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Abstract. Reynolds’ abstraction theorem has recently been extended
to lambda-calculi with dependent types. In this paper, we show how this
theorem can be internalized. More precisely, we describe an extension
of the Calculus of Constructions with a special parametricity rule (with
computational content), and prove fundamental properties such as Church-
Rosser’s and strong normalization. The instances of the abstraction
theorem can be both expressed and proved in the calculus itself.

1 Introduction

In his seminal paper, Reynolds [24] showed that types can be interpreted as pred-
icates, in such a way that all inhabitants of a given type satisfy its interpretation
as a predicate. A simple example is that if f has type ∀a : type. a → a — the
type of the polymorphic identity — then the following proposition holds

∀a : type. ∀̊a : a→ type.∀x : a. å x→ å (f a x)

(which implies that f must return exactly its argument).
The above result, abstraction, has proved useful for reasoning about functional

programs [29, 11, 27]1. It also has deep theoretical implications: for example, the
correctness of the so-called Church encoding of data types [7, 30] depends on it.

Study of parametricity is typically semantic, including the seminal work
of Reynolds. There, the concern is to construct a model that captures the
polymorphic character of a λ-calculus. Mairson [14] pioneered a different angle of
study, of more syntactical nature: for each concrete term, a proof that it satisfies
the relational interpretation of its type is constructed. That style has then been
used by various authors, including Abadi et al. [1], Plotkin and Abadi [22] and
Wadler [30]. Bernardy et al. [6] have also shown how terms, types, their relational
interpretation as proofs and propositions can all be expressed (but not proved) in
a single calculus. The calculi where this is possible must however be rich enough:
in particular they must support dependent types. Many systems turn out to be
suitable: the Calculus of Constructions [9] or Martin-Löf’s Intuitionistic Type
Theory [15] both satisfy the requirements.
1 Even though the abstraction theorem as stated by Reynolds’ is valid only for idealized

languages (which for example are normalizing).
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Still, even though we know that all terms satisfy the parametricity condition,
and each of these conditions can be expressed in the same system as the terms they
concern, the very fact that any given term satisfies the relational interpretation
of its type is itself not provable in the system. For example, the parametricity
condition arising from the type ∀a : type. a→ a, namely

∀f : (∀a : type. a→ a).∀a : type. ∀̊a : a→ type.∀x : a. å x→ å (f a x),

is not provable in type-theory.
In proof assistants based on type theory, one would like to rely on parametric-

ity conditions to prove certain theorems. Indeed, the correctness of numerous
functional programming techniques relies on parametricity. Examples include
program transformation [11, 13], semantic program inversion [27] and generic
programming [28]. Proof assistants based on type theory can already describe
these techniques, and it would be useful to take advantage of parametricity to
mechanize their proofs.

We are not the first to recognize this need: it is for example a recurring
topic in the field of mechanized metatheory, where precise encoding of variable
bindings often makes use of polymorphism. For example, Pouillard [23] describes
the following representation for terms, using the Agda [19] proof assistant:

data Term (V : Set) : Set where
var : V → TermV
app : TermV → TermV → TermV
abs : (MaybeV → TermV )→ TermV

One can argue that terms defined as above must be well-formed as follows: because
V is an abstract type variable, the only way to obtain a type-correct argument
to the var constructor is from the higher-order binding in the abs constructor.
Pouillard formalizes the above argument within Agda, using logical relations
as defined by Bernardy et al. [6]. Only the parametricity axiom is missing to
establish that all terms are well-formed. Chlipala [8] and Atkey et al. [3, p. 41]
encounter the same type of situation.

In this paper, we aim to tackle the lack of support for parametricity in
proof assistants. Technically, we propose to extend the Generalized Calculus
of Constructions (CCω) to make all the parametricity propositions provable
internally. The aim is to pave the way for native support of parametricity in tools
based on dependent types, such as Agda or Coq [26]. The challenge is not to
merely postulate the axiom and check its consistency with the rest of the system:
because we want to retain the constructive character of CCω, we must provide a
computation rule for parametricity.

Our technical contributions are as follows:

– We describe a dependently-typed λ-calculus with internalized parametricity.
The calculus is summarized in definitions 1, 2, and 3; and motivated in
Section 2. In particular, we show that the calculus internalizes parametricity.
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– We prove that it satisfies the properties of a well-behaved λ-calculus with
types. In particular, we prove the Church-Rosser property, subject reduction,
and strong normalization.

2 Design, step by step

In this section we describe and motivate our design step by step, starting from
the generalized calculus of constructions (CCω). The full and final definition of
the system we will arrive at is described in definitions 1, 2, and 3.

2.1 CCω, and our notation

Our starting point is CCω [18], but familiarity with the calculus of constructions [9]
is all we assume: we use CCω only because it is technically more convenient to
have a type for each sort in the system. The presentation is in the style of pure
type systems (PTS). Readers not familiar with PTSs are referred to Barendregt
[4], but we give a brief reminder in the following paragraphs, as well as introduce
our notation.

The system CCω features an infinite hierarchy of sorts, written here S =
{∗,�0,�1, . . . }. The first sort, written ∗, is called the sort of propositions. Each
sorts inhabits the its successor in the above list. Propositions are impredicative.

The various forms of quantifications, (and corresponding abstraction and
application) are syntactically unified, and in general one needs to inspect sorts to
identify which form is meant. In this paper, we sometimes need to have special
treatment of quantifications over propositions (types of sort ∗). To support this,
we tag the variables (resp. applications) with their sort (resp. the argument of
the application). The concrete syntax is given in Definition 1. Sort annotation
with ∗ are sometimes notationally inconvenient, in that case we use the following
special syntax. Concretely, we have A •→ B , ∀x∗: A.B when x does not appear
in B, and F •A , F ∗A.

We also restrict our raw syntax to well-sorted terms: (λx�0 . t)∗u and x�0 [x∗ 7→
u] are for instance ill-sorted, but (λx�0 . t)�0

u and x∗[x∗ 7→ u] are not. We omit
the annotations when they do not play any role, or can be inferred e.g., for well
typed terms.

The full syntax and typing rules is given in the following definitions. The
remainder of the section explains our special construction for parametricity (bb·cc)
and its typing rule, as well as the technical device of relational substitutions.
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Definition 1 (Syntax).

Var 3 x, y, z, x̊, ẙ, z̊
Sort 3 s ::= ∗ | �0 | �1 | . . .
Term 3 a, b, f, t, u,A,B,C, . . . ::= s sort

| xs variable
| bbx�0cc parametric witness
| AsB application
| λxs : A.B abstraction
| ∀xs : A.B function space

Context 3 Γ,∆ ::= − empty context
| Γ, xs : A context extension

relational substitution 3 ξ ::= ∅ empty
| ξ, x�0 7→ x̊ extension

Definition 2 (Typing rules).

(s1, s2) ∈ A
` s1 : s2

Axiom

Γ ` A : B Γ ` C : s
Γ, xs : C ` A : B

Weakening

Γ ` F : (∀xs : A.B) Γ ` a : A
Γ ` F sa : B[xs 7→ a]

Application

Γ, xs : A ` b : B Γ ` (∀xs : A.B) : s′

Γ ` (λxs : A. b) : (∀xs : A.B)
Abstraction

Γ ` A : s1 Γ, xs1 : A ` B : s2

Γ ` (∀xs1 : A.B) : s3

Product (s1, s2, s3) ∈ R

Γ ` A : B Γ ` B′ : s B =β B
′

Γ ` A : B′

Conversion

Γ ` A : s
Γ, xs : A ` x : A

Start

Γ ` A : �0

Γ, x�0: A ` bbxcc : x ∈ JAK∅
Param

with A = {(∗,�0), (�i,�1+i) | i ∈ N}
R = {(∗, ∗, ∗), (�i, ∗, ∗), (∗,�i,�i), (�i,�j ,�itj) | i, j ∈ N}

2.2 Logical relations in CCω

In this section, we define a relational interpretation of terms and types of CCω.
The material of this section is directly inspired from results of Bernardy et al. [6]
and Bernardy and Lasson [5], which describe how to derive logical relations for
any PTS [4]. In the following sections, we will show how it can be amended to
suit our purposes.

