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Abstract—In flexible manufacturing systems a large number be implemented by ordinary industrial programmable logic
of operations need to be coordinated and supervised to avoid controllers.
blocking and deadlock situations. The synthesis of such sepvi- In an FMS including a large number of robots and devices,

sors soon becomes unmanageable for industrial manufacturg ; )
systems, due to state space explosion. In this paper we théoee the total amount of discrete states that need to be conslidere

develop some reduction principles for a recently presentechodel  in the synthesis will increase dramatically, thus makiniggitd
based on self-contained operations and sequences of opéoas. to compute a supervisor for industrially interesting ca3és
First s_equential operatior_l be_havio_rs are identified and redted ajm of this paper is to reduce this complexity by introducing
operation models are simplified into one model. Then local 3 method to efficiently represent SOPs for synthesis. A singl
transitions without interaction with other operation models are EFA model for consecutive operations in the system will be
removed. This reduction principle is applied to a synthesi®f non- .
blocking operation sequences, where collisions among mag 9€nerated rather than an EFA model for each operation. These
devices are guaranteed to be avoided by a flexible booking EFAs will be further reduced by identifying local transiti®
process. The number of states in the synthesis procedure andwithout any interaction with other operations. Such traoss
T’ZZU(é?irgrﬁ)Utﬁ::gP It'me is reduced dramatically by the suggestl  can pe removed and related source and target states can be
principle. merged to reduce the total number of states in the EFAs that

are used for supervisor synthesis.

The presented work is divided into four sections. In Section

Global competition is a driving force for manufacturingl mathematical preliminaries are shortly reviewed. Satcil
industry to rethink their strategies and methods. Whileticen presents the reduction method in detail, followed by Sectio
uously introducing new products is necessary to mainta¢h arv, where a case study is presented that illustrates the effi-
gain a market presence, reducing cost and time for producitigncy of the suggested method.
the products remains a key challenge. A key issue to obtain
this flexibility and concurrent development is to have a exifi
information flow from early product and process design to the This section presents an operation model basefxended
final control and operation of the manufacturing plant. finite automaté3], together with a formal modeling language

In [1] this issue is discussed and manufacturing operatiof@lled Sequences of operatiofisr self-contained and hierar-
and their relations, the sequences of operations (SORs), gpical operations, defined in [2]. Moreover, graph and flow
introduced. In [2] a formal model for operations is introddc N€tworks are presented, to be used for identifying seqalenti
based on extended finite automata (EFAs) [3] and all tfiglations among self-contained operations.
information on the relations between the individual oper& A operation model

is then encapsulated in modularized EFA models. It is shown : . .
P Qperatlons and the relations between them in terms of

that product, process and resource design can be integrate .
) ) : . sequences and other conditions are modeled by extended
via operations, and the relation among these operations ¢a

be graphically visualized by the Sequence Planner tool. Aite automata, which are ordinary automata augmented with

. variables, guard formulas and action functions.
Based on the operation model, a method for automatic g

generation of controllers for collision-free Flexible Mdac- Definition 1 (Extended finite automatonn extended finite
turing Systems (FMSs) is introduced in [4]. In this methodjutomaton (EFA) is a 7-tuple

for each operation in the system, a set of shapes (3D sweep

volumes) is generated. Then, based on pairwise intersectio E=(LxV,%,G,A, = (o, v0), M). (1)
tests over all the shapes, mutual exclusion zones are figeinti The setl x V' is the extended finite set of states, whéres a
and avoided by adding guards in the corresponding operatforite set ofdiscrete locationgndV is the finite domain of an
models. The automatic generation also includes a synthesiguple of variablespy = (v!,4?,...,9™). X is a nonempty
procedure, where a non-blocking and controllable supervidinite set of events (the alphabef)is a set of guard predicates
is generated, [5]. This supervisor is preferably syntrezbizy overV, A is a set of action functions froniy to V', where
the tool Supremica [6], including a new approach proposedch function maps the present variable values to the Variab
in [7] where the supervisor is generated by adding guardalues of the next statexC L x ¥ x G x A x L is a state

to the original EFA models. In this way the supervisor cafmansition relation,(¢y,v9) € L x V is the initial state, and

