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Optimal Signal Sets and Binary Labelings
for BICM at low SNR

Erik Agrell and Alex Alvarado

Abstract—Optimal binary labelings, input distributions, and
input alphabets are analyzed for the so-called bit-interlaved
coded modulation (BICM) capacity, paying special attentio
to the low signal-to-noise ratio (SNR) regime. For 8-ary pude
amplitude modulation (PAM) and for 0.75 bit/symbol, the folded
binary code results in a higher capacity than the binary refleted
Gray code (BRGC) and the natural binary code (NBC). The 1 dB
gap between the additive white Gaussian noise (AWGN) capdyi
and the BICM capacity with the BRGC can be almost completely
removed if the input symbol distribution is properly selected.
First-order asymptotics of the BICM capacity for arbitrary
input alphabets and distributions, dimensions, mean, vaance,
and binary labeling are developed. These asymptotics are ad
to define first-order optimal (FOO) constellations for BICM,
i.e., constellations that make BICM achieve the Shannon liih
—1.59 dB. It is shown that the Ey,/No required for reliable
transmission at asymptotically low rates in BICM can be as hjh
as infinity, that for uniform input distributions and 8-PAM t here
are only 72 classes of binary labelings with a different first
order asymptotic behavior, and that this number is reduced b
only 26 for 8-ary phase shift keying (PSK). A general answer
to the question of FOO constellations for BICM is also given:
using the Hadamard transform, it is found that for uniform in put
distributions, a constellation for BICM is FOO if and only if it is
a linear projection of a hypercube. A constellation based ofPAM
or quadrature amplitude modulation input alphabets is FOO if
and only if they are labeled by the NBC; if the constellation
based on PSK input alphabets instead, it can never be FOO if
the input alphabet has more than four points, regardless of he
labeling.

Index Terms—Average mutual information, binary labeling,
bit-interleaved coded modulation, channel capacity, foldd binary
code, Gray code, Hadamard transform, natural binary code,
PAM, PSK, QAM, Shannon limit.

|. INTRODUCTION

[4], [5]*. After he introduced the famous capacity formula
for the additive white Gaussian noise (AWGN) channel, the
problem of designing a system that operates close to that
limit has been one of the most important and challenging
problems in information/communication theory. While low
spectral efficiencies can be obtained by combining binary
signaling and a channel encoder, high spectral efficieraries
usually obtained by using a coded modulation (CM) scheme
based on a multilevel modulator.

The early works on CM include those by de Buda [7],
[8], Massey [9], Miyakaweet al. [10], Anderson and Taylor
[11], and Aulin [12]. The first breakthroughs for coding
in the bandwidth-limited regime (spectral efficiencies \abo
1 bit/symbol) came with Ungerboeck’s trellis-coded modula
tion (TCM) [13], [14] and Imai and Hirakawa's multilevel
coding (MLC) [15], [16]? Since both TCM and MLC aim
to maximize a Euclidean distance measure, they perform very
well over the AWGN channel. However, their performance
over fading channels is rather poor. The next breakthrough
came in 1992, when Zehavi introduced the so-called bit-
interleaved coded modulation (BICM) [21] (later analyzed
in [22], [42]), which is a serial concatenation of a binary
channel encoder, a bit-level interleaver, and a memoryless
mapper. BICM aims to increase the code diversity—the key
performance measure in fading channels—and therefore out-
performs TCM in this scenario [22, Table Ill]. BICM is very
attractive from an implementation point view because of its
flexibility, i.e., the channel encoder and the modulator can
be selected independently, somehow breaking Massey’s join
design paradigm. BICM is nowadayde factostandard, and
it is used in most of the existing wireless systems, e.g.,AISP
(HSDPA and HSUPA) [23] [24, Ch. 12], IEEE 802.11a/g [25]
IEEE 802.11n [26, Sec. 20.3.3], and the latest DVB standards

HE PROBLEM of reliable transmission of digital infor- DVB-T2 [27], DVB-S2 [28], and DVB-C2 [29]).

mation through a noisy channel dates back to the wor
of Nyquist [1], [2], and Hartley [3] almost 90 years ago. Trheid
efforts were capitalized by C. E. Shannon who formulat
a unified mathematical theory of communication in 194 |
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SPlots of the BICM capacity vsEy, /Ny reveal that BICM
oes not always achieve the Shannon limit (SL).59 dB.

e’g—\is can be explained based on first-order asymptotics of the

CM capacity, which were recently developed by Martinez
et al. for uniform input distributions and one- and two-
dimensional input alphabets [30], [31]. It was shown that
there is a bounded loss between the BICM capacity and the
SL when pulse amplitude modulation (PAM) input alphabets

1An excellent summary of the contributions that influencedr8ton’s work
can be found in [6, Sec. I].

2For a detailed historical overview of the early works on CM; refer the
reader to [17, Sec. 1.2] and [18, pp. 952-953]. Also, goodnsaries of the
efforts made over the years to approach Shannon’s limit th power- and
bandwidth-limited regimes can be found in [19], [20].
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labeled by the binary reflected Gray code (BRGC) is usednd the conditional pdf ofY” conditioned onX = =« is
Recently, Stierstorfer and Fischer showed in [32], [33k(salenoted bypy|x—(y). The same notation applies to joint
also [34, Ch. 3]) that this is caused by the selection of trend conditional pmfs, i.e Px vy (z,y) and Py | x—.(y). The
binary labeling and that equally spaced PAM and quadratusrpectation of an arbitrary functiofi(X,Y") over the joint
amplitude modulation (QAM) input alphabets with unifornpdf of X and Y is denoted byEx y[f(X,Y)], the ex-
input distributions labeled by the natural binary code (NB(pectation over the conditional pgfy| x—,(y) is denoted by
achieve the SL. Moreover, the same authors showed in [3} | x_,[f(X,Y)], andcov (X) is the covariance matrix of
that for low to medium signal-to-noise ratios (SNR), the NBGhe random vectoX .
results in a higher capacity than the BRGC for PAM and QAM We denote the base-2 representation of the intéget
input alphabets and uniform input distributions. it < M — 1, where M = 2™, by the vectorb(i) =

The fact that the BICM capacity does not always achieve thig,, (i), b, —2(%), . .., bo(?)], whereb,,_1 (i) is the most sig-
SL raises the fundamental question about first-order optimaficant bit of : and by(¢) the least significant. To facilitate
(FOO) constellations for BICM, i.e., constellations thaaka some of the developments in this paper, we also define the
the BICM achieve the SL. In this paper, we generalize the firgirdered direct producas
order asymptotics of the BICM capacity presented in [30] to
input alphabets with arbitrary dimensions, input disttibas, (@0 ,--->ap )" @by, ..., by " £ e, ..., cp, 11",
mean, variance, and binary labelings. Based on this model, 1)
we present asymptotic results for PAM and phase shift keyir\)\%erec o
(PSK) input alphabets with uniform input distribution ariét d 7+J
ferent binary labelings. Our analysis is based on the dedtal
Hadamard transform [36, pp. 53-54], which allows us to full
characterize FOO constellations for BICM with uniform itpu
distributions for fading and nonfading channels. A complet
answer to the question about FOO constellations for BICH, Binary Labelings
with uniform input distributions is given: a constellatios

FOO if and only if it is a linear projection of a hypercube. Fur A Pinary labelingL of orderm > 1 is defined using an
thermore, binary labelings for the traditional input alpaes / * 7 matrix where each row corresponde to ong ofl\llr;ﬂ'e
PAM, QAM, and PSK are studied. In particular, it is provef€ngth# distinct binary codewordsl, = [eg, ..., e5/ ]
that for PAM and QAM input alphabets, the NBC is the onI)Whereci = [cioCins s cim—] € {0,137 .
binary labeling that results in an FOO constellation. Itlsoa N Order to recursively define some particular binary label-
proven that PSK input alphabets with more than four pointdds: We first defin@xpansionsrepetitions aanreerctTmnson
can never yield an FOO constellation, regardless of therpininary labelings. To expand a labelifig, = [¢o , .-, €3]
labeling. When 8-PAM with a uniform input distribution isi"© @ labeling L., we rgpeTat Teach bT|nary gode;mord
considered, the folded binary code (FBC) results in a high@PCe t0 obtain a new matrixcy, ¢y, ..., €pr_1: €l
capacity than the BRGC and the NBC. Moreover, it is showd'd then we obtairl., 1 by %ppendmg one extra column
how the BICM capacity can be increased by properly selectify 1+ 100, 1,1,0,...,0,1,1,0] " of Iength2]\/%/ [38]. TTO gen-
the input distribution, i.e., by using so-callggtobabilistic €rate & [abeling.,,., from a labelingl,, = [cg ..., cpr_1]
shaping[37]. In particular, probabilistic shaping is used t&Y repet|t.|on,Twe reEJreat thTe IabellTrIngonce to obtain a
show that PAM input alphabets labeled by the BRGC or tHEW matrixcg,....ey_y,¢q,.. -, ¢py] ", and we add an
FBC can also be FOO, and to show that the 1 dB gap betwddfira column from the left, consisting df/ zeros followed

the AWGN capacity and the BICM capacity with the BRG®Y M ones. Finally, to generate a labelirig,,,; from

=[a;,b;]fori=0,....,p—1landj =0,...,¢g—

1. The ordered direct product in (1) is analogous to the
Cartesian product except that it operates on vectors/ceatri
thstead of sets.

can be almost completely removed. a labeling L, = [ej.....cy;_y]" by reflection, we join
L,, and a reversed version df,, to obtain a new matrix
1 PRELIMINARIES [ed,....err 1, 0}471? ...,c¢]*, and we add an extra column

' from the left, consisting of\/ zeros followed byM ones [38].

A. Notation Convention In this paper we are particularly interested in thi@ary

Hereafter we use lowercase lettersto denote a scalar, 'eflected Gray codgBRGC) [39], [40], thenatural binary
boldface lettersz to denote a row vector of scalars, an¢0de(NBC), and thefolded binary codgFBC) [41]. The FBC
underlined symbolg: to denote a sequence. Blackboard bol@@s analyzed in [41] for uncoded transmission and here we
letters X represent matrices ang} ; represents the entry of Will, to our knowledge for the first time, consider it for catle
X at rowi, column;j, where all the indices start at zero. Thdransmission. In Sec. Il-D and Sec. V-C it is shown to yield
transpose oK is denoted byxT, trace (X) is the trace of%, & h|gher.capaC|ty than oth(_ar Iabelmg_s under some cond.mon
and |2 is trace (XTX). We also introduce a new blnary Iabelmg denobénhry semi-

We denote random variables by capital lettdfs prob- Gray code(BSGC). These binary labelings are generated as
abilites by Pr{-}, the probability mass function (pmf) of follows:
the random vecto” by Py (y), and the probability density « The BRGCG,, of orderm > 1 is generated byn — 1
function (pdf) of the random vectd" by py (y). The joint pdf recursive expansions of the trivial labelifig = [0, 1],
of the random vectorX andY is denoted by x v (x,y), or, alternatively, bym — 1 recursive reflections af.;.
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» The NBCN,, of orderm > 1 is defined as the codewordscolumn vectorXpay Wherez; 1 = — (M — 2¢ — 1) with ¢ =
c; that are the base-2 representations of the integéxs.., M — 1. An M-PSK input alphabet is the matriXpgk
i=0,...,M—1,ie,N, =[b0)T, ..., b(M—1)T|T. wherex; = [cos((2i + 1)m/M),sin((2i + 1)7/M)] with i =
Alternatively, N,,, can be generated by, — 1 recursive 0,1,..., M —1. Finally, a rectangulafM’ x M")-QAM input
repetitions of the trivial labelind.,, or asm — 1 ordered alphabet is thel/’M"” x 2 matrix Xqam = Xpay @ Xpanr
direct products ofL; with itself. whereXp,, and X¢,,, are vectors of lengthl/’ and M”,
« The BSGCS,, of orderm > 3 is generated by replacing respectively.
the first column ofG,,, by the modulo-2 sum of the first For a given input alphabé¥, the input distributionof the
and last columns. symbols is denoted by the pnifx (x), which represents the
o The FBCF,, of orderm > 2 is generated by one probabilities of transmitting the symbais i.e.,Pr{X = x}.
reflection ofN,,,_;. We define the matri® as an ordered list containing the proba-
For any labeling matrixl. = [¢f,... ¢k, ,]T, where bilities of the symbols, i.eP = [Px (x), ..., Px(za-1)]".
¢ = [Ci0:Cinse s Cimo1] € {0,1}™, we define amodified We useUy £ [1/M,...,1/M]T to denote the discrete
labeling matrixQ = Q(LL) which is obtained by reversing theuniform input distribution.
order of the columns and applying the mappiiig— 1,1 — We define aconstellationas the list of matriceq) £

-1), i.e,, [X,L,P], i.e., an input alphabet using a given labeling and in-
] put distribution. Finally, for a given paj¥, L], we denote with
gix 2 {_L !f Cim-1-k = 1, ) Tk C {0,..., M —1} the set of indexes of the symbols with
’ +1, if ¢im-1-k =0, a binary label € {0,1} at bit positionk € {0,...,m — 1},

i A _ o
with i = 0,...,M — 1 andk = 0,...,m — 1. be Ty = {i €40, M =1} cip =u}.

