
Reduced-Order Synthesis of Operation Sequences
Mohammad Reza Shoaei, Sajed Miremadi, Kristofer Bengtssonand Bengt Lennartson

Department of Signals and Systems
Chalmers University of Technology

SE-412 96 Göteborg, Sweden
shoaei@chalmers.se

Abstract—In flexible manufacturing systems a large number
of operations need to be coordinated and supervised to avoid
blocking and deadlock situations. The synthesis of such supervi-
sors soon becomes unmanageable for industrial manufacturing
systems, due to state space explosion. In this paper we therefore
develop some reduction principles for a recently presentedmodel
based on self-contained operations and sequences of operations.
First sequential operation behaviors are identified and related
operation models are simplified into one model. Then local
transitions without interaction with other operation models are
removed. This reduction principle is applied to a synthesisof non-
blocking operation sequences, where collisions among moving
devices are guaranteed to be avoided by a flexible booking
process. The number of states in the synthesis procedure and
the computation time is reduced dramatically by the suggested
reduction principle.

I. I NTRODUCTION

Global competition is a driving force for manufacturing
industry to rethink their strategies and methods. While contin-
uously introducing new products is necessary to maintain and
gain a market presence, reducing cost and time for producing
the products remains a key challenge. A key issue to obtain
this flexibility and concurrent development is to have a unified
information flow from early product and process design to the
final control and operation of the manufacturing plant.

In [1] this issue is discussed and manufacturing operations
and their relations, the sequences of operations (SOPs), are
introduced. In [2] a formal model for operations is introduced
based on extended finite automata (EFAs) [3] and all the
information on the relations between the individual operations
is then encapsulated in modularized EFA models. It is shown
that product, process and resource design can be integrated
via operations, and the relation among these operations can
be graphically visualized by the Sequence Planner tool.

Based on the operation model, a method for automatic
generation of controllers for collision-free Flexible Manufac-
turing Systems (FMSs) is introduced in [4]. In this method,
for each operation in the system, a set of shapes (3D sweep
volumes) is generated. Then, based on pairwise intersection
tests over all the shapes, mutual exclusion zones are identified
and avoided by adding guards in the corresponding operation
models. The automatic generation also includes a synthesis
procedure, where a non-blocking and controllable supervisor
is generated, [5]. This supervisor is preferably synthesized by
the tool Supremica [6], including a new approach proposed
in [7] where the supervisor is generated by adding guards
to the original EFA models. In this way the supervisor can

be implemented by ordinary industrial programmable logic
controllers.

In an FMS including a large number of robots and devices,
the total amount of discrete states that need to be considered
in the synthesis will increase dramatically, thus making ithard
to compute a supervisor for industrially interesting cases. The
aim of this paper is to reduce this complexity by introducing
a method to efficiently represent SOPs for synthesis. A single
EFA model for consecutive operations in the system will be
generated rather than an EFA model for each operation. These
EFAs will be further reduced by identifying local transitions
without any interaction with other operations. Such transitions
can be removed and related source and target states can be
merged to reduce the total number of states in the EFAs that
are used for supervisor synthesis.

The presented work is divided into four sections. In Section
II mathematical preliminaries are shortly reviewed. Section III
presents the reduction method in detail, followed by Section
IV, where a case study is presented that illustrates the effi-
ciency of the suggested method.

II. PRELIMINARIES

This section presents an operation model based onExtended
finite automata[3], together with a formal modeling language
called Sequences of operationsfor self-contained and hierar-
chical operations, defined in [2]. Moreover, graph and flow
networks are presented, to be used for identifying sequential
relations among self-contained operations.

A. Operation model

Operations and the relations between them in terms of
sequences and other conditions are modeled by extended
finite automata, which are ordinary automata augmented with
variables, guard formulas and action functions.

Definition 1 (Extended finite automaton). An extended finite
automaton (EFA) is a 7-tuple

E = 〈L× V,Σ,G,A,→, (ℓ0, v0),M〉. (1)

The setL×V is the extended finite set of states, whereL is a
finite set ofdiscrete locationsandV is the finite domain of an
m-tuple of variables,v = (v1, v2, . . . , vm). Σ is a nonempty
finite set of events (the alphabet).G is a set of guard predicates
over V , A is a set of action functions fromV to V , where
each function maps the present variable values to the variable
values of the next state.→⊆ L × Σ × G × A × L is a state
transition relation,(ℓ0, v0) ∈ L × V is the initial state, and

M ∈ L × V is a set of marked (desired) states. The notation
ℓ

σ
→g/a ℓ′ is used as shorthand for(ℓ, σ, g, a, ℓ′) ∈→. 2

It is assumed that the guards have been parsed and written in
conjunctive normal formg = g1∧. . .∧gj , where each or-clause
gi(v) = gi,1(v1)∨ . . .∨gi,m(vm), i = 1, . . . , j, compares the
variables with a constant inV = V 1 × · · · × V m. We also
assume that all actions are written as constant functionsv :=
a = (a1, . . . , am). Any transition can be decomposed into
multiple transitions of this form. For instance, the transition
p