I. INTRODUCTION

Il. PRELIMINARIES



M € L xV is a set of marked (desired) states. The notation SO

¢ %y, ¢ is used as shorthand f¢¢, o, g,a, ') €—. | O, of ng
. . _ O
It is assumed that the guards have been parsed and written in s
conjunctive normal forny = g'A...Ag’, where each or-clause

g'(v) = ght(w)v...vgtm(v™), i =1,...,4, compares the

variables with a constant iv = V! x ... x V™. We also
assume that all actions are written as constant functions
0]

a = (a',...,a™). Any transition can be decomposed into
multiple transitions of this form. For instance, the traiosi
5

p Bu—yr1 q Wherey € {0,1} can be decomposed into:
g o .

P —y—0/z:i=1 ¢ @NAD =y _1 /5. q. The symbol is used to

denote implicit actions that update variables to their eoitr

value, and in vector fornE = (¢, ...,£). Sometimes it is of Fig. 1. Sequences of operations (SOP) in the running exarhigiee O

interest to know the explicit state transition relation which MeansO1 must be finished befor@ can start and; is any boolean guard

10

is defined as expression.
== {(l,v,0,0,v) e L XV xExLxV| ()
3¢ ig/a ¢ such that The SOP can be represented graphically with a set of se-
S guences, using the graphical notations introduced in [2]. A
g(v) = 1 and o= a® a' #¢ sequence is a graph that connects a set of operations that are
' vioat=¢ related to each other. The operation conditions are reptedge

N with arrows, lines and boolean expressions, see examples in

EFAs are composed by full synchronous composition [8kig. 1. A sequence or a set of sequences of operat$gis
In the composition of two EFAs, a shared event is enableddin be encapsulated by a hierarchical operafignexecuted
and only if it is enabled by each of the composed automaigncurrently withSO,, as
[3].

An operation can be formally modeled as an EFA. For Ok||SOk (4)
notational purposes, the guards and actions are replacedigy pre- and postconditions i@, are then reformulated to
a setC of transition conditions in terms of predicates over th§ynchronize with the desired start and complete operations
variables, including both their current and next valuesradt o), Hierarchical operations including their lower level SOPs

transition, cf. [2]. cf. SO, in (4), can be put together to generate a new SOP
Definition 2 (Operation) An operationO, is an EFA where SO on the higher level.
the set of discrete locations;, = {O;,, 05, O;. }, the event SO = 01|SO1|| - - - |0n]|SO, (5)

set;, = {O],01}, the set of transition condition€), =
{C,I,Ci}, the transition relation—,= {( 2,02/011,02), In reality all models are running in parallel, but from a user

(OivOt/CivOD}v the initial location¢, = O, and all p_oint of. view the SOy, on one Ievellare encapsulated as
locations are marked\/ = L. o hierarchical operations on the next higher level. To erdorc
that a number of SORS0;, . .., SO, are executed, a top-level

In order to include requirements on the operation locatioRgerarchical operatio® combining (4) and (5) is introduced,
in the conditions, these locations are also representedg@fere the postconditiof :O{/\.../\OTJ; and only the final
Boolean variable®)}, O5 and Of, included in the variable ocation O/ is marked. This guarantees that all SOPs will be
set V. Each of these variables is equal to one when th@mpleted, where this final specification step is importamt e
corresponding location is active. In this paper, for theesakor supervisory synthesis of nonblocking supervisors nfair
of simplicity and space, the actions that update the lonatigyo|s for EFAs are available, cf. [9]. Therefore, it is pdésito

is assumed that events in the system are local and contigbp |anguage.