Example 1 (Binary labelings of orden = 3):

7 D. System Model

In this paper, we analyze coded modulation schemes (CM)
as the one shown in Fig. 1. Each of thepossible messages
is represented by the binary vectar € {0,1}*:, where
k. = log, K. The transmitter maps each message to a
sequencex = [z(0)T,...,z(N, — DT]T e &N, which
corresponds tav, N-dimensional symbols, channel use3.
The codeC is a subset oft™: such that|C| = K, which
is used for transmission. The transmitter is then defined as
a one-to-one function that assigns each information messag
w to one of the K possible sequences € C. The code
rate in information bits per coded bits is then given by
) R = k./(mNy) or, equivalently,R. = k./N; information bits
per channel use (information bits per symbol, or infornmatio
bits per N real dimensions). At the receiver’s side, based
on the channel observations, a maximum likelihood sequence
receiver generates an estimate of the information Hkits
selecting the most likely transmitted message.
+1 41 +1 We consider transmissions over a discrete-time memoryless

-1 +1 4+ fast fading channel
+1 -1 +1
-1 -1 +1 Y(n) = H(n)o X(n)+ Z(n), (3)
Q)= |
1 41 -1 where the operatopr denotes the so-called Schur product
+1 -1 -1 (element-wise product) between two vecto®§(n), H (n),
1 -1 —1 Y (n), andZ(n) are the underlying random vectors fe(n),
- - h(n), y(n), andz(n) respectively, withh = 0, ..., Ns—1 be-
ing the discrete time index, ard(n) is a Gaussian noise with
zero mean and varianc®,/2 in each dimension [21], [42,
App. 2.A]. The channel is represented by tNedimensional
vectorH (n), and it contains real fading coefficient which
are assumed to be random variables, possibly dependeht, wit
same pdipy(h). We assume thakll (n) and N, are perfectly

known at the receiver or can be perfectly estimated. Sinee th

o
o
o

7N3

Sg = , F3

H =R OOOO Rk EEFHOOOO

SO HFEFFEFFRPF OO mRRrOoOOR OO
O ORFPFOHFO RO, OF,ORFO

H OO RO FFO = FEMFEKFEOOO
OO R R FHEFFEF OO OO KK FHFEO
O R OO F O OFF OO

and

C. Constellations and Input Distributions

Throughout this paper, we us& to represent the set of
symbols used for transmission. Each elemenftofs an V-
dimensional symbak;, i = 0,..., M —1, where|X| = M =
2m and X ¢ RY. We define theinput alphabetusing an
M x m matrix X = [zd,..., 21, ,]T which contains all the
elements of¥.

For practical reasons, we are interested in well-strudture s «channel use” corresponds to the transmission of dhelimensional
input alphabets. An\/-PAM input alphabet is defined by thesymbol, i.e., it can be considered as a “vectorial channel.us
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CM Channel
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Figure 1. A CM system based on a BICM structure: A binary cleh@mcoder, a bit-level interleaver, a memoryless mapper,fading channel, and the
inverse processes at the receiver side.

channel is memoryless, from now on we drop the discrete-tirttee channel decoder. The a posteriori L-values for/tiebit

index n. in the symbol and for a given fading realization are given by
The conditional transition pdf of the channel in (3) is given X Pr{Cy = 1]Y =y, H — h}
by lk(y) = log, ()
, Pr{C;, =0|Y =y,H = h}
1 ly —hoax| ly —h 12
= — —_—_ U y o ml”
PY|X=a,H=h(Y) (Nom) V72 exp( N . (4) - ; }(_1) log, ; exp (—T)
ue{0,1 €15,
We assume that botH and X have finite and nonzero second ' (8)
moments, thatX, H, and Z are mutually independent, and 1
that there exists a constant> 0 such that for all sufficiently A > (= Jin [ly — ko, 9)
large A > 0 the vectorH satisfies 0 uef0,1} o
Pr{||H|]?> > A} < exp(—A¥). (5) Wwhere to pass from (8) to (9), the so-called max-log [43]

approximation was used.
This condition will be used in the proof of Theorem 7 in The max-k)g metric in (9) (a|ready proposed in [21], [22])
Sec. IV-C. is suboptimal; however, it is very popular in practical im-
Each transmitted symbol convey. information bits and plementations because of its low complexity, e.g., in tha# 3r
thus, the relation between the average symbol enéigy* generation partnership project (3GPP) working groups.[#4]
Ex|[[| X||?] and the average information bit ener8ly is given s also known that when Gray-labeled constellations arel,use
by Es = R.Ey,. We define the average signal-to-noise ratio afe use of this simplification results in a negligible impant
2 the receiver’s performance [45, Fig. 9] [46, Fig. 6]. The max
SNR £ Enx||Ho X[ log approximation also allows BICM implementations which

]20 do not require the knowledge d¥,, for example, when a
= IEH[HQ]Fs Viterbi decoder is used, or when the demapper passes hard
0

> decisions to the decoder. Moreover, the use of the max-log
= ]EH[HQ]RC_b, (6) approximation transforms the nonlinear relatiqiy) in (8)
No into a piecewise linear relation. This has been used to dpvel
The AWGN channel is obtained as a special case of (8xpressions for the pdf of the L-values in (9) using arbjtrar
by taking H as the all-one vector. Another particular casput alphabets [47] (based on an algorithmic approach),
is obtained whenH, = H, = ... = Hy_; = A, closed-form expressions for QAM input alphabets labeled by
which particularizes to the Rayleigh fading channel whethe BRGC for the AWGN channel [48], [49], and for fading
A= ./A? + A2 andA,, A, are independent zero-mean Gausshannels [50]. Recently, closed-form approximations fo t
sian random variables. In this case, the instantaneous SN of the L-values in (9) for arbitrary input alphabets and
defined byEx|[||H o X||?]/Ny = A?E,/N, follows a chi- binary labeling in fading channels have been presented [51]
square distribution with one degree of freedom (an expaalent
distribution). Similarly, the Nakagamiz fading channel is
obtained whenA follows a Nakagamin distribution. It can
be shown that the condition (5) is fulfilled in all the cases The Hadamard transform (HT) is a discrete, linear, orthog-
above. onal transform, like for example the Fourier transform, but
In a BICM system [21], [22], the transmitter in Fig. lits coefficients take values if1 only. Among the different
(BICM Encoder) is realized using a serial concatenation applications that the HT has, one that is often overlooked is
a binary encoder of rat® = R./m, a bit level interleaver, as an analysis tool for binary labelings [52], [53]. The HT is
and a memoryless mappér. The mapper® is defined as defined by means of al/ x M matrix, the Hadamard matrix,
a one-to-one mapping rule that maps the lengthinary which is defined recursively as follows whed is a power
random vectorC = [Cy,...,Cp—1] to one symbolX, of two [36, pp. 53-54].
ie., ® : {0,1}™ — X. At the receiver's side, the BICM
decoder is based on a demapper that computes soft informatio  p, 2 1, Moy 2 {HM Hay } ’ M >1.
on the coded bits, which are then deinterleaved and passed to Har  —Ha

E. The Hadamard Transform
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Example 2 (Hadamard matriklg): I11. CAPACITY OF CODED MODULATION SYSTEMS
[ +1 +1 41 +1 +1 +1 +1 41 In this section we analyze the capacity of CM schemes,
+1 -1 41 -1 +1 -1 +1 -1 i.e., the so-called CM and BICM capacities. We review their
+1 +1 -1 -1 +1 +1 -1 -1 relation and we analyze how the selection of the constefiati
M. — +1 -1 -1 41 +1 -1 -1 +1 influences them. We pay special attention to the selection of
ST 41 41 41 41 -1 -1 -1 -1 |° the binary labeling and the use of probabilistic shaping for
+1 -1 41 -1 -1 41 -1 +1 BICM.
+1 41 -1 -1 -1 -1 41 +1
[ +1 -1 -1 +1 -1 +1 +1 -1 ] A. AMI and Channel Capacity

10
(10) In this subsection, we assume the use of a continuous input

In the following, we will drop the index, lettingfl represent alphabet, i.e.x = RY, which upperbounds the performance
a Hadamard matrix of any siz&/ = 2™. Hadamard matrices ¢ finite input alphabets.

have the following appealing properties. Theaverage mutual informatio@AMI) in bits* per channel

H' —H, H = R (11) use between the random vectd¥sandY” when the channel
is perfectly known at the receiver is defined as
It can be shown [54, Sec. 1.1] [55, Sec. 1] that the elements (X,Y)
of a Hadamard matrix arg, ; = [[y—, (—1)*®%G), from Ix(X;Y)2 Exy {logQ Z)X’Yi’} (17)
which we observe for future use that for al=0,...,M —1 pY(Y()lf;;‘(X)
andl =0,...,m—1, - Py|x
- | Bx¥ [1% v (¥) } ’ (18)
hio=1,  hig =[] (=1)"*O"E) = ()" (12) \where we useX as the index offx(X;Y) to emphasize
k=0 the fact that the AMI depends on the input PPk (). For
whereb, (i) is thelth bit of the base-2 representation of then arbitrary channel paramet&f, the AMI in (17) can be
integers. expressed &s
At this point it is interesting to note the close relation (Y)
between the columns of the matri®(N3) in Example 1 Ix(X;Y)=Exy.n {10g2 pYL}, (19)
and the columns2! of Hg in (10) for I = 0,1,2. lts u(Y)

generalization is given by the following lemma, whose pfOQ/f/herepr:m_H:h(y) is given by (4).
follows |mmed|ate|y from (2), the definition of the NBC in The channel Capacityof a Continuous_input continuous-
Sec. II-B, and (12). output memoryless channel is defined as the maximum AMI

Lemma 1: Let@ = Q(Nm) be the modified |abe|ing matrix between its input and Output [56' Ch. 4] [57' eq. (3)]
for the NBC of orderm, and letH be the Hadamard matrix.

For anym, and fork =0,...,m—1andi=0,...,M — 1, C(SNR)épfil?;i)Ix(X;Y)a (20)
Gijk = hiox. (13) " where the maximization is over all possible input distribos.

The HT operates on a vector of lenglti = 2™, for any The capacity in (20) has units of [bit/channel use] (or equiv
integerm, or in a more general case, on a matrix with= 2™  alently [bit/symbol]), and it is an upper bound on the number
rows. The transform of a matriX is denotedX and has the of bits per symbol that can be reliably transmitted through
same dimensions a%. It is defined as the channel, where a symbol consists/éfreal dimensions.
Shannon’s channel coding theorem states that it is notlpessi
to transmit information reliably above this fundamentatiti
ie.,

SN i
X & HX (14)

and the inverse transform 1 = HX. Equivalently,

E
M-—1 M—-1 2 b

o ) R < C(SNR) = C (RC]EH[H ]—) . 21)

:Ej = M ZO hj_’i.’lli, r; = ZO hiyj.’llj, (15) NO

= = The AWGN capacitydenoted byCAW (SNR), is defined as
where from (11) we have that; ; = h; ;, and where we have the channel capacity of the AWGN channel (obtained from (3)

introduced the row vectors; andx; such that using H(n) = 1), and it is given by [56, Sec. 9.4]
X=[zL,.. . 25 " X=[ar ... 27 1"
Because of (12), the first element of the transform is simply 2 N

xo = (1/M) Z?ia;mil- o This capacity is attained wheX are i.i.d. zero-mean Gaussian
Finally, usingd~ ;" " [|&;]|* = trace(X"X), (14), and (11), random variables with variancg, /N in each dimension and
we note that a variant of Parseval’s theorem holds:

M—1 M—1 4Throughout this paper all the AMIs are given in bits.

