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Extinction, Persistence, and Evolution

Peter Jagers

Abstract. Extinction can occur for many reasons. We have a closer look
at the most basic form, extinction of populations with stable but insuf-
ficient reproduction. Then we move on to competing populations and
evolutionary suicide.
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1. Extinction is Omnipresent

Even Malthus observed that overall growth of a population does not preclude
frequent extinction of families and other subpopulations. After establishing
and elaborating his fundamental idea of geometric or exponential growth of
unchecked populations, he referred to the city of Berne, where 379 out of the
487 bourgeois families died out in two centuries, 1583 to 1783 [1]. Likewise, it
was the observed extinction of known family names in 19th Century France
and England, that prodded first Bienaymé and then Galton to formulate
the family extinction problem in mathematical terms. In Galton’s famous
wording, mirroring time and environment, [2] Problem 4001: “A large nation,
of whom we will only concern ourselves with adult males, N in number, and
who each bear separate surnames colonise a district. Their law of population
is such that, in each generation, a0 per cent of the adult males have no male
children who reach adult life; a1 have one such male child; a2 have two; and
so on up to a5 who have five. Find (1) what proportion of their surnames will
have become extinct after r generations; and (2) how many instances there
will be of the surname being held by m persons.”
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Both Malthus and Galton approached the problem from the point of
view of society and human populations. In biology, the prevalence and im-
portance of extinction was noted by Galton’s cousin Darwin in the Origin
of Species [3]: “Extinction and natural selection go hand in hand”. Another
catchy phrase ascribed to Darwin is “extinction is the motor of evolution”.
Paleontologists have estimated that the overwhelming majority of all species
(more than 99%!) that ever existed are now extinct [4].

Extinction can occur for many reasons. The basic form, in the absence of
competitors and in a stable environment, is the consequence of a combination
of variation between individuals, and too low average reproduction. It is often
referred to as being due to demographic stochasticity. In posing his Problem
4001 [2], Galton seems to have identified it as the natural null hypothesis as
distinct from conjectures about extinction for some specified reason. In this
vein it can well be referred to as the intrinsic form of extinction. In nature,
extinction is of course often the consequence of competition. In natural history
the rôle of catastrophes has been ardently debated. Finally, Darwin and later
Haldane [5] noted the possibility that natural selection may favour individual
traits which turn out harmful to the whole population, evolutionary suicide,
like the peacock’s tail, [6].

2. Intrinsic Extinction

Today, analysis of intrinsic extinction in clonally reproducing single-type pop-
ulations in terms of simple, generation counting Galton-Watson processes is
a text-book matter. Note that the question of extinction or not can be posed
within a simple model lacking a realistic time structure: a population dies
out if and only if it has an empty generation. We need to know just the dis-
tribution of the total number of children of an individual, neither birth times
nor life spans are relevant. (In order to study times and paths to extinction
in a realistic fashion, more general models are needed [7]. Within the present
simple setup, “time to extinction” actually means “the number of generations
until dying out”. Only if generations do not overlap, will the two coincide.)
Thus, the basic extinction theorem resolves the matter:

Theorem 2.1 (Branching or Malthusian Dichotomy). Let Zn be the size of
the n:th generation in a simple branching process with Z0 = 1. Write qn =
P(Zn = 0). If pk is the probability of k children and f its probability generating
function, then

qn+1 =
∑
k

pkq
k
n = f(qn), qn ↑ q = P(extinction),

and

q = f(q), q < 1⇔ m = f ′(1) > 1,
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barring the trivial exception p1 = 1. If the process does not die out, then Zn
grows like mn precisely under the famous x log x-condition:∑

k

pkk log k <∞.

The basic, first part of this was known to Bienaymé as early as in 1845,
for a modern proof, see [8] e.g. It hinges upon all individuals reproducing
independently and according to the same probability law. Strangely, Gal-
ton and Watson overlooked the logical possibility of unlimited growth when
responding to Galton’s Problem for Solution [9]:

“All the surnames tend to extinction and this result might have been
anticipated, for a surname lost can never be recovered”. This result must
not be confounded with the extinction of the male population, for in every
(supercritical) case we have an indefinite increase of the male population.”

