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Abstract. We study the nonlinear stochastic Cahn-Hilliard equation perturbed by additive
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1. Introduction. We study the Cahn-Hilliard equation perturbed by noise, also
known as the Cahn-Hilliard-Cook equation (cf. [2, 4]),

du−∆w dt = dW in D × (0, T ],
w = −∆u+ f(u) in D × (0, T ],
∂u

∂n
=
∂w

∂n
= 0 on ∂D × (0, T ],

u(0) = u0 in D.

Here D is a bounded domain in Rd, d = 1, 2, 3, and f(s) = s3−s. Using the framework
of [6] we write this as an abstract evolution equation of the form

dX +
(
A2X +Af(X)

)
dt = dW, t ∈ (0, T ]; X(0) = X0, (1.1)

where A denotes the negative Neumann Laplacian considered as an unbounded oper-
ator in the Hilbert space H = L2(D) and W is a Q-Wiener process in H with respect
to a filtered probability space (Ω,F ,P, {Ft}t≥0). We also write Hs = Hs(D) for the
standard Sobolev spaces. See Section 2 for details.

Our goal is to study the convergence properties of the spatially semidiscrete finite
element approximation Xh of X, which is defined by an equation of the form

dXh +
(
A2
hXh +AhPhf(Xh)

)
dt = Ph dW, t ∈ (0, T ]; Xh(0) = PhX0.

In order to do so, we need to prove existence and regularity for solutions of (1.1). Such
results were first proved in [5]. Under the assumption that the covariance operator
Q = I (space-time white noise, cylindrical noise) it was shown that there is a process
which belongs to C([0, T ], H−1) almost surely and which is the unique solution of
(1.1). Under the stronger assumption that A and Q commute and that Tr(Aδ−1Q) <
∞ for some δ > 0 (colored noise) it was shown that the solution belongs to C([0, T ], H)
almost surely. Such regularity is insufficient for proving convergence of a numerical
solution. Our first aim is therefore to prove existence of a solution in C([0, T ], Hβ)
almost surely for some β > 0.
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Following the semigroup approach of [6] we write the equation (1.1) as the integral
equation (mild solution)

X(t) = e−tA
2
X0 −

∫ t

0

Ae−(t−s)A2
f(X(s)) ds+

∫ t

0

e−(t−s)A2
dW (s)

= Y (t) +WA(t),

where e−tA
2

is the analytic semigroup generated by −A2 (see Corollary 4.2). This
naturally splits the solution as X = Y + WA, where WA(t) =

∫ t
0

e−(t−s)A2
dW (s) is

a stochastic convolution. This convolution, and its finite element approximation, was
studied in [12]. In particular, it was shown there that if ‖A

β−2
2 Q

1
2 ‖2HS <∞ for some

β ≥ 0, then we have regularity of order β in a mean square sense; that is,

E
[
‖WA(t)‖2Hβ

]
≤ ‖A

β−2
2 Q

1
2 ‖2HS, t ≥ 0. (1.2)

The other part, Y , solves a differential equation with random coefficient,

Ẏ +A2Y +Af(Y +WA) = 0, t > 0; Y (0) = X0. (1.3)

This can be solved once WA is known. This approach was also used in [5], but while
they used Galerkin’s method and energy estimates to solve (1.3), we use a semigroup
approach similar to that of [7]. However, published results for the deterministic Cahn-
Hilliard equation do not apply directly due to the limited regularity in (1.3).

The nonlinear term is only locally Lipschitz and we need to control the Lipschitz
constant. In the deterministic case studied in [7] this is achieved by the Lyapunov
functional

J(u) =
1
2
‖∇u‖2 +

∫
D
F (u) dx, u ∈ H1; F (s) = 1

4s
4 − 1

2s
2,

which is nonincreasing along paths, so that ‖X(t)‖H1 ≤ C for t ≥ 0. Due to the
stochastic perturbation, this is not true for the stochastic equation (1.1). However, it
is possible find a bound for the growth of the expected value of J(X(t)),

E[J(X(t))] ≤ C(t), t ≥ 0. (1.4)

This was shown in [5] under the assumption that A and Q commute and

Tr(AQ) <∞, (1.5)

which is consistent with β = 3 in (1.2), since ‖A 1
2Q

1
2 ‖2HS = Tr(AQ) in this case.

(More generally: if AQ is nuclear, then ‖A 1
2Q

1
2 ‖2HS = Tr(AQ), see [11, Theorem

2.1].) We repeat this in Theorem 3.1 with several improvements. First of all we
reduce the growth of the bound from exponential to quadratic with respect to t.
We also relax the assumptions: we do not assume that A and Q commute; that is,
have a common eigenbasis, and we do not assume that the eigenbasis of Q consists
of bounded functions. Moreover, we prove the same bound for the finite element
solution Xh. Even if A and Q commute, this will not be true for the corresponding
finite element approximations Ah and Qh, so the relaxation of this assumption is
necessary for the proof of the bound for Xh.
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In Corollary 3.2 we improve (1.4) to a uniform norm bound

E
[

sup
s∈[0,T ]

(
‖X(s)‖2H1 + ‖Xh(s)‖2H1

)]
≤ KT .

By means of Chebyshev’s inequality we may then show that, for each T > 0 and
ε ∈ (0, 1), there are KT and Ωε ⊂ Ω with P(Ωε) ≥ 1− ε and such that

‖X(t)‖2H1 + ‖Xh(t)‖2H1 ≤ ε−1KT on Ωε, t ∈ [0, T ].

This bound controls the Lipschitz constant of the nonlinear term and we show in
Theorem 4.3 that X ∈ C([0, T ], H3) for ω ∈ Ωε under the slightly stronger assumption
that ‖A

γ
2Q

1
2 ‖HS < ∞ for some γ > 1, which is basically consistent with (1.5) and

also with (1.2) in case β = 3. We also obtain an error estimate (see Theorem 5.3)

‖Xh(t)−X(t)‖ ≤ C(ε−1KT , T )h2| log(h)| on Ωε, t ∈ [0, T ].

The constant grows rapidly with ε−1KT , but nevertheless we may use this to show
strong convergence (see Theorem 5.4),

E
[

sup
t∈[0,T ]

‖Xh(t)−X(t)‖2
]
→ 0 as h→ 0.

To prove strong convergence with an estimate of the rate remains a challenge for
future work. In this connection we note that even for numerical methods for stochastic
ordinary differential equations with local Lipschitz nonlinearity there are few results
on convergence rates (cf. [9]).

Numerical methods for the deterministic Cahn-Hilliard equation are well covered
in the literature. There are few studies of numerical methods for the Cahn-Hilliard-
Cook equation. We are only aware of [3] in which convergence in probability was
proved for a difference scheme for the nonlinear equation in multiple dimensions. For
the linear equation there is [10], where strong convergence estimates were proved for
the finite element method for the linear equation in 1-D, and the already mentioned
work [12] on the finite element method for the stochastic convolution in multiple
dimensions.

2. Preliminaries.

2.1. Norms. Let D ⊂ Rd, d = 1, 2, 3, be a bounded convex domain with polyg-
onal boundary ∂D. Let H = L2(D) with standard inner product 〈·, ·〉 and norm ‖·‖,
and

Ḣ =
{
v ∈ H :

∫
D
v dx = 0

}
.

Let P : H → Ḣ define the orthogonal projector. Then

(I − P )v = |D|−1

∫
D
v dx,

is the average of v. We also denote by Hk = Hk(D) the standard Sobolev space. We
define A = −∆ with domain of definition

D(A) =
{
v ∈ H2 :

∂v

∂n
= 0 on ∂D

}
.
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Then A is a positive definite, selfadjoint, unbounded, linear operator on Ḣ with
compact inverse. When extended to H as Av = APv it has an orthonormal eigenbasis
{ϕj}∞j=0 with corresponding eigenvalues {λj}∞j=0 such that

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · , λj →∞.

The first eigenfunction is constant, ϕ0 = |D|− 1
2 .