Z ||53H2 _ i Z ch||2 (16) SWe note that the AMI with perfect channel state informatien uisu-
J M L ally denoted bylx (X;Y|H); however, for notation simplicity, we use

J=0 =0 Ix(X;Y).
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it follows from the fact that the noise is independent in eadiwo optimization parameters: the input alphabet and thatinp
dimension, and thus, the transmissionXfcan be considered distribution.
as a transmission through parallel independent Gaussian The CM capacity in (25) (for a given constellatidn)

channels.

is an upper bound on the number of bits per symbol that

We define theconditional AMIfor discrete input alphabetscan be reliably transmitted using for example TCM [14] or
as the AMI betweenX andY conditioned on the outcome MLC with multistage decoding (MLC-MSD) [15], [62]. MLC-

of a third random variablé/, i.e.,

pYX,U—u(Y)]
I —.( XY £ D) —u [lo —_— 23
X|U ( ) X,Y|U 22 leU:u(Y) (23)
PY|X,H,U_u(Y)]
=E _u |logy XHIZU2] (24
XYL HIE [ &2 Py |H,U=u(Y) @4

which is valid for any randonH .

B. CM Capacity

The CM capacityis defined as the AMI betweeX andY
for a given constellatiof, i.e.,

ISM (SNR) 2 Ix (X;Y) (25)
=Ix(C;Y) (26)

m—1
= ZIX(C’;C;Y|C’0,...,CIC71)7 (27)

k=0

MSD is in fact a direct application of the summation in (27),
i.e., m parallel encoders are used, each of them having a rate
Ri = Ix(Cy;Y|Co,...,Cr_1). At the receiver's side, the
first bit level is decoded and the decisions are passed to the
second decoder, which then passes the decisions to the third
decoder, and so on. Other design rules can also be applied
in MLC, cf. [62]. The maximum CM capacitfC“™ (SNR)

in (29) represents an upper bound on the number of bits per
symbol that can be reliably transmitted using a fully optiet
system, i.e., a system where for each SNR vadkR, the
input alphabet and the input distribution are selected deor

to maximize the CM capaciti;™ (SNR).

C. BICM with Arbitrary Input Distributions

It is commonly assumed that the sequence generated by the
binary encoder in Fig. 1 is infinitely long and symmetric, and
also that the interleaver} operates over this infinite sequence,

where to pass from (25) to (26), we used the fact that ti§éMply permuting it in a random way. Under these standard
mappmg rule betwee® and X is one-to-one. To pass from assumptions, it follows that the input Symbol distributioil
(26) to (27) we have used the chain rule of mutual informatid¥e alwaysP = Uy,. Since in this paper we are interested
[56, Sec. 2.5], wherdx (Cy;Y|Cq,...,Cr_1) represents a in analyzing a more general setup where the input symbol
bit level AMI which represents the maximum rate that can b@istribution can by modified, we develop a more general
used at thgk + 1)th bit position, given a perfect knowledgemodel in_ which we relax the equiprobable input distribution
of the previousk bits. assumption.

The CM capacity in (25) corresponds to the capacity of the Let Cy, € {0, 1} the binary random variable representing the
memoryless “CM channel” in Fig. 1 for a given constellatio®its at thekth modulator’s input, where the pnffc, (u) rep-
Q. We note that different binary labelings will produce difresents the probability of transmitting a hitat bit position.
ferent values of/x (Cy: Y'|Co, ..., C_1) in (27); however, We assume that in general}" ' Pc, (0) # S P, (1),
the overall sum will remain constant, i.e., the CM capacitye., the coded and interleaved sequence could have mare zer
does not depend on the binary labeling. We use the nath@n ones (or vice-versa). Note that sinBe, (u) is a pmf,
“CM capacity” for ISM (SNR) in (25) following the standard Pc, (0) + Pc, (1) = 1.
terminology used in the literature (cf. [22], [30], [33], [34], Letci =Icio,.-.,cim—1] be the binary label of the symbol
[60]), although we recognize a misuse of the word capacigy. We assume that the bits at the input of the modulator are
since no optimization over the input distribution is perfied  independent, and therefore, the input symbol probatsilitiee
(cf. (20)). Moreover, it is also possible to optimize the uhp
alphabet in order to obtain an increase in the AMI (so-called
signal shaping [61]). Nevertheless, throughout this paper

will refer to the AMI for a given() in (25) as the CM capacity. ) N _
In this paper we are interested in optimal constellationd, a The independence condition on the coded bits that results

therefore, we define thmaximum CM capacitps in (30) can be obtained if the interleaver block in Fig. 1
completely breaks the temporal correlation of the codesl bit
CM (SNR) £ mszzixlgM (SNR)

(28) The condition that the coded and interleaved sequence could
me1l be asymmetric can be obtained for example by using an
= I[I%%P’)]( kz_o Ix(ck; Y|Co, ey Ck—l)-

m—1
Px(z;) = [] Pes(cin). (30)
k=0

(29) encoder with nonuniform outputs, or by a particular puriotyr
scheme applied to the coded bits. This can be combined with

. . the use of multiple interleavers and multiplexing [63], @i
As mentioned before, the CM capacitges notdepend on the.would allow P, (1) # 1/2. Examples of how to construct a

binary labeling, i.e., it does not depend on how the MaPPIG -\ scheme where nonuniform input symbol distributions

rule @ is implemented, and therefore, in (29) we only shovgre obtained include the “shaping encoder” of [64], [65] and

the nonuniform signaling scheme based on a Huffman code
of [66].

6Sometimes, this is also called joint capacity [37], or (¢eltstion)
constrained capacity [58], [59].
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For future use, we also define the conditional input symbdifferences are that BICM uses only one encoder, and that in

probabilities, conditioned on theth bit beingu, as BICM the equivalent channels are not used in parallel, but
N time multiplexed. Again, following the standard termingyé
H Pe,, (i), if cip =u, used in the literature (cf. [22], [30], [33], [34], [60]), wease
Px|cy—u(@i) = { 1=0 ' the name “BICM capacity” even though no optimization over
K #k the input distribution is performed.
0, if cin #u If all the bits at the input of the modulator are equally likel
Px(x;) .. . ie, Po,(u)=1/2fork=0,...,m—1andu € {0,1}, we
A B if i€ Zyu, (31) obtain _from (30)Px (x) = 1/M. Under these constrainFs, _and
0, if i ¢ Tp.u, assuming an AWGN channeH = 1), the BICM capacity in
’ (35) is given by
whereZ, ; is defined in Sec. II-C.
- 1 m—1
D. BICM Capacity lo (SNR) = M — 201 e; /IRN PYIX:wT:(y)
The BICM capacity was originally defined in [22] using an ue{z’g_ o Py X e (¥)
equivalent channel model that consistsmefparallel binary- -log, JE€Tyu TV | X =2, dy, (36)
input continuous-output channels. Using this model and the Ywex PY|X=2(Y)

definitions in Sec. llI-C, the BICM capacity for a given

. . , where the constellation i® = [X,L,Uy,]. This expression
constellation(? is defined as [ ] P

coincides with the “standard” BICM capacity formula (cf2[4
Sec. 3.2.1], [22, eq. (15)], [60, eq. (11)]).

BI L One relevant question here is what is the optimum label-
lo" (SNR) = Iey (G Y) (32) ing from a capacity maximization point of view. Once this
:;01 guestion is answered, approaching the fundamental lindit wi

depend only on a good design of the channel encoder/decoder.

— S 2 pya(Y) Caireet al. conjectured the thlmallty of the BRGC, wh_|ch,
1 as the next example shows, is not correct at all SNR. This was

_ Z Pe, (u) first disproved in [35] f_or PAM input alphabets based on an
=0 uefo 1) exhaustive search of binary labelings upMb= 8.

» (Y) Example 3 (CM and BICM capacities for AWGN): In
YlHC—’“_;] (34) Fig. 2, we show the BICM capacity in (36) and the
pyia(Y) CM capacity in (25) for 8-PAM,P = Ug, and the four

= (see (35) at the bottom of the page) binary labelings in Example 1. Fig. 2 (a) illustrates that

where (35) follows from (34) by expanding the eXpeCtaﬂo?aepa?:liTyeriznsriatljlei:‘\,\ftﬁznbi;ha?ry(fez/lbe(l:iﬁgaigt};r(?;:rl;hseeIesk:ltce:M
int I h andy, di —u th . ; .

as integrals oveh andy, expandingpy i .c,=u(y) 8s the L Bl T four binary labelings is the NBC for low

marginalz.gk Px|c—u(®:)py | x =2, 1 (y) and similarly ) X
€ Tk,u Ik . SNR (R. < 0.43 bit/symbol), the FBC for medium SNR
for py (), and simplifying the probabilities using (31). The 43 < R. < 1.09 bit/symbol). and the BRGC for high SNR

BICM capacity in (35) is a general expression that depen% . :
: . . . > 1.09 bit/symbol). The gap between the CM capacity
on all the constellation parametees This can be numerically and the BICM capacity for the BSGC is quite large at low to

|mplem9nted using Gauss—He_rm|te guadr_atures [.67’ - 70]’rr(1)oderate SNR. The low-SNR behavior is better elucidated
alternatively, by using a one-dimensional integrationelolasn

. in Fig. 2 (b), where the same capacity curves are plotted
the pdf of the L-values developed in [47], [49]-[51]. Redgnt n . . .
Mar?inez et al. [60] recognizec?the B[ICI\]/I [dec]:oEjer] in F(itg. 1versusEb/N0 instead ofSNR. Interestingly, the CM capacity

as a mismatched decoder and showed that the BICM capa&?d the BICM capacity using the NBC achieve the SL at

in (35) corresponds to an achievable rate of such decoder.i%[rggt(ggf"ﬁ low rates; Gaussian inputs are not necgssar

The AMIs I, (Ck;Y) in (32) are, in contrast to the ones .
in (29), not conditioned on the previous bit values. Becaifse Formally, £, /No is bounded from below by (f.), where

this, and unlike the CM capacity, the binary labeling stigng » CHRe)

affects the BICM capacityB' (SNR) in (32). Note that the f(Re) = EnlH2R. (37)
BICM capacity is equivalent to the capacity achieved by MLC

with (SUb(_)ptlmal) parallgl decoding of the_md'\”dual wvkls, "It is also called parallel decoding capacity in [37], or iigee constrained
because in BICM, the bits are treated as independent [62]. Tdapacity in [58].

‘Ery|ci=u [10g2

m— _1 . P (w) o ( )
Po, (W) Z €T T X\Tj)PY | X=a;, H=h\Y
/ pe(h) E E Px(wi)/ Py | X =z, H=h(Y) - 108, = — dy dh (35)
F=0 u€{0,1} i€Tx.u R Dwex Px(@)py|x=2 H=n(Y)
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This function always exists, because the cap&c@iySNR)

—— CAW(SNR) . . . d ” - )
== - IGV(SNR) is a strictly increasinyfunction of SNR and thus invertible,
asfl :glgm Eﬁgﬁf while in contrastf (R.) is in general not monotone. This is the
15" (SNR) (FBC) reason why a givert, /Ny for some labelings maps to more
- - IBY(SNR) (BSGC

than one capacity value, as shown in [30]. The phenomenon
can be understood by considering the functi§f(SNR) in

a linear SNR scale, instead of logarithmic as in Fig. 2 (a).
If plotted, the function would pass through the origin for al
labelings. Furthermore, any straight line through the iorig

Re < 1B (SNR) represents a constafit;[H?| E}, /N by (6), where the slope is
determined by the value & [H?]E},/No. Such a line cannot
intersectiS(SNR) more than once foBNR > 0, if IBI(SNR)

is concave. This is the case for the BRGC, NBC, and FBC,
and therefore the functioR, = f~(Ey[H?]E),/No) exists,

15

R. [bit/symbol]

0.5

olommimememe T ’ ‘ as illustrated for in Fig. 2 (b). However, for some labelings
-~ N SNR[B] b & such as the BSGC (and many others shown in [34, Fig. 3.5]),
@ ISL(SNR) is not concave and(R.) is not invertible. This

phenomenon has also been observed for linear precoding for
BICM with iterative demapping and decoding [70, Fig. 3],
punctured turbo codes [71, Fig. 3], and incoherkefiary PSK
[72, Figs. 2 and 5] and frequency-shift keying channels [73,
Figs. 1 and 6].