lable, i.e. there are no common events in operation models;
communications are done by variables. C. Graph and flow network
A graphis a structureG = (V, E) in which V' is a set
of verticesand E is a set of binary relations between the
When a number of operations are interacting, the basjgrtices callededges A (directed) finite pattin G is a non-
assumption is that all operations are running in paralleis 15 empty sequence of vertices, vs,---v,, € V such that for
modeled by the full synchronous composition operétoFor any two consecutive vertices; and v;,;, there is an edge
a SOPSO with n operations0O;,Os, ..., 0, the composite (vi,vi41) € E and vy, va,---v,, are all different. Ans — ¢
operation model is defined as path is a finite path that is started in the sourge= s, and
SO = 01)|0s|| -+ ||On 3) finished in the terminal,,, = t.

B. Operation sequences and hierarchical structures



Definition 3 (Independent—¢ paths) Two s—t¢ paths are said Algorithm 1 Sequential relation graph
to be independent if they do not have any vertices in common GENERATE-GRAPHGOP)
apart froms andz. O L g= (V,E)

Definition 4 (Flow network) Let N = (V, E) be a directed 2: createVerticed([G], SOP)
graph and let : E — R* be acapacity functiorand{s,t} ¢ 3 createEdges([G], SOP)
4

V. Afunction f: V x V — R is called aflow if: :return G
Fu,v) < clu,v) V{uv} eV (6) CREATE-VERTICESV[G], SOP)
_ 1: foreach O,, € SOP do
Yo fle)= > fley=0 VweV\{st} (8 3 end for
e€sin (v) e€5out (v) 4: return

Here §™(v) and §°“!(v) denote the set of incoming and out- CREATE-EDGESE[G], SOP)
going edges to and from, respectively. This graph including 1. foreach O,,, € SOP do
the flow is called a flow network. O 20 Uy 0(O)

The first condition (6) is th€apacity constraintsthe flow > foreach g, (v) € Cy, do
in an edge cannot exceed its capacity, the second conditich if |9,5q(”)1| =1 then ‘
(7) is the Skew symmetrand the last condition (8) is the > I (71 )f—.getFlrstEIem?r(rggn(v))
Flow conservation lawthe amount of flow entering a vertex > it gz’ (v") is & type of0 then_l 1
v # {s,t} should be equal to the amount of flow going out " Oy, < getRelatedOperatidgy;’ (v'))

from v. In the maximum-flow problepmwe are given a flow ™ Un < 9(0y)
network G with sources and sink¢, and we wish to find the 9 E[_G] « EGIU {(vn, vm)}
maximum flow in the network. 10: en-d if
11: end if
Ill. REDUCED-ORDER SYNTHESIS 12:  end for
When a number of operations are interacting, the baer(zf re;tir:)r

assumption is that all operations are running in parallbisT 1
is modeled by the SOBOy in (3), where all the restrictions
are represented by pre- and postconditions included in the

individual operation models. However, for a large system thhetwork vV in which all the edges and vertices has the capacity
total amount of discrete states that need to be considerede@ﬂ,mS to one and calculates the flow vafife) for each edge
the synthesis will increase dramatically. to maximize the flow in the network. Sincg is an integer
This section presents a method to automatically identifiy and all capacities are, the flow valuef(e) will be 0
the sequences among a set of individual operation modgls) for all edges in the network. Therefore, the independent
and simplify them into one EFA. Then, these simplified EFAﬁaths inG will be found by considering — ¢ paths in the
will be further reduced by identifying the local transit®m petwork where all edges have flow value equal to one. Such
each EFA. The reduced-order models are used for synthgsighs are obtained by the flow maximization. Maximum flow
of a supervisor that generates a set of guards that giveg,& network is a well known problem in graph theory which
nonblocking and maximal permissive closed loop system. can be solved by the Edmonds-Karp algorithm [11] that is an
implementation of the Ford-Fulkerson method. [12].