We define seminorms and norms

|v|α =
( ∞∑
j=1

λαj |〈v, ϕj〉|2
) 1

2
, α ∈ R, (2.1)

‖v‖α =
(
|v|2α + |〈v, ϕ0〉|2

) 1
2 , α ∈ R, (2.2)

and corresponding spaces

Ḣα = D(A
α
2 ) =

{
v ∈ Ḣ : |v|α <∞

}
, Hα =

{
v ∈ H : ‖v‖α <∞

}
.

For integer order α = k ≥ 0, Hk coincides with the standard Sobolev spaces with ‖·‖k
equivalent to the standard norm ‖·‖Hk . For example,

‖v‖21 = |v|21 + |〈v, ϕ0〉|2 = ‖∇v‖2 + |〈v, ϕ0〉|2 (2.3)

is equivalent to the standard norm ‖v‖2H1 by the Poincaré inequality.

2.2. The semigroup. The operator −A2 is the infinitesimal generator of an
analytic semigroup e−tA

2
on H,

e−tA
2
v =

∞∑
j=0

e−tλ
2
j 〈v, ϕj〉ϕj =

∞∑
j=1

e−tλ
2
j 〈v, ϕj〉ϕj + 〈v, ϕ0〉ϕ0

= e−tA
2
Pv + (I − P )v.

(2.4)

The analyticity implies that

‖Aαe−tA
2
v‖ ≤ Ct−α2 e−ct‖v‖, v ∈ H, α > 0. (2.5)

2.3. The finite element method. Let {Th}h>0 denote a family of regular
triangulations of D with maximal mesh size h. Let Sh be the space of continuous
functions on D, which are piecewise polynomials of degree ≤ 1 with respect to Th.
Hence, Sh ⊂ H1. We also define Ṡh = PSh; that is,

Ṡh =
{
vh ∈ Sh :

∫
D
vh dx = 0

}
.

The space Ṡh is introduced only for the purpose of theory but not for computation.
Now we define the ”discrete Laplacian” Ah : Sh → Ṡh by

〈Ahvh, wh〉 = 〈∇vh,∇wh〉, ∀vh ∈ Sh, wh ∈ Ṡh.

We note that

|vh|1 = ‖A 1
2 vh‖ = ‖∇vh‖ = ‖A

1
2
h vh‖, vh ∈ Sh. (2.6)
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The operator Ah is selfadjoint, positive definite on Ṡh, positive semidefinite on Sh, and
Ah has an orthonormal eigenbasis {ϕh,j}Nhj=0 with corresponding eigenvalues {λh,j}Nhj=0.
We have

0 = λh,0 < λh,1 ≤ · · · ≤ λh,j ≤ · · · ≤ λh,Nh ,

and ϕh,0 = ϕ0 = |D|− 1
2 . Moreover, we define e−tA

2
h : Sh → Sh by

e−tA
2
hvh =

Nh∑
j=0

e−tλh,j 〈vh, ϕh,j〉ϕh,j =
Nh∑
j=1

e−tλh,j 〈vh, ϕh,j〉ϕh,j + 〈vh, ϕ0〉ϕ0,

and the orthogonal projector Ph : H → Sh by

〈Phv, wh〉 = 〈v, wh〉 ∀v ∈ H, wh ∈ Sh. (2.7)

Clearly, Ph : Ḣ → Ṡh and

e−tA
2
hPhv = e−tA

2
hPhPv + (I − P )v. (2.8)

We have a discrete analog of (2.5),

‖Aαhe−tA
2
hvh‖ ≤ Ct−

α
2 e−ct‖vh‖, vh ∈ Sh, α > 0. (2.9)

Finally, we define the Ritz projector Rh : Ḣ1 → Ṡh by

〈∇Rhv,∇wh〉 = 〈∇v,∇wh〉, ∀v ∈ Ḣ1, wh ∈ Ṡh.

We extend it to Rh : H1 → Sh by

Rhv = RhPv + (I − P )v, v ∈ H1. (2.10)

We then have the following bound for Rhv − v = (Rh − I)Pv (cf. [13, Ch. 1])

‖Rhv − v‖ ≤ Chβ |v|β , v ∈ Hβ , β ∈ [1, 2]. (2.11)

In order to simplify the presentation, we assume that Ph is bounded with respect to
the H1 and L4 norms, and that we have an inverse bound for Ah,

‖Phv‖1 ≤ C‖v‖1, v ∈ H1,

‖Phv‖L4 ≤ C‖v‖L4 , v ∈ L4(D),

‖Ahvh‖ ≤ Ch−2‖vh‖, vh ∈ Sh.
(2.12)

This holds, for example, if the mesh family {Th}h>0 is quasi-uniform; that is, the area
of τ ∈ Th is bounded below by chd, with c > 0 independent of h.

2.4. The Wiener process. We recall the definitions of the trace and the Hilbert-
Schmidt norm of a linear operator T on H:

Tr(T ) =
∞∑
k=1

〈Tfk, fk〉, ‖T‖HS =
( ∞∑
k=1

‖Tfk‖2
) 1

2
, (2.13)

where {fk}∞k=1 is an arbitrary orthonormal basis of H.
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Let (Ω,F ,P) be a probability space. Let Q be a selfadjoint, positive semidefinite,
bounded, linear operator on H with Tr(Q) < ∞. Let {ek}∞k=1 be an orthonormal
eigenbasis for Q with eigenvalues {γk}∞k=1. Then we define the Q-Wiener process

W (t) =
∞∑
k=1

γ
1
2
k βk(t)ek,

where the βk are real-valued, independent Brownian motions. The series converges in
L2(Ω, H); that is, with respect to the norm ‖v‖L2(Ω,H) = (E[‖v‖2])

1
2 . The process W

generates a filtration {Ft}t≥0 so that it becomes a square integrable martingale and
so that we can integrate with respect to W . In the sequel we work in the resulting
filtered probabality space (Ω,F ,P, {Ft}t≥0). We refer to [6] for the details. The
Q-Wiener process can be defined also when the covariance operator has infinite trace
but this is not needed in the present work.

2.5. The stochastic convolution. We now define (cf. [6])

WA(t) =
∫ t

0

e−(t−s)A2
dW (s) =

∫ t

0

e−(t−s)A2
P dW (s) + (I − P )W (t), (2.14)

where (2.4) was also used, and similarly, by (2.8),

WAh(t) =
∫ t

0

e−(t−s)A2
hPh dW (s)

=
∫ t

0

e−(t−s)A2
hPhP dW (s) + (I − P )W (t).

(2.15)

Hence, the constant eigenmodes cancel:

WAh(t)−WA(t) =
∫ t

0

(
e−(t−s)A2

hPh − e−(t−s)A2)
P dW (s). (2.16)

These convolutions were studied in [12]. We quote the following results from
there. We use the norms

‖v‖L2(Ω,Ḣβ) =
(
E
[
|v|2β

]) 1
2 .

Theorem 2.1. If ‖A
β−2

2 Q
1
2 ‖HS <∞ for some β ≥ 2, then

‖WA(t)‖L2(Ω,Ḣβ) ≤ C‖A
β−2

2 Q
1
2 ‖HS, t ≥ 0.

Theorem 2.2. If ‖Q 1
2 ‖HS <∞, then

‖WAh(t)−WA(t)‖L2(Ω,H) ≤ Ch2| log h|‖Q 1
2 ‖HS, t ≥ 0.

Note that β = 2 in the latter theorem. In [12] these are stated with a wider range of
the order β, but this is not needed in the present work.
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2.6. Gronwall’s lemma. We need a generalized Gronwall lemma, see [8, Lemma
7.1.1]. A shorter proof can found in [7].

Lemma 2.3 (Generalized Gronwall lemma). Let ϕ ∈ L1([0, T ],R) be a nonnega-
tive function. If

ϕ(t) ≤ At−1+α +B

∫ t

0

(t− s)−1+βϕ(s) ds, t ∈ (0, T ],

with constants A,B ≥ 0 and α, β > 0, then there is a constant C = C(B, T, α, β) such
that

ϕ(t) ≤ CAt−1+α, t ∈ (0, T ].

We also use the standard Gronwall lemma:
Lemma 2.4 (Gronwall’s lemma). Let ϕ ∈ L1([0, T ],R). If

ϕ(t) ≤ A+ Ct+B

∫ t

0

ϕ(s) ds, t ∈ [0, T ],

for some constants A,C ≥ 0 and B > 0, then

ϕ(t) ≤
(
A+

C

B

)
eBt, t ∈ [0, T ].

