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Optimal Signal Sets and Binary Labelings
for BICM at low SNR

Erik Agrell and Alex Alvarado

Abstract—Optimal binary labelings, input distributions, and
input alphabets are analyzed for the so-called bit-interleaved
coded modulation (BICM) capacity, paying special attention
to the low signal-to-noise ratio (SNR) regime. For 8-ary pulse
amplitude modulation (PAM) and for 0.75 bit/symbol, the folded
binary code results in a higher capacity than the binary reflected
Gray code (BRGC) and the natural binary code (NBC). The 1 dB
gap between the additive white Gaussian noise (AWGN) capacity
and the BICM capacity with the BRGC can be almost completely
removed if the input symbol distribution is properly selected.
First-order asymptotics of the BICM capacity for arbitrary
input alphabets and distributions, dimensions, mean, variance,
and binary labeling are developed. These asymptotics are used
to define first-order optimal (FOO) constellations for BICM,
i.e., constellations that make BICM achieve the Shannon limit
−1.59 dB. It is shown that the Eb/N0 required for reliable
transmission at asymptotically low rates in BICM can be as high
as infinity, that for uniform input distributions and 8-PAM t here
are only 72 classes of binary labelings with a different first-
order asymptotic behavior, and that this number is reduced to
only 26 for 8-ary phase shift keying (PSK). A general answer
to the question of FOO constellations for BICM is also given:
using the Hadamard transform, it is found that for uniform in put
distributions, a constellation for BICM is FOO if and only if it is
a linear projection of a hypercube. A constellation based onPAM
or quadrature amplitude modulation input alphabets is FOO if
and only if they are labeled by the NBC; if the constellation is
based on PSK input alphabets instead, it can never be FOO if
the input alphabet has more than four points, regardless of the
labeling.

Index Terms—Average mutual information, binary labeling,
bit-interleaved coded modulation, channel capacity, folded binary
code, Gray code, Hadamard transform, natural binary code,
PAM, PSK, QAM, Shannon limit.

I. I NTRODUCTION

T HE PROBLEM of reliable transmission of digital infor-
mation through a noisy channel dates back to the works

of Nyquist [1], [2], and Hartley [3] almost 90 years ago. Their
efforts were capitalized by C. E. Shannon who formulated
a unified mathematical theory of communication in 1948
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[4], [5]1. After he introduced the famous capacity formula
for the additive white Gaussian noise (AWGN) channel, the
problem of designing a system that operates close to that
limit has been one of the most important and challenging
problems in information/communication theory. While low
spectral efficiencies can be obtained by combining binary
signaling and a channel encoder, high spectral efficienciesare
usually obtained by using a coded modulation (CM) scheme
based on a multilevel modulator.

The early works on CM include those by de Buda [7],
[8], Massey [9], Miyakawaet al. [10], Anderson and Taylor
[11], and Aulin [12]. The first breakthroughs for coding
in the bandwidth-limited regime (spectral efficiencies above
1 bit/symbol) came with Ungerboeck’s trellis-coded modula-
tion (TCM) [13], [14] and Imai and Hirakawa’s multilevel
coding (MLC) [15], [16].2 Since both TCM and MLC aim
to maximize a Euclidean distance measure, they perform very
well over the AWGN channel. However, their performance
over fading channels is rather poor. The next breakthrough
came in 1992, when Zehavi introduced the so-called bit-
interleaved coded modulation (BICM) [21] (later analyzed
in [22], [42]), which is a serial concatenation of a binary
channel encoder, a bit-level interleaver, and a memoryless
mapper. BICM aims to increase the code diversity—the key
performance measure in fading channels—and therefore out-
performs TCM in this scenario [22, Table III]. BICM is very
attractive from an implementation point view because of its
flexibility, i.e., the channel encoder and the modulator can
be selected independently, somehow breaking Massey’s joint
design paradigm. BICM is nowadays ade factostandard, and
it is used in most of the existing wireless systems, e.g., HSPA
(HSDPA and HSUPA) [23] [24, Ch. 12], IEEE 802.11a/g [25]
IEEE 802.11n [26, Sec. 20.3.3], and the latest DVB standards
(DVB-T2 [27], DVB-S2 [28], and DVB-C2 [29]).

