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Abstract—In this paper we study opportunistic transmission ~concept of cognitive radio (CR) as defined first by J. Mitola
strategies for cognitive radios (CR) in which causal noisy - [5] entails that the communication devices adapt themselve
servation from a primary user (PU) state is available. The PU to the spectrum [4].

is assumed to be operating in a slotted manner, according to a In th text of CR t . | ial rol
two-state Markov model. The objective is to maximize utiliation n the context o » SPectrum sensing plays a crucial role

ratio (UR), i.e., the relative number of the PU-idle slots trat are  for the cognition phase. Since the spectrum sensing istaffec
used by the CR, subject to interference ratio (IR), i.e., theelative by the type of signal detectors e.g., energy detectors, matc

number of the PU-active slots that are used by the CR, below a filter detectors, cyclostationary feature detectors, \edviea-
certain level. We introduce an a-posteriori LLR-based cogitive ture detectors, etc., the measure of the performance of a CR

transmission strategy and show that this strategy is optimm in . .
the sense of maximizing UR given a certain maximum allowed 'S normally based on the performance of its spectrum sensor

IR. Two methods for calculating threshold for this strategy in  [6]. Usually, detectors and spectrum sensing algorithnes ar
practical situations are presented. One of them performs wiein  characterized by their probabilities of mis-detection &alde-
higher SNRs but might have too large IR at low SNRs and low alarm [7] [6]. However, the obvious choice of using these
PU activity levels, and the other is proven to never violatelte . papjlities might not the best choice to serve the purpose
allowed IR at the price of a reduced UR. In addition, an upper- f it d adaptati f CRs. Th W babiliti
bound for the UR of any CR strategy operating in the presence o 009”' lon a.n adaptation o S. ese two pr_o ‘_"‘ fhiies
of Markovian PU is presented. Simulation results have showra ~Carry information only about a detector and not the inteoact
more than 116% improvement in UR at SNR of —3dB and IR between the primary user of the band and CR transmission
level of 10% with PU state estimation. Thus, this opportunisic  strategies. Some researchers approached performance-eval
CR mechanism possesses a high potential in practical scemas i of CRs from the capacity point of view [8], which is valid
in which there exists no information about true states of PU. . .
o _ with a sophisticated channel code and a large block length
Index Terms—Spectrum Utilization, Interference Ratio, Spec- (delay). Thus, a need for proper measures for evaluating the
trum Sensing, Cognitive Radio, Hidden Markov Model, Oppor- performance of cognitive radios (networks) emerges.
tunistic spectrum access, DSA. .. . h . .
In the traditional implementations of CR, in which only
the current sensed received signal is considered for the
. INTRODUCTION transmission decision in the succeeding time slots, the PU

He limited availability of radio spectrum, together withiraffic model is typically ignored. CR also expects that its
T the ever increasing demands for data rates, has credfBgervation resembles the true transmission state of the PU
a big challenge for spectrum regulators, manufacturers aiad the PU will not change its state in the period of CR
operators as they need to meet the demand. Modulation dfsmission. Clearly, since this CR does not incorportage t
coding are approaching the Shannon limits, which makes thY transmission model in its decision, the performance ef th
higher spectral efficiencies theoretically impossible. [0p CR Will improve if the CR decision algorithm includes such a
the other hand, the hardware impairments including but rig°del- This will require a beyond-PHY or cross-layer design
limited to power amplifiers nonlinearities, analog to dagit 1"US, integrating the PU model into the CR transmission
conversion issues and phase noise, limit the efficient use $2tegy will enable the CR to have credible prediction &f th
frequency bands. Although the usable spectrum is limitegY States. , o
Federal Communications Commission (FCC) studies haye!l information theory literature, normally it is assumeatth
shown that the spectrum is severely underutilized [2]. Mof8€ CR(S) have non-causal information about PU(s) aawiti
specifically, studies have shown that the utilization of through a genie [9]. However, in practical applicationssthi
spectrum in different geographical areas varies signifigan 2SSumption does not hold. Many researchers use only the
For example, fading in primary wireless channels creatg4/rent state of PU for transmission in the slot. ,
spatial spectrum holes which can be exploited by secondanyn 2ddition, CRs suffer from other problems. The capabil-
users [3], [4]. The introduction of software defined radiais [li€S of CRs utilizing energy detection spectrum sensing is
enabling technology for the dynamic spectrum access [#], [gmlted by the SNR wall [10]. This is due to the low received

which motivates the reuse of the unhindered spectrum. TR@WVer of the PU signal at the CR receiver and uncertainties
in signals, noise, and channels. This effect is more visible
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radio, which, according to the cognitive cycle [5], [13] sifcb A. Complete PU Transmission Model
adapt itself to the dynamics of the spectrum, needs to be agil . _ _ _ N
to react to the changes in the spectrum [14] as fast as pessibl A cognmve radio system is desllgned to utilize the speptrum
On the other hand, in some cases such as energy deteci§ancies. To take advantage of time-frequency slots waneh
agility compromises the accuracy of sensing the spectruftpt used by the PU, the CR must be aware of the PU activities.
which ultimately jeopardizes not only the interferenceelev IN this paper, itis assumed that the CR has always informatio
made for the PU but also reduces the spectrum reuse. Thut® Re sent (a full buffer) to reuse the spectrum whenever it is
CR which can optimally incorporate all previous observagio available.
and thus decides for transmission within a short time, is Theé CR will receive the PU signal which is attenuated by
appealing. Sequential spectrum sensing has been proverd channel between PU and CR. If there exists more than
be on average faster than traditional energy detection [P€ PU in the vicinity of the CR, the aggregated signal will
[15], [16]. However, since detection time varies in seqignt be received by the CR antenna. It is possible to assume that th
detection, it is not a good candidate for slotted CR strategy”Us operating in the same frequency band and are co-located,