2.7. Bounds for the nonlinear term. Recall that the standard Sobolev norm
‖·‖Hk is equivalent to the norm ‖·‖k in (2.2) for integer k ≥ 0. Most of the following
estimates are well known and the detailed proofs are just included for pedagogical
reasons, for example, to clarify the role of the projector P and the difference between
the standard Sobolev norm ‖ · ‖Hk and the “abstract” norm ‖ · ‖k.

Lemma 2.5. For u, v ∈ H3 and f(s) = s3 − s we have

‖∆f(u)‖ ≤ C
(
1 + ‖u‖21

)
‖u‖3, (2.17)

‖A−
1
2

h P
(
f(u)− f(v)

)
‖ ≤ C

(
1 + ‖u‖21 + ‖v‖21

)
‖u− v‖. (2.18)

Proof. We have f ′(s) = 3s2 − s, f ′′(s) = 6s. Using Hölder’s inequality, Sobolev’s
inequality ‖u‖L6 ≤ C‖u‖H1 (for d ≤ 3), and ‖u‖Hk ≤ C‖u‖k, we get

‖∆f(u)‖ = ‖f ′(u)∆u+ f ′′(u)|∇u|2‖
≤ ‖f ′(u)‖L3‖∆u‖L6 + ‖f ′′(u)‖L6‖∇u‖2L6

≤ C
(
1 + ‖u‖2L6

)
‖∆u‖L6 + C‖u‖L6‖∇u‖2L6

≤ C
(
1 + ‖u‖2H1

)
‖u‖H3 + C‖u‖H1‖u‖2H2

≤ C
(
1 + ‖u‖21

)
‖u‖3 + C‖u‖1‖u‖22

≤ C
(
1 + ‖u‖21

)
‖u‖3,

where we used ‖u‖2 ≤ C‖u‖
1
2
1 ‖u‖

1
2
3 in the last step. This proves (2.17).
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For (2.18) we apply (2.6) and the Hölder and Sobolev inequalities (d ≤ 3) to get

‖A−
1
2

h Pϕ‖ = sup
vh∈Sh

〈A−
1
2

h Pϕ, vh〉
‖vh‖

= sup
vh∈Sh

〈ϕ,A−
1
2

h Pvh〉
‖vh‖

= sup
wh∈Ṡh

〈ϕ,wh〉
|wh|1

≤ sup
wh∈Ṡh

‖ϕ‖L6/5‖wh‖L6

|wh|1
≤ C‖ϕ‖L6/5 .

We use this with ϕ = f(u) − f(v) =
∫ 1

0
f ′(us) ds (u − v), where us = su + (1 − s)v,

and Hölder’s and Sobolev’s inequalities to get

‖A−
1
2

h P
(
f(u)− f(v)

)
‖ = ‖A−

1
2

h Pϕ‖ ≤ C‖ϕ‖L6/5

≤ C
∫ 1

0

‖f ′(us)‖L3 ds ‖u− v‖ ≤ C
∫ 1

0

(
1 + ‖us‖2L6

)
ds ‖u− v‖

≤ C
∫ 1

0

(
1 + ‖us‖21

)
ds ‖u− v‖ ≤ C

(
1 + ‖u‖21 + ‖v‖21

)
‖u− v‖.

This is (2.18).

3. The Cahn-Hilliard-Cook equation.

3.1. The continuous problem. The Cahn-Hilliard-Cook equation is

du−∆w dt = dW in D × (0, T ],
w = −∆u+ f(u) in D × (0, T ],
∂u

∂n
=
∂w

∂n
= 0 on ∂D × (0, T ],

u(0) = u0 in D.

(3.1)

The finite element approximation is based on its weak form, which is (formally)

〈u(t), v〉 − 〈u0, v〉 +
∫ t

0

〈∇w(s),∇v〉 ds = 〈W (t), v〉, t ∈ (0, T ],

〈w, v〉 = 〈∇u,∇v〉 + 〈f(u), v〉, t ∈ (0, T ],
(3.2)

for all v ∈ Ḣ1. With the operator A, defined in § 2.1, we write (3.1) in the formal
abstract form on H = L2(D):

dX +
(
A2X +Af(X)

)
dt = dW, t ∈ (0, T ]; X(0) = X0. (3.3)

A weak solution of (3.3) is an adapted H-valued process X, which is continuous almost
surely and satisfies the equation

〈X(t), v〉 − 〈X0, v〉 +
∫ t

0

(
〈X(s), A2v〉 + 〈f(X(s)), Av〉

)
ds = 〈W (t), v〉 (3.4)

almost surely for all v ∈ Ḣ4 = D(A2), t ∈ [0, T ], where we also require the integrand
in the deterministic integral to be in L1([0, T ],R) almost surely. A mild solution of
(3.3) is an adapted H-valued process X, continuous almost surely, which satisfies

X(t) = e−tA
2
X0 −

∫ t

0

Ae−(t−s)A2
f(X(s)) ds+

∫ t

0

e−(t−s)A2
dW (s), (3.5)

almost surely for t ∈ [0, T ], where we also require that the first integrand is in
L1([0, T ], H) and the stochastic integral exists almost surely.
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3.2. The finite element problem. Recalling (3.2), we define the finite element
solution uh(t), wh(t) ∈ Sh of (3.1) by

〈uh(t), vh〉 − 〈u0, vh〉 +
∫ t

0

〈∇wh(s),∇vh〉 ds = 〈W (t), vh〉, t ∈ (0, T ],

〈wh, vh〉 = 〈∇uh,∇vh〉 + 〈f(uh), vh〉, t ∈ (0, T ],

for all vh ∈ Sh. With the operators Ah, Ph from § 2.3 we write this as an abstract
equation in Sh:

dXh +
(
A2
hXh +AhPhf(Xh)

)
dt = Ph dW, t ∈ (0, T ]; Xh(0) = PhX0. (3.6)

Since Sh is finite-dimensional and f is a polynomial, it is easy to see using standard
arguments that (3.6) has a unique solution Xh, adapted, continuous almost surely,
satisfying both

Xh(t)− PhX0 +
∫ t

0

(
A2
hXh(s) +AhPhf(Xh(s))

)
ds = PhW (t),

and

Xh(t) = e−tA
2
hPhX0 −

∫ t

0

e−(t−s)A2
hAhPhf(Xh(s)) ds+

∫ t

0

e−(t−s)A2
hPh dW (s),

almost surely for t ∈ [0, T ].

3.3. A Lyapunov functional. The deterministic Cahn-Hilliard equation de-
fines a gradient flow in Ḣ−1 for the energy functional

J(u) =
1
2
‖∇u‖2 +

∫
D
F (u) dx, u ∈ H1, (3.7)

where F (s) = 1
4s

4− 1
2s

2 is a primitive of f(s) = s3−s. This is a Lyapunov functional
for the deterministic Cahn-Hilliard equation, which implies that J(X(t)) does not
increase along solution paths. For the stochastic equation this is not true, but we
have a bound for the expected value of J(X(t)).

Theorem 3.1. Assume that ‖A 1
2Q

1
2 ‖HS <∞ and that X0 is F0-measurable with

values in H1 satisfying E[J(X0)] < ∞. If X is a weak solution of (3.3) and Xh is
the solution of (3.6), then, for all t > 0, we have

E[J(X(t))] + E
[ ∫ t

0

|J ′(X(s))|21 ds
]
≤ C

(
E[J(X0)] +KQt+K2

Qt
2
)

(3.8)

and

E[J(Xh(t))] + E
[ ∫ t

0

|J ′(Xh(s))|21 ds
]
≤ C

(
E[J(PhX0)] +KQt+K2

Qt
2
)
, (3.9)

where KQ = ‖A 1
2Q

1
2 ‖2HS + ‖Q 1

2 ‖2HS.
Proof. We prove (3.9); the proof of (3.8) is obtained in a similar way by approx-

imating (3.3) by Galerkin’s method based on the eigenbasis of A instead of the finite
element Galerkin method used in (3.6) (see also [5]).

