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Abstract—In this paper, different aspects of the bit-interleaved
coded modulation (BICM) capacity for the Gaussian channel
are analyzed. Analytical bounds for the BICM capacity are
developed. These bounds suggest that the BICM capacity at high
signal-to-noise ration (SNR) is determined by the multiplicity of
the minimum Euclidean distance over all the subconstellations
generated by the mapper. Based on this observation, we conjec-
ture that for any constellation, the highest BICM capacity at high
SNR is always obtained by a Gray code, if one exists. Ready-to-
use expressions based on Gauss–Hermite quadratures to compute
the coded modulation and BICM capacities for any SNR are also
presented. Using these expressions, it is shown that the BICM
capacity is in general a nonconvex, nonconcave function of the
input bit distribution. For 8PAM and 8PSK, there exist 12 and
7 classes of mappings, respectively, with equivalent high-SNR
behavior, of which the best class comprises all Gray codes.

I. I NTRODUCTION

The first breakthroughs for coding in the bandwidth-limited
regime came with Ungerboeck’s trellis-coded modulation
(TCM) [1] and Imai and Hirakawa’s multilevel coding (MLC)
[2]. The next breakthrough came in 1992, when Zehavi intro-
duced the so-called bit-interleaved coded modulation (BICM)
[3]–[5]. BICM is usually referred to as a pragmatic approach
for coded modulation (CM) design and it is used in almost all
of the current wireless communications standards, e.g., HSPA,
IEEE 802.11a/g/n, and the DVB standards (DVB-T2/S2/C2).

For a given signal-to-noise ratio (SNR), the maximum rate
of CM systems is defined in term of the average mutual infor-
mation (AMI) of a discrete-input continuous output (DICO)
channel. Closed-form expressions for the AMI are in general
unknown, which necessitates numerical computation methods.
Such computations involve the evaluation of multidimensional
expectations with unbounded supports. Generic algorithms
for multidimensional integration, such as Riemann sums and
Monte Carlo integration, can be applied. In this paper, a
third integration method is applied, tailored for the specific
integrand in AMI expressions, using Gauss–Hermite (GH)
quadratures. The main advantage of this method is that it offers
the best complexity/accuracy tradeoff.

The use of GH quadratures to compute the capacities
in general, and CM or BICM capacities in particular, is
a well known method used in the literature. For example,
they have been used to compute the capacity of distributed
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antenna systems [6], the ergodic capacity of cooperative spa-
tial multiplexing systems [7], and the CM capacity forN -
dimensional constellations and uniform input distributions [8],
[9]. Recently, rapidly-converging series representationfor the
computation of the AMI for one-dimensional constellations
have been investigated in [10]. For BICM, the use of GH
quadratures is mentioned for example in [5, Sec. 3.4], [11,
Sec. III], [12, Sec. III]; however, to the best of our knowledge,
there are no explicit ready-to-use expressions available in the
literature. In this paper, we fill this gap by presenting ready-
to-use expressions for both CM and BICM capacities. These
expressions are generalizations of the ones in [8], [9] to the
BICM capacity and arbitrary input distributions.

The BICM capacity depends heavily on the mapping. The
optimality of a Gray code was conjectured in [4, Sec. III-C],
which was later disproved in [13]. It is shown in [13] (see
also [14, Ch. 3]) that for low and medium SNR, there exist
other mappings that give a higher BICM capacity. Moreover,
in [13, Sec. III-C] it is conjectured that among all the Gray
codes, the binary reflected Gray code (BRGC) [15] is the one
that maximizes the BICM capacity. The BICM capacity for
asymptotically low rates was studied in [16], where it is shown
that BICM with the BRGC does not achieve the Shannon limit
(SL)−1.59 dB. It was later shown in [17] that forMPAM and
MQAM constellations, the natural binary code makes BICM
achieve the SL. These results were generalized in [18], where
general signal sets and mappings were studied.

In this paper, we develop bounds for the CM and BICM
capacities, which are shown to capture their high-SNR be-
havior, i.e., to show that mappings can be classified into a
small number of classes at high SNR. Based on the developed
bounds and numerical results, we conjecture that for any
constellation and high SNR, a Gray code—if it exists—is the
capacity-maximizing mapping for the BICM capacity.