Since analytical expressions for the inverse function ef th
capacity are usually not available, expressionsffoR.) are
rare in the literature. One well-known exception is the cépa
of the Gaussian channel given by (22), for which

N

250

R, [bit/symbol]

L AW — ' (92R/N _ 1
P (Re) = 5 (2 ) (38)
] which results in the SL
lim fAY(R.) = log,(2) = —1.59 dB. (39)

R.—0+

R=)

Analogously, we will use the notatiofi;™ (R..) and f5Y(R..)
when the capacity considered is the CM and the BICM
capacity, respectivef

The results in Fig. 2 (a)—(b) suggest a more general ques-
tion: What are the optimal constellations for BICM at a
given SNR? To formalize this question, and in analogy to the
maximum CM capacity in (28), we define theaximum BICM
capacityas

(b)

CP'(SNR) £ max 18T (SNR), (40)

where the optimization is in this case over the three pararaet
defining Q. In analogy to the maximum CM capacity, the
maximum BICM capacity represents an upper bound on the
; number of bits per symbol that can be reliably transmitted
; using a fully optimized BICM system, i.e., a system where
! for eachSNR, the constellation is selected to maximize the
! BICM capacity.

- ‘ ‘ ‘ ‘ ‘
1 15 2 25

R, [bit/symbol] 8From now on we will refer to “capacity” using the notati@(SNR) in

© a broad senseC(SNR) can be the AWGN capacit¢*WV (SNR) in (22), the
CM capacitylSM(SNR) in (25), or the BICM capacityS! (SNR) in (32).

Figure 2. CM capacity and BICM capacity for 8-PAM wittls using the 9This can be proved using the relation between the AMI and timénmam

four labelings defined in Sec. I1-B: plotted VSNR (a) andE}, /N (b), and mean square error (MMSE) presented in [69], i.e., that thevatve of the

their corresponding functiong(R.) (c). The shadowed regions represent thé\MI with respect toSNR is proportional to the MMSE for angNR. Since

achievable rates using the BSGC. The black squares représgeminimum the MMSE is a strictly decreasing function 6NR, the AMI is a strictly

Ey,/No for the BSGC. The black circles represents fig/ Ny needed for increasing function oSNR.

arateR = 1/15 turbo code to reaclBER = 109 (cf. Sec. VI-A). 10The same notation convention will be used for other funetithat will

be introduced later in the paper.
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We conclude this subsection by expressing the BICM cér R. > 0. This follows becauséimRﬁw g2 (R.) = 0

pacity as a difference of AMIs and conditional AMIs , whichand the first derivative 0§ 2%V (R.) is strictly positive:
will facilitate the analysis in Sec. IV. The following resig a d R 4
somehow straightforward generalization of [30, Propoaiti], QHL() = —R.(log, 2)?2%F/N > 0,
[59, eq. (65)] toN-dimensional input alphabets, nonuniform AR, N
input distributions, and fading channels. O
Theorem 2:The BICM capacity can be expressed as In Fig. 2 (c), we present the functiof{R.) in (42) for the
same constellations presented in Fig. 2 (a)—(b)y(k.) =
0 has at least one solution fak. > 0, the capacity curve
15" (SNR) Z Z Fo, (u will have a local minimum (shown with a filled square in
k=0 ue{0,1} Fig. 2 (b)—(c) for the BSGC). Note also that the BSGC has

[Ix(X3Y) — Ixj0,=u(X;Y)]. (41) an interesting property, nameliimp,__.o+ g5'(R.) = —oc,
. , and consequentlyimp .o+ f5'(R:) = +oo. In this sense,
Proof: For any functione(X, V', H), the BSGC is an extremely bad labeling fa7-PAM input
Py HCk—u(Y):| alphabets and asymptotically low rates.

py1a(Y) B
e(X,Y,H) log e(X,Y,H) F. Probabilistic Shaping
T~ 2

pya(Y) Py|H.C=u(Y) The maximum BICM capacity in (40) is an optimization
this relation in (34), lettinge(X,Y,H) 2 problem for which analytical solutions are unknown. In this
subsection, we study the solution of (40) when the input
alphabet and the binary labeling are kept constant, i.e., we
study the so-called probabilistic shaping. Formally, watta
solve P*(SNR) £ argmax; 15! (SNR), whereQ = [X, L, P],
for a given input alphabeK and labelinglL. Since this
E. Minimum£Ey, /Ny for Reliable Transmission optimization problem turns out to have multiple local miaim
In this section, we determine the minimuii,/N, that and no analytical methods are known for solving it, we
permits reliable transmission, for a given input alphabet aperform a grid search with steps of 0.01 based on Gauss-
labeling. As observed in Fig. 2 (b), this minimum does ndtlermite quadratures. The optimization is performed over th
necessarily occur at rate. = 0. three variables defining the input distributidp:, (0), Pc, (0),
Theorem 3 (MinimunEy, /No):  The minimum Ey, /Ny is and Pc, (0). For each SNR value, the input distribution that
given by f(R.), whereR, = 0 or R, is one of the solutions maximizes the BICM capacity is selected.

Ex yic,=u {logg
Ex v HiC)=u {10g2

Using
pyix,#(Y) = py|x,H.c,—.(Y), Observing that the first
term is independent of,, and utilizing (19) and (24) yields
the theorem. O

of g(R.) = 0, where In Fig. 3, we show the BICM capacity for an 8-PAM
JF(R JC-Y(R (R input alphabet labeled by the BRGC and the NBC, when the
g(Re) 2 f(Be) — i (Re) _ ( C)_ (42) optimized input distributions are used. We use the notation

dR. R dR. RZ Q* = [X,L,P*]. The results in this figure show how, by
Proof: Any smooth function has a minimum given byproperly selecting the input distribution, the BICM capgci
the solution of its first derivative equal to zero or at théan be increased. The gap between the BICM capacity and
extremes of the considered interval. Since in genérat the AWGN capacity is almost completely eliminated for
R. < oo, two extreme cases should be considered. Howevél; < 2 bit/symbol (in contrast to a gap of approximately
limpg, oo fAW(RC) = limg,__m- fo(Re) = oo, and there- 1 dBin Fig. 2 (b)). Similar results have been presented rtcen
fore, the only extreme point of interest 13, = 0. [ in [74] for 4-PAM. Interestingly, Fig. 3 shows that if the
Since f(R.) is in general not known analytically, theinput distribution is optimized, the NBC is not the optimal
function g(R.) must be numerically evaluated usiGgSNR). binary labeling for low SNR anymore, but the BRGC with an
An exception to this is the capacity of the AWGN channefptimized input distribution achieves the SL. This is alse t
WheregAW(RC) can be calculated analytically. Moreover, itcase for the FBC, but we do not show those results not to
can be proved that in this case, a minimiiiyy/ N, for nonzero overcrowd the figure.
rates does not exist.
Corollary 4 (MinimumE,, /Ny for the AWGN channel): IV. BICM FORASYMPTOTICALLY Low RATES
The minimumE, /N, for the AWGN channel is unique, and
it is obtained for zero-rate transmissions.
Proof: The derivative offAW(R.) in (38) is given by

N + (2R log, 2 — N)22B/N- gﬁyyn(R )

2RZ ~ giW(R.)"  A. Relation between AWGN and BICM capacity
(43)

In this subsection, we are interested in finding an asymp-
totic expansion for the CM and the BICM capacities when
SNR — 0.

gAW(RC) =

We start by proving that the BICM capacity can be optimal
To prove that a zero for a nonzero rate does not exit, we ndadhe sense of being equal to the AWGN capacity only for zero
to prove thatgaWV (R.) > 0 for R. > 0, sincegyW (R.) > 0 rate. This very simple result motivates the developments in
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T—cwenR) Lo We now prove thats™ (SNR) < 15V (SNR) for any fading
———:ggmg) (BRGC gdd channel andSNR > 0. To do this, we note that the CM
2si{ - _ I%EERC))(B(RGC)) ,//,"//' capacity for fading channels is equal to the _CM cgpacity

----- 15! (Re) (NBC) A for the AWGN channel averaged over the distribution of

the instantaneous SNR. Furthermoi@&Y (SNR) is a strictly
concave function oSNR for SNR > 0, because the second
derivative of the AMI as a function of the SNR (the first
derivative of the MMSE, see footnote 8) is strictly negative
for SNR > 0 [75, Proposition 5] [76, Proposition 7]. There-
fore, Jensen’s inequality holds, which yiel¢fs\! (SNR) =
Ex[I5Y (H?Es/No)] < 1§V (En[H?)Es/No) = I3V (SNR)
for SNR > 0. This and the fact thals™ (0) = CAY (0) = 0
proves item i). The proof of item ii) was presented in [22,
Sec. Il1]. O

= » Corollary 6: The BICM capacityand the maximum BICM
capacity can be equal to the AWGN capaaityly for zero
rates, i.e.,I8' (SNR) = CB!'(SNR) = CAW (SNR) only if

¥ AR, am=" SNR = 0.

- - - f§(R.) (BRGC) -~ Proof: From Theorem 5, we know that for aNR > 0,

R. [bit/symbol]

R
ool ) s I the inequalitylB! (SNR) < ISM (SNR) < CAW (SNR) holds.
R v

----- 15! (R.) (NBC) AV Therefore, for anySNR > 0, IS'(SNR) < CAW (SNR).
’ The proof for the BICM capacity is completed noting that

IBL(0) = CAWV (0) = 0. The proof for the maximum BICM
capacity follows from the fact that Theorem 5 holds also when
an optimization ovef) is applied. O

Corollary 6 simply states that the only rates for which the
AWGN will be equal to the BICM capacity and the maximum
BICM capacity isR. = 0 (or equivalentlySNR = 0). In the
following subsections, we analyze the asymptotic behavior
the BICM capacity whersNR = 0.