σ
→x:=y+1 q where y ∈ {0, 1} can be decomposed into:

p
σ
→y=0/x:=1 q andp

σ
→y=1/x:=2 q. The symbolξ is used to

denote implicit actions that update variables to their current
value, and in vector formΞ = (ξ, . . . , ξ). Sometimes it is of
interest to know the explicit state transition relation7→, which
is defined as

7→:= {(ℓ, v, σ, ℓ′, v′) ∈ L× V × Σ× L× V | (2)

∃ ℓ
σ
→g/a ℓ′ such that

g(v) = 1 andv′i :=

ai ai 6= ξ

vi ai = ξ

EFAs are composed by full synchronous composition [8].
In the composition of two EFAs, a shared event is enabled if
and only if it is enabled by each of the composed automata
[3].

An operation can be formally modeled as an EFA. For
notational purposes, the guards and actions are replaced by
a setC of transition conditions in terms of predicates over the
variables, including both their current and next values after a
transition, c.f. [2].

Definition 2 (Operation). An operationOk is an EFA where
the set of discrete locationsLk = {Oi

k, O
e
k, O

f
k}, the event

set Σk = {O↑
k, O

↓
k}, the set of transition conditionsCk =

{C↑
k , C

↓
k}, the transition relation→k= {(Oi

k, O
↑
k/C

↑
k , O

e
k),

(Oe
k, O

↓
k/C

↓
k , O

f
k)}, the initial location ℓik = Oi

k, and all
locations are marked,M = L. 2

In order to include requirements on the operation locations
in the conditions, these locations are also represented as
Boolean variablesOi

k, O
e
k and Of

k , included in the variable
set V . Each of these variables is equal to one when the
corresponding location is active. In this paper, for the sake
of simplicity and space, the actions that update the location
variables are not explicitly shown on the transitions. Also, it
is assumed that events in the system are local and control-
lable, i.e. there are no common events in operation models;
communications are done by variables.

B. Operation sequences and hierarchical structures

When a number of operations are interacting, the basic
assumption is that all operations are running in parallel. This is
modeled by the full synchronous composition operator||. For
a SOPSO with n operationsO1, O2, . . . , On the composite
operation model is defined as

SO = O1||O2|| · · · ||On (3)

O1
O2O2

O3 O4

O5

O6
O7

O8 O9

O10

O
f
1

∧ G

SO

Fig. 1. Sequences of operations (SOP) in the running example. HereOf
1

meansO1 must be finished beforeO6 can start andG is any boolean guard
expression.

The SOP can be represented graphically with a set of se-
quences, using the graphical notations introduced in [2]. A
sequence is a graph that connects a set of operations that are
related to each other. The operation conditions are represented
with arrows, lines and boolean expressions, see examples in
Fig. 1. A sequence or a set of sequences of operationsSOk

can be encapsulated by a hierarchical operationOk executed
concurrently withSOk as

Ok||SOk (4)

The pre- and postconditions inOk are then reformulated to
synchronize with the desired start and complete operationsin
SOk. Hierarchical operations including their lower level SOPs,
cf. SOk in (4), can be put together to generate a new SOP
SO on the higher level.

SO = O1||SO1|| · · · ||On||SOn (5)

In reality all models are running in parallel, but from a user
point of view the SOk on one level are encapsulated as
hierarchical operations on the next higher level. To enforce
that a number of SOPsSO1, . . . , SOn are executed, a top-level
hierarchical operationO combining (4) and (5) is introduced,
where the postconditionC↓ = Of

1 ∧· · ·∧O
f
n and only the final

locationOf is marked. This guarantees that all SOPs will be
completed, where this final specification step is important e.g.
for supervisory synthesis of nonblocking supervisors. Formal
tools for EFAs are available, cf. [9]. Therefore, it is possible to
formally verify and synthesize a supervisor by the suggested
SOP language.

C. Graph and flow network

A graph is a structureG = (V,E) in which V is a set
of vertices and E is a set of binary relations between the
vertices callededges. A (directed) finite pathin G is a non-
empty sequence of verticesv1, v2, · · · vm ∈ V such that for
any two consecutive verticesvi and vi+1, there is an edge
(vi, vi+1) ∈ E and v1, v2, · · · vm are all different. Ans − t
path is a finite path that is started in the sourcev1 = s, and
finished in the terminalvm = t.