Plots of the BICM capacity vs.Eb/N0 reveal that BICM
does not always achieve the Shannon limit (SL)−1.59 dB.
This can be explained based on first-order asymptotics of the
BICM capacity, which were recently developed by Martinez
et al. for uniform input distributions and one- and two-
dimensional input alphabets [30], [31]. It was shown that
there is a bounded loss between the BICM capacity and the
SL when pulse amplitude modulation (PAM) input alphabets

1An excellent summary of the contributions that influenced Shannon’s work
can be found in [6, Sec. I].

2For a detailed historical overview of the early works on CM, we refer the
reader to [17, Sec. 1.2] and [18, pp. 952–953]. Also, good summaries of the
efforts made over the years to approach Shannon’s limit in both power- and
bandwidth-limited regimes can be found in [19], [20].



2 IEEE TRANSACTIONS ONINFORMATION THEORY, to appear, 2011.

labeled by the binary reflected Gray code (BRGC) is used.
Recently, Stierstorfer and Fischer showed in [32], [33] (see
also [34, Ch. 3]) that this is caused by the selection of the
binary labeling and that equally spaced PAM and quadrature
amplitude modulation (QAM) input alphabets with uniform
input distributions labeled by the natural binary code (NBC)
achieve the SL. Moreover, the same authors showed in [35]
that for low to medium signal-to-noise ratios (SNR), the NBC
results in a higher capacity than the BRGC for PAM and QAM
input alphabets and uniform input distributions.

The fact that the BICM capacity does not always achieve the
SL raises the fundamental question about first-order optimal
(FOO) constellations for BICM, i.e., constellations that make
the BICM achieve the SL. In this paper, we generalize the first-
order asymptotics of the BICM capacity presented in [30] to
input alphabets with arbitrary dimensions, input distributions,
mean, variance, and binary labelings. Based on this model,
we present asymptotic results for PAM and phase shift keying
(PSK) input alphabets with uniform input distribution and dif-
ferent binary labelings. Our analysis is based on the so-called
Hadamard transform [36, pp. 53–54], which allows us to fully
characterize FOO constellations for BICM with uniform input
distributions for fading and nonfading channels. A complete
answer to the question about FOO constellations for BICM
with uniform input distributions is given: a constellationis
FOO if and only if it is a linear projection of a hypercube. Fur-
thermore, binary labelings for the traditional input alphabets
PAM, QAM, and PSK are studied. In particular, it is proven
that for PAM and QAM input alphabets, the NBC is the only
binary labeling that results in an FOO constellation. It is also
proven that PSK input alphabets with more than four points
can never yield an FOO constellation, regardless of the binary
labeling. When 8-PAM with a uniform input distribution is
considered, the folded binary code (FBC) results in a higher
capacity than the BRGC and the NBC. Moreover, it is shown
how the BICM capacity can be increased by properly selecting
the input distribution, i.e., by using so-calledprobabilistic
shaping [37]. In particular, probabilistic shaping is used to
show that PAM input alphabets labeled by the BRGC or the
FBC can also be FOO, and to show that the 1 dB gap between
the AWGN capacity and the BICM capacity with the BRGC
can be almost completely removed.

II. PRELIMINARIES

A. Notation Convention

Hereafter we use lowercase lettersx to denote a scalar,
boldface lettersx to denote a row vector of scalars, and
underlined symbolsx to denote a sequence. Blackboard bold
letters X represent matrices andxi,j represents the entry of
X at row i, columnj, where all the indices start at zero. The
transpose ofX is denoted byXT, trace (X) is the trace ofX,
and‖X‖2 is trace

(
XTX

)
.

We denote random variables by capital lettersY , prob-
abilities by Pr{·}, the probability mass function (pmf) of
the random vectorY by PY (y), and the probability density
function (pdf) of the random vectorY by pY (y). The joint pdf
of the random vectorsX and Y is denoted bypX,Y (x, y),

and the conditional pdf ofY conditioned onX = x is
denoted bypY |X=x(y). The same notation applies to joint
and conditional pmfs, i.e.,PX,Y (x, y) andPY |X=x(y). The
expectation of an arbitrary functionf(X, Y ) over the joint
pdf of X and Y is denoted byEX,Y [f(X, Y )], the ex-
pectation over the conditional pdfpY |X=x(y) is denoted by
EY |X=x[f(X, Y )], andcov (X) is the covariance matrix of
the random vectorX.