In this manuscript, we deploy a hidden Markov moddl€long to the same network and thus from the CR point of
(HMM) to form a framework for modeling the behavior of CR</i€W can be modeled as a single entity. Since protection of
in the presence of PUs and all the uncertainties. Additignal®@ch one of the PUs is as important as the others, a network
a benchmark for evaluation of CR performance is introduce®f, PUS for CR can be represented by a single but more active
Then, using this foundation and these measures, a new ER. although this would yield a suboptimal CR performance
transmission strategy is designed and implemented. This ngompared with a multi-PU model.
design ensures that the vacant spectrum is optimally used\nother factor in modeling the PU-CR interaction is the
conditioned on the level of interference for the PU, becaiisechannel in between. Wireless channels are normally consid-
all uncertainties in the model, is not exceeding a certainlle €reéd as random fading processes such as Rayleigh, Rician,

HMMs are long in use for modeling different phenomenbl@kagami, etc. [28], [29]. Another approach to model the
ranging from speech signals [17] to the complex behavior fading process is to include the fading in the PU transmissio
computer networks. In the context of cognitive radio, ma odel. Thus, whenever channel is in a deep fade, it is assumed
researchers model the spectrum white space with Mark t there is no PU transmission, no matter what the read stat
models and spectrum sensing using HMMs [18]-[24]. In o@f the PU is. And in case of no deep fade, the standard PU
paper, HMMs are used not only for spectrum sensing but altgnsmission model will be deployed. With this brief intro-
as a tool for CR transmission strategy making. The closéifction, a simple two-state Markov model can approximate
published approach to our method is presented in [25]_[2ﬂ,wide range of PU transmissions, PU .netvyo.rk ggtivities and
which employs a partially observed Markov decision procesdven fading channels. In this paper, for simplicity, it isased
They used this process for optimal policy making for mutiplthat the fading gain is constant and known during the oparati
channel sensing and access. The approach is similar to df#is CR. Thus, the fading coefficient can be absorbed by the
due to the Markovian assumption for the PU transmissig#gnal model and will not be further considered in this paper
model and in the presence of sensing errors. However, ndhe next section, the simplified two-state Markov model wi
sensing model, performance metric, and constraints afer-dif P& presented as the PU transmission model.
ent from ours.

To summarize the contributions of this paper following

items can be enlisted B. Simplified PU Transmission Model
o A new performance measure for characterizing CR per-
formance is introduced Now, the PU transmissions are assumed to be slotted, since
« A novel APP-LLR based opportunistic spectrum reuti? most of today’s digital communication systems transmis-
lization strategy is proposed sions are confined within a packet, frame or generally some
« Optimality of this new strategy is proved block structure of some minimum lengfiz. However, the CR

« Two practical methods for calculating the threshold fo expecting PU activities and vacancies in much smallés slo
the APP-LLR based strategy are introduced, one is sufif Iength 7" < T¢. Smaller slot size improves the agility of
URs but the IR may be too high at low SNR. The othetimplicity, we will assume that the CR slots are synchrothize
never violates the allowed IR level, but with a reducelp the PU slots. However, because of the small CR slot

UR, length in comparison to the PU slot length, mismatches in
« An upper bound on the UR for any CR transmissiofynchronization will not cause major performance degiadat
strategy is established. The existence of a PU transmission in slati.e., during

time ¢ € [kT,(k + 1)T), is denoted by the hypothesis

H, 2 {g, = 1} and its absence is denoted By 2 {g;, = 0}.

A simple model which represents the PU transmission is the
This section presents the model which accounts for thwo-state on-off Markov process depicted in Fig. 1, where

PU signal and noise. First, a more general perspectivetli® Markov chain is represented by the transition prohisdsli

demonstrated and then a simplified version will be used. «a;; = Pr{gi+1 = jlgp = ¢} > 0 for 4,5 € {0,1} and g

Il. SYSTEM MODEL
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Fig. 1. PU transmission model

CN(0,02) CN(0,07)
stands for the PU state at time slatThe transition matrix is
A2 [ @00 o1 ] , apo +apr =ajo+an =1 (1) (1)
ajp aii

The initial distribution of the states is assumed to be in a R
steady state [17] and defined as 2 Ir()]

A
™ = [ o T } ¢ "
[ Pr{gp =0} Pr{g. =1} ]
_ [ aio aoy ] L, k=0,1,2, - ) Fig. 2. Continuous-output HMM of received signal at CR

ao1+aio ao1taio

(1>

It is assumed that the PU activities happen with a pefiipd

larger than the period CR Markov chain operatinglarThus, of = o2 + o§. Thus,y, is chi-square distributed witR K
the chance of staying in one state or another is much higttgrees of freedom and Gaussian variant.

than the chance of transition between states. This allovis us

assume thatio; + aio < 1, which tums out to be useful in |||, progLEM STATEMENT AND PERFORMANCEMETRICS

Section VI. N . . o ]
Cognitive radios exploit channel availability informatio

) . from spectrum sensing and decide whether to transmit or not.