A. Sequential relation graph

The sequential restrictions on the order between differdgfinition 5. Let p be a path in grapld:, then the functions
operations are formally expressed by logical precondition’ (p) and E(p) return the set of vertices and edges on the path
To find the sequential relation between operations in a SQR,receptively. o
Algorithm 1 is used to generate a sequential relation griagh,
a graph in which vertices are the operations and the edges
the binary_sequence relati(_)n between gach pair of opgsatiophen thes —¢ pathp; in IV is independent if for alk € E(p;)

In Algorithm 1, the functioncreateVerticesreates vertices B
. . ) i we havef(e) = 1.
in the graphGG based on the operations in a given SOP. Here,
the injective functiond : O — V maps an operation to Proof: To remove the capacity on the vertices, the Net
a vertex in the graptG. The functioncreateEdgeswill go is expanded such that eache V[N] is replaced by, and
through all guards in each operation and identify the opmrat v,,:, whereuv,,, is connected by edges going inf@ndwv,,; is
which have a sequential relation to the current one and aclshnected to edges coming out framThen assign capacity
an edge between the corresponding vertices. ¢(v) to the edge connecting,, andwv,,;. This means that the

In order to find a set of independent paths covering akpanded network has the same behavior as the original one.
operations, the graplis is converted to an extended flowFurthermore, it can be treated as an ordinary maximum flow

Proposition 1. Let N be a network with maximum flow and
Ca(re% =1 for all edges extended witt{v) = 1 for all vertices.



Algorithm 2 Maximum-flow in a graph

INDEPENDENT-PATHS()

1. P+

2: while 3 v € V[G] do

3: P« 0

4: N <« Convert-To-Flow-Network)

5. Edmonds-Karpl/)

6: P, «+ getAllindependentPatha()

7. P+ Pt

g en‘(;v[vc\jﬂ]ig VIGINAV (pra) s pri € P s, 1} Fig. 2. Flow network of the first iteration on the example S&Pre,s and

10 return P t are the source and sink vertices anih f(2) is the calculated flow value.
CONVERT-TO-FLOW-NETWORKG()

1 N(V,E) « G(V, E) O of % | [ of | [ofrat]

2. V[N] + V[N] U {s, £} ol 0, Or || O4 || Oy |

3: foreach v; € V[N] do ] I I

4 co(y;) 1 g at

5. if v; has no incoming edgthen Os O3 Os

6: E[N] + E[N]U{(s,v:)

AP el T

8. else ifv; has no outgoing edginen %1

o E[N] E[N]U{(v;,1)} O | |9

10: c(vg,t) 1

11:  end if

12: end for Fig. 3. Independent sequences of the operations for the 8GR 1. Here

the alternative operation®g and Og9 are modeled by a mutual exclusion
13: return N variable A, where AT meansA = 0/A := 1, c.f. [2].

problem without capacity constrains on the vertices, c38].[1

Since f is an integer flow and all capacities ate f(e) € verts the graplé to the corresponding network and assigns
{0,1} for all e € E. Because every vertex,, has only one capacity one for all edges and vertices. Two super nedesl
outgoing edge, at most one incoming edgef v;, can have ¢ will be added to the network with the infinity in and out flow
f(e) = 1, cf. (8). Similarly, because every vertex.: has capacity, and all the vertices with no incoming and outgoing

only one incoming edge, at most one outgoing ed®¢ v..: edge will be connected to the nodesndt, respectively.
can havef(e) = 1. Therefore, the independent patsin N

are thes — t paths where all edgese E(p;) have the flow
value equal tal. ]

Next, theEdmonds-Kargunction first converts the network
N to a normal flow network without capacity on vertices.
Then the maximum-flow is calculated and the flow value of
Proposition 2. Let G be the sequential relation graph of aeach edge is updated to maximize the flow in the network.
SOP SO. Then each independent path (& represents an Furthermore, the functiogetAllindependentPathwill find
independent sequence of operationsSi@, i.e. sequences ofthe s — ¢ pathsp,; in G by following the edges with the
operations that do not have any operations in common. flow capacity equal td. These paths, excluding theandt
vertices, are added to the path geand then removed from the
ﬁrath. The algorithm will iterate on the graph and terminate
when there are no more vertices. The output of the algorithm
then will be the path seP, which contains all the possible