15

R, [bit/symbol]

0.5

10 12 14

“Eb/N‘; [d8] B. A Linear Approximation of the Capacity and the SL

(b) Any capacity functionC(SNR) can be approximated using
Figure 3. BICM capacity for 8-PAM usin@s and P* for the BRGC and & Taylor expansion arourSNR = 0 as C(SNR) = aSNR +
the NBC versus (apNR and (b) £, / No. O(SNR?). By inversion of power series [77, Sec. 1.3.4.5], we
find

1
-1 _ =+ 2
order to characterize the behavior of BICM for asymptotycal C(Re) = aRC +O(R),

low SNR. . . and using (37), it is possible to obtain a linear approxiorati
Theorem 5:The AWGN capacity, the CM capacity, andys e functionf(R.) as

the BICM capacity are related through the following two

inequalities. F(Re) = 1 +O(R.). (42)
i) ISM(SNR) < CAW (SNR) with equality if and only if a
SNR =0, and For asymptotically low rates, (44) results in
ii) 1B (SNR) < ISM (SNR). .
Proof: We start by proving thatl3V (SNR) < Rhﬂ% f(Re) = o (45)

CAW(SNR) for SNR > 0, where I3V (SNR) is the CM _ _
capacity of the AWGN channel. From (25) aiig (X;Y) = and since from (39} /a > log,(2), we obtain

hY) — h(Z), we express the CM capacity for a givéh

in terms of differential entropies agV(SNR) = A(Y) — a < logye. (46)
N/2logy(2mNoe). Since the differential entropy:(Y') = |tjs clear from (46) that a capacity functi€{SNR) that has a
— Jrv Py (¥)logs py (y) dy is maximized if and only ifY"  coefficienta = log, e achieves the SE-1.59 dB1L. Moreover,

is Gaussian distributed [56, Theorem 8.6.5], the use of ag¥sed on the results for the BSGC in Fig. 2 (b), the coefficient
constellations2 (discrete input alphabet) will give a smaller, an be as low as zero.

differential entropy.(Y") than for a Gaussialk’, which proves
that 15" (SNR) < CAW (SNR) for SNR > 0. Hor equivalently, if we measure the AMI in nats,= log. e = 1.
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C. First-Order Asymptotics of the BICM Capacity generalization will allow us to analyze optimal constédas

Theorem 7 (Linear approximation of the AM)When the {2 in the next section. . _
channel is perfectly known at the receiver, and for any input " 9éneral, we know from (46) that;" < log, e, which can
distribution Px (), the AMI betweenX andY in (3) can be Pe€ interpreted as the penalty of a certain BICM system over

expressed as an optimal CM system (without interleaving). In the followi
) section we analyze§! for PAM and PSK input alphabets with
Ix(X;Y) = aSNR + O(SNR") different binary labelings anet = U,; and we also show how
whenSNR — 0. where to obtainaS! = log, e for general constellations.
B Ex[X][? V. FIRST-ORDER OPTIMAL CONSTELLATIONS FORBICM
a=logye(1l— ——— |. 47
Eq Shannon stated in 1959, “There is a curious and provocative
Proof: The proof is given in Appendix A. [J duality between the properties of a source with a distortion

Theorem 7 shows how to calculate the first-order asympeasure and those of a channel” [78]. Many instances of
totics of an AMI with arbitrary input distribution. The fallv- this duality have been observed during the last 50 years
ing corollary follows directly from the definition of the CM of communications research. A good summary of this is
capacity in (25), where the input distribution is given b@)3 presented in [57, Sec. V]. The coefficientis mathematically

Corollary 8 (CoefficientaS™):  The CM capacity can be similar to the so-calledinearity index[52], which was used
expressed as to indicate the approximative performance of labelings in a

source coding application at high SNR. The usage of the HT
15" (SNR) = ag'SNR + O(SNR?) in this section was inspired by the analysis in [52].
whenSNR — 0, wherea&M is given by (47).
The next theorem gives the first-order asymptotics for tfe FOO Constellations

BICM capacity. In view of the SL (46), we define @&rst-order optimal
Theorem 9 (Coefficient'): The coefficienta for the (FOO) constellationfor BICM2 as a constellatior2 that
BICM capacityIS'(SNR) is given by results in a coefficientS! = log, e.
) Theorem 10 (Coefficientd' for arbitrary constellations):
logy e | \— For any constellation?,
abl = TQ Z Z Pe, (u) y
k=0 ue{0,1} o logye m—1 ([ M-1 g1 Px () 2
2 2 ‘2 = 9F, Z P, (¢ik)
NEx o= [ X7 = ml[Ex [X]]7] . (48) > k=0 (=0 Gk
M—1 2, Px (z;) 2 )
Proof: Reordering th It of Th 2, we have that + e ’ —2||Ex[X][" ¢, (49)
roof: Reordering the result of Theorem 2, we have tha 22" JPoy (con) I I
IST(SNR) = whereg; ;. are the elements of the modified labeling matrix in
m—1 (2)
Z {IX (X;Y) - Z Po, (u)Ix)|0,=u(X; Y)}. Proof: The proof is given in Appendix B. O
k=0 uwe{0,1} Theorem 10 is a very general theorem valid for any con-

stellationf). From this theorem, it is clear that the problem of
designing FOO constellations for BICM has three degrees of
freedom: the input alphabé, the binary labelind., and the

Since Ix(X;Y) and Ix|c,—.(X;Y) are AMIs, we can
apply (47) to each of them, which gives

log, m—1 input distributionP.
abl = E2 Z {ES - IEx[X]|I* - Z Pc, (u) From now on, we restrict our attention to uniform input
S k=0 uef{0,1} distributionsP. This restriction can be justified from the fact

that due to the digital implementation of the transceivers,
(Exjc=ulll XI7] = I Ex|c=a [ X]II7) ¢- i i i i
X|Cr=u X|Cr=u changing the input alphabet or the binary labeling can be
i ) implemented without complexity increase. On the other hand
We recognize) 1o 1) Foi (u)Ex|o,=u[| X|°] as the aver- 16 mentation of probabilistic shaping requires a modific

age symbol energy,, which completes the proof. " tion of the channel encoder and/or the interleavel 4 U,,,
The first-order coefficients of the expansion of the CM angl | Pey(u) = 1/2 for k = 0,1 m—1andu e {0,1}
k ) Yt I ’

BICM capacities in Corollary 8 and Theorem 9 do not depe
on the fading. This simply states that, under the conssaint

imposed onH, the fading has no effect on the first-order BI longm% 1
behavior of the BICM capacity. Consequently, the analys$is o q = E. Z M Z Qi ki
the optimal constellations for fading channels at low SNR ca =0

be reduced, without loss of generality, to the AWGN case. !2A similar first-order optimality criterion for the CM capagican be

Corollary 8 and Theorem 9 generalize the results in [301?ﬁned. In this case, based on (47), any constellation basexl zero-mean
311 by considerina constellations with nonuniform inouis-d input alphabet is an FOO constellation for the CM capaciggardless of
[31] by 9 p the input distribution Px («). Conversely, no FOO constellation can have

tributions and arbitrary dimensions, mean, and varianbé T nonzero mean.

d (49) simplifies into
2

(50)

k=0
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KeepingX fixed and changing the labelifg is equivalent
to fixing IL and reordering the rows af. Therefore, a joint
optimization of Q@ = [X,L,Uy,] over X andL can without
loss of generality be reduced to an optimization o¥eonly,
for an arbitraryLL. In the following analysis, we will hence
sometimes fix the labeling to be the NBC, without loss of
generality.

The expression forS! in (50) can be simplified further
using the HT, as elaborated in the next theorem.

Theorem 11 (The HT and3!): The coefficientaS! for a
constellationQ = [X,N,,, U] is given by

—1
log, € <
BI __ 2 ~ 2
g = “E. Z [k (|7 (@) OTTO constellation
k=0
wherex,. are elements of the HT af defined by (14). 109.*"/ .101

Proof: Using Lemma 1 and (15) in (50), we obtain

m—1 m—1
oBl log, e Z _ log, e Z e |12
! L B =

0 110 @

M-1 2

% ; hi_rgk ZT;

It follows from Theorem 11 and (16) that

M—1

logs e - logs e
BI _ 2 2 _ 1982

M—1

> |@i]* =logye (51)
1=0

for any constellation, which is in perfect agreement witB)(4 ' o
We now proceed to determine the class of input alphabets and 010(b) OTOTO ‘el tpll
labelings for which the bound (51) is tight. constetation
Theorem 12 (Linear projection of a hypercube)A con- Figure 4. The two FOO constellations defined in Exampler4=t 3 and

; _ ; ; ; ; N = 2). Graphically, the OTTO constellation in (a) gives the iegsion of
stellation {2 [X’ L, UM] is FOQ if and Only if there exists a projected cube. The OTOTO constellation in (b) gives thprassion of a

; T T T
anm x N matrix V = [vg,...,v,,_4]" such that 6-PSK input alphabet with two extra points located at thejiori
X = Q(L)V. (52)

Proof: Consider first the NBC. Equality holds in (51) ifthe results forV = 1 and2, because such input alphabets are
and only ifz; = 0 forall j = 0,...,M — 1 exceptj = easily visualized (Figs. 4-5) and often used in practiceMPA
1,2,4,...,2™~ 1 For such input alphabets, (15) yields QAM, and PSK).

m—1 Example 4 (OTTO and OTOTO constellations]o exem-
T, = Z i on Ton. plify the concept of Theorem 12, we present two consteltegtio
k=0 that are FOO. The projection matrices for the “one-three-
three-one” (OTTO) and the “one-two-one-two-one” (OTOTO)

Lettin £ &, for k =0,...,m — 1 and using (13), we , ,
obtaing Uk = Tk e 9 (13) constellations are defined as

1 [ -1 -1

Ti= Y qrvk, i=0,...,M—1 (53) Vorro = | +1 0 |,

k=0 [ -1 41
Letting V = [vf,..., v} _|]T completes the proof fok. = -1 , 0
N,,. That the theorem also holds for an arbitrary labeling Vororo = | cos(m/3) St (m/3)
follows by synchronously reordering the rows Xfand L, | cos(m/3)  —sin(x/3)
as explained before Theorem 11. [0 Both constellations are shown in Fig. 4. The figure illugtsat

Theorem 12 has an appealing geometrical interpretatighat the minimum Euclidean distance, which is an important
Writing the set of constellation points as in (52), each révipo figure-of-merit at high SNR, plays no role at all when con-
can be interpreted as a vertex ofimndimensional hypercube, stellations are optimized for low SNR.
andV as anm x N projection matrix. Hence, a constellation A particular case of Theorem 12 are the nonequally spaced
for BICM is FOO if and only if its signal set is dinear (NES)M-PAM input alphabets, as specified in the following
projection of a zero-mean hypercubEhis interpretation, as corollary.
well as all theorems presented so far, holds for an arbitraryCorollary 13: If a NES M-PAM input alphabeiX consists
dimensionN. In the rest of this section, we will exemplify of the points+vg + vy £+ --- + v,,_1, there exists a binary
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+—> 2ds
> 2d;
0 2dy T To T3 Ty 5 Tg T
000 001 010 011 100 101 110 111
Figure 5. Hierarchical 8-PAM constellation. The constaia is FOO andV = [—do, —d1, ..., —dm—1]T.
labelingL such that the constellatidiX, L, Uj,] is FOO. Theorem 14:The constellationNXpan, L, U] is FOO if

Example 5 (Hierarchical constellations): The so-called and only if L = N,,,, or any other binary labeling that can be
“hierarchical constellations” [79]-[81] are defined by iiee- derived from the NBC by inverting the bits in certain pogito

dimensional input alphabet [79, eq. (3)] or by permuting the sequence of bits in all codewords.
m—1 Proof: The proof is given in Appendix C. O
;= Z (201, (1) — 1)dy, (54) In order to extend this result to rectangular QAM constel-
=0 lations, we first state a theorem about product constefiatio

whereby (i) was defined in Sec. II-A as the base-2 represeff 9eneral. , , ,
tation of the integer = 0, ..., M — 1 (bo(i) being the least Theorem 15:A two-dimensional constellatiofiX, L, U],
significative bit), and wherely > 0 for k = 0,...,m — whereX = X’ ® X" is the ordered direct product of two one-

are the distances defining the input alphabet. The additiof"ensional input alphabet§ andX” and all symbolse; are
conditiona; < 2,1 fori =0, ..., M — 2 is usually imposed distinct, is FOO if and only if both the following items hold.
so that overlapping points in the input alphabet are avoideds There exist labelingd.’ andL” such that[X’, I/, Uy
This condition also keeps the labeling of the input alphabet and [X”,L”, Uy;~] are both FOO (wheré/’ and A"
unchanged. are the sizes oK’ andX”, resp.).