C. Signal and Noise Model In this paper we assume that the CR has a full buffer to

The receiver front end is an energy detector whose outgransmit. Thus, it would like to take advantage of any sgctr
is yr, = Zfigl Ir (kT +14T5)|?, wherer(.) is the complex opportunities and transmit whenever possible. Howevee, du
envelope of the received signal low-pass filtered to the PO channel and noise uncertainties it will create uninterl
signal bandwidthWW, T is the period in which energy is interference for PU. Our goal is to design the best CR
collected T is the sampling time, an# is the total number of transmission strategy, denoted by, ;, where u;;; = 0
samples in each period. We assume that the received PU sigval u;; = 1 represent no transmission and transmission,
can be modeled as a Gaussian random process. The Gaugsigpectively in slotk + 1 using the observations until time
PU signal model is common in literature [30] [4], and i%, yx = [yl,yg,...,yk]T. This strategy is supposed to not
reasonable for many combinations of PU signal formats aimierfere with the PU more than specific limit.
channels (fading as well as nonfading). If we selégctsuch A fundamental difference between the system model in this
that T, > 1/W, then the samples(iT,) are approximately contribution and some previous literature, such as [25][8
statistically independent. We note that is constrained as that we make transmission decisioms,; based on previous
K <T/Ts. (causal) observationg, = [y1, 2, - - . ,yk]T. In contrast, the

Since noise and channel uncertainty exists in the CR obsgystem models in [25]-[27] allow; to be decided based
vation of the PU signal, the true PU state from Fig. 1 is n@n yj41.
observable. Depending on the state of the PU, a continuousVe assume that the CR transmission power is small enough
energy level which consists of noise only or signal plus @oisuch that spectrum sensing is possible also when the CR is
is observed. This model corresponds to a continuous-outfrgnsmitting. This can be achieved by, e.g., canceling ¢ffe s
HMM depicted in Fig. 2. interference. Although this is a simplification, transrioss

1) Noise Only:In stateH,, the noisen(i7,) ~ CN(0,03) and reception in the same band at the same time has been
is a zero-mean complex circular Gaussiah\{ stands for shown to be possible, in theory, e.g., in [31] as well as in
complex circular Gaussian) sample with variamg¢e and the practice, e.g., in [32].
received signal will be(iTs) = n(iT5). Thus,y; is chi-square ~ The performance of a CR is usually assessed based on
distributed with2 K’ degrees of freedom and Gaussian varian@s spectrum-sensing algorithm. Spectrum sensing is gidge
08 /2. based on its probability of false-alarfa and probability of

2) Signal Plus Noiseln state H,, the noise is a zero-meanmis-detectionPy, which are normally presented in receiver
complex circular Gaussian sample with variangethe signal operating characteristic plots. However, the ultimatel gda
is also zero-mean complex circular Gaussian with variarfce CRs is to reutilize the idle spectrum slots while keeping the
and r(iTs) = s(iTs) + n(iTs), r(iTs) ~ CN(0,0%), where level of interference for PUs below a certain level. The two



aforementioned measures are not taking the PU behavior into o1

account. Moreover, utilization and interference are deffiog
the presence or absence of PU transmission. Therefore, it is aoo ‘ ’ a
advantageous to define new criteria which consider the full

picture including PUs, CRs, and even the channel.

1— P 1— Py
A. Definitions
Interference will happen whenever the CR transmits at the @ @
same time as the PU. Thus, the interference ratio (IR3
defined as [33]

Fig. 3. HMM model for the energy detector.
p & Pr{ugi1 = 1lgr1 = 1}. ®)

Utilization of the spectrum occurs whenever the CR trarsmit  Proof: Eliminating 1 — P, from (6) and (7) yields
in a vacant time—frequency slot. Thus, we define the spectral 1 — ag; — ayo

utilization ratio (UR) as n=p+ T(p — P). 9)

n 2 Pr{iugi1 = 1|qgrs1 = 0}. (4) The feasible range of’; can be calculated from (7)) <
. . . . Po§1and0§P1glasmaX{O,(pfalo)/au}§P1§
The intention of any CR is to design a strategy that keep§in (1, p/a,,}. If ag; + a0 < 1, theny can be upperbounded
p below a specified level, saymax, and then maximizes the by substituting the lower bound oR; andp < pmax in (9),
utiliz.atilon ratim?. Hence, we call a transmissipn _scheme thgbhich yields the first line of (8). Similarly, ifig; + a0 > 1,
maximizesy while p < pmax an optimal transmission schemenen the second line of (8) is obtained from (9) and the upper
for a givenag; andag. bound onP,. n
The relation of the UR and IR to the transmission rate and Corollary 1: nmax > pmax.
the probability of error of the CR transmission appeared in
[33]. For a PU following the Markov chain in Fig. 1 with |V. ENERGY DETECTION ASBASELINE CR STRATEGY
transition probability matrixA, Py £ Pr{ux.; = 0|qr = 0}

’ Energy detection, which is one of the most widely deployed
andP; = Pr{ug41 = 1|gx = 1}, the UR can be calculated asgp

ectrum sensing methods because of its simplicity, coaspar
n = Pr{upi1 = 1qr1 = 0} the estimated received energy. with a threshold to detect
Pr{u T — the eX|ster)ce or gbsence of_ the PU signal. Usmg this thhdasho
= kil 1 dkt1 at a certain received PU signal power to CR signal-to-noise
Pr{gr1 = 0} ratio (SNR) will result in certain probabilities of mis-@etion
! ) LT and false alarm. This procedure is modeled in the HMM
- ZPr{qu = Olgr = i} Pr{up+1 = 1qr = Z}W_O ®) presented in Fig. 3. In this model, = 0 and g, = 1 denote
=0 the detected state to bH, and H;, respectively, and thus

1 . . .

:P1(1107T—0 + (1 = Py)aoo g = 0 if yp < 0.0r g, =1 if yp > 6., whered, is
detection threshold. Thug}ra and Py are

= ap1P1 + ago(1 — Fo). (6) A M )

- Pen—1—F, 1, (8]0 = 1 — LUE0e/o0) g

The expression (5) follows from the facts that and g1 A = 1= Fypiqn(0]0) =1 — T(K) (10)
are independent conditioned gp and thatuy 1 is a function (K,0./02)

of yi. In the same way one can derive the IR as Pu = Fypjq(0c]1) = 711’(7&)1, (11)

p=a Py +ao(l— P). (7) whereT is the Gamma functiony is the lower incomplete

Gamma function, F,, 4, (-0) and F,, 4. (-[1) are the
cumulative distribution function (CDF) of a chi-square
distribution with 2K degrees of freedom and Gaussian
variances? /2 ando? /2, respectively [34, pp. 370].