Proof: Let P be the set of independent paghsin G and
¥ : O »— V be an injective function that maps an operatio
to a vertex in the grapléz, then from Definition 3 and 5 we

have: ﬂ (V(p) \ {5,£}) = 0 independent paths in graph.
picP b ’ The network generated in the first iteration for the SOP in
Fig. 1 including the flow value for each edge is depicted in
therefore, . Fig. 2. The set of independent paths after four iteratiorls wi
(97 (V) \ {s,1}) =0 beP = {(2 = 3 = 5),(1 = 6 — 10),(7 — 8),(9), (4)}.
picl The corresponding sequences of operations of the independe
which means that there are no common operations in apgths in the path se® are illustrated in Fig. 3. Observe that,
sequence of operations. m for instance, the operationSs and Og in Fig. 1 executed

Algorithm 2 iteratively find the independent paths of thén arbitrary order and in Fig. 3 in mutual exclusion by the
input graphG. The functionConvert-To-Flow-Networlcon- common resource.



B. Reduced-Order EFA models (¢1,0,9,a,0}) €—1 is a solitary outgoing local transition
/1 has only one outgoing transitiorf; # ¢;, and for

Sequential relations among operations are introduced ' I's taoing t i front’ - th lated s h
preconditions in the modular EFA operation models. In mafy: OUtgoing transitions iront;, Ihe refated guards have no
ndition on the updated variablesdrand the related actions

ufacturing systems most of the operations are organized T i :
sequences, and therefore most of the operation conditiens lépdate the same variables asain -
based on this relationship. In this part, first the operathmd- The last condition means that the outcomes of the guards at
els are simplified by generating one EFA for each independerinsitions after a SOLT do not depend on the execution of the
sequence. The conditions related to sequential relatioms 8OLT actiona. This restriction is crucial to be able to remove
then removed. For instance, for the operatignpreceded by a SOLT.

O in Fig. 3 with the transition conditionS] = Ojf/\Og, after

simplifying into one synchronized EFA model, the conditimlrer,nrna 1. Let Ey and E; be tWO_ EFAs with common
becomefg _ OZ- variablesv = (v1,v2,v,). If there exists a guard invariant

/
In the next step, some of the transitions will be identifiegOLT (£1,079,a,41) €1, thenEy can be reduced as

as local with respect to other EFAs in the system. These _, _ \ {(t1,0,9,a,0)}
transitions will have no impact in the synthesis procedure.

Hence, they can be removed and a reduced order model will U A{(tr,0,9 0" 8) | (61,0,9', ' 0]) €=}
be achieved. where
However, it needs to be shown that the supervisor before _ a if a4 €
and after reducing the order has the same behavior in terms of ~ a™* = { i .
supervisor guards. Remind that the supervisor is genebgted o' otherwise;

in Section IlI-C. Now we consider the case when EFA = e g )
. ) M1 if El ¢ Ml,

will be reduced, and the other EFAs are synchronized to EFA

Es>. We also repeat that communication between the EFAs is ¥ =31\ {a}.

performed by guards and actions; no shared, only local sveRt . aquced EFA is denotedZ; and the language

are assumed. Furthermore, assume without loss of gelyeraﬂEElr”EQ) = P\, (L(F1||E»)), wherePs,, is the projection

that the tuple of variables fofs; and £, is common and where o is removed from all strings in the corresponding
denotedv. language.