We consider (3.6) as an Itô differential equation in Sh driven by PhW , which is
a Qh-Wiener process in Sh with Qh = PhQPh. By assumption (2.12) it follows that
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E[J(PhX0)] <∞, if E[J(X0)] <∞. By applying Itô’s formula ([6, Theorem 4.17]) to
J(Xh(t)), we obtain

J(Xh(t)) = J(Xh(0)) +
∫ t

0

〈J ′(Xh(s)),dXh(s)〉 +
1
2

∫ t

0

Tr(J ′′(Xh(s))Qh) ds

= J(PhX0) +
∫ t

0

〈J ′(Xh(s)),−A2
hXh(s)−AhPhf(Xh(s))〉 ds

+
∫ t

0

〈J ′(Xh(s)), Ph dW (s)〉 +
1
2

∫ t

0

Tr(J ′′(Xh(s))Qh) ds.

With a slight abuse of notation we consider here J as a function Sh → R and we
compute J ′(uh) ∈ Sh and J ′′(uh) : Sh → Sh as follows:

〈J ′(uh), vh〉 = 〈∇uh,∇vh〉 + 〈f(uh), vh〉 = 〈Ahuh + Phf(uh), vh〉

and

〈J ′′(uh)vh, wh〉 = 〈∇vh,∇wh〉 + 〈f ′(uh)vh, wh〉 = 〈Ahvh + Ph[f ′(uh)vh], wh〉

for uh, vh, wh ∈ Sh, so that

J ′(uh) = Ahuh + Phf(uh), J ′′(uh) = Ah + Ph[f ′(uh) · ]. (3.10)

Hence, by (2.6),

J(Xh(t)) +
∫ t

0

|J ′(Xh(s))|21 ds = J(PhX0) +
∫ t

0

〈J ′(Xh(s)), Ph dW (s)〉

+
1
2

∫ t

0

Tr(J ′′(Xh(s))Qh) ds.
(3.11)

The stochastic integral is a martingale, so that E[
∫ t

0
〈J ′(Xh), Ph dW 〉] = 0, and hence

E[J(Xh(t))] + E
[ ∫ t

0

|J ′(Xh(s))|21 ds
]

= E[J(PhX0)] +
1
2
E
[ ∫ t

0

Tr(J ′′(Xh(s))Qh) ds
]
.

(3.12)

We now compute

Tr(J ′′(Xh(s))Qh) = Tr(AhQh) + Tr(Ph[f ′(Xh(s)) · ]Qh)

by the definition in (2.13). Recall that for S, T ∈ B(H) we have Tr(TS) = Tr(ST )
provided that either S or T has finite trace. If, in addition, the operators S and T
are positive semidefinite as well, then Tr(ST ) = ‖S 1

2T
1
2 ‖2HS. Thus,

Tr(AhQh) = Tr(AhPhQPh) = Tr(PhAhPhQ) = ‖A
1
2
hPhQ

1
2 ‖2HS

≤ ‖A
1
2
hPhA

− 1
2 ‖2
B(Ḣ)

‖A 1
2Q

1
2 ‖2HS.

Here we use (2.6) and (2.12) to get

‖A
1
2
hPhA

− 1
2 v‖ = |PhA−

1
2 v|1 ≤ C|A−

1
2 v|1 = C‖v‖, v ∈ Ḣ,
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so that ‖A
1
2
hPhA

− 1
2 ‖B(Ḣ) ≤ C. Hence, with KQ = ‖A 1

2Q
1
2 ‖2HS + ‖Q 1

2 ‖2HS,

Tr(AhQh) ≤ C‖A 1
2Q

1
2 ‖2HS ≤ CKQ. (3.13)

Let {eh,k}Nhk=0 be an orthonormal eigenbasis of Qh and {γh,k}Nhk=0 the correspond-
ing eigenvalues. We get

Tr
(
Ph[f ′(Xh) · ]Qh

)
=

Nh∑
k=0

〈Ph[f ′(Xh)Qheh,k], eh,k〉

=
Nh∑
k=0

γh,k〈f ′(Xh)eh,k, eh,k〉 =
Nh∑
k=0

〈f ′(Xh)Q
1
2
h eh,k, Q

1
2
h eh,k〉.

(3.14)

By using the bound |f ′(s)| ≤ C(1 + s2) and Hölder’s and Sobolev’s inequalities we
get

|〈f ′(u)v, v〉| ≤ C(1 + ‖u‖2L4
)‖v‖2L4

≤ C(1 + ‖u‖2L4
)‖v‖2H1 ≤ C(1 + ‖u‖2L4

)‖v‖21.

By (2.3) and (2.6) we have, for vh ∈ Sh,

‖vh‖21 = |vh|21 + 〈vh, ϕ0〉2 = ‖A
1
2
h vh‖

2 + 〈vh, ϕ0〉2,

so that, by (3.13),

Nh∑
k=0

‖Q
1
2
h eh,k‖

2
1 =

Nh∑
k=0

‖A
1
2
hQ

1
2
h eh,k‖

2 +
Nh∑
k=0

〈Q
1
2
h eh,k, ϕ0〉2

=
Nh∑
k=0

γh,k〈Aheh,k, eh,k〉 +
Nh∑
k=0

γh,k〈eh,k, ϕ0〉2

≤ Tr(AhQh) + Tr(Qh) ≤ Tr(AhQh) + Tr(Q)

≤ C‖A 1
2Q

1
2 ‖2HS + ‖Q 1

2 ‖2HS ≤ CKQ.

Returning to (3.14), we now have

|Tr(Ph[f ′(Xh) · ]Qh)| ≤ C
(
1 + ‖Xh‖2L4

) Nh∑
k=0

‖Q
1
2
h eh,k‖

2
1 ≤ C

(
1 + ‖Xh‖2L4

)
KQ,

Using also (3.13) we conclude

|Tr(J ′′(Xh)Qh)| ≤ CKQ

(
1 + ‖Xh‖2L4

)
. (3.15)

It remains to relate ‖Xh‖L4 to J(Xh). By definition of the Lyapunov functional (3.7)
and noting that F (s) = 1

4s
4 − 1

2s
2 ≥ c1s4 − c2, we get (with new constants)

J(u) ≥ 1
2
‖∇u‖2 + C1‖u‖4L4

− C2,

which implies

‖∇u‖2 + ‖u‖4L4
≤ C3

(
1 + J(u)

)
. (3.16)
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Hence, in view of (3.15),

|Tr(J ′′(Xh)Qh)| ≤ CKQ

(
1 + J(Xh)

1
2
)
. (3.17)

Inserting this into (3.12) gives

E[J(Xh(t))] + E
[ ∫ t

0

|J ′(Xh(s))|21 ds
]

≤ E[J(PhX0)] + CKQ

(
t+
∫ t

0

E
[
J(Xh(s))

1
2
]

ds
)
.

(3.18)

Here, by Hölder’s and Young’s inequalities, we have, for ε > 0,

CKQ

∫ t

0

E[J(Xh(s))
1
2 ] ds ≤ CKQt

1
2

(∫ t

0

E[J(Xh(s))] ds
) 1

2

≤ ε
∫ t

0

E[J(Xh(s))] ds+ Cε−1tK2
Q.

Putting this in (3.18) gives

E[J(Xh(t))] + E
[ ∫ t

0

|J ′(Xh(s))|21 ds
]

≤ E[J(PhX0)] + C
(
KQ + ε−1K2

Q

)
t+ ε

∫ t

0

E[J(Xh(s))] ds.

We apply the Gronwall Lemma 2.4 to get,

E[J(Xh(t))] + E
[ ∫ t

0

|J ′(Xh(s))|21 ds
]

≤ eεt
(
E[J(PhX0)] + C(ε−1KQ + ε−2K2

Q)
)

≤ e
(
E[J(PhX0)] + C(tKQ + t2K2

Q)
)
,

where for each fixed t we have chosen ε = t−1 to get an optimal bound.

This theorem is adapted from [5]. We have improved it in several ways. First
the growth of the bound is reduced from exponential to quadratic with respect to t.
Most importantly, we have removed the assumption that A and Q have a common
eigenbasis and that the eigenbasis satisfies ‖ek‖L∞ ≤ C for all k. This is important
because even if A and Q commute, this will not be true for Ah and Qh. This is crucial
for the proof of the bound for Xh.