Remark If we setu,,1 = g, whereg, is an estimate of
PU stateq, and - denotes negationf, is the false-alarm
probability andP; is the probability of missed detection for
Q-

We will useuy1 = i, as the baseline transmission strategy.
B. Bound for the Performance of Cognitive Transmissiohhe threshold., that maximizes UR, is calculated by recalling
Strategies that Py = Pra, P1 = Py and combining expressions (7), (10)

Theorem 1:For any CR that satisfies < pmax and (11), substituting = pmax and solving them fop,..

7 < Nmax = pmax—+ (1 — ao1 — aig) V. A-POSTERIORIPROBABILITIES LLR BASED
- pmax 1—p . COGNITIVE RADIO
min { fme ——pnaxy if apr +ai0 <1, .
e 1 P it ) (8) One reasonable way to incorporate both the model and the
—min{ %, TRk i ao+aw > 1, entire observation is to form the a-posterior probabilify o



Pr{qx+1 = 1|yx}. This probability will be used in the decisionThus, for LLR-based strategy s&j r is defined as
rule as

Pr{grt1 = 1Y =y} }
eR*: 1o <40
{y ® Pr{gops =0 Yp =y} = "F

lec\qlc 1(Y|1)
y €RF: SRS <l o
{ fY}g‘qk+1 (Y|O) LR

1, if 2z, <40
Ug41 = Lo UUR ) (12) Rur
0, if 2z > 0ur

where z;, £ log(Pr{gi+1 = 1|lyr}/Pr{ges1 = Olyx}) and

6. r are thea posteriori log-likelihood raticand the threshold 6], &
for zx, respectively. They, which is used for estimating the

future state of PU, hereafter will be addressed as the LLR.
The reason for using the log-likelihood ratio instead of thehere fy, |, ., is the distribution of observations given next
likelihood ratio, which can be done without loss of gendyali PU state. The IR and UR can be written as

is the mathematical convenience for the derivations later i

the Section VI. Thus, with the same method explained in [33,

egs. 18-19], the LLR as a function of the forward variables p = Pr{Y} € R|qgr11 =1} :/ S ilan: (Y[1)dy,

ar(j) £ Pr{qx = j.yx}, j € {0,1}, which are computed n

recursively [17, egs. 19-21] with moderate complexity, is 7 =Pr{Y € R|gr+1 =0} :/ Txilans: (Y10)dy.
derived as R

ap10(0) + a1 (1)

_ (13) From law of total probability it can be shown that
ago vk (0) + aloak(l)

2z = log

In our previous paper [33], the forward variables were Rp = (Ra N RuRr) U (Ra N R{R),
calculated based on the discrete output HMM. However, the Rir = (Ra N RuR) U (RS N RUR), (15)
forward variables can be calculated based on the contiruous
output HMM presented in Fig. 2. There are several benefits in
doing the latter. The baseline method in Section IV needsndere R¢ denotes the complement set @. Since the
threshold to be calculated while the continuous model doesmponents of the union are disjoint events, the probsgbilit
not need such a threshold. This thresholding might redud®t an observation belongs to a set can be written as the
the information available in the samples from the contiratousum of the components. Thus, to show thatr > 7a, it
output HMM. Since bothp(6, r) andn(f. r) are nondecreas- is enough to show thaPr{Y € Rg N Riir|gr+1 =0} >
ing functions off g, it follows that the optimum threshold, Pr{Y € Ra N R rlgr+1 = 0}. To prove the theorem, start-
which does not cause more interference than the allgwgd ing from the left side, it can be written
and maximizes the UR, is found from (3) as

(14) Pr{Y € Rz N RLRr|qk+1 = 0}

where]-‘z‘kl‘qk+l(-|1) is the inverse CDF of;, conditioned on Pf”RLLR

Our = f;jqkﬂ (pmax 1),

Qr+1 = 1. > —
In the case that the PU transition matrix in (1) is time- " 0l JRenRuR Fevia YIL)dy
variant, semi-Markov models can be used instead of the model 1 .
in Fig. 1. For hidden semi-Markov models, forward variables T 0 A Pri{Yy € By 0 Ruglgen =1}
can be calculated [35] and thus the same method can be PUR — '
deployed. =T
LLR
_ Pmax — 4
. . . . a QILLR
A. Optimality of the LLR Based Cognitive Radio on—p'
>
Theorem 2:The a-posteriori LLR-based cognitive transmis- T Olr
sion scheme presented in (12) is the optimum strategy insterm 1 c _
of maximizing UR subject tp < pmax. T 0k PriYi € Ran Riyglar = 1}
Proof:  The proof is inspired from the proof of the _ R f (y|1)dy
Neyman-Pearson Lemma [36]. To prove the theorem, it should Olr JRanEe, Yl
be shown that for any other strategy, which hasn, and
oA < pmax the LLR-based strategy has higher YRR > na > /R - filans: (¥10)dy (16)
Al R

with the condition onp R = pmax- The set of observations .
Y. for which the CR decides to transmit is denoted By = Pr{Y} € Ra N Riglgr+1 =0},



wherep’ = Pr{Y} € RaN Rir|qr+1 = 1}. The inequality the synchronization problem between PU slots and CR slots
(16) is true since and to increase the agility of the CR, we designed the CR slot
length to be much smaller than PU slot length, iR Tr.