In any PTS, types and terms can be interpreted as relations and proofs that
the terms satisfy the relations. Each type can be interpreted as a predicate that its
inhabitants satisfy; and each term can be turned into a proof that it satisfies the
predicate of its type. Usual presentations of parametricity use binary relations,
but for simplicity of notation we present here a unary version. The generalization
to arbitrary arity is straightforward, and we refer the readers to [5] for details.
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Likewise, extending the theory to support inductive types is straightforward and
detailed by Bernardy et al. [6].

In the following we define what it means for a program C to satisfy the
predicate generated by a type T (C ∈ JT K); and the translation from a program
C of type T to a proof JCK that C satisfies the predicate. An invariant of the
translation is that whenever x is free in T , there is another free variable x̊ in JT K,
which witnesses that x satisfies the parametricity condition of T (̊x : x ∈ JT K).
This means that the translation must extend contexts, as follows:

J−K = −
JΓ, x : AK = JΓ K, x : A, x̊ : x ∈ JAK

In fact, we will need to be explicit about the renaming relation existing between
variables and their witness of parametricity, to ensure that the translations are
well scoped2. (From now on we call such renamings relational substitutions.)
Hence we subscript the translation with it:

J−Kξ = −
JΓ, x : AKξ,x 7→x̊ = JΓ Kξ, x : A, x̊ : x ∈ JAKξ

Until the next section, we make the assumption that a relational substitution
contains information about all free variables in the term or context it is applied
to.

The relational interpretation of types and its underlying intuition follow.
Recall that, to interpret a type T , it suffices to give a proposition C ∈ JT K stating
that C satisfies the interpretation of the type.

– Because types in a PTS are abstract (there is no pattern matching on types),
any predicate over C can be used to witness that C satisfies the relational
interpretation of a sort s.

C ∈ JsKξ = C → s

– If the type is a product (∀x : A.B), then C is a function, and it satisfies
the relational interpretation of its type iff it maps related inputs to related
outputs.

C ∈ J∀x : A.BKξ = ∀x : A.∀x̊ : x ∈ JAKξ. (C x) ∈ JBKξ,x 7→x̊

– For any other syntactic form for a type T , which may be a variable or an
application in a PTS, T is interpreted as a predicate (JT K : T → s), and to
check that C satisfies it, one can use application.

C ∈ JT Kξ = JT Kξ C

Finally we can give the translation from terms to proofs.
2 If one were to always interpret x by x̊, the term JJλx.aKK would bind x̊ twice.
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– The translation of a variable is done by looking up the corresponding para-
metric witness in the context.

JxKξ = ξ(x)

– The case for abstraction adds a witness that the input satisfies the relational
interpretation of its type and returning the relational interpretation of the
body, mirroring the interpretation of product:

Jλx : A.BKξ = λx : A. λx̊ : x ∈ JAKξ. JBKξ,x 7→x̊

– The application follows the same pattern: the function is passed a witness
that the argument satisfies the interpretation of its type.

JABKξ = JAKξ B JBKξ

– If the term has another syntactic form, then it is a type (T ), thus we can use
λ-abstraction to create a predicate and check that the abstracted variable z
satisfies the relational interpretation of the type in the body (z ∈ JT Kξ).

JT Kξ = λz : T . z ∈ JT Kξ

At this point the definition might appear circular; but in fact the form · ∈ JT K
invokes JT K only when T is an application, which is processed structurally
by J·K.

Theorem 1 (Abstraction). If Γ `CCω
A : B : s, then

JΓ Kξ `CCω JAKξ : (A ∈ JBKξ) : s

where ξ maps every variable in Γ to a globally fresh variable.

Proof. The theorem is proved by induction on the derivation tree, similarly to
[5]. Since we will revise the definition of J·K, we omit all details of the proof here.

A direct reading of the above result is as a typing judgement about translated
terms: if A has type B, then JAKξ has type A ∈ JBKξ. However, it can also be
understood as an abstraction theorem for CCω: if a program A has type B in Γ ,
then A satisfies the relational interpretation of its type (A ∈ JBKξ). For arity 2,
JΓ Kξ contains two related environments (and witnesses that they are properly
related), and JAKξ is a proof that the two possible interpretations of A (by picking
variables out of each environment in JΓ Kξ) are related.

2.3 Internalization

Both the source and target of J·K are in the same system. Both the theorems
and the proofs are expressible in that system. Therefore we can hope that for
every term A of type B, the user of the system can get a witness JAKξ that it is
parametric (A ∈ JBKξ). Even though this hope is fulfilled for closed terms, we
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run out of luck for open terms, because the context where JAKξ is meaningful
is “bigger” than that where A is: for each free variable x : A in Γ , we need a
variable x̊ : x ∈ JAKξ in JΓ Kξ.

However, we know that every closed term is parametric. Therefore, ultimately,
we know that for each possible concrete term a that can be substituted for a
free variable x, it is possible to construct a concrete term JaK∅ to substitute
for x̊. This means that the witness of parametricity for x does not need to be
given explicitly if x is bound. Therefore we allow to access such a witness via the
syntactic form bbxcc. This intuition justifies the addition the substitution rule

bbxcc[x 7→ a] = JaK∅

as well as the following typing rule, which expresses that if x is found in the
context, then it is valid to use bbxcc, which is the witness that x satisfies the
parametricity condition of its type.

Γ ` A : s
Γ, x : A ` bbxcc : x ∈ JAK∅

Using the above, we can now lift the restriction that relational substitutions must
give a mapping for all free variables and define3:

JxKξ = ξ(x) if x ∈ ξ
JxKξ = bbxcc if x /∈ ξ

Conversely, contexts are not extended if the variable is not present in the mapping.

J−Kξ = −
JΓ, x : AKξ,x 7→x̊ = JΓ Kξ, x : A, x̊ : x ∈ JAKξ

JΓ, x : AKξ = JΓ Kξ, x : A if x /∈ ξ

(From here on, we may omit the relational substitution argument to JAK to mean
JAK∅.)

The above construction is the only addition required to obtain full internalized
parametricity. That is, assuming parametricity on variables, we have parametricity
for all terms, as stated in the Theorem 2.

Theorem 2 (Parametricity).

Γ ` A : B ⇒ Γ ` JAK : A ∈ JBK

Proof. By induction on the derivation tree. The difference with the proof of
the abstraction theorem is essentially that occurrences of Start for relevant
variables are transformed to Param. (The definition of J·K will be revised later,
as well as this proof.)
3 Careful readers might worry that we forget the substitution in the second case. An

informal justification is that if x has no substitute in ξ, then the variables of its type
do not either. Therefore, types are preserved when doing the substitution.
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The fact that all values are parametric is also captured by the following, which is
a theorem (an inhabited type inside the calculus):

parametricity : ∀A : type.∀(a : A). a ∈ JAK
parametricity = λA. λa : A. bbacc

Example 1. We can prove that any function of type ∀a : �0. a→ a is an identity,
as we hinted at in the introduction. The formulation of the theorem and its proof
term are as follows.

identities : ∀f : (∀a : �0. a→ a).∀a : �0.∀x : a.Eq a (f a x)x
identities = λf.λa.λx.bbfcc a (Eq a x)x (refl a x)

When identities is used on a concrete identity function, say i = λa : �0. λx :
a. x, the theorem specializes to reflexivity of equality:

identities i : ∀a : �0.∀x : a.Eq a xx

and, using our extended definition of the substitution, after reduction the proof
no longer mentions bb·cc :

identities i→β λa.λx.bbfcc[f 7→ λa : �0. λx : a. x] a (Eq a x)x (refl a x)
= λa.λx.Jλa : �0. λx : a. xK a (Eq a x)x (refl a x)
= λa.λx.(λa.λ̊a.λx.λx̊.̊x) a (Eq a x)x (refl a x)
→β λa.λx.refl a x

2.4 Nesting of J·K and computational irrelevance

In this section we describe an issue with subject reduction in the system ex-
plained so far, and we tweak the system to fix the issue, by taking advantage of
computational irrelevance in CCω.

