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Abstract—In this paper, different aspects of the bit-interleaved antenna systems [6], the ergodic capacity of cooperatige sp
coded modulation (BICM) capacity for the Gaussian channel tial multiplexing systems [7], and the CM capacity foF-
are analyzed. Analytical bounds for the BICM capacity are  yimensional constellations and uniform input distribogids],
developed. These bounds suggest that the BICM capacity atgti [9]. Recently, rapidly-converging series representafmmthe
S|gnal-.t(.)-n0|se ration (SNR) is determined by the multlplmty.of : o : - X
the minimum Euclidean distance over all the subconstellatins computation of the AMI for one-dimensional constellations
generated by the mapper. Based on this observation, we comje have been investigated in [10]. For BICM, the use of GH
ture that for any constellation, the highest BICM capacity & high  quadratures is mentioned for example in [5, Sec. 3.4], [11,
SNR is always obtained by a Gray code, if one exists. Ready-to Sec. I11], [12, Sec. ll1]; however, to the best of our knowded

use expressions based on Gauss—Hermite quadratures to coute th licit dv-t . labtbd
the coded modulation and BICM capacities for any SNR are also ere are no explicit ready-to-use expressions aval e

presented. Using these expressions, it is shown that the BiC literature. In this paper, we fill this gap by presenting read
capacity is in general a nonconvex, nonconcave function ohé to-use expressions for both CM and BICM capacities. These

input bit distribution. For 8PAM and 8PSK, there exist 12 and  expressions are generalizations of the ones in [8], [9] & th
7 classes of mappings, respectively, with equivalent highNR g|cm capacity and arbitrary input distributions.
behavior, of which the best class comprises all Gray codes. The BICM capacity depends heavily on the mapping. The
l. INTRODUCTION opt_imality of a Gra_y code was conject_ured in [4,_ Sec. IlI-C],
_ o . ~ . which was later disproved in [13]. It is shown in [13] (see
The first breakthroughs for coding in the bandwidth-limitedg [14, Ch. 3]) that for low and medium SNR, there exist
regime came With Unge_rboeck’s trell_is-coded _modulatio&her mappings that give a higher BICM capacity. Moreover,
(TCM) [1] and Imai and Hirakawa’s multilevel coding (MLC) i [13, Sec. 11I-C] it is conjectured that among all the Gray
[2]. The next breakthrough came in 1992, when Zehavi intreg,qes; the binary reflected Gray code (BRGC) [15] is the one
duced the so-(_:alled bit-interleaved coded modula_\tlon WBIC ihat maximizes the BICM capacity. The BICM capacity for
[3]-[5]- BICM is usually referred to as a pragmatic approaclsymptotically low rates was studied in [16], where it iswho
for coded modulation (CM) design and it is used in almost a4t BjCM with the BRGC does not achieve the Shannon limit
of the current wireless communications standards, e.gPAIS (SL) —1.59 dB. It was later shown in [17] that fa¥/PAM and
IEEE 802.11a/g/n, and the DVB standards (DVB-T2/S2/C2)yqaM constellations, the natural binary code makes BICM
For a given signal-to-noise ratio (SNR), the maximum raig:pjeve the SL. These results were generalized in [18], evher
of CM systems is defined in term of the average mutual '”foé'eneral signal sets and mappings were studied.
mation (AMI) of a discrete-input continuous output (DICO) |n this paper, we develop bounds for the CM and BICM
channel. Closed-form expressions for the AMI are in gener@épacities, which are shown to capture their high-SNR be-
unknown, which necessitates numerical computation m‘*‘thoﬁavior, i.e., to show that mappings can be classified into a
Such computations involve the evaluation of multidimenalo gmall number of classes at high SNR. Based on the developed
expecta_tic.)ns W?th unboundgd supports. G_eneric algorithfi§unds and numerical results, we conjecture that for any
for multidimensional integration, such as Riemann sums aggnsteliation and high SNR, a Gray code—if it exists—is the

Monte Carlo integration, can be applied. In this paper, @pacity-maximizing mapping for the BICM capacity.
third integration method is applied, tailored for the sfieci

integrand in AMI expressions, using Gauss—Hermite (GH) Il. PRELIMINARIES
guadratures. The main advantage of this method is thatetoff A. System Model and Notation Convention

the best complexity/accuracy tradeoff. ~ We use boldface letters: to denote row vectorse; =