C
y € RaNRyr = This will have the side effect that no matter how the actual PU

y € Ri\gr = Markov model is working, the CR will observe a PU which
I lge, (YI1) , has a tendency to stay in states rather than to switch between
el ¥10) = LR = states. In other wordsi,y; anda;o can safely be assumed to

1 be small. Thus, by design, the transition probabilitied tvi
mfyqum(ﬂl)dy > fxylges: (¥10). smaller thanl /2, which implies thatig; + a1 < 1. From this

point on, we will use the assumptiaig; +a19 < 1 to simplify

B certain derivations, and we claim that we can do this without
essential loss of generality.

B. Implementation Issues

In this section, the limiting assumptions for using the LLR- V|, THRESHOLD CALCULATION WITHOUT TRUE PU
based method presented earlier are discussed. By carefully STATE KNOWLEDGE
looking at the requirements of the LLR-based method, it .
is apparent that for calculating the LLRs knowledge of the 1he threshold for CR transmission strategy can be cal-
hidden Markov model is required. In both cases of discrefllated based on the expression (14). To do so, the actual
and continuous-output HMM, the transition matxand the Y States are needed to estimate the empirical CDF (ECDF)
SNR are required. This paper assumes that this informatigh -LRS conditioned on PU states. This empirical CDF is

is available or estimated beforehand. In [17, sec. III-G tH#Sed for calculating the decision threshold. In this paper,
Baum-Welch iterative estimation algorithm, which is equiveStimate the PU states with the forward-backward algorithm
alent to the well-established expectation-modificatioM)E Notice that the scenario where the correct PU states arerknow

method, is demonstrated. This method will be used to estimat Not realistic. _ ,
In this section, we show that, even without knowing the true

the model parameters from the observations. While examginin W ] ' )
the performance of the Baum-Welch algorithm is beyond traiate of the PU, it is possible to find a threshold that will not

scope of this paper, there exists a vast amount of literat[la™M the PU. To prove the existence of such threshold, it is
about its convergence and performance. sufficient to prove that if the threshold is calculated based

The second and more challenging issue in the LLR-bas@f unconditional empirical CDF, the actual IR will not egde

method lies in the calculation of the threshold in expressi@max This can be shown by proving that the unconditional
(14). In this expression, there is a need for the knowledge GPF Of LLRS (7=, (z)) is always bigger than the CDF of LLRs
the PU states (or their estimates) for a certain trainingopler cOnditioned on the next PU state being onve:; (7, (x) >

to estimater,, |, ., (z[1). This is normally done sporadically, 7 zla:: (¢[1)). This is proved in Theorem 3. As explained
but since the true states of PU are not known, they hale S€ction II-B, we focus on the casg; + aio < 1. The

to be estimated. This process can be done for the previdJ@n part of this proof is to show that the empirical CDF
observations: their corresponding PU states can be esiima? the LLRs conditioned on the next PU state_t_)emg zero is
with the forward-backward algorithm [17]. Notice that théways larger than the CDF of the LLRs conditioned on the
estimated states of PU might not perfectly correspondseo tAeXt PU state being on&'(; 7, g, ., (¢[0) > 1, , (z[1)),
actual ones due to the uncertainties in the noise and chaniélich is proved in the same theorem. To show this, first it
This will change the empirical CDF and thus the threshol§ Shown that ther., ., ., ([0) > F.,j4,, (2]1) is equiv-
calculated on which it is based. This error in the PU staf’éenAt to show thatFy, g, ,, (#[0) = Fa,jqe,, (z[1), where
estimation will depend deeply on the SNR and also onAhe Ax = logla(1)/ax(0)]. Now by inserting the expression for
matrix. The big concern with this error is that it might resuicalculating the forward variable [17, egs. 19-20], thedeihg

in possible violation of the maximum allowed IR for the PUgXPression is obtained

(pmax)- However, to have a useful method, robust to changes

ak—1(0)apr + ax—1(1)a1n b1 (yk)

and reductions in SNR, it is necessary to make sure that it log o1 (0)a0 £ ar 1 (1)a + log boyr)’ k>1,
will never violate the IR under any conditions. In low SNRs\, — - 0 i 10 &

in which the PU state estimation might be poor, we can diyectl Zh—1 B

use unconditional empirical CDF of LLRs which does not need By, k=1
PU state estimation. In Section VI, we prove analyticallgtth (7)

the threshold which is calculated based on unconditiondf CD

of LLRs will result in a CR strategy which does not violatdVherebs () is the probability distribution function of a Chi-
the IR threshold square random variable witB K degrees of freedom and

original Gaussian variance of /2. Recall that3 is the noise
. variance and? is the signal plus noise varianeg¢ = o2 +02.
C. On thea.Ol + a0 < 1_ Assun.wptlon .  Lemma Lif Fy, g, (0) = Fiy gy, (#[1) , Vo € Rand
As explained earlier in Section 1I-B, a PU is characterizegy; + a19 < 1 then F, z|0) > F, z|1) for all =
by its transition probabilities and its signal power. Toigate in the domain ofz.

k-|CIA-+1( k'|Qk-+1(



Proof: From (13), we have

ap1 + a1 3:@1}3

ax(1)
@00 + @10 5,70)

zi = log

A
ap1 + ajretk

=log ———MM—
& aoo + ajoe’s
ain 1—ag —a
=log | — — . 18
& a0 ao(ago + a10€A")] (18)

Sincel — ag1 — a1p > 0, in (18), the second term inside

the log has a positive nominator and denominator, and
exponential is an increasing function af,. Thus, z; is a

monotonic increasing function df;.. The lemma follows since

the CDFs ofA, and z; will have the same behaviour. ®
Lemma 2:Fory; as defined in Section 1I-C and, defined
in (17), F,|q,. (2]0) > Fp,|q, (x[1) for all £ > 1 andz > 0.