Nesting J·K and subject reduction For some closed type A, consider the term
JparametricityAK, which intuitively is a proof that parametricity itself satisfies
the abstraction theorem. It is convertible to λa : A. λ̊a : a ∈ JAK. JJaKK{x 7→x̊}.

So far, we have not specified how to reduce the subterm JJxKK{x 7→x̊} (where x
is a free variable). Indeed, it is actually not possible to substitute x for a value
in it, because x also appears as an index in a relational substitution, and only
variables can appear there (not arbitrary terms). This means that JJxKK{x 7→x̊} is
not an acceptable normal form: either it must reduce to something else, or it is
should not be well-typed.

We first explore the possibility of reducing the term. A perhaps natural idea
would be to modify the reduction rules in such a way to allow the following
reduction, swapping the two occurrences of the parametric interpretation:

JJxKK{x 7→x̊} −→ JJxK{x 7→x̊}K.
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In that case the expression would further reduce to bb̊xcc, which is a proper normal
form. Unfortunately, allowing this reduction would break subject reduction. This
can be checked by assuming x : A (where A is any closed type, its actual form is
irrelevant), and computing the types of the expression before and after reduction.
By Theorem 2 we have JxK : JAK x. By a second application of Theorem 2, we get

JJxKK{x 7→x̊} : JJAK xK{x 7→x̊} JxK
: JJAKK{x 7→x̊} x JxK{x 7→x̊} JxK
: JJAKKx JxK{x7→x̊} JxK
: JJAKKx x̊ JxK

On the other hand, JxK{x7→x̊} : JAK x, and by a another application of Theorem 2,
we get

JJxK{x 7→x̊}K : JJAK xK JxK{x 7→x̊}
: JJAKK x JxK JxK{x 7→x̊}
: JJAKK x JxK x̊

That is, in the above example, the reduction rule suggested above has the effect
to swap the second and third arguments to JJAKK in the type.

We are then left with the alternative to prevent the above situation from
occurring, making the above term ill-typed. The solution we choose is to forbid
all nested uses of J·K. Concretely, we make a twofold change to the system:

1. we make sure that all parametricity conditions inhabit the sort ∗, and
2. we prevent parametricity to be used at sort ∗.

One can easily check that the above is an invariant of our parametric inter-
pretation (Definition 3). For instance, we ensure that explicit witnesses x̊ lie in
sort ∗ for x of sort �0.

A brief review of computational irrelevance Essentially, the change we
propose in the above section takes advantage of a form of computational irrele-
vance. This notion is found in various flavors in the literature, but the version
we use here is most similar to [20]. As Paulin-Mohring, we distinguish between
informative (inhabiting �i) and non-informative (inhabiting ∗) propositions:
non-informative fragments cannot influence computation of informative ones,
rather, they act as mere witnesses.

The above property of separation between �i and ∗ is already ensured by
the structure of CCω: by invoking a proof a : A : ∗, it is impossible to gain
any information about its structure, beyond its mere existence. If inductive
constructions were to be added to the system, as in the calculus of inductive
constructions [31], informative elimination from ∗ to �i would be forbidden,
in order to avoid avoid logical inconsistency. (We discuss the issue further in
Section 3.1.)



10

Amending the relational interpretation Even though the relational inter-
pretation of terms as described in Section 2.2 works to represent terms of CCω
inside CCω, it does not capture the irrelevance of ∗. To do so, we can proceed
to change it as follows. (The end result is shown in Definition 3.) Because any
function F of type ∀x∗: A.B is guaranteed not to depend computationally on its
argument, the results of the function are related regardless of whether the inputs
are related. Therefore, the translation of ∀x : A.B can be changed to reflect this
observation: when the sort of A is ∗, we merely drop the parametricity witness x̊.

C ∈ J∀x�i : A.BKξ = ∀x�i : A.∀x̊∗: x ∈ JAKξ. C x ∈ JBKξ,x 7→x̊
C ∈ J∀x∗: A.BKξ = ∀x∗: A. C x ∈ JBKξ

The translation of abstraction, application and context formation must then
be adapted accordingly (equations (5), (6) and (14) in Definition 3), in each
case by removing the witness x̊. (Dropping the witness from the translation
roughly corresponds to having that all proofs are related: C ∈ JAKξ = >, where
> represents truth.)

After this change, the relational interpretation never “reaches” a type of sort
∗ (nor an inhabitant of such a type), given that one starts with a type of sort �i
(or an inhabitant of such a type). Therefore, we have now more freedom in the
choice of the relational interpretation of �i. As hinted in the previous section,
we choose types of sort ∗:

C ∈ J�iKξ = C → ∗

However, having the single sort ∗ for the relational interpretation of the whole
hierarchy �i leads to a technical issue (we discuss it in Section 3.2), hence
we choose to only allow the relational interpretation for types of sort �0 (or
inhabitants of such types).

The abstraction theorem remains valid with the above modifications, with no
essential change to the proof (see Section 4.2 for details).

Even though we forbid direct nesting of J·K, indirect nesting is still possible.
For instance, parametricity can be used to prove a proposition a ∈ JAK that a
program F relies on. That is, if F : (a ∈ JAK)→ B with a : A : �0, then JF JaKK
is acceptable. Indeed, because the relational interpretation simply ignores proof
arguments (see Definition 3), the above expression reduces to JF K JaK, and the
nesting disappears.
Definition 3 (Relational interpretation).

JxKξ = x̊ if x ∈ ξ (1)
JxKξ = bbxcc otherwise (2)

Jλx�0: A.BKξ = λx�0: A. λx̊∗: x ∈ JAKξ. JBKξ,x7→x̊ (x /∈ ξ) (3)
JABKξ = JAKξ B•JBKξ (4)

Jλx∗: A.BKξ = λx∗: A. JBKξ (x /∈ ξ) (5)
JA•BKξ = JAKξ•B (6)

JT Kξ = λz�0: T. z ∈ JT Kξ if T is ∀ or �0 (7)
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C ∈ J�0Kξ = C → ∗ (8)

C ∈ J∀x�0: A.BKξ = ∀x�0: A.∀x̊∗: x ∈ JAKξ. (C x) ∈ JBKξ,x 7→x̊ (x /∈ ξ) (9)
C ∈ J∀x∗: A.BKξ = ∀x∗: A. (C•x) ∈ JBKξ (x /∈ ξ) (10)

C ∈ JT Kξ = JT Kξ C if T is not ∀ nor a sort (11)

J−Kξ = − (12)

JΓ, x : AKξ,x7→x̊ = JΓ Kξ, x�0: A, x̊∗: x ∈ JAKξ if A : �0 (13)
JΓ, x : AKξ,x7→x̊ = JΓ Kξ, x∗: A if A : ∗ (14)

JΓ, xs : AKξ = JΓ Kξ, xs : A if x /∈ ξ (15)

2.5 Summary

The changes made to relational interpretation do not compromise the abstraction
theorem, nor parametricity. The proofs need only to be amended to ignore irrele-
vant variables. (Full proofs are found in the appendix.) In particular, Example 1
remains valid.