Note that ‖A 1
2Q

1
2 ‖HS < ∞ implies KQ = ‖A 1

2Q
1
2 ‖2HS + ‖Q 1

2 ‖2HS < ∞. This is
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because of the boundedness of A−
1
2 and

‖Q 1
2 ‖2HS =

∞∑
j=1

〈Qϕj , ϕj〉 + 〈Qϕ0, ϕ0〉 =
∞∑
j=1

‖PQ 1
2ϕj‖2 + 〈Qϕ0, ϕ0〉

=
∞∑
j=1

‖A− 1
2A

1
2PQ

1
2ϕj‖2 + 〈Qϕ0, ϕ0〉

≤ C
∞∑
j=1

‖A 1
2PQ

1
2ϕj‖2 + 〈Qϕ0, ϕ0〉

≤ C‖A 1
2PQ

1
2 ‖2HS + 〈Qϕ0, ϕ0〉 = C‖A 1

2Q
1
2 ‖2HS + 〈Qϕ0, ϕ0〉 <∞.

(3.19)

This condition is therefore the same as the condition for regularity of order β = 3 for
WA(t) in Theorem 2.1.

We now use the previous theorem together with Chebyshev’s inequality to obtain
pathwise norm bounds uniformly on subsets of Ω with probability arbitrarily close to
1. In order to achieve this we first replace the bound of sups∈[0,t] E[J(X(s))] from
Theorem 3.1 by a bound for E[sups∈[0,t](‖∇X(s)‖2 + ‖X(s)‖4L4

)].
Corollary 3.2. Assume that ‖A

γ
2Q

1
2 ‖HS < ∞ for some γ > 1 and that X0 is

F0-measurable with values in H1 satisfying

‖X0‖2L2(Ω,H1) + ‖X0‖4L4(Ω,L4) ≤ ρ (3.20)

for some ρ ≥ 0. If X is a weak solution of (3.3) and Xh is the solution of (3.6),
then, for T ≥ 0,

E
[

sup
t∈[0,T ]

(
‖∇X(t)‖2 + ‖X(t)‖4L4

)]
≤ KT , (3.21)

E
[

sup
t∈[0,T ]

(
‖∇Xh(t)‖2 + ‖Xh(t)‖4L4

)]
≤ KT , (3.22)

where KT depends on ρ,KQ, T . Moreover, for every ε ∈ (0, 1), there is Ωε ⊂ Ω with
P(Ωε) ≥ 1− ε and

‖∇X(t)‖2 + ‖X(t)‖4L4
≤ ε−1KT on Ωε, t ∈ [0, T ], (3.23)

‖∇Xh(t)‖2 + ‖Xh(t)‖4L4
≤ ε−1KT on Ωε, t ∈ [0, T ], (3.24)

‖X(t)‖21 + ‖Xh(t)‖21 ≤ ε−1KT on Ωε, t ∈ [0, T ], (3.25)

‖WA(t)‖23 ≤ ε−1KT on Ωε, t ∈ [0, T ]. (3.26)

We remark that the stronger assumption γ > 1 is only used in the proof of (3.26).
Proof. It is enough to prove the existence of an Ωε for every ε > 0 individually in

(3.23)–(3.26). We prove the bounds for Xh and WA; the others are proved similarly.
From (3.20) and (2.12) there follows E[J(PhX0)] ≤ C(1 + ρ). Using also (3.16)

in (3.11), we obtain

E
[

sup
t∈[0,T ]

(
‖∇Xh(t)‖2 + ‖Xh(t)‖4L4

)]
≤ C

(
1 + ρ

)
+ C E

[
sup
t∈[0,T ]

∣∣∣ ∫ t

0

〈J ′(Xh(s)), Ph dW (s)〉
∣∣∣]

+ C E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0

Tr(J ′′(Xh(s)Qh)) ds
∣∣∣].
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The stochastic integral is
∫ t

0
〈J ′(Xh(s)), Ph dW (s)〉 =

∫ t
0

˜J ′(Xh(s))Ph dW (s), where
˜J ′(Xh(s)) : H → R is defined by ˜J ′(Xh(s))v = 〈J ′(Xh(s)), v〉. This integral is a

martingale. Hence, we may use Hölder’s inequality, the martingale inequality ([6,
Theorem 3.8]), and the Itô isometry ([6, Corollary 4.14]) to get(

E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0

˜J ′(Xh(s))Ph dW (s)
∣∣∣])2

≤ E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0

˜J ′(Xh(s))Ph dW (s)
∣∣∣2]

≤ 4 sup
t∈[0,T ]

E
[∣∣∣ ∫ t

0

˜J ′(Xh(s))Ph dW (s)
∣∣∣2] = 4 sup

t∈[0,T ]

E
[ ∫ t

0

‖ ˜J ′(Xh(s))Q
1
2
h ‖

2
HS ds

]
= 4E

[ ∫ T

0

‖ ˜J ′(Xh(s))Q
1
2
h ‖

2
HS ds

]
.

Here, by (2.2),

‖ ˜J ′(Xh(s))Q
1
2
h ‖

2
HS ≤ ‖J ′(Xh(s))‖2‖Q

1
2
h ‖

2
HS

≤
(
|J ′(Xh(s))|20 + 〈J ′(Xh(s)), ϕ0〉2

)
Tr(Q)

≤ C
(
1 + |J ′(Xh(s))|21 + J(Xh(s))

)
Tr(Q),

where we used (3.10) and the (rough) bounds |u|0 ≤ |u|1 and

〈J ′(uh), ϕ0〉2 = |D|−1
(∫
D

(
Ahuh + Ph(u3

h − uh)
)

dx
)2

= |D|−1
(∫
D
Ph(u3

h − uh) dx
)2

≤ C
(
1 + ‖uh‖4L4

)
≤ C

(
1 + J(uh)

)
.

By using (3.9), we conclude that(
E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0

˜J ′(Xh(s))Ph dW (s)
∣∣∣])2

≤ C Tr(Q)
(
T + E

[ ∫ T

0

|J ′(Xh(s))|21 ds
]

+ T sup
s∈[0,T ]

E
[
J(Xh(s))

])
≤ K2

T .

Next, using (3.17) and Hölder’s inequality, we have

E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0

Tr(J ′′(Xh(s)Qh)) ds
∣∣∣] ≤ E

[ ∫ T

0

|Tr(J ′′(Xh(s)Qh))|ds
]

≤ CKQE
[ ∫ T

0

(
1 + J(Xh(s))

1
2
)

ds
]

≤ CKQT
(
1 + sup

s∈[0,T ]

E[J(Xh(s))]
)
≤ KT ,

which finishes the proof of (3.22).
In order to prove (3.24) we denote

Fh = sup
t∈[0,T ]

(
‖∇Xh(t)‖2 + ‖Xh(t)‖4L4

)
.

We apply Chebyshev’s inequality and (3.22) to get, for every α > 0,

P
({
ω ∈ Ω : Fh > α

})
≤ 1
α

E
[
Fh
]
≤ KT

α
.
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We choose α = ε−1KT and set Ωε =
{
ω ∈ Ω : Fh ≤ ε−1KT

}
. Then

P(Ωε) = 1−P
({
ω ∈ Ω : Fh > α

})
≥ 1− ε

and (3.24) holds. For (3.25) we note that

‖u‖21 ≤ ‖∇u‖2 + ‖u‖2 ≤ ‖∇u‖2 + C
(
1 + ‖u‖4L4

)
and hence (3.25) follows from (3.21) and (3.22) after an adjustment of KT . Finally,
(3.26) follows by first employing a factorization method argument as in the proof of
[6, Remark 5.11] but in the H3-norm using the analyticity of the semigroup (this is
where γ > 1 is needed), and then using Chebychev’s inequality as above.

4. Regularity of the solution. We quote the following from [5]. There it
is assumed that A and Q commute and that the eigenfunctions of A are uniformly
bounded in the sup norm but it can be verified that these are not necessary for the
following result. Recall the definitions of weak and mild solutions in (3.4) and (3.5).