~ The use of GH quadratures to compute the capacitigs | s, v]. Sets are denoted using calligraphic lettérs

in general, and CM or BICM capacities in particular, isnd the binary set is defined Bs2 {0, 1}. All the logarithms

a well known method used in the literature. For examplgsed are natural logarithms. Random variables are denoted
they have been used to compute the capacity of distributgg capital lettersy’, the probability mass function (PMF) of

g i the random vecto” by Py (y), and the probability density
Research supported by The British Academy and The Royak§uiia the

Newton International Fellowship scheme), UK, and by the @sle Research fu.nCtion (PDF) of the random vectol” bY py(y). The
Council, Sweden (under grant #621-2006-4872). joint PDF of the random vectorX and Y is denoted by



Table |
SIX FUNCTIONS TO BE USED IN(10) TO EVALUATE THE CM AND BICM CAPACITIES.

Function | Expression Equations
aSM(t) _ﬂ_fN/zZiGIPX () 10g 3,07 Px (z,)e~2VP (tdij) —plld ;112 (5), (11)
gSM(t) —Milﬂ—iN/2ZieI log Z]‘ez e*2ﬁ<t=di,j>*pl\di,j\\2 (6), (12)
M) | —M TN log (14 e PR D s e VP i) (19)
gBL(t) | mgSM(t) + 7 N2 e Zz‘ezk,u Px (x;) log ZjEIk,u %6*2\/5(&%]) —plid; ;1? (7), (13)
g2 () | mg@M(t) + MmN S s Y er, 108 Y g, e 2YP (bti) —oldig I (8), (14)
L) | mgS(t) + M N Y S Sier, . log(l 1 erdk Zjei,(j)u e—2ﬁ<t,di,j>) (20)

px.v(z,y), and the conditional PDF oY conditioned on 1)A,+(M — 3)A,...,+1} with A% = 3/(M? — 1) so that
X = x is denoted bypy | x(y|x). The expectation of an E; = 1. The MPSK constellation is defined a¥psk £
arbitrary functionf(X,Y") over the joint PDF ofX andY  {[cos (27i/M),sin (2wi/M)] :i=1,..., M}.

is denoted byEx vy [f(X,Y)]. The AMI of a DICO memoryless channel is given by
We usex; € X' to denote the transmitted symbols, where YIX
. . R . pY|X( | )
X is the constellation used for transmissigi| = M = Ixiy(p) =Exy 1OgW 3)
2™, We defineZ £ {1,..., M} which enumerates all the Y

constellation symbols ik, and we also define the difference The so-called "CM capacity” for a givent and p is
between two constellation symbols ds; £ (z; — x;). The denoted byl;;* (p) and is defined as the AMI of the DICO
minimum distance of the constellation is denoteddy; i.e. memoryless channel for a given constellation. Therefdre, i
dy 2 min; jer.iz; |di;|. The input distribution is denoted SIMPly corresponds to the AMI in (3), Ly (p) = Ix.y (p).
by the vectorp = [Px (z1), ..., Px(xy)] and the uniform | The BICM capacity is defined for a given mappeand an
distribution is denoted by, = [1/M, ..., 1/M]. input distributionp as [18, eq. (32)]

We consider a BICM system where the bits are mapped tog, ” - py|c, (Y|Cr)
constellation symbols using a mapper: B™ — X. The Ip.o(P) :ZIC“Y(’)) - ZECk’Y {IOgW
mapper is defined via the binary labelings of the symbols k=1 k=1

x;, denoted byc; = [ci1,...,¢cim] € B™ with ¢ € Z. The - _ N

mapping define@m subconstellationsty, ,, for k =1,...,m N ;1;“; Px () /]RN Py x(ylz:)

andu € B, i.e., X, 2 {x; € X : ¢, = u}. We define - e P

T C {1,..., M} as the indices of the symbols it ,,. 1o 2jen,, Pxion®@ilwpy ix (ylz;) dy. (4)
Assuming that the bits at the input of the modulator Yjer Px(x)py x (ylz;)

are independent, mthe input symbol probabilities are given|f all the bits at the input of the modulator are equally likel
by Px(xi) = [l Fcu(cin), where Gy is the random je., Pp, (u) = 1/2 for k = 1,...,m andu € B, and thus,
variable representing theth bit in the codeword mapped to py (x) = 1/M, which gives the BICM capacity traditionally

x;. Consequently, the conditional input symbol probab#ifie found in the literature, cf. [4, eq. (15)], [5, Sec. 3.2.1].
conditioned on théth bit beingu, are