Proof:  Starting from derivation ofB;, we will have
[34, pp. 370]
b1(yk)
By, = log
g bo(yx)
K—1_—vy /202
—log ST e e U
ST e e
2 2
oo Yk 01 — 0§
=2Klog — + =
Ogol + 2 ( 0%0(2) )’

wherel'(-) represents the Gamma function. Becauw$e> o2,

By is a strictly increasing function of,. The lemma now

follows because

y/207 K1, —t
Futantt) = 2
) fé//%ﬁ (K1t
= I(K)
= Fyla: (4]0).

Lemma 3:Let C} be any stationary random process that

conditioned onyg;, is independent of1. If ap1 + a0 < 1,
then for anyz,
]:CH%(mlO) > ]:Ck,\%(xu) <~

fck\%-ﬂ (ac|0) > ]:Ck‘qlc-f—l (mll) (19)

Proof: From the conditional independence in the Iemm\?lherefA

assumption we hav®r{Cy < z|qx = i, qey1 = j} =
Pr{C\ < z|q; = i}. Now, fori € {0,1} andj € {0,1}

Pr{Cy <, q1 = i,qpy1 = j}
=Pr{Cy < zlqx = i, qry1 = j} Pr{qx = 4, qx11 = j}
=Pr{Cr < z|qx = i} Pr{qr+1 = jlar = i} Pr{qx = i}
= Fepla (@li)aijmi Pr{Cy < |qrpy1 = 5}

_ PoQo;jTo + p1a1;mi
T

wherepy = Fe,|q,. (2|0) andp; = Fe,|q, (z|1). Now since,
by assumption] — aio — ag1 = a11 — ao1 = ago — a0 > 0,

we have that

]:CH%(mlO) > ]:Ck,\%(xu) And
po(aoo - alo) > pl(all - aol) <
Poaooaio + P1G10Go1 - Podo1@10 + p1ao1air

aio api
Pr{Cy < z|qx41 = 0} > Pr{C} < z|g1 = 1}

[ |

In Lemma 2 it was proved thakp, |4, (2|0) > Fp,|q. (z[1).

Iso By conditioned ongy, is independent ofy;1, which
flds the following corollary.

Corollary 2: If ag1 + a190 < 1 then Fp ., (2[0) >
]:Bk,|q1c+1(m|1)'

Lemma 4:1f Fi, g, (2]0) > Fa, g, (2[1) and agr +
ap < 1thenF,, g, (z[0) > F., |q. (z]1).

Proof: From the assumptions made in this lemma and
Lemma 1,7, 4., (z[0) > F., g, (z|1). Now, since thez;
fulfils the properties specified far; in Lemma 3, this lemma
follows. ]

Lemma 5:1f 7., 4, (2[0) > F., 4. (2[1) @ndag; +a10 < 1
then

‘sz+Bk+1‘q1c+2(x|0) > ‘sz+Bk+1|Qk+2(m|1)' (20)

Proof: Starting from Lemma 2 we will have
FBrsilans: (%10) = Fp, 1 1ges, (x[1). Since the stateg, form
a Markov chain, the dependences betwegnBy. .1, andgy2
are depicted as

: '\Qk qk+1 qk+2 -
Zk k+1

Thus, using the chain rule and Markov property, the joint
distribution can be written as [37, pp. 37-38]

Pr{zr + Bi+1 < &, @k, Qrt1, Qk+2 }
= Pr{qc} Pr{qr+1|ar} Pr{gr+2|qrs1}

-Pr{zi + Br+1 < |qk, Qi1 }- (21)

On the other hand, the CDF of the sum of two independent
random variables!i and B can be expressed as [34, pp. 187—
190]

Farp(x) = Falz) * fp(x) = Fp(x) * fa(z), (22)

(+) is the PDF ofA andx denotes convolution.
Since z;, depends only oy, and the previous states (and
channel noise which is independent of the PU states) and
By+1 depends solely ony.1 (and noise), the sum of them

conditioned ongy, qx41 can be written as

Fert Buralansaer (20, 5)
= Ferlamsanar (@16 3) * FBy o jan g (2145 9)
= ka|Qk, (mll) * ‘FBk+1|Qk+1(x|j)' (23)
To derive both sides of the inequality (20), one should

marginalize the joint distribution in (21) with respect @
and g1 and divide withPr{qg,12 = i}, € {0,1}. After



doing that and plugging (23) in (21), for both left and right  VII. PERFORMANCEEVALUATION AND RESULTS

hand sides of (20) we will have, respectively We compare the LLR-based strategy with three different
T ort Bt lassn (2]0) = a2 Al * By + agraio0A) * B methods for calculating the threshold with the classicargn
detection based spectrum sensing described in SectiorolV. F

' ' 24 . .
+aoaoo Ay * Bo+anan Ay« Br, - (24) e simulations, the same PU Markov modg) and

F ot Busr|ausn (21) = a10a004g * Bo + ar1ai0 Ay * B same level of interferencamay is used.
+ aroaor A} * By + afy Ay * By, (25) The threshold needed for the LLR method is calculated
where A, = Fpp (2li), B = Foy oy (2li), AL = by replacing 7., 4., (z | 1) in (14) with an empirical

(sample) CDF. The empirical CDF is computed from the set of
training dataZr = {z1, 22, ..., 2N, }, Where Ny is assumed

to be large enough such that the empirical CDF is a close
approximation of the corresponding CDF. In this paper, we

this inequality are convolved with the positive functid, compute the empirical CDF from one the following three
we arrive at(aoo.Ao + a01A1) * 86 > (a10A0 + a11A1) * 36 SUF)SEIS ofr, .