This concludes the description of the design of our calculus, and its motivation.
In summary, we have added a parametricity rule, whose computational content
is given by the systematic construction of parametricity witnesses from terms.
Proofs that are irrelevant (in the sense of [20]) are always known to satisfy the
relational interpretation of their type: this is built into the definition of the
relational interpretation.

We have proved confluence, subject reduction, and strong normalization
for our calculus. Since parametricity acts as a typing rule for J·K, and subject
reduction for our calculus stems directly from it. Strong normalization is proved
by modelling the system in CCω. This model is done by introducing explicit
witnesses of parametricity for all relevant variables. Details of the proofs of these
theorems and parametricity are delayed until the appendix.

3 Discussion

3.1 Extension: inductive types

Even though we considered only PTSs (without inductive constructions), it is
straightforward to support them, provided usual precautions regarding compu-
tational relevance are respected. That is, if inductive constructions were to be
added to the system, informative elimination from ∗ to �0 would be forbidden.
This is consistent with what happens in the Calculus of Inductive Constructions
[31], and its implementation in the Coq system.

Forbidding this kind of elimination is necessary for our abstraction theorem to
hold. Indeed, if elimination were permitted from ∗ to �0, one could in particular
lift proofs to programs. Showing that such a lifting satisfies the parametricity
condition arising from its type would require a witness that the proof itself
satisfies a similar condition, but no witness of this fact is available, given our
interpretation of proofs.
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However, systems with computational irrelevance are often extended with the
possibility to transform an (irrelevant) proof of falsity (⊥ : ∗) to any type α : �0.

botElim : ⊥ •→ ∀α : �0. α

Such an elimination is compatible with our theory of parametricity. Indeed, we
can give a relational interpretation of botElim as follows:

JbotElimK : ∀b : ⊥.∀α : �0.∀α̊ : α→ ∗. α̊ (botElim•b α)
JbotElimK = λb.botElim•b (∀α : �0.∀α̊ : α→ ∗. α̊ (botElim•b α))

The trick is that, even though there is no witness that b satisfies any relational
interpretation, it is itself a proof of falsity, and therefore no further condition is
needed to prove its parametricity (or indeed anything else).

3.2 Sort hierarchies

We have allowed parametricity to be only used at values of types inhabiting �0.
We already justified in detail why parametricity at sort ∗ is disallowed, but what
about �1, �2, and so on? For the axiom ` �i : �i+1, the abstraction theorem
says: (λz : �i.z → ∗) : �i → ∗, which is only possible if z : �i ` z → ∗ : ∗, which
is wrong.

One way to allow parametricity at higher sorts would be to extend the division
between relevant and irrelevant sorts. That is, have a parallel hierarchy of sorts
for propositions ∗i : ∗i+1 with impredicative rules (s, ∗i, ∗i). The parametricity
conditions for types of �i would live in ∗i. In that case, the abstraction theorem
would yield z : �i ` z → ∗i : ∗i+1, which would hold by assumption.

3.3 Related Work

The relationship between logic and programming languages goes both ways. On
the one hand, logical systems can be given meaning by assigning a computational
interpretation to them. On the other hand, one would like to prove programs
correct within formal logical systems. This means that one needs logical systems
with enough power to support reasoning about programs. Seminal work featuring
both sides of the connection includes [17] and [15].

The work described in this paper falls right into this tradition: we not only
attempt to improve the support for reasoning about parametric reasoning in a
logical framework, but also give parametricity a computational meaning. To our
knowledge this has not been attempted before. Some logical frameworks with
computational meaning have features which are related to parametricity, without
subsuming it. Some logical systems have featured parametricity, but not in a
computationally meaningful way.
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Inductive families In the first category, we must first mention inductive families,
studied in different contexts by Pfenning and Paulin-Mohring [21], and Dybjer
[10].

The computational realization of the induction principle over an inductive
definition is a recursive function over the data, but which also carries information
about the data being recursed over.

One can draw a parallel with our interpretation of terms: computational
constructs such as application and abstraction are interpreted as application and
abstraction, but with additional information about the original term carried as
an index. In fact, it is possible to see induction principles over data as a special
case of parametricity, as shown for example by Wadler [30].

Extensionality The ability to reason about functions can be supported not just
by parametricity, but also by the principle of extensionality, which says that two
functions are equal if they map equal inputs to equal outputs.

Altenkirch et al. [2] show how to integrate extensionality in a computationally
meaningful way. Many parallels can be drawn between the work of Altenkirch
et al. and ours. Mainly, their equality relation depends on the structure of the
types that it relates, in the same way as the interpretation of types we propose.
Additionally, Altenkirch et al. also rely on a separation between proofs and
programs, in a similar fashion to what we present here.

Meta-level reasoning Miller and Tiu [16] propose a logical framework where one
can reason precisely about terms and types of an object language. Their domain
of application clearly overlaps with ours. For example, one can prove in their
framework that the object type ∀a : ?.a is uninhabited. A characteristic of [16] is
the total separation between object and host language. Here, we are able to unify
both languages, even though we must keep some amount of semantic separation
between proofs and programs: programs cannot depend on the structure of proofs.

Parametricity Plotkin and Abadi [22] have formulated a logic extended with
axioms of parametricity. However, they are content with the consistency of
parametricity, and do not give any computational interpretation for it.

As mentioned previously, it has been shown before e.g., by Hasegawa [12],
that parametricity is consistent with some models of System F. Consistency of
parametricity with dependently-typed theories does not appear to have been
proved previously.

In unpublished work, Takeuti [25] attempted to extend CC with parametricity.
Takeuti asserted parametricity at all types, with a similar definition of the
parametric interpretation as ours. His system also seems to feature a notion
of irrelevance: two types in �0 appear to always be related. Takeuti does not
attempt to assign a computational content to his parametricity axioms, and only
conjectures consistency of his system.
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3.4 Future Work

A natural extension of this work would be to integrate it in the Coq system.
One could experiment and measure how much power does parametricity give on
practical examples. The presentation we give here fits naturally with the existing
Coq implementation, except for that fact that we allow parametricity only on
the first level of the hierarchy of sorts. Lifting the limitation could be done as
outlined in Section 3.2, but then it would not blend well with the current Coq
type system.

Another limitation of this work is the impossibility to apply parametricity to
proofs. That is, programs can depend on parametricity proofs, and these proofs
have a computational meaning, but programs cannot depend on the structure of
proofs (only their existence). The limitation does not appear to prevent use of
parametricity to prove correctness of functional programs, but it prevents deeper
use of parametricity, for example justifying impredicative Church-encodings of
data (which necessarily live in the ∗ sort). Therefore, we think that lifting the
restriction can bring fundamental benefits. For example, by nesting parametricity,
one can generate parametricity of arbitrary arity [5]. Because implementing
unary parametricity would then be enough, nesting has the possibility to simplify
the system. In the process, we hope to clarify design decisions and reveal more
fundamental properties of the relational interpretation.
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[20] C. Paulin-Mohring. Extracting Fω’s programs from proofs in the calculus

of constructions. In POPL’89, pages 89–104. ACM, 1989.
[21] F. Pfenning and C. Paulin-Mohring. Inductively defined types in the calculus

of constructions. In Mathematical Foundations of Programming Semantics,
pages 209–228. 1990.

[22] G. Plotkin and M. Abadi. A logic for parametric polymorphism. In Proc.
of the International Conference on Typed Lambda Calculi and Applications,
volume 664 of LNCS, page 361–375. Springer, 1993.

[23] N. Pouillard. Nameless, painless. In Proc. of the 16th ACM SIGPLAN
international conference on Funct. programming, ICFP ’11. ACM, 2011. to
appear.

[24] J. C. Reynolds. Types, abstraction and parametric polymorphism. Informa-
tion processing, 83(1):513–523, 1983.