In Fig. 5, we show a hierarchical 8-PAM input alphabet. In « L = IIc(L’ ® L”), wherell¢ is an arbitrary column
this figure, theM constellation points are shown with black permutation.
circles, while the white squares/triangles represent 2 4n Proof: The proof is given in Appendix D. 0

PAM input alphabets from which the 8-PAM input alphabet As a special case, the theorem applies to rectangular QAM
can be recursively (hierarchically) constructed. constellations since they are defined as the ordered direct
The binary labeling used in hierarchical constellations isroduct of two PAM input alphabets. In view of Theorem 14,

usually assumed to be the BRGC. In this case, we find th{d sinceN,,, ® N,,» = N,,.,,», the following corollary
whenX is given by (54), the system in (52) has no solutiongives necessary and sufficient conditions for a rectangular
for V, and therefore, the constellation is not FOO. Howevery;’ » 1/”)-QAM constellation to be FOO.

if the NBC is used instead (as in Fig. 5), all hierarchical corollary 16: A constellation [Xqan,L,Un], where
constellations are FOO, because = Q(N,,)V gives a Xqam is an (M’ x M”)-QAM input alphabet and

projection matrixV = [—do, —dy, ..., —dpm1]". M = M'M” = 2™, is FOO if and only ifL = N,,
or any other binary labeling that can be derived fromp,
B. Labelings for PAM, QAM, and PSK by inverting the bits in certain positions or by permuting th

While we have so far kept the labeling fixed and searchégguence of bits in all codewords.
for good input alphabets, we now take the opposite approactcan a constellation based on an-PSK input alphabet be
and search for good labelings for a given input alphabet. PO with a suitably chosen labeling? What about constant-
this section we analyze the practically relevant input altts  energy constellations in higher dimensions? A complete an-
PAM, QAM, and PSK defined in Sec. II-B. Throughout thi$wer to these questions is given by the following theorem.

section, we assume = U,,. An intuitive interpretation is that a constellation based &
Example 6 (NBC for\/-PAM): Let \Y — constant-energy input alphabet is FOO if and only if it forms
[vo,v1,...,m_1]" = [-1,-2,—4,...,—2™" 1T and the vertices of an orthogonal parallelotope, or “hypearet

let L = N,,. With ¢; . given by (13), we obtain from (52) gle.
the constellatioiXpan £ [-M + 1, —M +3,..., M —1]T, Theorem 17:A constellation [X, L, U], where ||z;||? is
which shows that the constellatidlpayr, N,,,, Uy is FOO. constant for alli = 0,...,M — 1, is FOO if and only if
In view of Theorem 11, the optimality ofi/-PAM input X can be written in the form (52) with orthogonal vectors
alphabets comes from the fact that the HTXafs\; has its vo,-.., Um—1.
only nonzero elements in the positions1,2,4,...,2m % Proof: The proof is given in Appendix E. O

It follows from Example 6 that the constellation The case of PSK input alphabets follows straightforwardly
[Xpam, Ny, U] is FOO, which has also been shown in [33]as a special case of Theorem 17. Indeed, the fact that a set of
The following theorem states that the NBC is the unique orthogonal vectors cannot exist in fewer thardimensions
labeling with this property, apart from trivial bit operais leads to the following conceptually simple corollaries.
that do not alter the characteristics of the labeling. Corollary 18: FOO constellations based on constant-energy
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0.035

input alphabets inV dimensions cannot have more thai 2 BSGC
pointsl o BRGC/FBC
Corollary 19: No FOO constellations based al/-PSK T v e
input alphabets exist foi/ > 4.
Observe that the criterion in Theorem 17 is that
vo, ..., Um—1 should be orthogonal, not necessarily orthonor-
mal. Thus, FOO constellations based on constant-energy inp |
alphabets are not necessarily hypercubes. In particuldr, a
PSK input alphabet does not have to be equally spaced to give
an FOO constellation. Indeed, any rotationally symmetut b
nonequally spaced 4-PSK input alphabet (i.e., a rectangula
one) gives an FOO constellation. {

0.025-

0.02-

0.015

Priag!

C. M-PAM and M-PSK Input Alphabets 0

In this subsection, we particularize the results in SecBIV- a/logye
to practically relevant BICM schemes, i.&4-PAM and M- @
PSK input alphabets with uniform input distributions usthg e
four binary labelings defined in Sec. II-B.

Theorem 20 (Coefficient3! for Q = [Xpan, Lin, Unr]): ol
For M-PAM input alphabets usin@l,,, the coefficientaS!
for the binary labelings defined in Sec II-B is given by

3M?
) 10P ) |
Q log, e, if L, =N,,,
07 if ILlm - Sm- 0.04F
(55)

Proof: The proof is given in Appendix F. O] 002} ’

0 0.1 0.2 0.3 0.4

a
> ood
[or]
)
@
O

0.08

a}

log,e, if L,, =G, orL,, =F,,

Pr{ad!

Theorem 21 (CoefficientS! for Q = [Xpsk, L, Uns)):
For M-PSK input alphabets using,,, the coefficienta 5!
for the binary labelings defined in Sec II-B is given by o/ logy

8log, e . (b)
— if Ly = G,
M?=sin” 57 Figure 6. The pmf obxE! for 8-PAM (a) and 8-PSK (b) witfiUs. The four
4 log2 e . labelings defined in Sec. II-B are shown with white markers.
— if Ly, =Ny,
M?2sin® L
BI M
ag = 4log, e

2 qin2
M?sin i

111]

0 0.1 0.2 03 0.4

Tr[ | [ Mt

0.6 0.7 0.8 0.9 1

[l—i—(l—sec%)ﬂ , If Ly, = Sp, )
We also note that the BICM capacity for the BRGC and the

4log, e U oy ] FBC in Fig. 2 (b) are different foBNR > 0. However, their
M2 sin? - 1+ Ztan ok | if Lin = Fo, coefficientad! in (55) is the same, and thus, the curves for
M k=2 these labelings in Fig. 2 (b) merge at low rates.

(56) Fig. 6 (b) shows that for 8-PSK, there exist only 26 classes
wheresecx = 1/ cos x is the secant function. of binary labelings with different coefficientss'. In particu-
Proof: The proof is given in Appendix G. O lar, the NBC and the BSGC result in a moderate coefficient,

In Fig. 6, we present the pmf of the coefficierf}! obtained and the BRGC in a quite high coefficient. We found that
via an exhaustive enumeration of tlk&é = 40320 different the FBC is the asymptotically optimal binary labeling for 8-
binary labelings (without discarding trivial operatiorfiey 8- PSK, unique up to trivial operations, and we conjecture it
PAM and 8-PSK withUs. For 8-PAM, Fig. 6 (a) shows thatto be optimal for anyM-PSK input alphabet and» > 2.
many binary labelings are better than the BRGC at low SNRyterestingly, there are no binary labelings for 8-PSK tjiaé
the best one being the NBC as found in [33]. On the otharcoefficient zero or one, and the number of distinct pmf \&alue
extreme we find the BSGC, which gives a coefficient equal t® only ten (25 for 8-PAM).
zero, reflecting the inferior performance in Fig. 2 (b). Bhse From (45) we know that5' determines the behavior of
on (45), we obtain that thé}, /N, for reliable transmission at the functionf5'(R.) for asymptotically low rates. Following
asymptotically low rates in this caseds, and it is independent the idea introduced in [30], we analyze how the values
of M. We find that among the&! possible binary labelings, of 5" for PAM and PSK input alphabets behave when
there exist 7Zlassef binary labelings that have a differentd — co. A summary of the values ofim; .., a5’ and
adl, and therefore, a different first-order asymptotic behavidimp_ .o+ f&'(R.) for M-PAM and M-PSK input alphabets
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FIRST-ORDER ASYMPTOTICS OFJV-II-aIKD)fNII AND M-PSKINPUT ALPHABETS i ~o Ny (4-PAM
USINGUj; FOR DIFFERENT BINARY LABELINGS. Laa, C— faga ‘2‘% gg,ﬁ\l’\\/lﬂ
W't s o Ay La- Gy (BPaM
PAM PSK ol ‘ A,A B %‘4
Lm Jim ofl lim f§'(Re)  lim ag lm f5'(Re) - : &
Gm  2logye —0.34dB S logye  —0.68 dB v F RS @ =
Ny logye  —1.59 dB A logye  2.33dB I : : '
Sm 0 oo 4 logye  2.33dB W G
Fm  3logye  —0.34dB 88 logye  —1.14dB : l . v

107k

107 F

g d
» -

using U, are presented in Table |, for the four labelings
previously analyze®. For most of the constellations, there e ‘ ‘
is a bounded loss with respect to the SL wheh— co. For e
the BRGC, this difference is 1.25 dB far-PAM and 0.91 dB

for M-PSK. On the other hand. for the NBC aid-PAM Figure 7. BER for the rate-1/15 turbo code with 4-PAM and 8vPfor the

) X o BRGC and the NBC R ~ 0.13 bit/symbol and Rc ~ 0.2 bit/symbol
the difference is zero for any/. Note that all the coefficients respectively). The metrics’ computation is based on (8, ithierleaver size

aSl'in (55) and in (56) are nonincreasing functions/af.

0‘,6 0.‘8
Ey,/No [dB]

is N = 16384, the decoder is based on the Log-MAP algorithm, and it
performs 12 turbo iterations. The filled circles represéet i}, / No needed
for the configuration to reach BER = 10~%, which are also shown for
VI. NUMERICAL EXAMPLES

8-PAM in Fig. 2 (b).
A. Turbo-coded System Simulation

In order to validate the analysis presented in the pre-
vious sections, we are interested in corroborating if the

use of the NBC instead of the BRGC for PAM input alcaused by a bad selection of the binary labeling. The valties o
phabets actually translates into a real gain when capacifys/No obtained for these last three cases are shown in Fig. 2
approaching codes are used. To this end, we simulate a BI¢R). These results show that the turbo-coded system pesform
scheme which combines a very low rate capacity-approachMiihin 1 dB of capacity, and that the losses @6 dB and
code with A/-PAM input alphabets. We use Divsalar’s rate7.95 dB can be observed from the capacity curves as well.
1/15 turbo code, formed by a parallel concatenation dhis indicates that the results obtained from Fig. 2 foredtéht
two identical 16-state rate-1/8 recursive systematic ohnv labelings can be used as anpriori estimate of the system
tional (RSC) encoders defined by their polynomial geneperformance when capacity-approaching codes are used.
ators (1,21/23,25/23,27/23,31/23,33/23,35/23,37/23)s
[82]. The two RSC encoders are separated by a randomly
generated interleaver of lengthi = 16384, and 64 tail bits
are added to terminate the trellis, giving an effective cade
of R =16384/(15-16384 + 64). We combine this turbo code B. Capacity vs.E;, /Ny
(via a randomly generated interleaver) with 4-PAM and 8-PAM
using NBC or BRGC, yieldingR. = 0.13 bit/symbol and . .

R. =~ 0.2 bit/symbol respectively. The conste/llation symbols Ip F'g'.8 (a), we show t.he functiofi™ (R.) andng(RC),
are equally likely, the decoder is based on the Log-MA fined in Sec. III—D,Bli|smg 4-PAM and 8-PAM Input alpha-
algorithm, and it performs 12 turbo iterations. In Fig. % thit ets. We also _shova (_RC) for 4-PAM and 8-PAM input
error rate (BER) performance of such a system is presente%lphabets for different bmar_y labelings and for hieracahi- .

We study theF}, /N, needed for the four different con- P’_A‘M and S'PAM constellatl_ons (Example 5). The curves in
stellations to reach a BER targBER = 105, For 4-PAM, Fig. 8 (a) Algvtersect the horizontal axis &,/No = 1/aq,

the values for the BRGC and the NBC are, respectivel herel/a™" = 1/logye = —1.59 dB represents the SL.

Ey/Ny = 0.99 dB and Ey /Ny — 0.59 dB, i.e., the NBC rom this flgu_re, we observe that for CM both constellations

offers a gain of0.4 dB compared to the BRGC. For 8-pAM '€ FOO, while for BICM only four of them are FOO, the

the obtained values arg,/Ny = 1.05 dB and E, /Ny = ones labeled by the NBC.

0.45 dB, which again demonstrate the suboptimality of the In Fig. 9 (a), similar results for 8-PSK are shown. We also
BRGC in the low SNR regime. Moreover, we also simulateiiclude the results for the OTTO and OTOTO constellations
an 8-PAM input alphabet labeled by the BSGC. We obtainediim Fig. 4 (Example 4). From this figure, we observe that for
this caseF),/ Ny = 8.40 dB, i.e., a degradation of 7.95 dB isthe CM capacity the 8-PSK input alphabet gives an FOO

o ‘ constellation, and for BICM, the OTTO and the OTOTO
_"The limits limp/ o ag! for M-PSK are obtained based onconstellations are FOO. Moreover, for high SNR, the OTTO
lingg oo M sin“(r/M) = n_ (obtained by LHopital's rule). For the constellation results in a higher capacity than the colasiehs
NBC, we obtain numerically thdf_ ;2 , tan? (7/2%) ~ 1.2240, which gives : g p y

the coefficient 8.89 in Table I. based on 8-PSK input alphabets.
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ABI(R.) (NBC) <
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Aq(R.) [dB]

15 L2 25 3 35 4 e ;‘ ey ‘ ‘ ‘ ‘
R, [bit/symbol] 0 Y 1 15 2 25 3
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Figure 8. (a) AWGN capacity, CM capacity, and BICM capasitfer M- ()
PAM with the BRGC, NBC and FBC. The BICM capacity for hieramett  Figure 9. AWGN capacity, CM capacity, and BICM capacities 8PSK
4-PAM with V. = [-1,—5]T and 8-PAM withV = [—-1,—-2,—6]T is  with the BRGC, NBC, FBC and BSGC. The BICM capacity for the @rand

also shown. The white circles give the performancelat = 0, where OTOTO constellations are also shown. The white circles tiieeperformance
aBl determines the BICM capacity. The BRGC and FBC are equivden at R. = 0, whereaBT determines the BICM capacity. (b) SNR gap, (R.)
M = 4. (b) SNR gapAq(R.) in (57) for the same capacities and for 16-for the same capacities.