II. PRELIMINARIES

A. System Model and Notation Convention

We use boldface lettersx to denote row vectorsxi =
[xi,1, . . . , xi,N ]. Sets are denoted using calligraphic lettersC
and the binary set is defined asB , {0, 1}. All the logarithms
used are natural logarithms. Random variables are denoted
by capital lettersY , the probability mass function (PMF) of
the random vectorY by PY (y), and the probability density
function (PDF) of the random vectorY by pY (y). The
joint PDF of the random vectorsX and Y is denoted by
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pX,Y (x, y), and the conditional PDF ofY conditioned on
X = x is denoted bypY |X(y|x). The expectation of an
arbitrary functionf(X, Y ) over the joint PDF ofX andY

is denoted byEX,Y [f(X, Y )].
We usexi ∈ X to denote the transmitted symbols, where

X is the constellation used for transmission,|X | = M =
2m. We defineI , {1, . . . , M} which enumerates all the
constellation symbols inX , and we also define the difference
between two constellation symbols asdi,j , (xi − xj). The
minimum distance of the constellation is denoted byd̂X , i.e.,
d̂X , mini,j∈I,i6=j ‖di,j‖. The input distribution is denoted
by the vectorp = [PX(x1), . . . , PX(xM )] and the uniform
distribution is denoted byu = [1/M, . . . , 1/M ].

We consider a BICM system where the bits are mapped to
constellation symbols using a mapperφ : Bm → X . The
mapper is defined via the binary labelings of the symbols
xi, denoted byci = [ci,1, . . . , ci,m] ∈ Bm with i ∈ I. The
mapping defines2m subconstellationsXk,u for k = 1, . . . , m
and u ∈ B, i.e., Xk,u , {xi ∈ X : ci,k = u}. We define
Ik,u ⊂ {1, . . . , M} as the indices of the symbols inXk,u.

Assuming that the bits at the input of the modulator
are independent, the input symbol probabilities are given
by PX(xi) =

∏m
k=1 PCk

(ci,k), where Ck is the random
variable representing thekth bit in the codeword mapped to
xi. Consequently, the conditional input symbol probabilities,
conditioned on thekth bit beingu, are

PX|Ck
(xi|u) =







PX(xi)

PCk
(u)

, if i ∈ Ik,u

0, if i /∈ Ik,u

. (1)

Throughout this paper, we consider a discrete-time real-
valuedN -dimensional additive white Gaussian noise (AWGN)
channel so that each received symbol isY = X + Z, where
Y ∈ R

N , X ∈ X , andZ is a vector of i.i.d. Gaussian random
variables with zero mean and varianceN0/2 per dimension.
We assume that the constellationX is normalized to unit
energy, i.e,Es = EX [‖X‖2] =

∑

i∈I PX(xi)‖xi‖2 = 1.
The conditional transition PDF of the AWGN channel is

pY |X(y|x) = (ρ/π)
N
2 e−ρ‖y−x‖2

, (2)

where the signal-to-noise ratio (SNR) isρ , Es/N0 = 1/N0.
An MPAM constellation is defined asXPAM , {±(M −

1)∆,±(M − 3)∆, . . . ,±1} with ∆2 = 3/(M2 − 1) so that
Es = 1. The MPSK constellation is defined asXPSK ,

{[cos (2πi/M), sin (2πi/M)] : i = 1, . . . , M}.
The AMI of a DICO memoryless channel is given by

IX;Y (ρ) = EX,Y

[

log
pY |X(Y |X)

pY (Y )

]

. (3)

The so-called “CM capacity” for a givenX and p is
denoted byICM

p (ρ) and is defined as the AMI of the DICO
memoryless channel for a given constellation. Therefore, it
simply corresponds to the AMI in (3), i.e.,I

CM
p (ρ) , IX;Y (ρ).