[25] I. Takeuti. The theory of parametricity in lambda cube. Manuscript, 2004.
[26] The Coq development team. The Coq proof assistant, 2011.
[27] J. Voigtländer. Bidirectionalization for free! (Pearl). In Proc. of POPL 2009,

pages 165–176. ACM, 2009.
[28] D. Vytiniotis and S. Weirich. Parametricity, type equality, and higher-order

polymorphism. J. Funct. Program., 20(02):175–210, 2010.
[29] P. Wadler. Theorems for free! In Proc. of FPCA 1989, pages 347–359. ACM,

1989.
[30] P. Wadler. The Girard–Reynolds isomorphism. Theor. Comp. Sci., 375(1–3):

201–226, 2007.
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4 Appendix

This section contains details of our proofs.

4.1 Confluence

To begin, we generalize some basic properties possessed by well-behaved λ-calculi.
In particular, we prove the substitution lemma and the confluence property. We
limit the detail of the proofs to the cases relevant to the specifics of our calculus.

Remark 1. It follows immediately by induction on the structure of terms that
substitution and reduction preserve sorts. This result will be silently used in the
present section.

Lemma 1. If x does not occur free in t, then JtKξ,x 7→x̊ = JtKξ.

Proof. Induction on the structure of t.

Lemma 2 (J·K and substitution, part 1). if z�0 is not in ξ, then

Jt[z�0 7→ u]Kξ = JtKξ,z 7→z̊[z�0 7→ u][̊z∗ 7→ JuKξ]

Proof. By induction on t. Only the variable case (t = x) will be explained here,
as the other ones boil down to easy equational reasoning.

Sort trivial.
Abstraction (Product is similar)

J(λx�0: A. b)[z�0 7→ u]Kξ
= Jλx�0: A[z�0 7→ u]. b[z�0 7→ u]Kξ
= λx�0: A[z�0 7→ u]. λx̊∗: x ∈ JA[z�0 7→ u]Kξ. Jb[z�0 7→ u]Kξ,x 7→x̊
= λx�0: A[z�0 7→ u]. λx̊∗: x ∈ JAKξ,z 7→z̊[z�0 7→ u][̊z∗ 7→ JuKξ].

JbKξ,z 7→z̊,x7→x̊[z�0 7→ u][̊z∗ 7→ JuKξ,x 7→x̊]
= λx�0: A[z�0 7→ u]. λx̊∗: x ∈ JAKξ,z 7→z̊[z�0 7→ u][̊z∗ 7→ JuKξ].

JbKξ,z 7→z̊,x7→x̊[z�0 7→ u][̊z∗ 7→ JuKξ]
= (λx�0: A. λx̊∗: x ∈ JAKξ,z 7→z̊. JbKξ,z 7→z̊,x7→x̊)

[u�0 7→ z][̊z∗ 7→ JuKξ]
= Jλx�0: A. bKξ,z 7→z̊[z�0 7→ u][̊z∗ 7→ JuKξ]
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Application

J(F a)[z�0 7→ u]Kξ
= JF [z�0 7→ u] a[z�0 7→ u]Kξ
= JF [z�0 7→ u]Kξ a[z�0 7→ u]•Ja[z�0 7→ u]Kξ
= JF Kξ,z 7→z̊[z�0 7→ u][̊z∗ 7→ JuKξ] a[z 7→ u]

•JaKξ,z 7→z̊[z�0 7→ u][̊z∗ 7→ JuKξ]
= JF Kξ,z 7→z̊[z�0 7→ u][̊z∗ 7→ JuKξ] a[z�0 7→ u][̊z∗ 7→ JuKξ]

•JaKξ,z 7→z̊[z�0 7→ u][̊z∗ 7→ JuKξ]
= (JF Kξ,z 7→z̊ a•JaKξ,z 7→z̊)[z�0 7→ u][̊z∗ 7→ JuKξ]
= JF aKξ,z 7→z̊[z�0 7→ u][̊z∗ 7→ JuKξ]

Abstraction, Product and Application are straightforward for (∗,�0,�0)
Variable

– If x = z:
Jz[z�0 7→ u]Kξ = JuKξ = z̊[z�0 7→ u][̊z∗ 7→ JuKξ]

= JzKξ,z 7→z̊[z�0 7→ u][̊z∗ 7→ JuKξ]
– If x 6= z and x ∈ ξ:

Jx[z�0 7→ u]Kξ = x̊ = x̊[z�0 7→ u][̊z∗ 7→ JuKξ]
= JxKξ,z 7→z̊[z�0 7→ u][̊z∗ 7→ JuKξ]

– If x 6= z and x /∈ ξ:
Jx[z�0 7→ u]Kξ = bbxcc = bbxcc[z�0 7→ u][̊z∗ 7→ JuKξ] ut

Lemma 3 (J·K and substitution, part 2). if ξ does not contain either z or
any of the free variables of u, then

Jt[z 7→ u]Kξ = JtKξ[z 7→ u]

Proof. By induction on t. Only the variable case (t = x) will be proved here.

Abstraction, Product, Application and Sort same as above.
Variable

– If x = z:
Jz[z�0 7→ u]Kξ = JuKξ = JuK∅ = bbzcc[z�0 7→ u]

since z /∈ ξ
– If x 6= z and x ∈ ξ:

Jx[z∗ 7→ u]Kξ = x̊ = JxKξ[z∗ 7→ u]
– If x 6= z and x /∈ ξ:

Jx[z∗ 7→ u]Kξ = bbxcc = bbxcc[z∗ 7→ u] ut

If z is a proof variable, the previous lemma can be slightly generalized:

Lemma 4 (J·K and substitution, part 3).

Jt[z∗ 7→ u]Kξ = JtKξ[z∗ 7→ u]
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Proof. Same as above (by induction on t), except for the variable case, where t
cannot be the proof variable z.

Lemma 5 (Substitution).

t[z 7→ u][z′ 7→ u′] = t[z′ 7→ u′][z 7→ u[z′ 7→ u′]]

Proof. By induction on t; the only non-trivial case is for the parametric witnesses
bbzcc:

bbzcc[z�0 7→ u][z′ 7→ u′] = JuK∅[z′ 7→ u′]
= Ju[z′ 7→ u′]K∅ = bbzcc[z′ 7→ u′][z�0 7→ u[z′ 7→ u′]]

by Lemma 3.

We now check that the modifications made to CCω do not break the Church-
Rosser property, that is, we verify that the order in which the reductions are
performed does not matter. To prove this property, we define a parallel reduction
(following the Tait/Martin-Löf technique), and show that the diamond property
holds for this reduction. Note that the case for redex-elimination differs slightly
from the usual one, in that it may perform multiple reductions in a row, if
they occur on the head of the redex. We had to extend the formulation of
the β rule since the parametric interpretation does not preserve the number
of redexes: relevant redexes result in two redexes (see equations (3) and (4) in
Definition 3). This multiplication of redexes does not compromise the soundness
of the technique, because it occurs only at the leaves of the relation. (If we had
Σ-types in the syntax, we could uncurrify the term first, to keep only one redex).

Definition 4 (Parallel nested reduction).

Refl
A . A

β
t . t′ ui . u

′
i

(λx1
s1 : A1. . . . λxn

sn : An. t)s1u1 · · ·
snun . t

′[x1
s1 7→ u′1] · · ·[xnsn 7→ u′n]

App-Cong
t . t′ u . u′

tsu . t′
s
u′

Abs-Cong
A . A′ t . t′

λxs : A. t . λxs : A′. t′

All-Cong
A . A′ B . B′

∀xs : A.B . ∀xs : A′. B′

Lemma 6 (Congruence of J·K). If A . A′, then JAKξ . JA′Kξ for all ξ.