They had noticed that 1 solves the equation f(x) = x, but did not
observe that if m > 1, there is another root between zero and one, and
that the latter yields the correct extinction probability. Since Bienaymé’s
work remained unknown in England, their oversight was only corrected by
Haldane, [10], and ultimately the Danish actuary Steffensen, half a century
later, [11].

It is tempting to muse over the blunder. One may note a defensive tone
in the quote from their paper, as though the authors had a hunch that the
proof did not provide a firm ground for the conclusion. Further, we should
keep in mind that the problem was approached precisely because of the ubiq-
uity of extinction. So, in a sense, they found what they were after.

The real truth is that in nature and history we often meet with super-
critical (m > 1) populations, where due to strong convexity of f , q is close
to one, albeit strictly smaller. Here is an illustration, which also describes
how simple Galton-Watson processes can catch the extinction risk of more
general populations. Yearly survival probabilities for North Atlantic harbour
seals are something like 0.6 for he first year, 0.8 for the second, and 0.95 for
later years, possibly slightly lower after 30 years of age or so. The first three
years no children are born. The fourth year, the probability of a daughter is
0.2, and then it is 0.45 per year. Though it requires some computation it is
not difficult to determine the probabilities p0, p1, p2, p3, . . . that a female gets
0, 1, 2, 3,... daughters throughout her life. Theorem 2.1 then yields the ex-
tinction probability as q = 0.65. The mean number of daughters is f ′(1) = 3,
so this is actually a quickly growing population, but one where 65% of the
“families” die out.

Further, these were times different from ours. Organic, pre-fascist the-
ories of states and peoples prevailed, presuming among other things that
populations like nations led a life independently of their members, and why
should not life spans of collectives have an upper bound like those of indi-
viduals? After all, Watson was also of the clergy, though there is no evidence
that ideas like that of a last judgement should have influenced his science.
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But how come that their oversight was not corrected quickly? A cynical
answer would be that this was a mathematical result, and probably nobody
outside the little world of mathematics cared about its implications, whereas
mathematicians were not so concerned with its sensibility. But the latter
would certainly not hold true for people like Galton himself, and the former
seems also not to have been the case. According to Heyde and Seneta [12],
“its implications were strongly doubted” at the time of publication.

One (almost) contemporary and non-mathematical criticism, is by a
Swedish historian or political scientist, Pontus Fahlbeck. He was a commoner
who married a baroness and became the author of a monumental two-volume
treatise on the Swedish aristocracy [13]. There he gives a correct, verbal de-
scription of the relation between growth of the whole versus frequent extinc-
tion of separate family lines, and writes, somewhat condescendingly it may
seem: “Galton, who with characteristic curiosity considered the question, has
tried to investigate to what extent families ... must die out, with the help of
a competent person.” Fahlbeck then recounts examples considered by Gal-
ton, showing that “the tendency is the extinction of all”. (The account is not
completely lucid.) This is followed by a sequel of questions, and a reassur-
ing answer: “If this course of events is based on a mathematical law, then
it should be as necessary, or not? And what then about our general conclu-
sions, that no necessity forces extinction? Is there not in this a contradiction,
which if both arguments are right (i.e. Fahlbeck’s verbal argument and Gal-
ton’s and Watson’s mathematical ditto), as they undoubtedly are, leads to
what philosophers call an antinomy? However, mathematical calculations,
as applied to human matters, may seem unrelenting but are actually quite
innocuous. The necessity lies buried in them like an electrical current in a
closed circuit, it cannot get out and has no power over reality.” (pp. 133-135,
my translation).

3. But bounded populations do die out!

The alternative to extinction in branching processes is exponential growth.
This is an important result, relevant for real populations in a short to semi-
long perspective, while reproduction retains its character of free branching.
But on a bounded globe nothing can go on growing forever. And population
size stabilisation, as presumed by deterministic mathematical population the-
ory, is unrealistic, since a bounded population subject to individual variation
in reproduction including a risk of no offspring, will ultimately die out. This is
extremely generally summarised in the following theorem, which shows that
no environmental feedbacks or other interactions can ensure stable population
size. “In the long run, we are all dead”, as Lord Keynes said [14].