The BICM capacity is defined for a given mapperφ and an
input distributionp as [18, eq. (32)]

I
BI
p,φ(ρ) ,

m
∑
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ICk;Y (ρ) =

m
∑

k=1

ECk,Y

[

log
pY |Ck

(Y |Ck)

pY (Y )

]

=

m
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k=1

∑

u∈B

∑
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PX (xi)

∫

RN

pY |X(y|xi)·

log

∑

j∈Ik,u
PX|Ck

(xj |u)pY |X(y|xj)
∑

j∈I PX(xj)pY |X(y|xj)
dy. (4)

If all the bits at the input of the modulator are equally likely,
i.e., PCk

(u) = 1/2 for k = 1, . . . , m and u ∈ B, and thus,
PX(x) = 1/M , which gives the BICM capacity traditionally
found in the literature, cf. [4, eq. (15)], [5, Sec. 3.2.1].

III. C APACITIES USINGGAUSS–HERMITE QUADRATURES

In this section, we show how to efficiently calculate the
CM and BICM capacities using GH quadratures. We usep

andu as indexes to denote an arbitrary and the uniform input
distributions, respectively.

A. Simplified Expressions

Theorem 1:The CM capacity can be expressed as

I
CM
p (ρ) =

∫

RN

e−‖t‖2

gCM
p (t) dt, (5)

I
CM
u (ρ) = log(M) +

∫

RN

e−‖t‖2

gCM
u (t) dt, (6)

wheregCM
p (t) andgCM

u (t) are shown in Table I.
Proof: Using (2) in (3), by splitting the logarithm of

the quotient as a difference of logarithms, and by using the
substitutiont =

√
ρ(y − xi).



Theorem 2:The BICM Capacity can be expressed as

I
BI
p,φ(ρ) =

∫

RN

e−‖t‖2

gBI
p,φ(t) dt, (7)

I
BI
u,φ(ρ) = log(M) +

∫

RN

e−‖t‖2

gBI
u,φ(t) dt, (8)

wheregBI
p,φ(t) andgBI

u,φ(t) are shown in Table I.
Proof: Using (2) in (4) andt =

√
ρ(y − xi).

B. The Gauss–Hermite Quadratures

For any functiong(t) with bounded(2J)th derivative, the
GH quadratures [19, Sec. 7.3.4] are

∫ ∞

−∞
e−t2g(t) dt = lim

J→∞

J
∑

k=1

αkg(ξk), (9)

whereξk is thekth root of HJ(x), and

HJ(x) = J !

⌊J/2⌋
∑

r=0

(−1)r

r!(J − 2r)!
(2x)J−2r, αk =

2J−1J !
√

π

[JHJ−1(ξk)]2
.

Tables with αk and ξk for different values ofJ can be
found for example in [19, Appendix 7.3(b)], whereJ is a
parameter that adjusts the tradeoff between computation speed
and precision. The expression in (9) can be generalized to an
N -dimensional vectort = [t1, . . . , tN ] as1

∫

RN

e−‖t‖2

g(t) dt ≈
J

∑

k1=1

. . .
J

∑

kN=1

g(ξ)
N
∏

n=1

αkn
, (10)

where ξ = [ξk1 , . . . , ξkN
] and the approximation in (10) is

because in practice we use a finiteJ . All the results presented
in this paper were obtained withJ = 10, which we found to
be a good tradeoff between complexity and precision.

Using (10) and Theorems 1 and 2, we obtain

I
CM
p (ρ) ≈

J
∑

k1=1

. . .

J
∑

kN=1

gCM
p (ξ)

N
∏

n=1

αkn
, (11)

I
CM
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J
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. . .

J
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u (ξ)

N
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αkn
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I
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gBI
p,φ(ξ)
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αkn
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I
BI
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gBI
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C. Numerical Results

In Fig. 1, we show the BICM capacity in (13) for 8PAM
and the BRGC as a function of the input bit probabilities. In
order to have a symmetric input distributionp with respect
to zero, and because of the structure of the BRGC, we set
PC1(u) = 1/2, and thus, we plot the BICM capacity as
a function of the other two variables. This figure shows

1This is the simplest (but not unique) way to do this generalization.
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Figure 1. The BICM capacity for 8PAM with the BRGC as a function of
the bit probabilities fork = 2, 3 andρ = 0 dB. The filled black circle isp∗.

that the BICM capacity is in general a nonconcave noncon-
vex function on the input distribution of the bits. It also
shows that the optimal input distributionp∗ for ρ = 0 dB
and PC1(0) = 1/2 is [PC2(0), PC3(0)] = [0, 0.88], i.e,
p∗ = [0, 0, 0.06, 0.44, 0.44, 0.06, 0, 0], which translates into
a nonequally likely 4PAM constellation.