Proof. By induction on A . A′:

– The case of Refl is trivial.
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– For β , we proceed by induction on n (the number of β-reductions); for n = 1,
one expects

J(λxs : A. t)suKξ . Jt′[xs 7→ u′]Kξ,

knowing that t . t′ and u . u′. The sort s can either be ∗ or �0, as in the
other cases our term would be ill-sorted.
• For ∗,

J(λx∗: A. t)•uKξ
= {by def. of J·Kξ}

(λx∗: A. JtKξ)•u
. {by β , Refl and IH}

Jt′Kξ[x∗ 7→ u′]
= {by Lemma 4}

Jt′[x∗ 7→ u′]Kξ
• For �0,

J(λx�0: A. t)uKξ
= {by def. of J·Kξ}

(λx�0: A. λx̊∗: x ∈ JAKξ. JtKξ,x 7→x̊)u•JuKξ
. {by β , Refl and IH}

Jt′Kξ,x 7→x̊[x�0 7→ u′][̊x∗ 7→ Ju′Kξ]
= {by Lemma 2}

Jt′[x�0 7→ u′]Kξ
If n = 0 (no β reduction), the conclusion stems from Refl. The inductive
case is similar to the one for n = 1.

– The cases of ?-Cong are straightforward using the definition of J·K. ut

Lemma 7 (Congruence of substitution). If t . t′ and u . u′, then t[z 7→
u] . t′[z 7→ u′].

Proof. By induction on t . t′:

– For Refl, the expected result follows from an induction on t (using Lemma 6
for the case bbzcc).

– For β , one expects

((λx : A. t) e)[z 7→ u] . t′[x 7→ e′][z 7→ u′],

knowing that t . t′ and e . e′. We have

((λx : A. t) e)[z 7→ u]
= {by def. of the substitution}

(λx : A[z 7→ u]. t[z 7→ u]) e[z 7→ u]
. {by β and IH}

t′[z 7→ u′][x 7→ e′[z 7→ u′]]
= {by Lemma 5}

t′[x 7→ e′][z 7→ u′]

– The cases of ?-Cong are straightforward. ut
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Theorem 3 (Diamond property). The rewriting system (.) has the diamond
property. That is, for each x, y, y′ such that y / x . y′, there exists z such that
y . z / y′

Proof. By inductions on the derivations:

– If one of the derivations ends with Refl, one has either x = y, or x = y′. We
pick z = y′ in the former case and z = y in the latter.

– If one of the derivations ends with Abs-Cong or All-Cong, the other one
has to end with the same rule, and the result is a straightforward use of the
induction hypothesis.

– If one of the derivations ends with App-Cong, the other one has to end with
App-Cong, or with β . The first case is straightforward; in the second one,
one has

(λxs : A′. t′)su′ / (λxs : A. t)su . t′′[xs 7→ u′′]
with λxs : A′. t′ / λxs : A. t, t . t′′ and u′ / u . u′′

The situation is summarized in the diagram below. In more details, the end
of the derivation of λxs : A′. t′ / λxs : A. t can be either Abs-Cong, or Refl
in the first case (the last one is similar), one has A′ / A and t′ / t.
By induction hypothesis there exist t′′′, u′′′ such that t′.t′′′/t′′ and u′.u′′′/u′′.
The result follows by β and Lemma 7:

(λxs : A′. t′)su′ . t′′′[xs 7→ u′′′] / t′′[xs 7→ u′′]

(λx : A. t)u

(λx : A′. t′)u′ t′′[x 7→ u′′]

t′′′[x 7→ u′′′]

Abs-C
ong

u
′ / u

, t
′ / t

βt . t ′′, u . u ′′

β

t ′
. t ′′′, u ′

. u ′′′
Lem

ma 7

t
′′′ /

t
′′ , u
′′′ /

u
′′

– If both derivations end with the same β rule, the result is a straightforward
use of the induction hypothesis and Lemma 7. ut

Corollary 1 (Church-Rosser property). Our calculus system has the conflu-
ence (Church-Rosser) property that is, for each x, y, y′ such that y ←−? x −→? y′,
there exists z such that y −→? z ←−? y′

Proof. Direct consequence of Theorem 3, noticing .? =−→?.
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4.2 Abstraction

In this section we check that our main goal, the integration of parametricity, is
achieved by the design that we propose. At the same time, we check that the
abstraction theorem also holds. We do so by proving Lemma 8, which subsumes
both theorems.

Theorem 4 (Abstraction).

1. Γ ` A : B : �0 ⇒ JΓ Kξ ` JAKξ : (A ∈ JBKξ) : ∗, where ξ maps all the vari-
ables in Γ to fresh ones.

2. Furthermore, if the original judgement makes no use of Param, nor does
the resulting judgement.

Proof.

1. Direct consequence of Lemma 8.1.
2. In the proof of Lemma 8.1, if ξ is full, then the target derivation trees contains

Param iff Param occurs in the derivation tree for Γ ` A : B. ut

Theorem 5 (Parametricity).

Γ ` A : B : �0 ⇒ Γ ` JAK : (A ∈ JBK) : ∗

This theorem means that every term satisfies the parametricity condition of its
type, even if it contains free variables.

Proof. Take ξ empty in Lemma 8.1.

Definition 5. ξ conforms to Γ when ξ maps exactly a suffix of Γ (restricted to
�0-variables) to relational variables.

Remark 2. J·K preserves conforming substitutions.

Proof (sketch). By induction on the typing derivation. In the definition of J·K, of
every bound variable in a term is assigned an explicit relational interpretation.

Lemma 8 (Generalized abstraction). Assuming that ξ conforms to Γ ,
1. Γ ` A : B : �0 and B 6= ∗ ⇒ JΓ Kξ ` JAKξ : A ∈ JBKξ : ∗
2. Γ ` A : B : s ⇒ JΓ Kξ ` A : B : s
3. Γ ` B : �0 and B 6= ∗ ⇒ JΓ Kξ, x : B ` x ∈ JBKξ : ∗

(where ξ contains all the variables of sort �0 bound in Γ ).

Proof. The proof is done by simultaneous induction on the derivation tree, and is
very similar to the proofs done by Bernardy et al. [6] and Bernardy and Lasson
[5]. The new parts occur in the special handling of ∗ and of the Start rule. The
proof of each sub-lemma can be sketched as follows:
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1. The cases of abstraction and application stem from the fact that their
respective relational interpretation follows the same pattern as the relational
interpretation of the product. The case of a variable x (Start) is more tricky:
if x ∈ ξ, then the context contains x̊, and looking up this second variable
in the context justifies the translated judgement. If x /∈ ξ, then we can use
the parametricity rule on x to translate the typing judgement. Note that
using parametricity is possible because, by assumption, x cannot be a proof.
Param can be ignored, because direct nesting of parametricity is forbidden.

2. This sub-lemma is used to justify weakening of contexts in the other sub-
lemmas. It is a consequence of the thinning lemma and the fact that the
interpretation of types in always well-typed (see the third item below).

3. This sub-lemma expresses that if T is a well-sorted type, then x ∈ JT K is also
well-sorted. It is easy to convince oneself of that result by checking that the
translation of a type always yields a predicate. ut

Since this result is the angular stone of our development, we give yet more detail
(full construction of the target derivation tree) in the second appendix.

Remark 3. In summary, and roughly speaking, Lemma 8 replaces the occurrences
of Start for variables not in ξ by Param. Occurrences on Start for variables
in ξ are preserved.

4.3 Subject reduction

In this section we prove subject reduction (preservation of types). We start by
discussing basic properties generally attributed to PTSs.

The weakening of contexts behaves in our calculus exactly in the same way
as in all PTSs. Indeed, the usual thinning lemma holds.

Lemma 9 (Thinning). Let Γ and ∆ be legal contexts such that Γ ⊆ ∆. Then
Γ ` A : B =⇒ ∆ ` A : B.

Proof. As in [4, lem. 5.2.12].