Theorem 3.1 (General Dichotomy). Consider non-negative (not necessarily
integer valued) random variables X1, X2, . . .. Assume 0 absorbing (i.e. Xn =
0 ⇒ Xn+1 = 0) and suppose that for any x there is a δ > 0 such that
P(∃n;Xn = 0|X1, . . . Xk) ≥ δ, if only Xk ≤ x. Then, with probability one,
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either there is an n such that all Xk = 0 for k ≥ n or Xk →∞, as k →∞.
If E[Xn] remains bounded, it follows that Xn must turn zero, almost surely.

The main difference between this and the branching case of individuals
reproducing independently, is that in the general case growth need not be
exponential. An example is the well-known linear growth occurring in PCR,
the polymerase chain reaction, [15]. A direct consequence of the dichotomy
is that no population, whose expected size is bounded, can persist.

The simple proof is reproduced here.

Proof. Let D = {∃n;Xn = 0} be the event of extinction. By Lévy’s theorem,
or more generally martingale convergence,

P(D|X1, . . . Xk)→ 1D, k →∞,

since D is measurable with respect to the σ-algebra generated by all the
Xi, i = 1, 2, . . .. If the outcome is such that Xk does not tend to infinity,
then it comes under some level x infinitely often. The conditional extinction
probability on the left hand side exceeds δ, and hence so must 1D. But 1D >
0⇒ 1D = 1. �

In a certain sense, Galton and Watson were thus right, after all: no true
population, i.e. one that allows variation in reproduction between individu-
als and remains bounded (in expectation only) can persist. This gives rise to
questions about (a) time to extinction and (b) quasi-stationary states before
extinction. As mentioned, (a) has been discussed in very general branching
models in [7]. Here we shall describe a simple model with competition, ex-
tinction due to competition, final extinction, and quasi stationarity [16].

4. A simple model with competition

The keyword here is not realism but simplicity. All individuals live one time
unit (season). At death they either beget no children or two. The proba-
bility of the latter event depends upon population size N and a popula-
tion characteristic carrying capacity. While talking of just one morph, we
shall denote the latter by K, and assume that the probability of success-
ful division is K/(K + N). The probability of getting no children is thus
1 −K/(K + N) = N/(K + N). Reproduction is clonal, and besides the de-
pendence upon population size independent between individuals. When dis-
cussing several morphs, we shall write their carrying capacities aK, bK, etc.
This makes it possible to discuss varying K and relative carrying capacities.
We shall also refine reproduction probabilities into a distinction between com-
petition within your own morph and between morphs, and finally introduce
mutation probabilities.



6 Peter Jagers

4.1. One single morph

In other words, the population studied here is a binary, population-size-
dependent Galton-Watson branching process. It starts from a positive integer
number Z0 = z. Let ξnj be the number of children of individual j in genera-
tion n (taking the value zero or two). The population size is then recursively
given by

Zn+1 =
Zn∑
j=1

ξnj ,

with

P(ξnj = 2|Zn) =
K

K + Zn
, P(ξnj = 0|Zn) =

Zn
K + Zn

. (4.1)

The random variables ξnj are assumed independent and identically distribut-
ed, given the population size Zn, or indeed the whole past population history,
Z0, Z1, . . . , Zn. Since reproduction is identically distributed for all individuals
in the same generation and the distribution, given Zn, is the same for all
generations n, we shall often delete the suffices, at least when not referring
to several individuals in one context.

Whenever the population size Zn exceeds K, K/(K+Zn) < 1/2 and the
process behaves like a subcritical branching process. For sizes smaller than
the carrying capacity, it turns supercritical. It is critical in the unlikely event
that the size is precisely K (then necessarily an even integer).

It is easy to check that E[Zn] is bounded. It follows from Theorem 3.1
that the extinction probability is

P(Zn → 0, as n→∞) = 1.