Theorem 4.1. Let T > 0 and assume that Tr(Aδ−1Q) <∞ for some δ > 0 and
that X0 is F0-measurable with values in H. Then there is a unique weak solution X
of (3.3).

Corollary 4.2. Assume that ‖A 1
2Q

1
2 ‖HS < ∞ and that X0 is F0-measurable

with values in H1 satisfying ‖X0‖2L2(Ω,H1) + ‖X0‖4L4(Ω,L4) ≤ ρ for some ρ ≥ 0. Then
the weak solution X of (3.3) is also a mild solution.

Proof. By (3.19), the condition ‖A 1
2Q

1
2 ‖HS < ∞ implies Tr(Aδ−1Q) < ∞ with

δ = 1 and hence there is a unique weak solution X of (3.3) by Theorem 4.1. Let
ε > 0 and Ωε the set defined in Corollary 3.2. We first show that X satisfies (3.5)
on Ωε. By the uniqueness weak solutions of (3.3), we only have to show that the
right-hand side of (3.5) satisfies (3.4) on Ωε. Since WA is the unique weak solution of
dZ +A2Z dt = dW, Z(0) = 0 (by [6, Theorem 5.4]), it is enough to show that

Y (t) := e−tA
2
X0 −

∫ t

0

Ae−(t−s)A2
f(X(s)) ds

satisfies

〈Y (t), v〉 − 〈X0, v〉 +
∫ t

0

(
〈Y (s), A2v〉 + 〈f(X(s)), Av〉

)
ds = 0 on Ωε, v ∈ D(A2).

This follows by standard arguments (see, e.g., [1]) as, by Sobolev’s inequality and
Corollary 3.2, there is C depending on ε, ρ, Q, and T such that

‖f(X(s))‖ ≤ C(‖X(s)‖L2 + ‖X(s)‖3L6) ≤ C(‖X(s)‖L2 + ‖X(s)‖3H1) ≤ C

for t ∈ [0, T ], ω ∈ Ωε. This also shows that the integrand of the deterministic integral
in (3.5) is in L1([0, T ], H) on Ωε by the analyticity of the semigroup e−tA

2
. Finally,

since ε > 0 is arbitrary and P (Ωε) > 1− ε, the statement follows.
We now show that, under the stronger assumption ‖A

γ
2Q

1
2 ‖HS < ∞ for some

γ > 1, the solution X(t) is actually in H3 almost surely. In order to do this we write,
as in the previous proof, X(t) = Y (t) +WA(t), where we already know from Theorem
2.1 that WA(t) is in H3 almost surely. The regularity of Y is studied in the next
theorem. Note that we saw in the proof of Corollary 4.2 that

Y (t) = X(t)−WA(t) = e−tA
2
X0 −

∫ t

0

Ae−(t−s)A2
f(X(s)) ds
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is a weak solution of

Ẏ +A2Y +Af(X) = 0, t ∈ (0, T ]; Y (0) = X0, (4.1)

almost surely.
Theorem 4.3. Assume that ‖A

γ
2Q

1
2 ‖HS < ∞ for some γ > 1 and that X0 is

F0-measurable with values in H3 satisfying ‖X0‖2L2(Ω,H1) +‖X0‖4L4(Ω,L4) ≤ ρ for some
ρ ≥ 0. Let T > 0 and ε ∈ (0, 1) and let Ωε and KT be as in Corollary 3.2 such that
also ‖X0‖3 ≤ C on Ωε. Let X be the solution from Theorem 4.1 and Y = X −WA.
Then X,Y ∈ C([0, T ], H) ∩ L∞([0, T ], H3) almost surely, and, for each ω ∈ Ωε,

‖Y (t)‖3 ≤ C(‖X0‖3, ε−1KT , T ) on Ωε, t ∈ [0, T ], (4.2)

‖X(t)‖3 ≤ C(‖X0‖3, ε−1KT , T ) on Ωε, t ∈ [0, T ]. (4.3)

Proof. First note that since X0 is H3-valued almost surely, it is always possible
to choose Ωε in Corollary 3.2 such that also ‖X0‖3 ≤ C on Ωε. The continuity of X is
already contained in Theorem 4.1 and the continuity of Y follows from the continuity
of X and WA. To show that X,Y ∈ L∞([0, T ], H3) almost surely it is enough to show
(4.2) and (4.3) as ε > 0 is arbitrary and P (Ωε) ≥ 1 − ε. Let t ∈ [0, T ] and ω ∈ Ωε.
From Corollary 3.2 we have

‖X(t)‖21 ≤ ε−1KT , ‖WA(t)‖3 ≤ ε−1KT . (4.4)

We take seminorms in

Y (t) = e−tA
2
X0 −

∫ t

0

Ae−(t−s)A2
f(X(s)) ds (4.5)

and use (2.5) to get

|Y (t)|3 ≤ |e−tA
2
X0|3 +

∫ t

0

|e−(t−s)A2
Af(X(s))|3 ds

= ‖e−tA
2
A

3
2X0‖ +

∫ t

0

‖A 3
2 e−(t−s)A2

Af(X(s))‖ ds

≤ |X0|3 + C

∫ t

0

(t− s)− 3
4 ‖Af(X(s))‖ ds.

We apply (2.17) to ‖Af(X(s))‖ = ‖∆f(X(s))‖ to get

|Y (t)|3 ≤ |X0|3 + C

∫ t

0

(t− s)− 3
4
(
1 + ‖X(s)‖21

)
‖X(s)‖3 ds

≤ |X0|3 + C

∫ t

0

(t− s)− 3
4
(
1 + ‖X(s)‖21

)(
‖Y (s)‖3 + ‖WA(s)‖3

)
ds.

Since (I − P )Y (t) = (I − P )X0 is constant, we get the same bound for the norm
‖Y (t)‖3. Using also (4.4) gives

‖Y (t)‖3 ≤ ‖X0‖3 + C

∫ t

0

(t− s)− 3
4
(
1 + ε−1KT

)(
‖Y (s)‖3 + ε−1KT

)
ds

≤ ‖X0‖3 + Cε−1KT

(
1 + ε−1KT

)
T

1
4

+ C
(
1 + ε−1KT

) ∫ t

0

(t− s)− 3
4 ‖Y (s)‖3 ds.
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Applying Gronwall’s Lemma 2.3 with α = 1, β = 1
4 and

A = ‖X0‖3 + Cε−1KT

(
1 + ε−1KT

)
, B = C

(
1 + ε−1KT

)
, (4.6)

gives

‖Y (t)‖3 ≤ AC(B, T ) = C(‖X0‖3, ε−1KT , T ), t ∈ [0, T ].

The bound for ‖X(t)‖3 then follows in view of (4.4).
The constant C(‖X0‖3, ε−1KT , T ) grows rapidly with ε−1KT and T . Hence, it

is important that KT grows only quadratically with T . Also note that the proof of
Theorem 4.3 shows that under the assumptions of the theorem, in fact, f(X(t)) ∈
D(A) almost surely and ‖Af(X(t))‖ < ∞ almost surely for t ∈ [0, T ]. Therefore, X
satisfies a more strict (in comparison to (3.5)) mild form of (3.3):

X(t) = e−tA
2
X0 −

∫ t

0

e−(t−s)A2
Af(X(s)) ds+

∫ t

0

e−(t−s)A2
dW (s).

5. Error estimates.

5.1. The linear deterministic Cahn-Hilliard equation. Consider the linear
Cahn-Hilliard equation

u̇+Av = 0, v −Au− f = 0, t > 0; u(0) = u0, (5.1)

where f is a function of x, t, and the corresponding finite element problem

u̇h +Ahvh = 0, vh −Ahuh − Phf = 0, t > 0; uh(0) = Phu0. (5.2)

We have the following error estimate. We will later use this for fixed ω ∈ Ωε with
f replaced by f(X) and u by the solution Y of (4.1). The error estimate differs from
the corresponding error estimates in [7, 12] in that it contains no time derivative.
This is important since Y has limited temporal regularity.