The generation lemma for our calculus must account for the new parametricity
construct.

Lemma 10 (Generation). The statement of the lemma is the same as that of
the generation lemma for PTS [4, lem. 5.2.13], but with the additional case for
the Param rule:

– If Γ ` bbxcc : C then there exists B such that Γ ` B : �0, (x : B) ∈ Γ , and
C =β x ∈ JBK.

Proof. As in [4]:



23

– we follow the derivation Γ ` bbxcc : C until bbxcc is introduced. It can only be
done by the following rule

∆ ` B : �0

∆,x : B ` bbxcc : x ∈ JBK
Param

with C =β x ∈ JBK, and (∆,x�0 : B) ⊆ Γ . The conclusion stems from
Lemma 9. ut

Theorem 6 (Subject reduction). If A −→ A′ and Γ ` A : T , then Γ ` A′ : T .

Proof. Most of the technicalities of the proof by Barendregt [4], concern β-
reduction, and are not changed by our addition of parametricity.

Hence we discuss here only the handling of the parametricity construct: our
task is to check that substitution a concrete term a for x in bbxcc preserves the
type of the expression.

Facing a term such as bbxcc in context Γ , we know by generation that it
must have type x ∈ JBK (for some type B valid in Γ , and x : B). We can then
prove that substituting a term a of type B′ (where B′ is convertible to B) for
x preserves the type of the expression. Indeed, the expression then reduces to
JaK, which has type a ∈ JB′K by Theorem 5. In turn, a ∈ JB′K is convertible to
x ∈ JBK by Lemma 6.

4.4 Strong normalization

In this section we present a formalization of the intuitive model presented in
Section 2.3. We do this via a transformation, from the system extended with
parametricity to the naked CCω system.

Each term is mapped to a term where parametricity witnesses are passed
explicitly. Simultaneously, contexts are extended with explicit witnesses: each
binding x : A : �0 is replaced by a multiple binding x : A, x̆ : x ∈ JAK. This
means that bbxcc can be interpreted by the corresponding variable x̆ in the context.
The following table shows how some example terms can be interpreted (for the
sake of readability we omit type annotations in the abstractions, since they play
no role in these examples):

original term A its interpretation 〈|A|〉
λx. bbxcc λx. λx̆. x̆

(λx. bbxcc) (y z) (λx. λx̆. x̆) (y z) (y̆ z z̆)

Given that the interpretation (〈| · |〉) is sound with respect to CCω (Lemma 14)
and that it preserves reductions (Lemma 15), we obtain strong normalization
(Theorem 7). The rest of the section is devoted to defining the model formally,
and arguing for its soundness.

The situation is that we have two transformations (J·K and 〈| · |〉Γ ) which can
both introduce parametricity witnesses. Because J·K will be applied to the result
of 〈| · |〉Γ , there is a danger that a single variable may end up being given two
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parametricity witnesses. We want to avoid such an occurrence, otherwise we
would have to prove these two witnesses equal, which is technically cumbersome.
Therefore, to define our interpretation, we need to identify the bindings x : a : �0
for which an explicit witness x̊ : x ∈ JAK has already been introduced. We do
so via a special syntactic marking on the bindings of variables which are given
an explicit witness of parametricity by either transformation. This marking is
syntactically realized by underlining binders of abstractions and products, as
well as the argument of a corresponding application.

Concretely, we slightly modify J·K by marking the duplicated binding (cases
for abstraction and product); correspondingly the first argument is marked as
well, in the case of the application. Similarly, we mark the new binding in the
case for JT Kξ, and the case for C ∈ JT Kξ has to be amended accordingly.

Jλx�0: A.BKξ = λx : A. λx̊∗: x ∈ JAKξ. JBKξ,x 7→x̊
JABKξ = JAKξ B•JBKξ

JT Kξ = λz : T . z ∈ JT Kξ

C ∈ J�0Kξ = C → ∗
C ∈ J∀x�0: A.BKξ = ∀x : A.∀x̊∗: x ∈ JAKξ. (C x) ∈ JBKξ,x 7→x̊

C ∈ JT Kξ = JT Kξ C

JΓ, x�0: AKξ,x 7→x̊ = JΓ Kξ, x : A, x̊∗: x ∈ JAKξ

Additionally, since nesting J·K is forbidden (it yields ill-typed terms), we are
free to choose the behavior of J·K on the new marked bindings; avoiding the
duplication of parametricity witnesses. The result is as follows:

Jλx : A. λx̊∗: A′. BKξ = λx : A. λx̊∗: A′. JBKξ,x 7→x̊
JAB•B′Kξ = JAKξ B•B′

C ∈ J∀x : A.∀x̊∗: A′. BKξ = ∀x : A.∀x̊∗: A′. (C x) ∈ JBKξ,x 7→x̊

JΓ, x : A, x̊∗: A′Kξ = JΓ Kξ, x : A, x̊∗: A′

It is useful to stress that we only change the behavior of J·K on cases that were
forbidden in our extended system. This means that the newly introduced binding,
as well as the changes, are only relevant in this proof of normalization. This
means that all the previous results remain valid. In fact, the users of the system
are free to remain entirely oblivious to the special marking, and the presentation
of the interpretation of the system done in the previous sections need not being
amended at all. On the other hand, one may wonder why we change the behavior
of J·K only in cases that are forbidden. The answer is that we are going to apply
it to terms in CCω, which do not contain any occurrence of bb·cc, and therefore
nested uses of J·K can safely occur.
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We can define our interpretation function as follows, adding explicit witnesses
only if necessary that is, only for non-marked bindings (resp. arguments of
applications) of sort �0.

Definition 6 (Explicit binding of witnesses).

〈|s|〉Γ = s

〈|x|〉Γ = x

〈|bbxcc|〉Γ = x̆

〈|λx�0: A.B|〉Γ = λx : 〈|A|〉Γ . λx̆∗: x ∈ J〈|A|〉Γ Kχ(Γ ). 〈|B|〉Γ,x
〈|λx∗: A.B|〉Γ = λx∗: 〈|A|〉Γ . 〈|B|〉Γ

〈|λx : A. λx̊∗: A′. B|〉Γ = λx : 〈|A|〉Γ . λx̆∗: 〈|A′|〉Γ . 〈|B|〉Γ,x

〈|AB|〉Γ = 〈|A|〉Γ 〈|B|〉Γ •J〈|B|〉Γ Kχ(Γ )

〈|A•B|〉Γ = 〈|A|〉Γ •〈|B|〉Γ
〈|AB•B′|〉Γ = 〈|A|〉Γ 〈|B|〉Γ •〈|B′|〉Γ

〈|∀x�0: A.B|〉Γ = ∀x : 〈|A|〉Γ .∀x̆∗: x ∈ J〈|A|〉Γ Kχ(Γ ). 〈|B|〉Γ,x
〈|∀x∗: A.B|〉Γ = ∀x∗: 〈|A|〉Γ . 〈|B|〉Γ

〈|∀x : A.∀x̊∗: A′. B|〉Γ = ∀x : 〈|A|〉Γ .∀x̆∗: 〈|A′|〉Γ . 〈|B|〉Γ,x

〈| − |〉 = −
〈|Γ, x�0: A|〉 = 〈|Γ |〉, x : A, x̊∗: x ∈ J〈|A|〉Γ Kχ(Γ )

〈|Γ, x∗: A|〉 = 〈|Γ |〉, x∗: 〈|A|〉Γ
〈|Γ, x : A, x̊∗: A′|〉 = 〈|Γ |〉, x : 〈|A|〉Γ , x̆∗: 〈|A′|〉Γ

The above assumes that for each variable x, there is a globally fresh variable
x̆. The relational substitution mapping each x to x̆ is written χ.