Being supercritical while under the level K, the population tends, how-
ever, to increase, with a positive probability, while this is the case, and is
prone to reach large values (around K) before ultimate extinction. It seems
plausible that it either dies out quickly or else persists for a long time. We
proceed to make that precise.

Write T (a) for the first time the population reaches, or passes a ≥ 0,
from below or above, depending upon the starting position. For short, let
T = T (0) be the time of extinction. What will be the relation between these
two random variables for large a?

Theorem 4.1 (Risk of direct extinction). Let 0 < d < 1. Then for any 1 ≤
z ≤ dK,

Pz(T < T (dK)) < dz.

In this, and elsewhere, probability or expectation indexed by z, Pz,Ez,
means that the population starts from size Z0 = z.

Proof. Such assertions are proved by comparison with suitably chosen (not
population size dependent) simple Galton-Watson branching processes, about
which much is known. In the present case, consider such a binary splitting
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process with the probability of begetting zero children being d/(d+ 1). Call
it Ẑn. Since x/(1 + x) is an increasing function of x, any k < dK yields

k

K + k
<

dK

K + dK
=

d

d+ 1
.

Hence, as long as population size stays below dK, the probability of produc-
ing no offspring is smaller than the corresponding probability pertaining to
this classical Galton-Watson process. Therefore, clearly the probability that
our process becomes extinct by time n, without crossing dK, is smaller than
the corresponding probability for the binary Galton-Watson process Ẑn. The
latter must be smaller than the Galton-Watson probability of ultimate ex-
tinction, P(Ẑn → 0) = q̂. From Theorem 2.1 we know that q̂ is the smallest
root of the quadratic equation

d

d+ 1
+

1
d+ 1

q̂2 = q̂,

which is simply d. Hence

Pz(T < T (dK)) = Pz(Zn = 0 for some n < T (dK)) ≤ Pz(Ẑn → 0) = dz.

�

Thus, with positive probability the population will not die out but reach
sizes at the order of the carrying capacity. If m̂ = 2/(d + 1) denotes the
reproduction mean of the minorizing Galton-Watson process {Ẑn} considered
above, we know that Ẑn ≈ zm̂n if it does not die out, by the Branching
Dichotomy. Hence

dK ≈ ZT (dK) ≥ ẐT (dK) ≈ zm̂T (dK),

and approximately

T (dK) ≤ (log(dK)− log z)/ log m̂.

Since always
T (dK) ≥ (log(dK)− log z)/ log 2,

we can conclude that log dK is indeed the right order of time it takes for our
process to reach dK, if it does not first die out.

But sooner or later it will. So the question arises: when? In the case
of direct extinction, say not reaching a level k < K, the time to extinction
will be like that of a conditioned branching process. (Recall that supercritical
branching turns subcritical, when conditioned on extinction.) If population
size manages to climb up to the vicinity of the carrying capacity, it will stay
there for a long time.

Theorem 4.2 (Upper Survival Bound). Whatever the starting number z, car-
rying capacity K, and time (generation) n,

Pz(T > n) ≤
(
1− e−K

)n ≤ exp
{
−ne−K

}
and Ez[T ] ≤ eK .
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Proof. Write
Qn := Pz(T > n).

The elementary inequality(
k

K + k

)k
=
(

1
1 +Kk−1

)k
≥ e−K

yields

Pz(T ≤ n+ 1) = Pz(T ≤ n) +
∞∑
k=1

Pz (Zn = k)
(

k

K + k

)k
≥ Pz(T ≤ n) + e−KQn.

Hence,
Qn+1 ≤ Qn − e−KQn,

and the asked for upper bounds on the probabilities follow by induction and
another elementary inequality, 0 < 1 − u < e−u for 0 < u < 1. The second
follows by summation:

Ez[T ] =
∑
n

Pz(T > n) ≤
∑
n

(
1− e−K

)n
= eK .

�

Actually, this upper bound describes persistence fairly well.

Theorem 4.3 (Exit Downwards). For any 0 < d < 1 write c = d(1−d)2
8(1+d) . Then

for any K and z ≥ dK,

Pz(Z1 > dK) ≥ 1− e−cK .