PX (iL‘Z)

I11. CAPACITIES USING GAUSS—-HERMITE QUADRATURES

, i i €Ty, In this section, we show how to efficiently calculate the
Px|c,(xilu) = § Fo,(u) o (1) cM and BICM capacities using GH quadratures. We pse
0, if i & Thu andw as indexes to denote an arbitrary and the uniform input

Throughout this paper, we consider a discrete-time re&QiStributions, respectively.

valued N -dimensional additive white Gaussian noise (AWGNA. Simplified Expressions
channel so that each received symboltis= X + Z, where Theorem 1:The CM capacity can be expressed as
Y € RY, X € X, andZ is a vector of i.i.d. Gaussian random

variables with zero mean and variandg/2 per dimension. |§M(p) :/ e—IItIIQQSM(t)dt’ (5)
We assume that the constellatiotl is normalized to unit RN

energy, i.e,Ey = Ex|[||X|%] = 3 ,c7 Px (@)=l = 1. 1OM () :10g(M)+/ e ItI7 gOM () g, (6)
The conditional transition PDF of the AWGN channel is RN

(2) Wwheregg™(t) and g™ (t) are shown in Table I.
Proof: Using (2) in (3), by splitting the logarithm of
where the signal-to-noise ratio (SNR)s= E; /Ny = 1/No.  the quotient as a difference of logarithms, and by using the
An MPAM constellation is defined a&pan = {£(M —  substitutiont = VoY —x;). [ |

pyix(yle) = (p/m)* e rlvel’,



Theorem 2:The BICM Capacity can be expressed as

oo (p) = /}RN eI gl () at, @)

o) =toz(0)+ [ P00t @)
whereg' (t) and g, (¢) are shown in Table I.

Proof: Using (2) in (4) andt = \/p(y — ). [ |

B. The Gauss—Hermite Quadratures

For any functiong(t) with bounded(2J)th derivative, the
GH quadratures [19, Sec. 7.3.4] are

o J
/ e "g(t)dt = lim > ong(&e), ©)
0o J— 00 k:l
where¢, is the kth root of H;(x), and
LJ/2] _
(—=1)" S 271/
= ' _— T =
Hy(w) = J! go T2 e =

Tables with a, and & for different values ofJ can be
found for example in [19, Appendix 7.3(b)], whetg is a

0.78 —

0.76 —

0.74 —

)/ log 2 [bit/symbol]

0

QL

0.6
0.8

Pc,(0)

1 . PC2 (0)

Figure 1. The BICM capacity for 8PAM with the BRGC as a funuotiof
the bit probabilities foik = 2,3 andp = 0 dB. The filled black circle igp*.

that the BICM capacity is in general a nhonconcave noncon-
vex function on the input distribution of the bits. It also
shows that the optimal input distributiop* for p = 0 dB

parameter that adjusts the tradeoff between computatieedspand Po, (0) = 1/2is [Pc,(0), Po,(0)] = [0,0.88], i.e,
and precision. The expression in (9) can be generalized torah = [0,0,0.06,0.44,0.44,0.06, 0, 0], which translates into

N-dimensional vectot = [ty,...,tx]| as
) J J N
/ e Mg@ydt~ D> ... > 9@ [[ ex.. (10)
RY ki=1  kn=1 n=1

where ¢ = [&ky, - .-

a nonequally likely 4PAM constellation.