In Fig. 2 (a), we present the numerical evaluation of the
BICM capacity in (14) for 8PSK, and all the possible different
mappings (colored lines).2 This figure shows that, among the
8! = 40320 different mappings3, there are only 26 ones that
give different BICM capacity for asymptotically low rates,as
previously shown in [18, Sec. V-C]. For rates above zero and
below 3 bit/symbol, there are only 49 different capacities,
as shown in [20, Sec. IV]. In Fig. 2 (b), we show similar
results for 8PAM (only for high SNR values). For 8PAM, an
exhaustive search revealed that there are 458 mappings that
give different BICM capacity (colored lines).

More importantly, Fig. 2 shows that for high SNR, there
is only a very limited number ofclassesof mappings with
asymptotically equivalent behavior, i.e., for high SNR, all the
mappings merge into a few classes (7 for 8PSK and 12 for
8PAM). The 7 classes for 8PSK can in fact be observed in
[21, Table A.1]. In the following section, we give a formal
explanation for these classes.

IV. A SYMPTOTIC ANALYSIS

In this section we analyze the behavior of the CM and
BICM capacity in the high SNR regime. From now on,
we assume a uniform input distributionp = u. We use
Î(i) , {j ∈ I : ‖di,j‖ = d̂X } and A

(i)
X = |Î(i)| to denote

the number of symbols at minimum distance from the symbol
xi. Also, AX ,

∑

i∈I A
(i)
X is twice the number of pairs of

symbols inX at minimum distance. ForMPAM, A
(i)
X = 1

2For a clearer presentation, the capacity curves are plottedas a function of
Eb/N0, whereEb is the average bit energy, cf. [18, Sec. III].

3For MPSK it is enough to consider(M − 1)!, since a rotation does not
influence the AMI. However, in general there areM ! possible mappings.



for the end constellation symbols andA(i)
X = 2 for the other

M − 2, and AX = 2(M − 1). For MPSK, A
(i)
X = 2 for

i = 1, 2, . . . , M , andAX = 2M . For a given mapperφ, we
use Aφ to denote twice the sum of the number of pairs of
symbols at minimum distance in the subconstellationsXk,u,
i.e., Aφ ,

∑m
k=1

∑

u∈B AXk,u
.

Lemma 3 (Lower Bounds):For anyt ∈ R
N ,

∑

i∈I
log

∑

j∈I
e−ρ‖di,j‖2−2

√
ρ 〈t,di,j〉 (15)

≥
∑

i∈I
log



1 + e−ρd̂2
X

∑

j∈Î(i)

e−2
√

ρ 〈t,di,j〉



 (16)

≥
∑

i∈I
log

(

1 + A
(i)
X e−ρd̂2

X
−2

√
ρ‖t‖d̂X

)

(17)

≥ log
(

1 + AX e−ρd̂2
X
−2

√
ρ‖t‖d̂X

)

. (18)

To pass from (15) to (16) we consider only pairs of constella-
tion symbols at minimum distance, and from (16) to (17) we
replace each term in the inner sum with its smallest possible
value using the fact that the cosine of the angle betweent and
di,j is at most+1. To pass from (17) to (18), we replace the
sum of logarithms by the logarithm of a product, expand it,
and then keep the dominant terms (1 and e−ρd̂2

X
−2

√
ρ‖t‖d̂X ).

Although the error in this last step vanishes at high SNR, we
offer no proof for the tightness of the bounds (16) and (17) at
high SNR. Nevertheless, the numerical results presented below
confirm the usefulness of the bounds (16)–(18).