Further, for any n > 1

Pz(T (dK) > n) > (1− e−cK)n,

and
Ez [T (dK)] > ecK .

Proof. The proof uses an elegant inequality for the binomial distribution,
established by Janson (see [17]): For any natural n, 0 < p < 1 and r > 0

P(Bin(n, p) ≤ np− r) ≤ e−r
2/(2np).

But if population size is Z0 = z, dK ≤ z < K and p(z) = K/(K+z), the next
generation is Z1 = 2Bin(z, p(z)) and r = zp(z)−dK/2 > dKp(K)−dK/2 = 0,
so that

Pz(Z1 ≤ dK) = Pz(Z1 ≤ 2zp(z)− r) ≤ e−r
2/(2zp(z)).

In this the exponent is

r2

2zp(z)
=

(2zp(z)− dK)2

8zp(z)
= K

(f(x)− d)2

4f(x)
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in terms of x = z/K and f(x) = 2x/(1 + x). Note that for d < 1, z > dK,
x > d and f(x) > f(d) > d. The following function is increasing and gives
an inequality for x > d

(x− d)2

4x
>

(f(d)− d)2

4f(d)
=
d(1− d)2

8(1 + d)
= c.

Hence, for any x > d (z > dK)

Pz(Z1 ≤ dK) ≤ e−cK .

This proves the first assertion.
For the second use induction on n to show that for any z ≥ dK

Pz(T (dK) > n) > (1− e−cK)n.

For n = 1 this is the first statement, which is proved. Assume it has been
established for n ≥ 1. By the Markov property,

Pz(T (dK) > n+ 1) = Pz(Z1 ≥ dK, . . . , Zn+1 ≥ dK)

=
∑
k≥dK

Pz(Z1 = k, Z2 ≥ dK, . . . , Zn+1 ≥ dK)

=
∑
k≥dK

P(Z2 ≥ dK, . . . , Zn+1 ≥ dK|Z1 = k)Pz(Z1 = k)

=
∑
k≥dK

Pk(T (dK) > n)Pz(Z1 = k).

By the assumption of induction, this is

≥ (1− e−cK)nPz(Z1 ≥ dK) ≥ (1− e−cK)n+1,

as required.
The final assertion of the theorem follows by

Ez [T (dK)] =
∑
n

Pz(T (dK) > n).

�

With the corresponding upwards excursion result, we can conclude that
prevalence around the carrying capacity is of the order ecK , [16]: For any
δ > 0 and starting points z ≥ dK

Pz(e(c−δ)K < T < e(c+δ)K)→ 1,K →∞.

While the population oscillates around its carrying capacity, its size will
seem to follow a stationary distribution:

Theorem 4.4. Consider the distribution of Xn = Zn/K, given that Xn >
0, for fixed K. As n → ∞, this converges weakly to a proper distribution
function, called the quasi-stationary distribution. As then K →∞, the latter
concentrates all probability mass at the point 1.
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Figure 4.1. Five population developments with K = 50.
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Figure 4.2. Histogram of a population size for the last 500
of 10.000 generations with K = 50.

This was shown in [18]. Indeed, existence of quasi-stationary distribu-
tions is a consequence of the Krein-Rutman theory of positive operators.

It may seem as though this simple model, with its long persistence and
pseudo-stabilisation would rather illustrate persistence than extinction. The
picture does change, however, if mutation is introduced, and ensuing compe-
tition between the fresh mutant and the pseudo-established resident. Then,
either the mutant will never grow up to its carrying capacity but disappear
quickly, the mutant may take over the habitat, and the old resident thus
disappear, or in rare cases both will survive and an evolutionary branching
has occurred [19]. The latter case was discussed in [16]. Here, let us only note
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that if a resident has carrying capacity a1K and the mutation risk is p, then
the waiting time until a mutation is approximately geometrically distributed
with the parameter pa1K . If the mutant has the carrying capacity a2K, we
shall assume that probabilities are further determined by the competition
coefficient γ through the formulas