PAM.

log, e/abl, and is a scaled special case of the results presented
C. The SNR Gap in Sec. V-C.
Borrowing the idea from [37], we define tI8N\R gapms the
horizontal differenc¥ between the CM and BICM capacity
and the capacity of the AWGN channel for a giv&p, i.e., VII. ConcLusions
o B In this paper, we introduced a general model for BICM
ASM(R,) = 12 (Re) ABY(R,) = =2 (Re) . (57) which considers arbitrary input alphabets, input distiins,
FAY(R.)’ fAW(R) and binary labelings, and we analyzed different aspectief t
These expressions, which represent the additional ene M capacity. Probabilistic shaping for BICM was analyzed

needed for a given constellation to achieve the safhe a d_the relation between_ the BICM capacity alfigl/ No was
gﬁjdled. Four binary labelings (BRGC, NBC, BSGC, and FBC)

as the optimal scheme (the AWGN capacity), are evaluat ) : i ) _
numerically in Figs. 8 (b) and 9 (b). In Table II, we presen ere analyzed in detail, and for 8-PAM with uniform input
istribution, the results showed that &g /N, increases, the

a summary of the SNR gap at asymptotically low rates f o imized by i h h
different constellations. This asymptotic SNR gap is gibgn Erllcd'\fhgag;gté is maximized by, in turn, the NBC, the FBC,

14The gap is the same regardless of whether the horizontalrepiesents First-orgler asymptOtiC of the BIC.:M CapaCity for arbitrary
Ey, /Ny or SNR. constellations were presented, which allowed us to analyze
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Table I
THE SNRGAP AT ASYMPTOTICALLY LOW RATES FORBICM AND APPENDIXA
DIFFERENT CONSTELLATIONS PROOF OFTHEOREM 7
Constellation log, e/a8! [dB]
A-PAM BRGC/FBC 0.96 In [83, Theorem 3], the mod&’ = H X + Z is considered,
NBC 0 where H is a matrix. Thjs theorem states that the AMI
4-PAM Hierarchical 0 betweenX and Y when H is known at the receiver can
BRGC 0.69 be expressed as
8-PSK NBC 3.69
FBC 0.32
) log, e F il —2
BSGC 3.01 Ix(X;Y) = ~No trace (Eﬂ [H cov (X)H ]) +O(Ny )
OTTO 0 (58)
OTOTO 0
8-PAM Hierarchical 0
B-PAM BRGC/FBC 1.18 when Ny — oo, if the two following conditions are fulfilled:
NBC 0
BSGC o o There exist finite constants > 0 andd > 0 such that
4+d
BRGCIFBC 123 Ex[[| X[*] <c. -
16-PAM NBC 0 « There exists a constamt > 0 such that the matrixdd
BSGC - satisfiesPr{||H| > 0} < exp(—4") for all sufficiently

larged > 0.

Since we consider real-valued vectors only, we have re-
placed the Hermitian conjugates in [83] by transpositiams i
(58). Moreover, [83, Theorem 3] requires X, and HX to

the behavior of the BICM capacity for low rates. Thg/N, € “Proper complex”. Nevertheless, the results are stlithib
required for reliable transmission at asymptotically lcates Fhe two conditions in the items above are fulfilled, as exygdi
was found to take values between the Si1.59 dB and M [83, Remark 6].

infinity. The asymptotic analysis was used to compare binaryThe first condition is fulfilled sincexy,...,xz) 1 are
labelings for PAM and PSK input alphabets, as well as to praH finite, and thereforeEx[|| X||¢] < oo for all d > 0.
dict the actual system performance at low rates when capacithe second condition is fulfilled becaudd = diag (H)
approaching codes are used. The asymptotically besthgseliand because of the condition (5) imposed &h More-
for M-PAM and M-PSK with uniform input distributions over, sinceH = diag (H) and H contains i.i.d. elements,

appear to be the NBC and FBC, respectively. E 5 [H cov (X)HT] = Ey[H?cov(X). The use of the
) _ ) _identity trace (cov (X)) = Ex[|X]|*] — [[Ex[X]||? the
Using the first-order asymptotic of the BICM capacityyefinition of E,, and the relatiorSNR = Ey[H?](Es/No)
we analyzed the problem of FOO constellations for BICM, (58), gives (47).

We showed that, under some mild conditions, the fading
does not change the analysis of FOO constellations made for
the AWGN channel. Interpreting the codewords of a binary
labeling as the vertices of a hypercube, a constellation for
BICM with uniform input distributions is FOO if and only if
the input alphabet forms a linear projection of this hypbru
Important special cases of this result are that constefiati
based on equally spacetf/-PAM and M-QAM input al-
phabets are FOO if and only if the NBC is used. Another ) ) ) )
particular case are the hierarchical (nonequally spadgd)  ExPanding the inner sum in (48), we obtain
PAM input alphabets labeled by the NBC. We also showed

that constellations based on constant-enebd@yPSK input

alphabets can never be FOO Iff > 4, regardless of the Y Po, (w)l[Ex|c,—u[X]|?

binary labeling. u€{0,1}

APPENDIXB
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2

> xiPxic,—o(T:)

i€Zk,0

In this paper, we focused on asymptotically low rates, and = P, (0)
we answered the question about FOO constellations for this
case. The analysis of second-order optimal constellafions
BICM, and the dual problem for asymptotically high rates, or + Pe, (1)
more generally, for any rate, is still an open research grobl

2

Z x; Px|c,=1(T:)

’L‘GI}CJ
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Using the identity||a > + ||b]|? = ||a — b]|?/2 + ||a + b||?/2
and (31), we obtain

> Polu
ue{0,1}
1
= 5"\/Pck(0) Z z; Px|cy=o(®i)

i€Zk,0

— VP, (1) Z x; Px|c,=1(%:)

1€1y,1

+%H\/W Y @iPx|c,=o(@)

i€Zk,0

++/ P, (1) Z x; Px|c,=1(%:)

1€1y,1

NE x| ¢, = [ XTI

2

2

1 1
a\!m,

Z x; Px (x;)

i€Zk,0

Z x; Px (x;)

ZEIk 1

5HW

2

\/Pck

In this expression, based on the definitiongt. in (2), we

recognize the first term as the first term inside the outer sum

in (49), and the second term as the second term inside
outer sum in (49). This used in (48) completes the proof.

APPENDIXC
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Consider any FOO constellatidipa, L, UM] where the
binary Iabelmg is defined by; ,, for & = 0,. —1 and

i =0,.
Vg forkzo,..., — 1 such that
m—1
Ti= Y ik (59)
k=0
fori=0,...,M —1. We wish to find all combinations af; ;.

and v, that satisfy (59).

We start by giving two properties of the column vecibe=
[V, V1, .., vm—1]T that will be used later in the proof.

« Since all pairwise differences; — x; = 22:01(%7]6 —
g5,k v, are even numbers, and singg, —q;, € {0, £2},
we conclude thaV € Z™.

o Because of (59), the sumtvy £ vy & -+ + v, 1, With

all combinations of signs, generates all the elements in

Xpam- SinceXpay is formed by M distinct elements,
+vgtvy £---+v,_1 mustyieldM different values, and
therefore |vy| for k = 0,...,m — 1 must all be distinct.

— 1. From Theorem 12, there eX|st real valuedivisors, which arel, 2,4, .

IEEE TRANSACTIONS ONINFORMATION THEORY, to appear, 2011.

Consider a given bit positiohe {0, ...,
fori=0,...,M —1,

m—1} and define,

s; = x; mod 2u;
m—1
Z ¢, xvk £v; mod 2
k=0
kAl
m—1
= Z qikvk + v mod vy,

k=0

k£l
where in the last step we have used the identity+ b)
mod 2b = (a + b) mod 2b. Becauser; is an odd integer,
s; €4{1,3,...,2y,—1} for all <. We will now study the vector
S = [s0,51,...,8:m—1]T and in particular count how many
times each odd integer occurs in this vector. We will do this
in two ways, in order to determine which valuescan take
on.

« It follows from (60) thats, is independent of; ; for all

i. Thus, if two codewords; andc; differ only in bit /,
thens; = s;. This proves that each valdes, ..., 2v;—
occurs an even number of times§n

o BecauseX is a vector of odd integers in increasing order
andS consists of the same elements counted modujp
S consists of identical segments, 3,...,2v; — 1|7 of
lengthv,. If v; divides M, thenS contains a whole num-
ber of such segments and each valu¢lirs, . . ., 2v,—1}
occurs exactlyM /v; times inS. If on the other handy
does not dividel/, then the first and the last segment are
truncated. In this case includes some valuesM /v, |
times and other value$M/v;| + 1 times, where|-]
denotes the integer part.

Since eithef M /v;| or [M/v;| + 1 is odd, and each value
must occur inS an even number of times, we conclude from
these two properties that must divideM . Furthermore, the
number of occurrencel/ /v; must be even, so; must divide
M/2.

In conclusionyy, . . ., v.,—1 Must all divideA/ /2, and their
absolute values must be all distinct. Sint£/2 has onlym
,2m~1 they must all appear in
V, but they can do SO in any order and with any sign. If
V= [-1,-2,—4,...,—2m" 1T then (59) is fulfilled by the
NBC N,, (see Example 6). Negating. for any k corresponds
to inverting bitk of the NBC, whereas reordering the rows of
V corresponds to permuting columnsiiy,.

(60)

the

APPENDIXD
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Let M/ = 2™ M” = 2™ and M = 2m = om'+m",
To prove the “if” part, we assume that there exist two FOO
constellations[X', I, U] and [X”,L”,Ups~]. Then, from
Theorem 12,

m’ —1
_ ro
= 4 kVk>
k=0
m'’ —1

1 1
= E q; 1k Vk
k=0

; (61)

(62)
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We analyze the two-dimensional constellatidconstructed as thenz; , = #,, for two values ofi, and so on. Generalizing,
0 =[X,L,Uy] = [XeX" L'@L”, Uy -] It follows from  there exis2® symbols for whiche, ,, = &, if and only if there

the definition of the operatap that for alll = 0,..., M’ —1, area zeros amongy y, ..., vm—1.. Analogous relations hold
j=0,....M"—-1,andk =0,...,m—1, for the minimum ofz; ,,.
ot For the special case wheX is obtained from two one-
Ty = [, a5, dimensional input alphabet§’ and X” as X = X' @ X",
B ql’_’k, k=0,....,m' —1, the two-dimensional symbols arep; 4, = [:c;,:c’j’] for
qMritik = @ s k=ml o m— 1. l=0,...,M"—1andj =0,...,M"” — 1. We will prove

) ) . __that there exist labelingk’ and " such that[X', I, U]
We will now show that? is FOO by explicitly constructing and [X”, ", Uy are both FOO, and we will identify the

a matrixV that satisfies Theorem 12. To this end, we definbeet of all such labelings. We do this by analyzing., for
the vectors u = 0 and 1 separately, beginning with= 0. There arel”

) [, 0], k=0,....m —1, symbolsz; having z; o = ] for eachl = 0,..., M’ — 1.
Yk = 0,0/ ], k=m/...,m—1, This hoIpis in particular forz; = Z,. From the result in
_ ) . ) the previous paragraph, there are therefaré zeros among
with v and v that satisfy (61)~(62). The vectors, con- ;" 4, ;. We will first consider the special case when
structed in this manner have the property that forlak=  the zeros are,, o, ..., Um_1,0, i.e., when
0,...,.M'—1andj=0,...,M" -1,
m—1 (V0,05 - - -+ Vm/ 1,05 Um0 - - - , Um—1,0]
i = |v0,0,---0 /_1,0,0,...,0, (64)
ZQM 145,k Uk [ m |
k=0 m’ nonzero elements m'’ zeros
/_1 //_1 . i i X
_ mz: . +mz Uit o, and will later generalize the obtained results to an antyitra
P MU TR o MU ke Bl location of them” zeros.
- - H / _ !
1 1 ] Ass_ltjtmlng that (64) holds;; can, foralll =0,...,M' -1,
e written as
= Z a4k [ve, 0] + Z 45110, vg]
k=0 k=0 x; = Z\145,0
—1 777,//—1 m—1
/ / 1 "
= Z 41,1 Vk> Z 45 kVk = Z qM" 145,k Vk,0
k=0 k=0 k=0
= (w7, 2] !
=T = ;;) M 145,k VK,05 (65)

Substituting M1 + j = i yields (53), which shows thathere the second line follows from (63) and the third from
) is FOO. Finally, to show that the constellatidk’ ® (64). The relation holds for aj = 0,..., M" — 1.