Definition 3 (Independents−t paths). Two s−t paths are said
to be independent if they do not have any vertices in common
apart froms and t. 2

Definition 4 (Flow network). Let N = (V,E) be a directed
graph and letc : E −→ R

+ be acapacity functionand{s, t} ∈
V . A function f : V × V −→ R is called aflow if:

f(u, v) ≤ c(u, v) ∀ {u, v} ∈ V (6)

f(u, v) = −f(v, u) ∀ {u, v} ∈ V (7)
∑

e∈δin(v)

f(e)−
∑

e∈δout(v)

f(e) = 0 ∀ v ∈ V \{s, t} (8)

Hereδin(v) andδout(v) denote the set of incoming and out-
going edges to and fromv, respectively. This graph including
the flow is called a flow network. 2

The first condition (6) is theCapacity constraints: the flow
in an edge cannot exceed its capacity, the second condition
(7) is the Skew symmetryand the last condition (8) is the
Flow conservation law: the amount of flow entering a vertex
v 6= {s, t} should be equal to the amount of flow going out
from v. In the maximum-flow problem, we are given a flow
networkG with sources and sinkt, and we wish to find the
maximum flow in the network.

III. R EDUCED-ORDER SYNTHESIS

When a number of operations are interacting, the basic
assumption is that all operations are running in parallel. This
is modeled by the SOPSOk in (3), where all the restrictions
are represented by pre- and postconditions included in the
individual operation models. However, for a large system the
total amount of discrete states that need to be considered in
the synthesis will increase dramatically.

This section presents a method to automatically identify
the sequences among a set of individual operation models
and simplify them into one EFA. Then, these simplified EFAs
will be further reduced by identifying the local transitions in
each EFA. The reduced-order models are used for synthesis
of a supervisor that generates a set of guards that gives a
nonblocking and maximal permissive closed loop system.

A. Sequential relation graph

The sequential restrictions on the order between different
operations are formally expressed by logical preconditions.
To find the sequential relation between operations in a SOP,
Algorithm 1 is used to generate a sequential relation graph,i.e.
a graph in which vertices are the operations and the edges are
the binary sequence relation between each pair of operations.

In Algorithm 1, the functioncreateVerticescreates vertices
in the graphG based on the operations in a given SOP. Here,
the injective functionϑ : O V maps an operation to
a vertex in the graphG. The functioncreateEdgeswill go
through all guards in each operation and identify the operations
which have a sequential relation to the current one and add
an edge between the corresponding vertices.

In order to find a set of independent paths covering all
operations, the graphG is converted to an extended flow

Algorithm 1 Sequential relation graph

GENERATE-GRAPH(SOP)
1: G = (V,E)
2: createVertices(V [G], SOP)
3: createEdges(E[G], SOP)
4: return G

CREATE-VERTICES(V [G], SOP)
1: foreach Om ∈ SOP do
2: V [G]← V [G] ∪ ϑ(Om)
3: end for
4: return

CREATE-EDGES(E[G], SOP)
1: foreach Om ∈ SOP do
2: vm ← ϑ(Om)
3: foreach gjm(v) ∈ C↑

m do
4: if |gjm(v)| = 1 then
5: gj,1m (v1)← getFirstElement(gjm(v))
6: if gj,1m (v1) is a type ofOf then
7: On ← getRelatedOperation(gj,1m (v1))
8: vn ← ϑ(On)
9: E[G]← E[G] ∪ {(vn, vm)}

10: end if
11: end if
12: end for
13: end for
14: return

networkN in which all the edges and vertices has the capacity
equals to one and calculates the flow valuef(e) for each edge
to maximize the flow in the network. Sincef is an integer
flow and all capacities are1, the flow valuef(e) will be 0
or 1 for all edges in the network. Therefore, the independent
paths inG will be found by considerings − t paths in the
network where all edges have flow value equal to one. Such
paths are obtained by the flow maximization. Maximum flow
in a network is a well known problem in graph theory which
can be solved by the Edmonds-Karp algorithm [11] that is an
implementation of the Ford-Fulkerson method. [12].

Definition 5. Let p be a path in graphG, then the functions
V (p) andE(p) return the set of vertices and edges on the path
p, receptively. 2

Proposition 1. Let N be a network with maximum flow and
c(e) = 1 for all edges extended withc(v) = 1 for all vertices.
Then thes− t pathpi in N is independent if for alle ∈ E(pi)
we havef(e) = 1.

Proof: To remove the capacity on the vertices, the netN
is expanded such that eachv ∈ V [N] is replaced byvin and
vout, wherevin is connected by edges going intov andvout is
connected to edges coming out fromv. Then assign capacity
c(v) to the edge connectingvin andvout. This means that the
expanded network has the same behavior as the original one.
Furthermore, it can be treated as an ordinary maximum flow

Algorithm 2 Maximum-flow in a graph

INDEPENDENT-PATHS(G)
1: P ← ∅
2: while ∃ v ∈ V [G] do
3: Pt ← ∅
4: N ← Convert-To-Flow-Network(G)
5: Edmonds-Karp(N)
6: Pt ← getAllIndependentPaths(N)
7: P ← Pt