adding guards to the original EFA models, see further detail I {M1 u{6} if e M

Definition 6 (Local and global variables)Let £, and F, Proof: Introducing the notations, = (¢1, £, vy, v, vy)
be two EFAs mclud_mg the common tuple.of variables= ;4 d, = (£, 05,0}, vs,v,), Wherely € Ly, k = 1,2, and
(v1,v2,v4), Wherev; is only updated in;, v, is only updated — L, x Ly x V as well as¥ = %, U %, the set of

in £, andwy, is the tuple of shared variables updated in bolf,chaple source statesfin||E», corresponding to the SOLT
FE; and E,. Then the variables im; and v, arelocal, while (61,0,9,a,0}) €1, is defined as

the variables inv, are global. Similarly, the action set is
partitioned as: = (a1, a2, a,), wherevy, := ax, k = {1,2,9}. Qo = (¢o € Q|s0 € L(E1||E2) gy v g, As € E*No € 1)

O
Generally,Q,, is a set of states since the locatibnis often

Definition 7 (Local transition) Let E; and E; be two EFAs. reached in combination with a number of different locations
Then a transition((1, 0, g,a,¢;) € is alocal transitionin  in E, and/or values ob. The related set of target states can
E if gt true, a= (al, az, ag) is restricted toa, = =, and be expressed as
a, = =. O
g. . Q. = (qd, € Qlso € L(E1||E2) Ao 2% ¢, As € X* Ao € %)
This means that any local transition iy can occur at any
time, independently of’s. Observe that for each source stgtec Q) there is only one
unique target statg/ € Q. since the transition is a SOLT.
After a possible set of local transitions i, resulting in
different strings of events’, one of the outgoing transitions
from ¢ in E; is executed with the eveat Using the notations
g5 = (E’l,é’g,vﬂ,vé,vé) andq¢; = (6’1’,6’2,113’,115,02’), the set
of reachable target states iy || E> after this transition, can

be formulated as

Definition 8 (Guard invariant transition)Let £, and E> be
two EFAs. Then the transitio(¢y, o, g, a,f}) €—1, alterna-
tively expressed as the explicit transiti@h;, vi, ve, vg) N
(01, v],v2,v4), is guard invariant if ga(v1,ve,v4) =
g2(v], va,v,) for all go € G, in E, and arbitrary(vs, vg).

O

A guard invariant transition iy implies there are no guards ;o s e L(EIE s
in £, depending on any variable updated in the guard invariant ~ @o = (45 € Qlsos'0 € L(E1[[E2) A gz = 5
transition. ANsEX NS eXine, e

Definition 9 (Solitary outgoing local transition (SOLT)) Due to the guard invariant SOLT, the corresponding set of
Let £, and E; be two EFAs. Then a local transitionsource state§); is indeed equal to the set of target stafgs



Algorithm 3 Reduced-order EFAs generation
REDUCE-EFAs fOP, P) @ @ @
1 E« 0 03 /0% ol /o4 olsof rof
2: while 3p; € P do @
3: Ei — (Z) N
4:  foreachwv € V[p;] do % '
5: O, + 971 (v) @
6: E]‘ — E]HOU
7. end for
8. foreach (¢,0,9,a,¢') €—; do
9: if (¢,0,9,a,¢')is a guard invariant SOLThen \@ : : i
10: —i==;\ {(¢{,0,9,a,0")} :
u{l,a,¢,a", )¢, 5,¢,d,0") e}
11 a"=a
12: foreacha’ € o/ do
13: if (a” # €) then a™ = a’* end if
14: end for
15: if (¢, € My) then M; U {¢;} end if \@
16: Y= \ {0‘}
17: end if
18: end for
19 E <« E; Fig. 4. The EFA models for the operatioii;, O3 and Os in the path
20: end while (<)2rd; EFXEEJT), (b) simplified EFAE = O2||O3||O5 and (c) the reduced-

21: return FE

In the reduced systen]||E> the same set of staté3, never reachable from,. The reason is again that the transition
can be reached as iff; || E», since the two systems have thérom ¢, to ¢/, is generated by a SOLT if;. Hence, bothy,
same behavior before the evenbas been executed itk || E>.  andg/, are blocking states and therefore forbidden. This means
Since the SOLT(41,0,g,a,;) €—1 according to Definition that either bothy, and/, are allowed or both are forbidden,

