about 64 Hz. Figure
12 again compares the mode response, which is the total
response subtracted by the wall response, for the stable, mar-
ginal, and unstable cases. We observe again certain differ-
ences and similarities in the mode structure. Compared to the
dc case, the amplitude of the mode response is generally
twice smaller, with the same unit amplitude of the coil cur-
rents. The phase response of the mode to the ac excitation is
also affected by the choice of the equilibrium. Comparing
Figs. 12�a� and 12�b�, we notice some difference in the mode
structure excited by the I-coils and C-coils. This difference is
larger than the case of the dc excitation and is due to the wall
eddy current induced plasma response �the wall eddy current
patterns for the I-coils are different from that for C-coils�.

A special case that has been extensively investigated
in experiments is the plasma response to the dc coil cur-
rent �c=0. Figures 13�a� and 13�b� show the real part of
Pg��c=0� with I-coils and C-coils, respectively. �At
slow plasma rotation, Im�Pg��c=0�� is normally small as
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FIG. 11. �Color online� The real part of the normal field component of the excited mode for the stable �dashed-dotted, qa=4.5�, marginally stable �dashed,
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shown by Figs. 9 and 10.� A full scan of the equilibria
from Fig. 3�b� is made. The qa scan covers three special
regions, qa� �2.277,2.556�, qa� �3.687,3.772�, and qa

� �4.895,4.937�, where the mode is unstable without a wall
and stable with an ideal wall �i.e., the RWM regime�. We
observe a sharp variation of Re�Pg��c=0�� �switching sign�
near the no-wall limits qa=2.277, 3.687, and 4.985, indicat-
ing a change of the mode stability. A sharp variation, to a
lesser degree, is also seen as qa crosses integer numbers. This
is also associated with the change of stability �Fig. 3�b��.
However, it seems the plasma rotation, though slow, effi-
ciently smooths the transition across these marginal points.
For the RFA modeling of the RWM response, we do not
focus on the transition across integer qa.

Another interesting observation is that, with C-coils and
radial sensors �Fig. 13�b��, the quantity Re�Pg��c=0��
quickly switches sign as qa varies from the no-wall to the
ideal-wall limit. This is normally an indication that the un-
stable RWM is no longer stabilizable with a simple propor-
tional controller. The behavior is qualitatively different with

the I-coils or with the internal poloidal sensors. This shows a
limited capability of feedback-stabilizing the RWM, using
the C-coils in combination with radial sensors.

Finally, we notice that the plasma response is not sensi-
tive to the change of qa in regions where the ideal kink mode
is intrinsically stable, i.e., where qa exceeds the integer num-
ber but is well below the no-wall limit. Knowing the plasma
response transfer functions Pf ,c�i�c�, as shown in Figs. 9 and
10, we can study the current ratio between the direct feed-
back �DF� current IDF and the current IEF in the EF correction
coils �the RFA coils�, following Eq. �24�. The current ratio
can be easily measured in the feedback-RFA experiments.
We emphasize that only a simple situation is considered here,
where we assume that the EFs are generated by one of the
DIII-D coils �I-coils or C-coils�, while in experiments, the
intrinsic EFs �plus the plasma response to them� are often
caused by factors such as the misalignments of the poloidal
and toroidal field coils. A more elaborate model can be con-
sidered, where a direct control loop for the RWM stabiliza-
tion �fast feedback�, a dynamic control loop for the EF cor-
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rection �slow feedback�, and the intrinsic EFs are all
combined. The final results �the current ratio� can still be
obtained knowing the transfer functions Pf ,c and some char-
acteristics of the intrinsic EFs, but will depend on the details
of assumptions made into the model, such as the feedback
equation�s� such as Eq. �22�.

In principle, one can assume that both the I-coils and the
C-coils can act either as the DF coils or the EF coils, yielding
several possible combinations. We consider two combina-
tions which are likely the closest to experiments. Figure
14�a� shows the results when the I-coils are used both for the
DF and for generating the EFs. In this case, Pf = Pc. Under
the dc condition �c=0, the current ratio �24� becomes a
simple function of the feedback gain K. Note that for the
intrinsically �open loop� unstable RWM, it makes physics
sense to compute the current ratio, only when the feedback
gain exceeds the critical value, resulting in a feedback-
stabilized RWM. At infinite gain value, all the three curves
converge to 1. The convergence rate is considerably faster
for the marginally stable case. The deeply stable case con-
verges very slowly to 1.