In Fig. 2 (a), we present the numerical evaluation of the
BICM capacity in (14) for 8PSK, and all the possible diffetren
mappings (colored lineg) This figure shows that, among the
8! = 40320 different mapping} there are only 26 ones that

,$ky] and the approximation in (10) is give different BICM capacity for asymptotically low ratess

because in practice we use a finiteAll the results presented previously shown in [18, Sec. V-C]. For rates above zero and

in this paper were obtained with = 10, which we found to
be a good tradeoff between complexity and precision.
Using (10) and Theorems 1 and 2, we obtain

J J N
M)~ > g™ [T e
k1=1 kn=1 n=1
J
1M (p) = log(M) +
k1=

J N
. Z ng,I¢(£) H Qg s
kn=1 n=1
J J
DY

ki=1 kn=

(11)

J N
Z gSM(g) H ag,, (12)
1 kn=1 n=1

(13)

N
L@ I on.. 14
1 n=1

C. Numerical Results

In Fig. 1, we show the BICM capacity in (13) for 8PAM
and the BRGC as a function of the input bit probabilities. |

order to have a symmetric input distributignwith respect

below 3 bhit/symbol, there are only 49 different capacities,
as shown in [20, Sec. IV]. In Fig. 2 (b), we show similar
results for 8PAM (only for high SNR values). For 8PAM, an
exhaustive search revealed that there are 458 mappings that
give different BICM capacity (colored lines).

More importantly, Fig. 2 shows that for high SNR, there
is only a very limited number otlassesof mappings with
asymptotically equivalent behavior, i.e., for high SNR,thé
mappings merge into a few classes (7 for 8PSK and 12 for
8PAM). The 7 classes for 8PSK can in fact be observed in
[21, Table A.1]. In the following section, we give a formal
explanation for these classes.

IV. ASYMPTOTIC ANALYSIS

In this section we analyze the behavior of the CM and
BICM capacity in the high SNR regime. From now on,
we assume a uniform input distributiop = u. We use
IO 2 (jeT:|di| =dx} andAY = |20 to denote
the number of symbols at minimum distance from the symbol

n

x;. Also, Ay 2 Zig A()? is twice the number of pairs of

. = . i)
to zero, and because of the structure of the BRGC, we §¥Mbols inX” at minimum distance. Fol/PAM, AR =1

Fe, (u) -~ 1/2, and thus, we plqt the BlC_M _capacny as 2For a clearer presentation, the capacity curves are platteaifunction of
a function of the other two variables. This figure shows, /n, whereE, is the average bit energy, cf. [18, Sec. IlI].

1This is the simplest (but not unique) way to do this geneaitin.

SFor MPSK it is enough to considdrM — 1)!, since a rotation does not
influence the AMI. However, in general there avé! possible mappings.
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for the end constellation symbols a ) = 2 for the other
M — 2, and Ay = 2(M — 1). For MPSK, A(;) = 2 for
i=1,2,...,M, and Ay = 2M. For a given mapped, we 28
use A, to denote twice the sum of the number of pairs of

symbols at minimum distance in the subconstellatidfs,, R
Le., Ay = 301 Yuen A .- s
Lemma 3 (Lower Bounds)or anyt € RY, 2 .
— di,j 2_2 t,di’]‘ %
Zlog Ze elldiilI*=2/p ) (15) g
€T JjET ot
> Z log | 1+ e—Px Z e 2vr(tdij) (16) 05
i€l AQ)
ZZIOg (1 i Ag)e—pdi—gﬁuth) (17) 0 >
ieT Eh/NO [dB]
> log (1+ Axerda 2Vl ) (18) (@) 8PSK

To pass from (15) to (16) we consider only pairs of constella-
tion symbols at minimum distance, and from (16) to (17) we
replace each term in the inner sum with its smallest possible
value using the fact that the cosine of the angle betwesmmd
d; ; is at most+1. To pass from (17) to (18), we replace the
sum of logarithms by the logarithm of a product, expand it,
and then keep the dominant termis gnd e—#%x —2v7litlldx),
Although the error in this last step vanishes at high SNR, weg
offer no proof for the tightness of the bounds (16) and (17) atU
high SNR. Nevertheless, the numerical results presenied/be
confirm the usefulness of the bounds (16)—(18).