9 has only one local outgoing transition, and the outcomesigfplying that no supervisor guard needs to be included at the
the guards at transitions after this SOLT do not depend on tignsitiong, +> ¢/,.

action a, and furthermore the SOLT is also guard invariant, Since the behavior of!||Es, with the exception of this
the same set of reachable target stafgsafter the event transition, is the same &, || E», according to Lemma 1, we

are achieved for boty|| F; and E, || E». Tﬁnally conclude that the guards generated $wp, (E1 || E-)

In total this means that the reachable set of states jols :
e the same as the guards generatedty, (E7||E2). W
the reduced systen@pr |z, = Qg e, \ @, The only g g o(EY[|E2)

difference between the languages of the two systems is thapNce the supervisor guards generated Sp,(E7||Ez)
the SOLT event is not included inC(E7 || E), meaning that &Ppear at the transitions also existingfii|| E», the generated
L(E}||E2) = Py (L(E:1 || E»)). m Juards onky can be transferred back to the original EFA.

_ . . Algorithm 3 reduces the possible transitions according to
Definition 10 (Supervisor guards)The function Sup, (E) .The(?rem 1. First the modepls are simplified into one sgyn-

generat.esaset of guards that gives a nonblocking and mhx'c Stonized EFA model and then further reduced by iterat-
permissive closed-loop system for the EFA

ing over transitions and removing the transitions that has
Theorem 1. Consider the synchronous systé||F»; and the no impact on the synthesis procedure. In Fig. 4, (a) il-

reduced synchronous systefii||E». These two synchronouslustrates the EFA models for the operatio®s, Oz, and

systems generate the same set of supervisor guards i.e. O in the path(2 — 3 — 5), (b) the EFAE =

. 0:]|03]|0s, and (c) the reduced-order EFA”. The tran-

Supg(Er||Ez) = Sup,(E1||Ez) sitions (05, O%,true,E, Og;), (Og:;,Og,true,E,Og), and

Proof: Based on Lemma 1 it is enough to show thaiO5, O3, true,Z,Of1) are removed and the locatior@;

no supervisor guard needs to be included at the transitiand Of are connected by the transitiQﬁ)g,Oé,Oi,E,Og).
4o % ¢/ in E1||E>. Assume that a marked state is reachab@bserve that the remaining transitions are not removedsinc
from ¢.. Then it is also always reachable frafp, since the each transition either has a guard or is not guard invariant.
transitiong, +» ¢, is generated by a SOLT if; according Reduced-order EFA models for the actual operations are
to Definition 9. Hence, neithey, nor ¢/ is forbidden. On the generated based on Algorithm 1-3, and a non-blocking and

contrary, if a marked state is not reachable frgmit is also maximally permissive supervisor [5] can be computed.



TABLE |
COMPARISON OF TWO METHODS

Method [SOP| |EFA] |Qreachl |Qsup] |IBDD|  |Supg| Time(s)
Normal 82 164 4.023620354 x 109  1.758696194 x 109 886 4 78
Efficient 82 64 5.235889 x 106 2.961409 x 106 262 4 2

C. Synthesis

Traditionally, the synthesis procedure for EFAs has been
carried out by first flattening the EFAs to ordinary finite
automata, and then perform a monolithic synthesis. In this
way, the states of the final supervisor are representedoitkpli
which has some main drawbacks when the supervisor becomes
very large in terms of the number of states [4].

In [7], a framework is presented, where the user model
a system by EFAs and obtain the supervisor modularly in
form of EFAs. The only difference between the original and
synthesized supervisor EFAs is that the guards are extended
in the latter model. The main advantage of this approach is Fig. 5. 3D simulation of the robot cell in the case study.
that the resulting supervisor, represented as modular EFAs
becomes more comprehensible for the user, and the superviso

can easily be implemented in an industrial controller. In o .
addition, the user will remain in the same model domain, i.£2r more pop-riveting. In that station, two other robots pop