Now from (22) we can rewrite it aéngo. A} + a1 A)) « By > () {2x € Zr @ ara = 1}, i.e, when the PU states are
(a10A}+a11.A} )+ B1 where the last inequality follows because _ assumed to be known o _

a10A} + a1 A, > 0 and By > B, from Lemma 2. Finally, (i) {zx € Zr : Gry1 = 1}, whereggy1 is the estimated PU

after multiplying both sides of previous inequality witheth _ States from the forward-backward method .
positive value ofl — ag; — a9 We get (i) Zr, i.e., the ECDF is a close estimate of the uncondi-

tional CDF of z
(a0oAg + aor A1) (aoo — aro) * Bo Note that method (i) is unrealistic, while (i) and (iii) are
> (a10A4p + a1 AY)(a1r — ao1) * Br = more practical for calculating the threshold. The rest @ th
G(Q)o A * By + agrao Ay * By section discusses the evaluation setup by which these @Rs ar
assessed. It then presents some results and a comparison.

fzk\% (‘T|Z> andB; - ka+1|Qk+1(Z|i>'

By multiplying both sides ofA, > A; with the pos-
itive value 1 — ag1 — a1p and rearranging it, we obtain
a()().A() + (1()1./41 > (11()./4() + (111./41. Now if both sides of

! !
+ ao1ap0 A} * By + aprai1 A} * Bi
i i
> aloaovo * By + aualvo * By
! 2 /
+ ayoaor Ay * Bo + a1 Ay By =

‘sz+Bk:+1\qk+2 ($|O) > ‘sz:+Bk+1|qk+2 (mll)v

A. Evaluation Setup

In simulating the performance of a CR transmission strategy
the ratio of received primary signal power (at the CR reagive

where the last step follows from (24) and (25). B to the CR receiver noise power is important. For the sake of
Theorem 3:If 0 = F_'(pmax) and a1 + a9 < 1, then simplicity, we assume one PU link and one CR link. It might
Ferlanss (0'11) < pmax. be possible to extend it to a case with multiple coordinated

Proof:  From Lemma 1F., |, ., (z[0) > F.,|q.,,(z[1) PUs and multiple coordinated CRs. Moreover, we define the

is the same as proving th&y, |4, ., (|0) > Fa, g, (z]1). TO SNR as SNR£ o2/0¢ (in dB). In this simulation, K is
do so, induction is used. FirsEy 4, (2[0) > Fa, |4, (2[1) for  selected to bel0. This parameter plays a role for the SNR
all 2 by (17) and Corollary 2. Second, Lemma 4 and Lemmaszaling. The other factor which is important in evaluatinigsC
show that ifFy, |4, (#]0) > Fa, g, (z[1) foranyk > Tand is the maximum allowable IRmax This parameter is normally
any z then Fa, g, (#10) > Fa, . jqns» (x]1), Which com- decided by regulatory bodies like the FCC. In practiggax
pletes the induction. Hencg., |, ., (z[0) > F, 4., (z[1) for must be small and we have chosen it, somewhat arbitrarily, to
any k > 1 and anyz. Now from the assumption abopkax  be 10% (a corresponding quantity is chosen to 15% in [26]).
pmax = For () As explained in Section V-C, it is desirable to choose the
max T A CR slot length to be small compared to the PU slot length,

= 10 oy lgn s (0'10) + T1F 2y giy, (0]1) which implies thatao; and a0 will be small. Since we are
> T0F aplqurs (0|1) + T1F gy (0']1) interested in examining the impact of an active Pt & )
= Frrlgess (0'[1). and a not so active PUr( < m), we have simulated the

cases When(a(n,alo) = (01,001) = m = 0.91 and
_ B (ao1,a10) = (0.01,0.1) = m = 0.091. The number of
Corollary 3: If a1 + a1p < 1 then for LLR-based CR glements inz; is Ny = 5-10°. To evaluate the performance

strategyn > p. . another5 - 10° slots are simulated.
Thus, the CR strategy with a threshold found based on the

unconditional CDF of all LLRs protects the PY € pmax)-

One assumption which has been made in most of the lemnfasResults

and Theorem in this section the requirement is to haveThe UR and IR of the different CRs are plotted versus
ao1 + a1p < 1. Since in the system model we assumed th&NR in Fig. 4 and 5. The thresholds for the LLR-methods
the CR slot length is much smaller than the PU slot lengtare computed using the methods (i), (i), and (iii) desatibe
the probability of transition from one state to another Wil above. For simplicity of the discussion, we assume that all
small. Thus, havingy; + a19 < 1 is not a heavy assumptionECDFs are close approximations to the corresponding CDFs.
and can be realized easily in practice. We recall that method (i) gives an optimum threshold (i.e.,



maximizing UR while keeping IR no larger than,..) and

that method (iii) will give a threshold that guarantees tht N\

does not exceefh,.«. For method (ii), we have no guarantees  0.9°

for the IR. 0g- — ]
As expected, the UR of method (i) is monotonically in-

creasing with SNR and will approach the upper bound (8) for  *7 | T e o 1

high SNRs and,,.x for low SNRs in both Fig. 4 and 5. In 0.6 | g piaPu state estmated 1

all cases, the UR of method (i) is greater or equal to that .;“ = © - LLR P true state known

of the baseline method. However, the UR and IR curves for &°7 . ]