Theorem 5.1. Assume that u, v and uh, vh are weak solutions of (5.1) and (5.2),
respectively. Then, for t ≥ 0 and h ∈ (0, 1

2 ], we have

‖uh(t)− u(t)‖ ≤ Ch2
(
| log(h)| max

0≤s≤t
|u(s)|2 +

(∫ t

0

|v(s)|22 ds
) 1

2
)
. (5.3)

Proof. The weak forms of (5.1) and (5.2) are

〈u̇, ϕ1〉 + 〈∇v,∇ϕ1〉 = 0 ∀ϕ1 ∈ H1,

〈v, ϕ2〉 − 〈∇u,∇ϕ2〉 − 〈f, ϕ2〉 = 0 ∀ϕ2 ∈ H1,

u(0) = u0,

(5.4)

and

〈u̇h, ϕh,1〉 + 〈∇vh,∇ϕh,1〉 = 0 ∀ϕh,1 ∈ Sh,
〈vh, ϕh,2〉 − 〈∇uh,∇ϕh,2〉 − 〈f, ϕh,2〉 = 0 ∀ϕh,2 ∈ Sh,
uh(0) = Phu0.

(5.5)
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Let Ph and Rh be as in (2.7) and (2.10) and set

eu = uh − u = (uh − Phu) + (Phu− u) = θu + ρu, (5.6)
ev = vh − v = (vh −Rhv) + (Rhv − v) = θv + ρv. (5.7)

We want to compute

‖eu‖ ≤ ‖θu‖ + ‖ρu‖. (5.8)

In (5.4) choose ϕ1 = ϕh,1 and ϕ2 = ϕh,2 and subtract the first two equations of (5.4)
from the corresponding equations in (5.5) to get

〈ėu, ϕh,1〉 + 〈∇ev,∇ϕh,1〉 = 0 ∀ϕh,1 ∈ Sh,
〈ev, ϕh,2〉 − 〈∇eu,∇ϕh,2〉 = 0 ∀ϕh,2 ∈ Sh.

Hence, by (5.6) and (5.7),

〈θ̇u, ϕh,1〉 + 〈∇θv,∇ϕh,1〉 = −〈ρ̇u, ϕh,1〉 − 〈∇ρv,∇ϕh,1〉 ∀ϕh,1 ∈ Sh,
〈θv, ϕh,2〉 − 〈∇θu,∇ϕh,2〉 = −〈ρv, ϕh,2〉 + 〈∇ρu,∇ϕh,2〉 ∀ϕh,2 ∈ Sh.

By the definitions of Ph and Rh we have

〈ρ̇u, ϕh,1〉 = 〈Phu̇− u̇, ϕh,1〉 = 0 ∀ϕh,1 ∈ Sh,
〈∇ρv,∇ϕh,1〉 = 〈∇Rhv − v,∇ϕh,1〉 = 0 ∀ϕh,2 ∈ Sh,

so that

〈θ̇u, ϕh,1〉 + 〈∇θv,∇ϕh,1〉 = 0 ∀ϕh,1 ∈ Sh,
〈θv, ϕh,2〉 − 〈∇θu,∇ϕh,2〉 = −〈Phρv, ϕh,2〉 + 〈∇Rhρu,∇ϕh,2〉 ∀ϕh,2 ∈ Sh.

In the second equation we set ϕh,2 = Ahϕh,1 to get

〈∇θv,∇ϕh,1〉 = 〈A2
hθu, ϕh,1〉 − 〈AhPhρv, ϕh,1〉 + 〈A2

hRhρu, ϕh,1〉.

Inserting this into the first equation gives

〈θ̇u, ϕh,1〉 + 〈A2
hθu, ϕh,1〉 = 〈AhPhρv, ϕh,1〉 − 〈A2

hRhρu, ϕh,1〉,

so the strong form is

θ̇u +A2
hθu = AhPhρv −A2

hRhρu, t > 0; θu(0) = 0,

with solution

θu(t) =
∫ t

0

e−(t−s)A2
hAhPhρv(s) ds−

∫ t

0

e−(t−s)A2
hA2

hRhρu(s) ds.

Taking norms here gives

‖θu(t)‖ ≤
∥∥∥∫ t

0

e−(t−s)A2
hAhPhρv(s) ds

∥∥∥
+
∥∥∥∫ t

0

e−(t−s)A2
hA2

hRhρu(s) ds
∥∥∥ = I + II.

(5.9)
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For I we define

wh(t) =
∫ t

0

e−(t−s)A2
hPhρv(s) ds,

which satisfies the equation

ẇh +A2
hwh = Phρv, t > 0; wh(0) = 0.

We multiply by ẇh to get

‖ẇh‖2 +
1
2

d
dt
‖Ahwh‖2 = 〈Phρv, ẇh〉 ≤ ‖ρv‖‖ẇh‖ ≤

1
2
‖ρv‖2 +

1
2
‖ẇh‖2,

so that

‖ẇh‖2 +
d
dt
‖Ahwh‖2 ≤ ‖ρv‖2.

Integration and ignoring
∫ t

0
‖ẇh(s)‖2 ds leads to∥∥∥Ah ∫ t

0

e−(t−s)A2
hPhρv(s) ds

∥∥∥ = ‖Ahwh(t)‖ ≤
(∫ t

0

‖ρv(s)‖2 ds
) 1

2
,

where, from (2.11),

‖ρv‖ = ‖(Rh − I)v‖ ≤ Ch2|v|2.

Hence, ∥∥∥Ah ∫ t

0

e−(t−s)A2
hPhρv(s) ds

∥∥∥ ≤ Ch2
(∫ t

0

|v(s)|22 ds
) 1

2
. (5.10)

For the term II we use

Rhρu = Rh(Phu− u) = Phu−Rhu = Ph(u−Rhu).

Then ∥∥∥∫ t

0

A2
he−(t−s)A2

hRhρu(s) ds
∥∥∥ ≤ ∫ t

0

‖A2
he−(t−s)A2

hPh(u(s)−Rhu(s))‖ ds

≤
∫ t

0

‖A2
he−(t−s)A2

hPh‖ ds max
0≤s≤t

‖u(s)−Rhu(s)‖.

Here we use ‖Ah‖ ≤ Ch−2 from (2.12) and (2.9) to get∫ t

0

‖A2
he−(t−s)A2

hPhP‖ ds =
∫ h4

0

‖Ah‖2‖e−sA
2
h‖ ds+

∫ t

h4
‖A2

he−sA
2
h‖ ds

≤ Ch−4h4 + C

∫ t

h4
s−1e−cs ds ≤ C(1 + log(1/h)) ≤ C| log(h)|

for h ∈ (0, 1
2 ]. Hence, by (2.11), we have∥∥∥∫ t

0

A2
he−(t−s)A2

hRhρu(s) ds
∥∥∥ ≤ Ch2| log(h)| max

0≤s≤t
|u(s)|2. (5.11)
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Inserting (5.10) and (5.11) into (5.9) gives

‖θu(t)‖ ≤ Ch2
{(∫ t

0

|v(s)|22 ds
) 1

2
+ | log(h)| max

0≤s≤t
|u(s)|2

}
. (5.12)

Finally, by the best approximation property of Ph,

‖ρu(t)‖ = ‖Phu− u‖ ≤ ‖Rhu− u‖ ≤ Ch2|u(t)|2. (5.13)

Inserting (5.12) and (5.13) into (5.8) gives the desired result (5.3).
The following regularity estimate for the linear Cahn-Hilliard equation (5.1) is

proved by an elementary energy argument.
Lemma 5.2. Assume that u, v are weak solutions of (5.1). Then

|u(t)|22 +
∫ t

0

|v(s)|22 ds ≤ |u0|22 +
∫ t

0

|f(s)|22 ds.

5.2. Error estimate for the stochastic Cahn-Hilliard equation. In the
next theorem we prove an error estimate for the nonlinear Cahn-Hilliard-Cook equa-
tion.

Theorem 5.3. Assume that ‖A
γ
2Q

1
2 ‖HS < ∞ for some γ > 1 and that X0 is

F0-measurable with values in H3 satisfying ‖X0‖2L2(Ω,H1) +‖X0‖4L4(Ω,L4) ≤ ρ for some
ρ ≥ 0. Let T > 0, ε ∈ (0, 1), and let Ωε ⊂ Ω and KT be as in Corollary 3.2 such that
also ‖X0‖3 ≤ C on Ωε. If X is the weak solution of (3.3) and Xh is the solution of
(3.6), then, for h ∈ (0, 1

2 ],

‖Xh(t)−X(t)‖ ≤ C(‖X0‖3, ε−1KT , T )h2| log(h)|, on Ωε, t ∈ [0, T ].