8: V [G]← V [G] \ {V (pti) : pti ∈ Pt, s, t}
9: end while

10: return P

CONVERT-TO-FLOW-NETWORK(G)
1: N(V,E)← G(V,E)
2: V [N]← V [N] ∪ {s, t}
3: foreach vi ∈ V [N] do
4: c(vi)← 1
5: if vi has no incoming edgethen
6: E[N]← E[N] ∪ {(s, vi)}
7: c(s, vi)← 1
8: else if vi has no outgoing edgethen
9: E[N]← E[N] ∪ {(vi, t)}

10: c(vi, t)← 1
11: end if
12: end for
13: return N

problem without capacity constrains on the vertices, cf. [13].
Since f is an integer flow and all capacities are1, f(e) ∈
{0, 1} for all e ∈ E. Because every vertexvin has only one
outgoing edge, at most one incoming edgee of vin can have
f(e) = 1, c.f. (8). Similarly, because every vertexvout has
only one incoming edge, at most one outgoing edgee of vout
can havef(e) = 1. Therefore, the independent pathspi in N
are thes − t paths where all edgese ∈ E(pi) have the flow
value equal to1.

Proposition 2. Let G be the sequential relation graph of a
SOP SO. Then each independent path inG represents an
independent sequence of operations inSO, i.e. sequences of
operations that do not have any operations in common.

Proof: Let P be the set of independent pathspi in G and
ϑ : O V be an injective function that maps an operation
to a vertex in the graphG, then from Definition 3 and 5 we
have:

⋂

pi∈P

(V (pi) \ {s, t}) = ∅

therefore,
⋂

pi∈P

ϑ−1(V (pi) \ {s, t}) = ∅

which means that there are no common operations in any
sequence of operations.

Algorithm 2 iteratively find the independent paths of the
input graphG. The functionConvert-To-Flow-Networkcon-

s t

1

2

7

6

3

4

8

9

10

5
f(1)

f(1)

f(1)

f(1)

f(1)

f(1)

f(1)

f(1)

f(1)

f(1)

f(1)

f(0)

f(0)

f(0)

f(0)

Fig. 2. Flow network of the first iteration on the example SOP.Here,s and
t are the source and sink vertices andi in f(i) is the calculated flow value.

O1

O
f
5

O2

Oe
1

O3

O4

O
f
2

O5

O
f
4

O6

G

O
f
8
∨O

f
9

O7

Oe
6

O8

A+

O9

O
f
7
∧A+

O10

Fig. 3. Independent sequences of the operations for the SOP in Fig. 1. Here
the alternative operationsO8 and O9 are modeled by a mutual exclusion
variableA, whereA+ meansA = 0/A := 1, c.f. [2].

verts the graphG to the corresponding networkN and assigns
capacity one for all edges and vertices. Two super nodess and
t will be added to the network with the infinity in and out flow
capacity, and all the vertices with no incoming and outgoing
edge will be connected to the nodess and t, respectively.

Next, theEdmonds-Karpfunction first converts the network
N to a normal flow network without capacity on vertices.
Then the maximum-flow is calculated and the flow value of
each edge is updated to maximize the flow in the network.
Furthermore, the functiongetAllIndependentPaths, will find
the s − t paths pti in G by following the edges with the
flow capacity equal to1. These paths, excluding thes and t
vertices, are added to the path setP and then removed from the
graphG. The algorithm will iterate on the graph and terminate
when there are no more vertices. The output of the algorithm
then will be the path setP , which contains all the possible
independent paths in graphG.

The network generated in the first iteration for the SOP in
Fig. 1 including the flow value for each edge is depicted in
Fig. 2. The set of independent paths after four iterations will
be P = {〈2 → 3 → 5〉, 〈1 → 6 → 10〉, 〈7 → 8〉, 〈9〉, 〈4〉}.
The corresponding sequences of operations of the independent
paths in the path setP are illustrated in Fig. 3. Observe that,
for instance, the operationsO8 and O9 in Fig. 1 executed
in arbitrary order and in Fig. 3 in mutual exclusion by the
common resourceR.

B. Reduced-Order EFA models

Sequential relations among operations are introduced as
preconditions in the modular EFA operation models. In man-
ufacturing systems most of the operations are organized into
sequences, and therefore most of the operation conditions are
based on this relationship. In this part, first the operationmod-
els are simplified by generating one EFA for each independent
sequence. The conditions related to sequential relations are
then removed. For instance, for the operationO5 preceded by
O3 in Fig. 3 with the transition conditionsC↑

5 = Of
4∧O

f
3 , after

simplifying into one synchronized EFA model, the condition
becomesC↑

5 = Of
4 .

In the next step, some of the transitions will be identified
as local with respect to other EFAs in the system. These
transitions will have no impact in the synthesis procedure.
Hence, they can be removed and a reduced order model will
be achieved.