Theorem 4:For any SNR, the following bounds are valid:

acity [bit/symbol]

— 2 ~ X
1M (p) < log(M) +/RN e P Mty dt,  (19) Fi/No [dB]
) (b) 8PAM
B00) 2 log(0) + [ eI GEL 0)at, (20
’ RN ’ Figure 2. CM capacity (black dashed line) and BICM capaaity dll the
. N . possible mappings (colored lines) for 8PSK (a) and 8PAM e black
whereg3M(t) and QS,Iqa(t) are shown in Table I. dashed-dotted line is the upper bound gM (p) in (19) and the solid black

Proof: We bounngM(t) and gEI¢(t) using (16). This lines are the lower bound fdtBId)(p) in (20) for two mappings (the ones
used in (6) and (8) gives (19) and (20), respectively. m ?r:‘e"'t”?héh\fer'g‘églefﬁgeﬂ'?é g:ffe“feﬁfpac'ty in the high-SNegime). Note
In Fig. 2, we show the results of Theorem 4 and for 8PSK
and 8PAM! The lower bound for$}'; () is shown for two
mappings, namely the ones that maX|m|ze/m|n|m|ze the BICM  Proof: Combining the bound in (18) with (6) gives (21).
capacity for high SNR. Both the upper bound f§} (p) and Combining the bound in (18) with (8) and replacmg the
the lower bound fot?', (p) perfectly match the correspondlngremammg double summation of logarithmsgfj'; () by the

capacity curves above 2.5 bit/symbol, and thus, the boundidgarithm of a double product, expanding them and then

(16) seems to be tight for high SNR. keeping the dominant terms gives (22). ]
Theorem 5:For any SNR, the following bounds are valid: Theorem 5 shows that the relevant parameter for the upper
1 ) bound of the AMI in (21) is the minimum distance of the
ISM () < log(M) — VPR /N Il constellation and its multiplicity. A similar conclusionas
R

- . drawn in [22, Sec. 3.2.2], in [23, Sec. II-C], and also indilg
log (1+Axe”’dr2\/ﬁlltl\dx) dt, (21) in [24, Theorem 4]. On the other hand, Theorem 5 also
1 suggests that the high-SNR behavior of the BICM capacity
—lleN®
o

Inls(p) = (1—m) 1og(M)+mISM(p)+]\/[7T]\,/2 is captured by the number of minimum distances in the

. i subconstellations;, ,,, via the parameter .
log (1 + Ad)e*pdxfz‘/ﬁ”t”dx) dt. (22)  The parameterd, can be regarded as twice the total
number of bits being equal between the labelings of pairs
4Theorems 4 and 5 can be implemented using GH quadratures. of constellation symbols at minimum distance. Therefdre, t
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Figure 3. PMF of Ay for 8PSK (top) and 8PAM (bottom) obtained

via an exhaustive search. The extreme values fafg (32) = 12/7! and

Pa,(28) = 144/8!, respectively. B

quantity Ay /Ay is the average number of bits being equaﬁo]
between the labelings of the symbols in such pairs. Since
Ay/Ax plus the average number of bits being different addl]
up tom, and the average number of different bits is at least
one, Ay /Ax <m— 1.5 A mapper that meets this bound with[12]
equality is a Gray code. For some constellations, there axis
multitude of Gray codes, whereas for others, none at all. We
conjecture that for any constellation, Gray codes, if thagte [13]
yield a higher BICM capacity than any non-Gray code.

In Fig. 3 we show the PMF ofi;, for 8PSK and 8PAM for (14
all the possible mappings. This figure shows that for 8PSK
there exist 7 different values fad4, which explains the 7
classes of mappings in Fig. 2 (a). For 8PAM there are 1%
different values forA,4, which again explains the 12 classes
of mappings in Fig. 2 (b). In both cases the highest values T{
achieved by Gray codes (there is one for 8PSK and three or]
8PAM [13, egs. (15)—(17)]), which supports our conjecture.

17
V. CONCLUSIONS i

In this paper we provide ready-to-use formulas for thgg;
computation of the CM and BICM capacities based on GH
quadratures and used them to study the BICM capacity. T,
numerical results suggests that the BICM capacity for hig
SNR can be classified into a limited number of classes wil£p]
similar behavior, of which the best class consists of allyGra
codes. We conjecture that that this is a general property (9f]
any constellation for which Gray codes exist. This conjeetu
is supported by numerical examples and analytical boun?zsz]
although a rigorous proof is yet lacking.

(23]

_ 24
5The quantitym — Ag/Ax is proportional towe(1) in [20] andd(1) in [24]
[15]. Minimizing eitherwg (1) or d(1)—which translates into a minimization
of the average bit-error probability for uncoded transiiss-is equivalent

to a maximization ofA .
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