Theorem 4:For any SNR, the following bounds are valid:

I
CM
u (ρ) ≤ log(M) +

∫

RN

e−‖t‖2

g̃CM
u (t) dt, (19)

I
BI
u,φ(ρ) ≥ log(M) +

∫

RN

e−‖t‖2

g̃BI
u,φ(t) dt, (20)

whereg̃CM
u (t) and g̃BI

u,φ(t) are shown in Table I.
Proof: We boundgCM

u (t) and gBI
u,φ(t) using (16). This

used in (6) and (8) gives (19) and (20), respectively.
In Fig. 2, we show the results of Theorem 4 and for 8PSK

and 8PAM.4 The lower bound forIBI
u,φ(ρ) is shown for two

mappings, namely the ones that maximize/minimize the BICM
capacity for high SNR. Both the upper bound forI

CM
u (ρ) and

the lower bound forIBI
u,φ(ρ) perfectly match the corresponding

capacity curves above 2.5 bit/symbol, and thus, the bound in
(16) seems to be tight for high SNR.

Theorem 5:For any SNR, the following bounds are valid:

I
CM
u (ρ) ≤ log(M) − 1

MπN/2

∫

RN

e−‖t‖2

log
(

1 + AX e−ρd̂2
X
−2

√
ρ‖t‖d̂X

)

dt, (21)

I
BI
u,φ(ρ) ≥ (1−m) log(M)+mI

CM
u (ρ)+

1

MπN/2

∫

RN

e−‖t‖2

log
(

1 + Aφe−ρd̂2
X
−2

√
ρ‖t‖d̂X

)

dt. (22)

4Theorems 4 and 5 can be implemented using GH quadratures.
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Figure 2. CM capacity (black dashed line) and BICM capacity for all the
possible mappings (colored lines) for 8PSK (a) and 8PAM (b).The black
dashed-dotted line is the upper bound forICM

u (ρ) in (19) and the solid black
lines are the lower bound forIBI

u,φ(ρ) in (20) for two mappings (the ones
giving the largest/smallest BICM capacity in the high-SNR regime). Note
that the vertical ranges are different.

Proof: Combining the bound in (18) with (6) gives (21).
Combining the bound in (18) with (8) and replacing the
remaining double summation of logarithms ingBI

u,φ(t) by the
logarithm of a double product, expanding them, and then
keeping the dominant terms gives (22).

Theorem 5 shows that the relevant parameter for the upper
bound of the AMI in (21) is the minimum distance of the
constellation and its multiplicity. A similar conclusion was
drawn in [22, Sec. 3.2.2], in [23, Sec. II-C], and also indirectly
in [24, Theorem 4]. On the other hand, Theorem 5 also
suggests that the high-SNR behavior of the BICM capacity
is captured by the number of minimum distances in the
subconstellationsXk,u, via the parameterAφ.

The parameterAφ can be regarded as twice the total
number of bits being equal between the labelings of pairs
of constellation symbols at minimum distance. Therefore, the
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quantity Aφ/AX is the average number of bits being equal
between the labelings of the symbols in such pairs. Since
Aφ/AX plus the average number of bits being different add
up to m, and the average number of different bits is at least
one,Aφ/AX ≤ m− 1.5 A mapper that meets this bound with
equality is a Gray code. For some constellations, there exist a
multitude of Gray codes, whereas for others, none at all. We
conjecture that for any constellation, Gray codes, if they exist,
yield a higher BICM capacity than any non-Gray code.

In Fig. 3 we show the PMF ofAφ for 8PSK and 8PAM for
all the possible mappings. This figure shows that for 8PSK
there exist 7 different values forAφ, which explains the 7
classes of mappings in Fig. 2 (a). For 8PAM there are 12
different values forAφ, which again explains the 12 classes
of mappings in Fig. 2 (b). In both cases the highest values are
achieved by Gray codes (there is one for 8PSK and three for
8PAM [13, eqs. (15)–(17)]), which supports our conjecture.

V. CONCLUSIONS

In this paper we provide ready-to-use formulas for the
computation of the CM and BICM capacities based on GH
quadratures and used them to study the BICM capacity. The
numerical results suggests that the BICM capacity for high
SNR can be classified into a limited number of classes with
similar behavior, of which the best class consists of all Gray
codes. We conjecture that that this is a general property of
any constellation for which Gray codes exist. This conjecture
is supported by numerical examples and analytical bounds,
although a rigorous proof is yet lacking.

5The quantitym − Aφ/AX is proportional tow0(1) in [20] and d̄(1) in
[15]. Minimizing eitherw0(1) or d̄(1)—which translates into a minimization
of the average bit-error probability for uncoded transmission—is equivalent
to a maximization ofAφ.
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