However, it needs to be shown that the supervisor before
and after reducing the order has the same behavior in terms of
supervisor guards. Remind that the supervisor is generatedby
adding guards to the original EFA models, see further details
in Section III-C. Now we consider the case when EFAE1

will be reduced, and the other EFAs are synchronized to EFA
E2. We also repeat that communication between the EFAs is
performed by guards and actions; no shared, only local events
are assumed. Furthermore, assume without loss of generality
that the tuple of variables forE1 and E2 is common and
denotedv.

Definition 6 (Local and global variables). Let E1 and E2

be two EFAs including the common tuple of variablesv =
(v1, v2, vg), wherev1 is only updated inE1, v2 is only updated
in E2, andvg is the tuple of shared variables updated in both
E1 andE2. Then the variables inv1 andv2 are local, while
the variables invg are global. Similarly, the action seta is
partitioned asa = (a1, a2, ag), wherevk := ak, k = {1, 2, g}.

2

Definition 7 (Local transition). Let E1 andE2 be two EFAs.
Then a transition(ℓ1, σ, g, a, ℓ′1) ∈→1 is a local transition in
E1 if g ⊢ true, a = (a1, a2, ag) is restricted toa2 = Ξ, and
ag = Ξ. 2

This means that any local transition inE1 can occur at any
time, independently ofE2.

Definition 8 (Guard invariant transition). Let E1 andE2 be
two EFAs. Then the transition(ℓ1, σ, g, a, ℓ′1) ∈→1, alterna-
tively expressed as the explicit transition(ℓ1, v1, v2, vg)

σ
7→

(ℓ′1, v
′
1, v2, vg), is guard invariant if g2(v1, v2, vg) =

g2(v
′
1, v2, vg) for all g2 ∈ G2 in E2 and arbitrary(v2, vg).

2

A guard invariant transition inE1 implies there are no guards
in E2 depending on any variable updated in the guard invariant
transition.

Definition 9 (Solitary outgoing local transition (SOLT)).
Let E1 and E2 be two EFAs. Then a local transition

(ℓ1, σ, g, a, ℓ
′
1) ∈→1 is a solitary outgoing local transition,

if ℓ1 has only one outgoing transition,ℓ′1 6= ℓ1, and for
all outgoing transitions fromℓ′1, the related guards have no
condition on the updated variables ina and the related actions
update the same variables as ina. 2

The last condition means that the outcomes of the guards at
transitions after a SOLT do not depend on the execution of the
SOLT actiona. This restriction is crucial to be able to remove
a SOLT.

Lemma 1. Let E1 and E2 be two EFAs with common
variables v = (v1, v2, vg). If there exists a guard invariant
SOLT(ℓ1, σ, g, a, ℓ′1) ∈→1, thenE1 can be reduced as

→1 = →1 \ {(ℓ1, σ, g, a, ℓ
′
1)}

∪ {(ℓ1, σ̄, g
′, ar, ℓ′′1) | (ℓ

′
1, σ̄, g

′, a′, ℓ′′1) ∈→1}

where

ari =

{

a′i if a′i 6= ξ

ai otherwise;

M1 =

{

M1 ∪ {ℓ1} if ℓ′1 ∈M1

M1 if ℓ′1 /∈M1;

Σ1 = Σ1 \ {σ}.

The reduced EFA is denotedEr
1 and the language

L(Er
1 ||E2) = PΣ\σ(L(E1||E2)), wherePΣ\σ is the projection

where σ is removed from all strings in the corresponding
language.

Proof: Introducing the notationsqσ = (ℓ1, ℓ2, v1, v2, vg)
and q′σ = (ℓ′1, ℓ2, v

′
1, v2, vg), whereℓk ∈ Lk, k = 1, 2, and

Q = L1 × L2 × V as well asΣ = Σ1 ∪ Σ2, the set of
reachable source states inE1||E2, corresponding to the SOLT
(ℓ1, σ, g, a, ℓ

′
1) ∈→1, is defined as

Qσ = (qσ ∈ Q|sσ ∈ L(E1||E2)∧qσ
σ
7→ q′σ∧s ∈ Σ∗∧σ ∈ Σ1)

Generally,Qσ is a set of states since the locationℓ1 is often
reached in combination with a number of different locations
in E2 and/or values ofv. The related set of target states can
be expressed as

Q′
σ = (q′σ ∈ Q|sσ ∈ L(E1||E2)∧qσ

σ
7→ q′σ∧s ∈ Σ∗∧σ ∈ Σ1)

Observe that for each source stateqσ ∈ Qσ there is only one
unique target stateq′σ ∈ Q′

σ, since the transition is a SOLT.
After a possible set of local transitions inE2, resulting in

different strings of eventss′, one of the outgoing transitions
from ℓ′1 in E1 is executed with the event̄σ. Using the notations
qσ̄ = (ℓ′1, ℓ

′
2, v

′
1, v

′
2, v

′
g) and q′σ̄ = (ℓ′′1 , ℓ

′
2, v

′′
1 , v

′
2, v

′′
g), the set

of reachable target states inE1||E2 after this transition, can
be formulated as

Q′
σ̄ = (q′σ̄ ∈ Q|sσs′σ̄ ∈ L(E1||E2) ∧ qσ̄

σ̄
7→ q′σ̄

∧ s ∈ Σ∗ ∧ s′ ∈ Σ∗
2 ∧ σ, σ̄ ∈ Σ1)

Due to the guard invariant SOLT, the corresponding set of
source statesQσ̄ is indeed equal to the set of target statesQ′

σ.