P
(
ξ
(1)
nk = 0 |Z(1)

n , Z(2)
n

)
=

Z
(1)
n + γZ

(2)
n

a1K + Z
(1)
n + γZ

(2)
n

,

P
(
ξ
(1)
nk = 2 |Z(1)

n , Z(2)
n

)
=

a1K

a1K + Z
(1)
n + γZ

(2)
n

,

and

P
(
ξ
(2)
nk = 0 |Z(1)

n , Z(2)
n

)
=

γZ
(1)
n + Z

(2)
n

a2K + γZ
(1)
n + Z

(2)
n

,

P
(
ξ
(2)
nk = 2 |Z(1)

n , Z(2)
n

)
=

a2K

a2K + γZ
(1)
n + Z

(2)
n

,

superscripts referring to the resident and mutant respectively.
If

a2 > γa1, (4.2)

the mutant population will start supercritically, and either die out or else
start growing at a geometric rate, until it approaches its carrying capacity.
This is the case of possible invasion. It is illustrated in the following figure,
which shows five runs of a population system with γ = 0.7, a1K = 40, and
a2K = 70. In three cases the resident prevailed, the invader dying out very
quickly, in two runs the invader took over.

0 20 40 60 80 100
time

20

40

60

80

100
size

Figure 4.3. Five competitive population evolutions, K =
100, γ = 0.7, a1 = 0.4, and a2 = 0.7. In two of them the
invader takes over.
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Generally the probability of the mutant not dying out but establishing
itself will be 1 − γa1/a2, approximately for large K, and given a1 and a2.
Thus, it also depends upon how the latter are chosen, the classical approach
being the Bugge Christiansen and Loeschke model [20]. If we assume, for the
sake of illustration, that the establishment probability is constant and equal
to r, we can conclude that for large K we will observe a resident extinction
rate of Kpr, until the whole population dies out, after a time span of the
order ecK . In this, the mutation probability may well depend upon carrying
capacity and satisfy inequalities like

e−cK

K
� p� 1

K lnK
,

needed to guarantee on one side that an invader will have time to establish
itself before the next mutation, on the other that mutations will occur while
the population is around.

5. Evolutionary Suicide

A question more interesting than the lifespan of single morphs may be that
of the whole population, under presence of mutations. A sequel of mutations
increasing the carrying capacity, say from aK to bK, a < b, will in general in-
crease the survival time. However, even the simple pattern introduced allows
for the intriguing development, known as evolutionary suicide. The simplest
possible case may be the following: When a mutant appears its carrying ca-
pacity will be a times the resident carrying capacity, 0 < a < 1, starting from
a carrying capacity K. A mutant individual encroaches upon the resident
living-space as would a non-mutant, but mutants are not disturbed by the
non-mutants.

This would yield conditional reproduction probabilities of the form

P
(
ξ
(1)
nk = 0 |Z(1)

n , Z(2)
n

)
=

Z
(1)
n + Z

(2)
n

a1K + Z
(1)
n + Z

(2)
n

,

P
(
ξ
(1)
nk = 2 |Z(1)

n , Z(2)
n

)
=

a1K

a1K + Z
(1)
n + Z

(2)
n

,

and

P
(
ξ
(2)
nk = 0 |Z(1)

n , Z(2)
n

)
=

Z
(2)
n

a2K + Z
(2)
n

,

P
(
ξ
(2)
nk = 2 |Z(1)

n , Z(2)
n

)
=

a2K

a2K + Z
(2)
n

,

superscripts referring to the resident and mutant as before, and a2 = aa1.
Clearly, as a rule the resident (Z(1)

n ≈ a1K) is subcritical and the mutant
(Z(2)

n < a2K) supercritical initially. Unless the latter dies out quickly, it
will thus invade and replace the old resident. However, the new carrying
capacity is lower, and subsequent such mutations force the extinction of the
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whole population, since anK → 0. This is an extremely simple example of
evolutionary suicide due to asymmetry [21]. For a general overview of this
phenomenon from a non-stochastic viewpoint, see [6]. I hope to be able to
come back to a more substantial analysis in stochastic terms.
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