The second interesting case is to use the I-coils for direct
RWM feedback and the C-coils for EF generation. The cur-
rent amplitude ratio versus the feedback gain, under the dc
excitation, is shown in Fig. 14�b�. We observe qualitatively
similar behavior as in Fig. 14�a�, except that the curves do
not converge to 1 anymore at infinite gain. This is because
these modes, being associated with different qa values, are
different modes, and they respond differently to the coil cur-
rents. This means essentially that the residues of the transfer
functions Pf ,c from Eq. �24� vary with qa.

Figure 15 shows the converged current ratio at infinite
gain, as a function of the excitation frequency �c, for the
second case. The frequency is normalized by the computed
longest decay time �w of the n=1 wall eddy current. Plotted
are both the amplitude ratio and the phase difference be-
tween the currents in the I-coils and C-coils. For both intrin-
sically stable and marginally stable modes, the amplitude
ratio monotonically decreases with increasing the excitation
frequency. For the feedback-stabilized mode, the frequency

behavior is more complicated. The deeply stable case has a
large phase shift between the DF I-coil current and the EF
C-coil current. However, we should notice that the deeply
stable mode causes very little plasma response, as shown by
Figs. 9, making the current phase slightly sensitive to the
plasma condition.
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FIG. 14. �Color online� The amplitude ratio of the current response in I-coils �a� to that in I-coils and �b� to that in C-coils. The ratio is plotted against the
proportional control gain under the dc condition. The toroidal phase difference between the upper and the lower sets of I-coils is assumed to be 240°. The
converged values of the current ratio for case �b�, at infinite feedback gain, are shown in �a�. Internal poloidal sensors are used in the modeling.
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Figure 16 shows 2D contour plots of the current ampli-
tude ratio and the phase difference for the deeply stable case,
which exhibits the slowest transient behavior. A larger cur-
rent ratio is achieved at large gain value and with the dc
excitation.

V. SUMMARY AND DISCUSSIONS

The current driven RWM in DIII-D plasmas is modeled
using the MARS-F code. Since the plasma equilibrium pres-
sure in these plasmas nearly vanishes, it is expected that the
drift kinetic effects or the sound wave damping effects on the
mode should be negligible, unlike for the pressure driven
RWM. The slow plasma rotation also limits the Alfvén con-
tinuum damping effect. Therefore, it is expected that these
current driven modes can be reasonably well described and
studied by ideal MHD theory, as long as the realistic plasma
geometry and equilibrium profiles are taken into account.

As a main result, the RFA response of feedback-
stabilized RWM, which has been under extensive experimen-
tal investigation, is modeled and analytically studied in this
work. The computed coil current response, for feedback-
stabilized RWM, marginally stable mode, as well as intrinsi-
cally stable mode, qualitatively agrees with the experimental
observations. This allows a better understanding of the ex-
perimental observations. The computed plasma response
transfer functions, for I-coils and C-coils, can also be used
for the control optimization, for both the DF and the dynamic
EF correction. A quantitative comparison between the mod-
eling and the experiments requires a detailed modeling of the
feedback scheme used in experiments and a good knowledge
�and model� of the EF sources. This will be reported in a
future work.

Analytic theory20 suggests that in the presence of a sepa-
ratrix in the experimental plasma, the peeling mode contri-

bution to the instability, caused by the finite edge current
density, diminishes. This seems to explain the experimentally
observed stability domain in terms of the edge q value. In the
numerical modeling �with a smoothed plasma boundary near
the X-point�, we remove the peeling mode contribution by
eliminating the edge current density.

The computed eigenmode structures are compared for
the current driven ideal kink-peeling mode, the kink mode,
as well as the pressure driven kink mode. In particular,
we find that the phase inversion radius of the plasma
displacement, though in many cases close to the locations
of the rational surfaces, does not generally coincide with
them. Similar observations have been made in DIII-D
experiments.10
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