The constant C(‖X0‖3, ε−1KT , T ) grows rapidly with ε−1KT and T due to the
use of Gronwall’s lemma in the proof. As noted before in the proof of Theorem 4.3,
it is always possible to choose Ωε in Corollary 3.2 such that also ‖X0‖3 ≤ C on Ωε.

Proof. Let ω ∈ Ωε be fixed. Set

X(t) = Y (t) +WA(t), (5.14)

where WA(t) is the stochastic convolution (2.14) and Y (t) is the weak solution (4.5)
of (4.1). Also set

Xh(t) = Zh(t) +WAh(t), (5.15)

where WAh(t) is the stochastic convolution (2.15) and

Zh(t) = e−tA
2
hPhX0 −

∫ t

0

e−(t−s)A2
hAhPhf(Xh(s)) ds. (5.16)

Finally, let

Yh(t) = e−tA
2
hPhX0 −

∫ t

0

e−(t−s)A2
hAhPhf(X(s)) ds. (5.17)

We subtract (5.14) from (5.15) and take norms,

‖Xh −X‖ ≤ ‖WAh −WA‖ + ‖Yh − Y ‖ + ‖Zh − Yh‖. (5.18)
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We must compute the three norms on the right-hand side.
First we compute ‖WAh(t)−WA(t)‖. Since ‖A 1

2Q
1
2 ‖HS < ∞, we have that

‖Q 1
2 ‖HS < ∞, see (3.19), and hence, by Theorem 2.2 and Chebyshev’s inequality,

we get

‖WAh(t)−WA(t)‖ ≤ ε− 1
2
(
E[‖WAh(t)−WA(t)‖2]

) 1
2

≤ ε− 1
2Ch2| log(h)|‖Q 1

2 ‖HS ≤ C(ε−1KQ)
1
2h2| log(h)|,

where KQ is as in Theorem 3.1. Since KQ ≤ KT , we conclude

‖WAh(t)−WA(t)‖ ≤ C(ε−1KT )
1
2h2| log(h)|. (5.19)

Now we consider ‖Yh(t)− Y (t)‖ and use Theorem 5.1 to get

‖Yh(t)− Y (t)‖ ≤ Ch2
{
| log(h)| max

0≤s≤t
|Y (s)|2 +

(∫ t

0

|V (s)|22 ds
) 1

2
}
, (5.20)

where Y (t) and V (t) are the solutions of

Ẏ +AV = 0, V = AY + f(X), t ∈ (0, T ]; Y (0) = X0.

By using Lemma 5.2, (2.17), (3.25), and Theorem 4.3 , we get∫ t

0

|V (s)|22 ds ≤ |X0|22 +
∫ t

0

|f(X(s))|22 ds

≤ ‖X0‖22 + C

∫ t

0

(1 + ‖X(s)‖21)2‖X(s)‖23 ds

≤ C(‖X0‖3, ε−1KT , T ).

(5.21)

Now we bound |Y (t)|2. By Theorem 4.3 we have

|Y (t)|2 ≤ ‖Y (t)‖3 ≤ C(‖X0‖3, ε−1KT , T ). (5.22)

Using (5.21) and (5.22) in (5.20) gives

‖Yh(t)− Y (t)‖ ≤ C(‖X0‖3, ε−1KT , T )h2| log(h)|. (5.23)

Finally we compute ‖eh(t)‖ = ‖Zh(t)− Yh(t)‖. By subtraction of (5.16) and
(5.17), we obtain

‖eh(t)‖ ≤
∫ t

0

‖e−(t−s)A2
hAhPhP (f(Xh(s))− f(X(s)))‖ ds

≤
∫ t

0

‖A
3
2
h e−(t−s)A2

h‖‖A−
1
2

h P (f(Xh(s))− f(X(s)))‖ ds,

since the constant eigenmodes cancel (cf. (2.16)). Using (2.18) and (2.9) gives

‖eh(t)‖ ≤ C
∫ t

0

(t− s)− 3
4
(
1 + ‖Xh(s)‖21 + ‖X(s)‖21

)
‖Xh(s)−X(s)‖ ds.
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By Corollary 3.2 we have

‖eh(t)‖ ≤ C
∫ t

0

(t− s)− 3
4
(
1 + ε−1KT

)(
‖WAh(s)−WA(s)‖

+ ‖Yh(s)− Y (s)‖ + ‖eh(s)‖
)

ds

≤ C
(
1 + ε−1KT

)
T

1
4 max

0≤s≤T

(
‖WAh(s)−WA(s)‖ + ‖Yh(s)− Y (s)‖

)
+ C

(
1 + ε−1KT

) ∫ t

0

(t− s)− 3
4 ‖eh(s)‖ ds.

We apply Gronwall’s Lemma 2.3 with α = 1, β = 1
4 and

A = C
(
1 + ε−1KT

)
T

1
4 max

0≤s≤T

(
‖WAh(s)−WA(s)‖ + ‖Yh(s)− Y (s)‖

)
,

B = C
(
1 + ε−1KT

)
,

to get

‖Zh(t)− Yh(t)‖ = ‖eh(t)‖ ≤ AC(B, T ), t ∈ [0, T ]. (5.24)

But we already obtained bounds for ‖WAh(t)−WA(t)‖ and ‖Yh(t)− Y (t)‖ in (5.19)
and (5.23). By inserting these and (5.24) into (5.18) we get the desired result.

Since we have regularity of order 3 on Ωε, it would be possible to prove convergence
of order 3 for piecewise quadratic finite elements. We do not find this worth the extra
effort since our main result does not show a rate of convergence anyway.

We finally show that Xh converges strongly to X.
Theorem 5.4. Assume that ‖A

γ
2Q

1
2 ‖HS < ∞ for some γ > 1 and that X0 is

F0-measurable with values in H3 satisfying ‖X0‖2L2(Ω,H1) +‖X0‖4L4(Ω,L4) ≤ ρ for some
ρ ≥ 0. If X is the weak solution of (3.3) and Xh is the solution of (3.6), then(

E
[

sup
t∈[0,T ]

‖Xh(t)−X(t)‖2
]) 1

2 → 0 as h→ 0.

Proof. From Corollary 3.2 it follows that

E
[

sup
t∈[0,T ]

‖X(t)‖4L4

]
≤ KT , E

[
sup
t∈[0,T ]

‖Xh(t)‖4L4

]
≤ KT , t ∈ [0, T ], (5.25)

with KT as in Corollary 3.2. Let ε ∈ (0, 1) and let Ωε be as in Corollary 3.2 such that
also ‖X0‖3 ≤ C on Ωε. Then

E
[

sup
t∈[0,T ]

‖Xh(t)−X(t)‖2
]
≤
∫

Ωε

sup
t∈[0,T ]

‖Xh(t)−X(t)‖2 dP

+ 2
∫

Ωcε

(
sup
t∈[0,T ]

‖Xh(t)‖2 + sup
t∈[0,T ]

‖X(t)‖2
)

dP.

Here, by Hölder’s inequality and (5.25), we have∫
Ωcε

sup
t∈[0,T ]

‖X(t)‖2 dP ≤
(∫

Ωcε

12 dP
) 1

2
(∫

Ωcε

sup
t∈[0,T ]

‖X(t)‖4L4
dP
) 1

2

≤ ε 1
2

(
E
[

sup
t∈[0,T ]

‖X(t)‖4L4

]) 1
2 ≤ ε 1

2K
1
2
T
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and similarly for Xh. Therefore, by Theorem 5.3,(
E
[

sup
t∈[0,T ]

‖Xh(t)−X(t)‖2
]) 1

2 ≤ C(ε−1KT , T )h2| log(h)|+ CK
1
4
T ε

1
4 .

Since ε
1
4

C(ε−1KT ,T ) → 0 monotonically as ε→ 0, we may choose ε depending on h, such
that the two terms are equal.

Since C(ε−1KT , T ) grows rapidly with ε−1, is not possible to obtain a rate of
convergence from this proof.
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