Definition 7. χ(Γ ) = {z 7→ z̆|z ∈ Γ}

The essence of the model defined by 〈| · |〉Γ is that a parametricity witness bbxcc
is adequately modeled by the variable x̆, that is, if x has type A, then x̆ : x ∈ JAK.
The situation is somewhat more complex though, since the type of x will itself
undergo translation by 〈| · |〉Γ , as well as the type of the witness. Hence, we must
ultimately prove that x ∈ J〈|A|〉Γ Kχ(Γ ) = 〈|x ∈ JAK|〉Γ . In fact, the lemma should
be further generalized before it can be proven:

Lemma 11 (〈| · |〉Γ and J·K commute). If

– Γ ` A : B,
– ∆ ⊆ Γ

then J〈|A|〉Γ Kχ(Γ ) = 〈|JAKχ(∆)|〉Γ
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Proof. By induction on A.

– The base case on variables shows how we rely on consistently having x̆ as a
witness for x.
x ∈ ∆

〈|JxKχ(∆)|〉Γ = 〈|x̆|〉Γ = x̆ = JxKχ(Γ ) = J〈|x|〉Γ Kχ(Γ )

x /∈ ∆
〈|JxKχ(∆)|〉Γ = 〈|bbxcc|〉Γ = x̆ = JxKχ(Γ ) = J〈|x|〉Γ Kχ(Γ )

Application Case Fa , the other ones being trivial

J〈|F a|〉Γ Kχ(Γ )
= {by def. of 〈| · |〉Γ }

J〈|F |〉Γ 〈|a|〉Γ •J〈|a|〉Γ Kχ(Γ )Kχ(Γ )
= {by def. of J·K}

J〈|F |〉Γ Kχ(Γ ) 〈|a|〉Γ •J〈|a|〉Γ Kχ(Γ )
= {by IH}
〈|JF Kχ(∆)|〉Γ 〈|a|〉Γ •〈|JaKχ(∆)|〉Γ

= {by def. of 〈| · |〉Γ }
〈|JF Kχ(∆) a•JaKχ(∆)|〉Γ

= {by def. of J·K}
〈|JF aKχ(∆)|〉Γ

– The case of the abstraction λx�0: A. b shows how bindings are handled, and
illustrates why the non-duplication of parametricity witnesses is important.

〈|Jλx�0: A. bKχ(∆)|〉Γ
= {by def. of J·K}
〈|λx : A. λx̊∗: x ∈ JAKχ(∆). JbKχ(∆),x 7→x̊|〉Γ

= {by α-renaming, and def. of 〈| · |〉Γ }
λx : 〈|A|〉Γ . λx̆∗: 〈|x ∈ JAKχ(∆)|〉Γ . 〈|JbKχ(∆,x)|〉Γ,x

= {by IH}
λx : 〈|A|〉Γ . λx̆∗: x ∈ J〈|A|〉Γ Kχ(Γ ). J〈|b|〉Γ,xKχ(Γ,x)

= {by def. of J·K}
Jλx : 〈|A|〉Γ . λx̆∗: x ∈ J〈|A|〉Γ Kχ(Γ ). 〈|b|〉Γ,xKχ(Γ )

= {by def. of 〈| · |〉Γ }
J〈|λx�0: A. b|〉Γ Kχ(Γ )

Product Same as above.
Otherwise straightforward. ut

Another important lemma is that 〈| · |〉 applied to a context adds all necessary
witnesses. Formally:

Lemma 12. J〈|Γ |〉Kξ = 〈|Γ |〉

Proof. By induction on Γ . An easy consequence of the fact that we leave un-
changed the bindings already equipped with an explicit parametricity witness.
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Lemma 13 (〈| · |〉Γ and substitution).

– 〈|A[z∗ 7→ a]|〉Γ = 〈|A|〉Γ [z 7→ 〈|a|〉Γ ]
– 〈|A[z�0 7→ a]|〉Γ = 〈|A|〉Γ,z[z 7→ 〈|a|〉Γ ][z̆ 7→ J〈|a|〉Γ Kχ(Γ )]

Proof. By (simultaneous) induction on A; We illustrate how the proof proceeds
by showing (only) the case for λx�0: A. b, with z of sort �0 (The second item of
the lemma).

Abstraction Case λx�0: A. b, the other ones being trivial

〈|(λx�0: A. b)[z�0 7→ a]|〉Γ
= {by def. of the substitution}
〈|λx�0: A[z 7→ a]. b[z 7→ a]|〉Γ

= {by def. of 〈| · |〉Γ }
λx : 〈|A[z 7→ a]|〉Γ . λx̆∗: x ∈ J〈|A[z 7→ a]|〉Γ Kχ(Γ ).

〈|b[z 7→ a]|〉Γ,x
= {by IH and Lemmas 2 and 4}

(λx : 〈|A|〉Γ,z. λx̆∗: x ∈ J〈|A|〉Γ,zKχ(Γ,z). 〈|b|〉Γ,z,x)
[z 7→ 〈|a|〉Γ ][z̆ 7→ J〈|a|〉Γ Kχ(Γ )]

= {by def. of 〈| · |〉Γ }
〈|λx�0: A. b|〉Γ,z[z 7→ 〈|a|〉Γ ][z̆ 7→ J〈|a|〉Γ Kχ(Γ )]

Product Same as above.
Otherwise straightforward. ut

Finally we can show the soundness of our model, by proving that the trans-
formation yields well-typed terms in CCω.

Lemma 14. Γ ` A : B =⇒ 〈|Γ |〉 `CCω
〈|A|〉Γ : 〈|B|〉Γ

Proof. By induction on the derivation.
Most cases are straightforward given the above definition of 〈| · |〉Γ , and use

the abstraction theorem, wherever 〈| · |〉Γ uses J·K.
Three cases merit further mention:

– The case of application essentially relies on the fact that if 〈|a|〉Γ is typeable
in 〈|Γ |〉, then the explicit witness of parametricity, J〈|a|〉Γ K, is typeable in the
same context. This is a consequence of Lemma 12.

– The conversion case relies on Lemma 13.
– The base case of parametricity relies on Lemma 11, and is informally explained

above.

Details of the application and parametricity cases are given in Figure 1. ut
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Lemma 15 (Congruence of 〈| · |〉Γ ). If Γ ` A : B with A −→ A′, then

〈|A|〉Γ −→+ 〈|A′|〉Γ .

Proof. Each occurrence of the App rule is translated to at least one occurrence
of App in the typing derivation.

Theorem 7 (Strong normalization). If CCω is strongly normalizing, then
so is the system extended with Param.

Proof. Assume Γ ` A : B and consider a chain of reductions A −→n A′. We
have 〈|A|〉Γ −→m 〈|A′|〉Γ , and m ≥ n by Lemma 15. We also have that 〈|A|〉Γ is
typeable in CCω, by Lemma 14. Therefore, only finite chains of reductions are
possible.

5 Generalized abstraction: Proof details

The proof of Lemma 8 depends on the following lemmas:

1. Γ ` A : B : �0 and B 6= ∗ ⇒ JΓ Kξ ` JAKξ : A ∈ JBKξ : ∗
2. Γ ` A : B : s ⇒ JΓ Kξ ` A : B : s
3. Γ ` B : �0 and B 6= ∗ ⇒ JΓ Kξ, x : B ` x ∈ JBKξ : ∗

The lemmas are proved by transforming derivation trees. They mutually
depend on each other, (but only for structurally smaller statement: the recursion
is sound). In the proofs, the trees generated by each sub-lemma are written as
follows:

– Lemma 1: JΓ ` A : BKξ,
– Lemma 2: |Γ ` A : B|,
– Lemma 3: {Γ ` B : �0}ξ.

We only give further detail for 1. and 3.
Note that proofs never need to handle the Param case, because nesting of

parametricity is forbidden. (The premise of the theorems is always invalidated.)