Algorithm 3 Reduced-order EFAs generation

REDUCE-EFAs (SOP, P)
1: E ← ∅
2: while ∃pj ∈ P do
3: Ei ← ∅
4: foreach v ∈ V [pj] do
5: Ov ← ϑ−1(v)
6: Ej ← Ej ||Ov

7: end for
8: foreach (ℓ, σ, g, a, ℓ′) ∈→j do
9: if (ℓ, σ, g, a, ℓ′) is a guard invariant SOLTthen

10: →j=→j \ {(ℓ, σ, g, a, ℓ
′)}

∪ {(ℓ, σ̄, g′, ar, ℓ′′)|(ℓ′, σ̄, g′, a′, ℓ′′) ∈→j}

11: ar = a
12: foreach a′i ∈ a′ do
13: if (a′i 6= ξ) then ari = a′i end if
14: end for
15: if (ℓ′1 ∈M1) then M1 ∪ {ℓ1} end if
16: Σi = Σi \ {σ}
17: end if
18: end for
19: E ← Ei

20: end while
21: return E

In the reduced systemEr
1 ||E2 the same set of statesQσ

can be reached as inE1||E2, since the two systems have the
same behavior before the eventσ has been executed inE1||E2.
Since the SOLT(ℓ1, σ, g, a, ℓ′1) ∈→1 according to Definition
9 has only one local outgoing transition, and the outcomes of
the guards at transitions after this SOLT do not depend on the
action a, and furthermore the SOLT is also guard invariant,
the same set of reachable target statesQ′

σ̄ after the event̄σ
are achieved for bothEr

1 ||E2 andE1||E2.
In total this means that the reachable set of states for

the reduced systemQEr
1
||E2

= QE1||E2
\ Q′

σ. The only
difference between the languages of the two systems is that
the SOLT eventσ is not included inL(Er

1 ||E2), meaning that
L(Er

1 ||E2) = PΣ\σ(L(E1||E2)).

Definition 10 (Supervisor guards). The functionSupg(E)
generates a set of guards that gives a nonblocking and maximal
permissive closed-loop system for the EFAE. 2

Theorem 1. Consider the synchronous systemE1||E2 and the
reduced synchronous systemEr

1 ||E2. These two synchronous
systems generate the same set of supervisor guards i.e.

Supg(E1||E2) = Supg(E
r
1 ||E2)

Proof: Based on Lemma 1 it is enough to show that
no supervisor guard needs to be included at the transition
qσ

σ
7→ q′σ in E1||E2. Assume that a marked state is reachable

from q′σ. Then it is also always reachable fromqσ, since the
transitionqσ

σ
7→ q′σ is generated by a SOLT inE1 according

to Definition 9. Hence, neitherqσ nor q′σ is forbidden. On the
contrary, if a marked state is not reachable fromq′σ, it is also

Oi
2

Oe
2

O
f
2

O
↑
2
/Oe

1

O
↓
2

Oi
3

Oe
3

O
f
3

O
↑
3
/O

f
2

O
↓
3

Oi
5

Oe
5

O
f
5

O
↑
5
/O

f
3
∧O

f
4

O
↓
5

(a)

Oi
2

Oe
2 O

f,i
2,3

Oe
2

O
f,i
3,5

Oe
5O

f
5

O
↑
2
/Oe

1
O

↓
2

O
↑
3

O
↓
3

O
↑
5
/O

f
4

O
↓
5

(b)

Oi
2

Oe
2

Oe
5 O

f
5

O
↑
2
/Oe

1
O

↑
5
/O

f
4

O
↓
5

(c)

Fig. 4. The EFA models for the operationsO2, O3 and O5 in the path
〈2 → 3 → 5〉, (b) simplified EFAE = O2||O3||O5 and (c) the reduced-
order EFAEr.

never reachable fromqσ. The reason is again that the transition
from qσ to q′σ is generated by a SOLT inE1. Hence, bothqσ
andq′σ are blocking states and therefore forbidden. This means
that either bothqσ andq′σ are allowed or both are forbidden,
implying that no supervisor guard needs to be included at the
transitionqσ

σ
7→ q′σ.