methods (ii) and (iii) behave quite differently in Fig. 4 abhd S04 1

We note that one important difference between the simuiatio | / |

setups is thatry < 7 in Fig. 4 andry, > 7 in Fig. 5, and ‘

this will allow us to explain the behavior of methods (i) and  02- e " p 1

(ii). o 2 AN
Let us start with method (ii), which estimates the PU states T w

using the forward-backward method in the training phase. % s 10 0 5

In Fig. 4, the UR is very close to the optimum UR for all

considered SNRs and the IR is not exceedigx. HOWEVer, ) o (ick lines) and IR (thin lines) vs. SR for the blise CR and
in Fig. 5, the performance is close to optimum only fogorresponding continuous HMM LLR-based CR@fax = 10%, ao1 = 0.1
high SNRs. For low SNRs, the IR for method (ii) exceed®daio = 0.01

pmax- Hence, the UR cannot be compared with the other
methods in fair manner in the low-SNR region. The reasor !
for this behavior is that the ECDF estimation and, therefore 4
the threshold estimation is not reliable. To explain théedént
low-SNR behaviors, we recall that as the SNR approach 0 (it "
linear scale), the observatian,...,yn, becomes irrelevant 0.7
to the PU state estimation. Indeed, 88R — 0, Grt1 0d
converges in probability to 1 ity > w9 and 0 if ry < 7, for _3
all k=1,2,..., Np. This implies that{ z;, € Z7 : §r+1 = 1} 0.5
converges toZp if m > mp and @ if m < m Hence, if =,
m < 7o, Which is the case in Fig. 5, we expect method (ii) to

completely fail as the SNR tends to 0. The numerical result: * e
in Fig. 5 further indicates that for low SNRs, method (ii) Wil 02
give a too high threshold, resulting in an IR violation (we
cannot estimate the IR and UR reliably for method (ii) at SNRs
below—10dB with this simulation length, since the training set 9, s 0
then is empty with high probability). Conversely,7f > g,

method (i) will approach method (iif) as the SNR approacplg. 5. UR (thick lines) and IR (thin lines) vs. SNR for the blise CR and

0. This implies that for very low SNRs, method (i) will Not¢orresponding continuous HMM LLR-based CRoatax = 10%, a1 = 0.01
result in an IR violation and that the UR will be similar to thaandaio = 0.1

of method (iii). This reasoning is consistent with the résul
in Fig. 4. L

We can conclude that method (ii) is close to optimum fdP)» Which implies thapmax = F=, () = F,jq,,, (0] 0) = 7.
all SNRs whenr, is significantly larger thanr. If «; is Hence, the UR for method (iii) tends to be equalax,
significantly smaller tharr, then the method works close to'egardless of the SNR. In Fig. 5, = 0.91 and there is
optimum only for SNRs above a certain critical SNR. Belo#erefore a slight gap between the UR for method (iii) and
the critical SNR, the method leads to IR violations, and thnax: From this we conclude that method (iii) works best
method is therefore invalid in this regime. Continuing witt{'n€n is large. For the case whemn, is large, the threshold
method (iii), we recall that the threshold for this methégis 'S 100 conservative resulting in a large UR penalty. However
such thatF., () = pmax and that the unconditional CDF canthe IR is never waated and method (iii) is the only pradtica
be written asF., () = Fu,jgu,, ( | 070+ Fupjge,, (@ | 1)1 method that is valid for low SNR when, is large.
Hence, ifm; — 1 then 7, () — F.,q..,(z | 1), which
implies thatpmax = Fzp (0) — Fopjge,, (0 | 1). Now, since VIII. CONCLUSIONS
Pmax = Fz,|qu,, (07 | 1) is satisfied for the optimum thresh- In this paper, we have introduced a framework that models
old, 6*, it follows that the UR of method (iii) will be close to the PU, the PU-CR channel, and the CR receiver front-end
optimum. Now, in Fig. 4,1 = 0.91 and there will therefore with a simple two-state, continuous-output HMM. The HMM
be a gap between the UR for method (iii) and the optimuoutput is used as input to the CR transmission strategy. The
method. Conversely, ity — 1 then ., (z) — F., 4., (v | performance of a transmission strategy is measured by its UR

% | =¥ Upper-bound

—Q— Baseline PU true state known
~———LLR PU state estimated
=B LLR unconditional o
= © = LLR PU true state known




under the constraint that the IR does not excegd..We [7]
proved an upper bound on the UR, which is a function of
the HMM model parameters ang,.x. The LLRs, which can

be computed from the forward variables, are proven to be
optimum decision variables. Numerical results show thatgis
the LLR decision variables gives large gains compared to t
baseline method, which is based on simple energy detection.
The gains are due to the fact that the LLR method make u$€l
of all past observations of the PU activity and knowledge ?{1]
the HMM parameters.

To compute the optimum threshold from the CDF of the
LLR z, conditioned on that the future PU staje.; = 1 [12]
is problematic sinceg;;+1 is not observable. The obvious
method of finding threshold based on estimated PU states
from forward-backward method, is numerically shown to b
very close to optimum for all considered SNRs when thé
PU activity level is high, i.e., when the probability of PU
transmission is high. In the opposite situation of a low P34
activity level, the method is still close to optimum above a
certain SNR, but fails for low SNRs in that the IR exceedss]
Pmax- A method as the above, but based on the (unconditional)
ECDF for z,, is attractive since this avoids the need to
estimate the PU states. Furthermore, this method is proven
in Theorem 3 to never violatg,,.,, regardless of SNR and [16]
PU activity levels. Numerical results show that the method
works reasonably well when the PU activity level is high, byt7]
also that the performance is weaker for the combination of
high SNR and low PU activity level. [

In summary, the paper presents practical methods for com-
puting close to optimum thresholds in all cases, except when
the SNR and the PU activity level are both low. As an exampﬁ%g]
of the former situation with a high PU activity level, our
simulations showed of a 116% UR gain compared to the
baseline method at an SNR o8 dB and maximum IR level of [20]
10%, when the LLR threshold was computed from estimated
PU states. [21]
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