EFAs, both when models are introduced and supervisors &Mt the remaining points, and then the finished product is
generated. unloaded by the third robot and finally transported from the
To be able to handle large systems, all computations bad¥grkstation by an AGV.
on the reduced EFAs are performed symbolically using Binary The cell is simulated in 3D simulation software Dassault
Decision Diagrams (BDDs). The procedure is carried out faysttmes DELMIA V5, see Fig. 5, and in order to automat-
five main steps. Initially, the EFAs are converted to BDDdcally avoid collision possibilities among devices the hret
Based on the BDDs the supervisor is computed, which is théroduced in [4] is applied where a set of shapes (3D volumes
used to extract the guards. To make the guards more tractaffldhe device model) are created for all operations. Based
for the users, the guards are then reduced by some heuri8ficPairwise intersection tests over these shapes, the eslum
techniques. Finally, the reduced guards are attached to YWeere the robots and other devices may collide, are idedttifie
original EFAs. This procedure can be repeated iterativel[® avoid collision possibilities, necessary guards areeddd
making it possible for the user to perform further modifioati t0 the corresponding operation models. Furthermore, iuc
on the obtained supervisor and then compute a new supervi§éder models of the operations are generated according to
The details of this approach is beyond the scope of th&ction IlI-B, including collision avoidance guards, analog-
paper. For a more detailed elaboration of the guard geoeratPlocking supervisor is achieved using the Supremica soéwa

procedure refer to [7]. For the mentioned cell242 shapes are created where
among theml17 pairs of intersected shapes are identified.
IV. CASE StupY To avoid collisions in these mutual exclusion zoneg4

The method described above has been implemented ga@rds are automatically added to the operation models in
a toolbox in Sequence Planner software and employed $e@quence Planner.
efficiently generate the EFA models for a given SOP modeledTable | shows statistics of the cell and the supervisor based
by user. To demonstrate the efficiency of the method, we hawe the reduced-order EFA model generated by the presented
modeled an extended version of a robot cell at Chalmers Roloa¢thod, and the general operation model defined in Definition
and Automation Lab, using Sequence Planner and the tooll&hxHere, |[SOP| is the number of operation$EF A| is the
to generate the reduced-order EFA models. The extended celinber of generated EFAs for the given SQ®,.c..x| and
consists of five ABB robots, two fixtures, an AGV, and aQ..,| represents the number of reachable states in the closed-
conveyor. The desired behavior of the cell is the followindoop model and supervisor, respectivé3,D D| is the number
Two parts are loaded by the operator and conveyed to a rob6tBDD variables used to model the system dtip,| is
station by the conveyor. Two robots pick and place the paittsee number of generated guards for the supervisor to be non-
on a fixture, where they are fixated by the clamps. Theblocking. The table also includes the time for computing the
the robots assemble the parts by drilling and pop-rivetiveg tsupervisor. In Table I, the number of guards generated by the
predefined geometry points. After that, the assembled pegts supervisor for the two methods are equal, which impliesehes
unloaded by the third robot and delivered to a second statitwo supervisors generate the same closed loop behavior.



V. CONCLUSIONS [11]

The state space explosion in a large manufacturing system
with detailed and complex sequences of operations is ifA2]
evitable. To approach this problem, a method reduce the ordfe!
of the operation models for synthesis has been presenthisin t
paper. This is done by finding the operations with sequential
behavior which are identified by mapping the operations in a
graph and finding the independent paths in the corresponding
network. Instead of presenting each operation with an three
location EFA, a sequence of operations is represented effi-
ciently as a single EFA model in which the transitions that
have no impact on the synthesis procedure are eliminated.

A case study is presented where a large manufacturing cell
with five robots, fixtures and a conveyor is efficiently modele
The reduction principle is applied to the synthesis of non-
blocking operation sequences, where collisions among mgovi
devices are guaranteed to be avoided by a flexible booking
process. It is shown that the number of states in the syrthesi
procedure and the computation time are reduced dramaticall
by the suggested method. It is also proved that the controlle
before and after applying the reduction method, generages t
same closed loop behavior.
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