Since the behavior ofEr
1 ||E2, with the exception of this

transition, is the same asE1||E2, according to Lemma 1, we
finally conclude that the guards generated bySupg(E1||E2)
are the same as the guards generated bySupg(E

r
1 ||E2).

Since the supervisor guards generated bySupg(E
r
1 ||E2)

appear at the transitions also existing inE1||E2, the generated
guards onEr

1 can be transferred back to the original EFAE1.

Algorithm 3 reduces the possible transitions according to
Theorem 1. First the models are simplified into one syn-
chronized EFA model and then further reduced by iterat-
ing over transitions and removing the transitions that has
no impact on the synthesis procedure. In Fig. 4, (a) il-
lustrates the EFA models for the operationsO2, O3, and
O5 in the path (2 → 3 → 5), (b) the EFA E =
O2||O3||O5, and (c) the reduced-order EFAEr. The tran-
sitions (Oe

2, O
↓
2 , true,Ξ, O

f,i
2,3), (Of,i

2,3, O
↑
3 , true,Ξ, O

e
3), and

(Oe
3, O

↓
3 , true,Ξ, O

f,i
3,5) are removed and the locationsOe

2

andOe
5 are connected by the transition(Oe

2, O
↓
5 , O

f
4 ,Ξ, O

e
5).

Observe that the remaining transitions are not removed since
each transition either has a guard or is not guard invariant.
Reduced-order EFA models for the actual operations are
generated based on Algorithm 1-3, and a non-blocking and
maximally permissive supervisor [5] can be computed.

TABLE I
COMPARISON OF TWO METHODS

Method |SOP | |EFA| |Qreach| |Qsup| |BDD| |Supg| Time(s)

Normal 82 164 4.023620354 × 109 1.758696194 × 109 886 4 78

Efficient 82 64 5.235889 × 106 2.961409 × 106 262 4 2

C. Synthesis

Traditionally, the synthesis procedure for EFAs has been
carried out by first flattening the EFAs to ordinary finite
automata, and then perform a monolithic synthesis. In this
way, the states of the final supervisor are represented explicitly,
which has some main drawbacks when the supervisor becomes
very large in terms of the number of states [4].

In [7], a framework is presented, where the user model
a system by EFAs and obtain the supervisor modularly in
form of EFAs. The only difference between the original and
synthesized supervisor EFAs is that the guards are extended
in the latter model. The main advantage of this approach is
that the resulting supervisor, represented as modular EFAs,
becomes more comprehensible for the user, and the supervisor
can easily be implemented in an industrial controller. In
addition, the user will remain in the same model domain, i.e.
EFAs, both when models are introduced and supervisors are
generated.

To be able to handle large systems, all computations based
on the reduced EFAs are performed symbolically using Binary
Decision Diagrams (BDDs). The procedure is carried out in
five main steps. Initially, the EFAs are converted to BDDs.
Based on the BDDs the supervisor is computed, which is then
used to extract the guards. To make the guards more tractable
for the users, the guards are then reduced by some heuristic
techniques. Finally, the reduced guards are attached to the
original EFAs. This procedure can be repeated iteratively,
making it possible for the user to perform further modifications
on the obtained supervisor and then compute a new supervisor.
The details of this approach is beyond the scope of this
paper. For a more detailed elaboration of the guard generation
procedure refer to [7].

IV. CASE STUDY

The method described above has been implemented as
a toolbox in Sequence Planner software and employed to
efficiently generate the EFA models for a given SOP modeled
by user. To demonstrate the efficiency of the method, we have
modeled an extended version of a robot cell at Chalmers Robot
and Automation Lab, using Sequence Planner and the toolbox
to generate the reduced-order EFA models. The extended cell
consists of five ABB robots, two fixtures, an AGV, and a
conveyor. The desired behavior of the cell is the following:
Two parts are loaded by the operator and conveyed to a robot
station by the conveyor. Two robots pick and place the parts
on a fixture, where they are fixated by the clamps. Then,
the robots assemble the parts by drilling and pop-riveting the
predefined geometry points. After that, the assembled partsare
unloaded by the third robot and delivered to a second station

Fig. 5. 3D simulation of the robot cell in the case study.

for more pop-riveting. In that station, two other robots pop-
rivet the remaining points, and then the finished product is
unloaded by the third robot and finally transported from the
workstation by an AGV.

The cell is simulated in 3D simulation software Dassault
Systèmes DELMIA V5, see Fig. 5, and in order to automat-
ically avoid collision possibilities among devices the method
introduced in [4] is applied where a set of shapes (3D volumes
of the device model) are created for all operations. Based
on pairwise intersection tests over these shapes, the volumes
where the robots and other devices may collide, are identified.
To avoid collision possibilities, necessary guards are added
to the corresponding operation models. Furthermore, reduced-
order models of the operations are generated according to
Section III-B, including collision avoidance guards, and anon-
blocking supervisor is achieved using the Supremica software.