X" (L' @L"), Ungrare] is.also FOO, it suffices to observe  \we will now conclude from (65) that
that synchronously permuting the columns@fL) and V*
does not change the right-hand side of (52), which completegari+j,k = qam1k; 1=0,...,M -1,
the proof of the “if” part®. j=0,....M" -1, k=0,...,m' —1. (66)
For the “only if” part, consider any two-dimensional FOO _
constellationX, L, Uy;]. By Theorem 12, the elements & 1hiS can be seen as follows, The sequence

’ o / .
fulfill (53), which can be decomposed into scalar equaliigs 4M"1+5.0: - - dMi+j,m/—1 CaN take ore™ = M" different
values, because each element-i§. For given values of

vk0, these sequences all yield different values «gf in
(65), because these values are, by assumption, all distinct
) Thus the sequenceis i+;o,---,qm"i+jm—1 IS uniquely
where z; = [z;0,2i1] for i = 0,...,M —1 and vy = Qetermined byz; and vog,...,vm—1,0. Since both z]

[vk,0, vk1] for k = 0,...,m — 1. We will use this decom- anq ,  are independent of, so is qurisg k- Therefore
position to characterize the points with the largest cowti A = QML

value in one 9f the dimensions. Becaugg € {—1,1}, ziu From this conclusion, (65) simplifies into
takes values in the setvy, £ --- £+ vy—1,. The largest of
these values is

m—1
Tiu = Z%‘,kvk,m i:O,...,M—l, U:O,l, (63)
k=0

m’'—1
/ /
R xl = E (JM”l,kUk,Oa l:O,,M —1,
Ty = | ma])@ 1xi,u = |U0,u| +-- 4+ |'Um71,u|- k=0

. which is a one-dimensional version of (53). It is satisfietyon
if (X', I/, Upr] is FOO, where the elemengg, of Q(LL') are

/ ! /
= 1 l=0,....M"—1, k=0,....,m —1.
15An intuitive explanation for this is that reordering thesbitf all codewords Qe = ML B ’ B (67)
does not change the constellation’s performance.

If v, #0forall k=0,...,m— 1, then the symbolk, for
which z; ,, = 2, is unique. Ifv;, = 0 for one value ofk,
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A similar analysis foru = 1 shows thatX”, 1", Uy~] is b £ vy, andc £ v;. From (53), the four vectora + b + ¢
also FOO and, furthermore, yields analogous expressionsatbbelong toX. Thus, all four have the same energy and the

(66) and (67) as right-hand side of (70) is zero. Thug.v} = beT = 0. This
Mgk = Qs 1=0,... .M —1,j=0,. ... M"—1, E:)CIS; for all pairs of distinc and !, which completes the
E=m',...,m—1, (68) .
" » " 1
4k = Q. k+m’ =0,.... M"—=1,k=0,...,m" —1,
o o ’ (69) APPENDIXF
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whereg, are the elements aB(L").

Together, (66), (67), (68), and (69) show that flor= For P = Uy, the average symbol energy is given by
0,....,.M'—1andj=0,...,M" -1, Es = (M? —1)/3, and that the constellation is zero mean,
i 2 _ icientB! i i
. k=0, m —1, i.e., Ex[X]* = 0. Therefore, the coefficients in (48) is
aMm"i+i.k = E—=m/ m—1 —1
i k—m/» — Yy ] BI _ logge l 2
or, equivalently, thaQ(L) = Q(L") ® Q(LL”"). To convert this MW= E; Z Z 2EX‘CF“[X] ' (71)

T i o o k= _
relation into a relation between (unmodified) labeling ricats 0 uei01}

L, 1L, andL”, we can apply (2) to conclude thitis a column- For the BRGCE y ¢, —,[X] =0fork=1,...,m—1and

permuted version of.’ @ L". u e {0,1}. Fork = 0 we find that

To complete the proof, we need to consider the case when
the m” zeros amongyg o, ..., vm—1,0 are not the lastm” 2 )
elements as in (64). To this end, we apply an arbitrary row EX\CO:u[X]Q - Z 3:1:1 - %7
permutation to théV matrix, whose first column is given by i€Tou M 4

(64). Permuting then rows of V. means permuting then _ _ _ _

elements of (64), which in turn means that th& zeros are Which used in (71) gives the desired result.

shifted into arbitrary locations. Furthermore, as was ol For the NBC, we note that

in the first part of this proof, a row permutation &f .
. . M2 1

corresponds to a column permutation@(fL), or, equivalently, Ex|c,— [X]? = ((_1)u+12m7k71)2 _ M= <_) '

a column permutation of.. We can therefore conclude that " 4 \2

1 i
regardless of where the” zeros are Iocatesjl, the labelifig Using the fact that
must be a column-permuted versionlgfe L".

m—1 2k
APPENDIXE 3 (}) _4 (1 3 i)
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If v, ...,v,,—1 are orthogonal, them, v} = 0 for k # L. - ) ) .
The symbol energiega;|?, for i = 0,...,M — 1, can be the resultag! =log, e is obtained:
calculated from (53) as That oS! = 0 if L,, = S,, follows trivially because of
M1 el the construction of the BSGC, i.65x ¢, —.[X] =0 for k =
Hm’LH2: Z ank%,lvkv? 0,....m-—1 anduE{O,l}.
=0 1=0 For the FBC, finally, its symmetry results in the same
m—1 condition as for the BRGC, i.eEx|c,—,[X] = 0 for
= qpllvl? k=1,...,m—1andu € {0,1}. Moreover, since fok = 0
k=0 the BRGC and the FBC are the same, the coefficigilt is
m-1 ) also the same.
= ”vk” )
k=0
which is independent of This completes the “if” part of the APPENDIX G
theorem. PROOF OFTHEOREM21
For the uonly if” part’ we make use of the |dent|ty For PSK and any k, PCk (O)EX|C;C:O [X] +
8bct =|la+b+c|?—|la+b—c|? Po,(1)Ex|c,=1[X] = Ex[X] = 0. Furthermore,
la—bte)P+la-b-c|?, (70) Since P, (0) = Po (1) = 1/2, [BExic—olX]|* =

) |Ex/|c,=1[X]||*. From these equalities, (48) reduces to
which holds for any vectors, b, ande. Let X be any FOO

constant-energy input alphabet and Aeénd! be any pair of m—1 Alog, e m—1 2
distinct integers) < k,1 < m — 1. Define ag' =logy e Z IEx|c=0 X]|I* = M22 Z Z x;
m—1 k=0 k=0"i€Ty o
a = Z Uy, (72)

Jj=0
J¢{k.1} 18A similar argument for the proof of the NBC has been used ir.[33
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A. Proof for the BRGC We split the sum ovef,  in the second term of (76) into
Because of the symmetry of PSK input alphabets and tf10eur sums, o.ne for each subset in (75), which yields
BRGC, || Yyez, , ®ill? in (72) is zero fork = 2,....m — S sin (2i+ D)m
1. Moreover, by symmetry|| 37, | zi||? = || ZzeIl ) ccz||2 i&Too M
SinceZy o = {0, ..., M/2—1}, the coefficient in (72) is given 1/8—
oy B M/i: (o (L8R \ g M =1 = 8h)
B M M
M/2-1 2 k=0
BT _ 8log, e Z - + sin (M+3—|—8k)7r+sin (2M — 3 —8k)m
M2 =0 M M
M/2—1 . 2 M/8—1
_ 8log, e (20 + 1) B . (14 8k)m . (34 8k)w
= [( ; C08 = kzzo 2sin % 2sin 7 . (77)

M/2-1 @it )r 2 Applying [84, eq. (1.341.3)] twice yields
- Z Sin —— (73) (2i + 1) < 3m 7T ) 4
in——— = 2cosM—2cos— csc —

=0 < M M M
Using [84, eq. (1.341.3)] we find that the first sum in (73) '~ °° o
is zero, and from [84, eq. (1.341.1)] the second sum in (73) — —2sin — sec =X (78)
is equal tol/sin(w/M). This completes the first part of the . MM i
proof. wherecscx = 1/sinz is the cosecant function angca =

1/sinz is the secant.
Expanding the first term of (76) by the same method as in
B. Proof for the NBC (77) reveals that this term is zero. Now the result follovesrir

72), (74), (76), and (78).
For the NBC, || ez, , @il|* in (72) is zero fork = (72), (74). (76) (78)

1,...,m—1. Moreover, smce the first column &f,,, is always D. Proof for the FBC

equal to the first column aofs,,,, it is clear that the coefficient By construction, the first bit of the FBC is the same
for the NBC is half of the one for the BRGC. as for the BRGC and the other bits are symmetric around
M /2. Therefore, the components in the second dimension of
1> ez, o x;||? are zero fork = 1,...,M — 1 and (72) can

C. Proof for the BSGC
be expressed as

By constructionS,,, = G,,, for all the columns except the I 9
first one, and therefore, only two bit positions contribute i g1 4logy e ( Z (2i + 1)”)

the outer sum in (72), i.ek = 0 andk = 1. From the proof RV sin? w/M *
for the BRGC, the contribution fok = 1 is known to be

m—1 2
4log, e (20 4+ )m
2 2
1 = +4 —_— ;
Z xi|| = —5——r- (74) M? | sin? 7T/M ; <l§; M )
T sin” (7 /M) 7,0 79)
For k = 0, we need the index set (cf. Example 1) whereZV, 2 {i € Tp :i < M/2}.
_ B B The mdexesZ,E0 of the FBC fork = 1,. —1 are
Too={0.4,..., M/2=4}U{3,7,..., M/2— 1} obtained as the indexes of the NBC of ord&r— 1. For
U{M/2+1,M/2+5,....M — 3} example, forM = 32, we obtainZ{, = {0,1,2,3,4,5,6,7},
U{M/2+2,M/2+46,...,M—2} Yo = {0,1,2,3,8,9,10,11}, IV, = {0,1,4,5,8,9,12,13},
M/8—1 andIU0 ={0,2,4,6,8,10,12,14}. This regularlty results in

U {4k, M/2 — 1 — 4k, M /2 + 1 + 4k, M — 2 — 4k}. a simplified expression of the inner sum in (79), i.e.,
k=0 (2i +1
(75) Y cosi

U

) .. . . R 1€
This partitioning ofZ, o into four subsets will now be used to Teo - -

’ 2 —12m~ —1

calculate
= E cos (1[27"_’”1]' + 20+ 1]) (80)
9 3 M
2 (2i + 1) =0 =0
E x| = E Cos ————— tan(r/2k+1)
‘ , M =" (81)
i€Zo,0 i€Zo,0 2sin(w/M) ’

_ (2i4+Dr g where the final result was obtained by using [84, eq. (1.341.3
+ Z s (76)  twice in (80), after some algebraic manipulation. Using)(81
i€Zo.0 in (79) gives the desired result.
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