For the mentioned cell,242 shapes are created where
among them117 pairs of intersected shapes are identified.
To avoid collisions in these mutual exclusion zones,234
guards are automatically added to the operation models in
Sequence Planner.

Table I shows statistics of the cell and the supervisor based
on the reduced-order EFA model generated by the presented
method, and the general operation model defined in Definition
2. Here, |SOP | is the number of operations,|EFA| is the
number of generated EFAs for the given SOP,|Qreach| and
|Qsup| represents the number of reachable states in the closed-
loop model and supervisor, respectively,|BDD| is the number
of BDD variables used to model the system and|Supg| is
the number of generated guards for the supervisor to be non-
blocking. The table also includes the time for computing the
supervisor. In Table I, the number of guards generated by the
supervisor for the two methods are equal, which implies these
two supervisors generate the same closed loop behavior.

V. CONCLUSIONS

The state space explosion in a large manufacturing system
with detailed and complex sequences of operations is in-
evitable. To approach this problem, a method reduce the order
of the operation models for synthesis has been presented in this
paper. This is done by finding the operations with sequential
behavior which are identified by mapping the operations in a
graph and finding the independent paths in the corresponding
network. Instead of presenting each operation with an three-
location EFA, a sequence of operations is represented effi-
ciently as a single EFA model in which the transitions that
have no impact on the synthesis procedure are eliminated.

A case study is presented where a large manufacturing cell
with five robots, fixtures and a conveyor is efficiently modeled.
The reduction principle is applied to the synthesis of non-
blocking operation sequences, where collisions among moving
devices are guaranteed to be avoided by a flexible booking
process. It is shown that the number of states in the synthesis
procedure and the computation time are reduced dramatically
by the suggested method. It is also proved that the controller,
before and after applying the reduction method, generates the
same closed loop behavior.

VI. A CKNOWLEDGEMENT

This work was carried out at the Wingquist Laboratory
VINN Excellence Center within the Area of Advance –
Production at Chalmers, supported by the Swedish Govern-
mental Agency for Innovation Systems (VINNOVA). The
support is gratefully acknowledged.

REFERENCES

[1] K. Bengtsson, B. Lennartson, and C. Yuan, “The origin of operations:
Interactions between the product and the manufacturing automation
control system,” in 13th IFAC Symposium on Information Control
Problems in Manufacturing Technology, INCOM09, Moscow, Russia,
Moscow, Russia, Jun. 2009, pp. 40–45.

[2] B. Lennartson, K. Bengtsson, C. Yuan, K. Andersson, M. Fabian,
P. Falkman, and K.̊Akesson, “Sequence planning for integrated product,
process and automation design,”Automation Science and Engineering,
IEEE Transactions on, vol. 7, no. 4, pp. 791–802, Oct. 2010.

[3] M. Sköldstam, K.Åkesson, and M. Fabian, “Modeling of discrete event
systems using finite automata with variables,”Decision and Control,
2007 46th IEEE Conference on, pp. 3387–3392, 2007.

[4] M. R. Shoaei, B. Lennartson, and S. Miremadi, “Automaticgeneration
of controllers for collision-free flexible manufacturing systems,” in6th
IEEE International Conference on Automation Science and Engineering.
IEEE, Aug. 2010, pp. 368–373.

[5] P. J. G. Ramadge and W. M. Wonham, “The control of discreteevent
systems,”Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[6] K. Åkesson, M. Fabian, H. Flordal, and R. Malik, “Supremica—aninte-
grated environment for verification, synthesis and simulation of discrete
event systems,” inProceedings of the 8th international Workshop on
Discrete Event Systems, WODES’08, Ann Arbor, MI, USA, 2006, pp.
384–385.

[7] S. Miremadi, B. Lennartson, and K.̊Akesson, “A BDD-based Approach
for Modeling Plant and Supervisor by Extended Finite Automata,”
accepted for IEEE Transactions on Control Systems Technology, 2011.

[8] C. A. R. Hoare, Communicating sequential processes, ser. Series in
Computer Science. ACM, Aug. 1978, vol. 21, no. 8.

[9] “Supremica.” [Online]. Available: htto://www.supremica.org
[10] H. Flordal, R. Malik, M. Fabian, and K.̊Akesson, “Compositional

Synthesis of Maximally Permissive Supervisors Using Supervision
Equivalence,”Discrete Event Dynamic Systems, vol. 17, no. 4, pp. 475–
504, Aug. 2007.

[11] J. Edmonds and R. M. Karp, “Theoretical Improvements inAlgorithmic
Efficiency for Network Flow Problems,”J. ACM, vol. 19, no. 2, pp.
248–264, Apr. 1972.

[12] L. Ford and D. Fulkerson, “Flows in networks,” 1962.
[13] J. Wang and J. Silvester, “Maximum number of independent paths and

radio connectivity,” IEEE Transactions on Communications, vol. 41,
no. 10, pp. 1482–1494, 1993.