We denote the base-2 representation of the integer0 ≤
i ≤ M − 1, where M = 2m, by the vectorb(i) =
[bm−1(i), bm−2(i), . . . , b0(i)], wherebm−1(i) is the most sig-
nificant bit of i and b0(i) the least significant. To facilitate
some of the developments in this paper, we also define the
ordered direct productas

[aT
0 , . . . , aT

p−1]
T ⊗ [bT

0 , . . . , bT
q−1]

T , [cT
0 , . . . , cT

pq−1]
T,

(1)

wherecqi+j = [ai, bj ] for i = 0, . . . , p−1 andj = 0, . . . , q−
1. The ordered direct product in (1) is analogous to the
Cartesian product except that it operates on vectors/matrices
instead of sets.

B. Binary Labelings

A binary labelingL of order m ≥ 1 is defined using an
M × m matrix where each row corresponds to one of theM
length-m distinct binary codewords,L = [cT

0 , . . . , cT
M−1]

T,
whereci = [ci,0, ci,1, . . . , ci,m−1] ∈ {0, 1}m.

In order to recursively define some particular binary label-
ings, we first defineexpansions, repetitions, andreflectionsof
binary labelings. To expand a labelingLm = [cT

0 , . . . , cT
M−1]

T

into a labeling Lm+1, we repeat each binary codeword
once to obtain a new matrix[cT

0 , cT
0 , . . . , cT

M−1, c
T
M−1]

T,
and then we obtainLm+1 by appending one extra column
[0, 1, 1, 0, 0, 1, 1, 0, . . . , 0, 1, 1, 0]T of length2M [38]. To gen-
erate a labelingLm+1 from a labelingLm = [cT

0 , . . . , cT
M−1]

T

by repetition, we repeat the labelingLm once to obtain a
new matrix [cT

0 , . . . , cT
M−1, c

T
0 , . . . , cT

M−1]
T, and we add an

extra column from the left, consisting ofM zeros followed
by M ones. Finally, to generate a labelingLm+1 from
a labeling Lm = [cT

0 , . . . , cT
M−1]

T by reflection, we join
Lm and a reversed version ofLm to obtain a new matrix
[cT

0 , . . . , cT
M−1, c

T
M−1, . . . , c

T
0 ]T, and we add an extra column

from the left, consisting ofM zeros followed byM ones [38].
In this paper we are particularly interested in thebinary

reflected Gray code(BRGC) [39], [40], thenatural binary
code(NBC), and thefolded binary code(FBC) [41]. The FBC
was analyzed in [41] for uncoded transmission and here we
will, to our knowledge for the first time, consider it for coded
transmission. In Sec. III-D and Sec. V-C it is shown to yield
a higher capacity than other labelings under some conditions.
We also introduce a new binary labeling denotedbinary semi-
Gray code(BSGC). These binary labelings are generated as
follows:

• The BRGCGm of orderm ≥ 1 is generated bym − 1
recursive expansions of the trivial labelingL1 = [0, 1]T,
or, alternatively, bym − 1 recursive reflections ofL1.
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• The NBCNm of orderm ≥ 1 is defined as the codewords
ci that are the base-2 representations of the integers
i = 0, . . . , M − 1, i.e., Nm = [b(0)T, . . . , b(M − 1)T]T.
Alternatively, Nm can be generated bym − 1 recursive
repetitions of the trivial labelingL1, or asm−1 ordered
direct products ofL1 with itself.

• The BSGCSm of orderm ≥ 3 is generated by replacing
the first column ofGm by the modulo-2 sum of the first
and last columns.

• The FBC Fm of order m ≥ 2 is generated by one
reflection ofNm−1.

For any labeling matrixL = [cT
0 , . . . , cT

M−1]
T, where

ci = [ci,0, ci,1, . . . , ci,m−1] ∈ {0, 1}m, we define amodified
labeling matrixQ = Q(L) which is obtained by reversing the
order of the columns and applying the mapping(0 → 1, 1 →
−1), i.e.,

qi,k ,

{

−1, if ci,m−1−k = 1,

+1, if ci,m−1−k = 0,
(2)

with i = 0, . . . , M − 1 andk = 0, . . . , m − 1.
Example 1 (Binary labelings of orderm = 3):

G3 =















0 0 0
0 0 1
0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0















, N3 =















0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1















,

S3 =















0 0 0
1 0 1
1 1 1
0 1 0
1 1 0
0 1 1
0 0 1
1 0 0















, F3 =















0 0 0
0 0 1
0 1 0
0 1 1
1 1 1
1 1 0
1 0 1
1 0 0















,

and

Q(N3) =















+1 +1 +1
−1 +1 +1
+1 −1 +1
−1 −1 +1
+1 +1 −1
−1 +1 −1
+1 −1 −1
−1 −1 −1















.

C. Constellations and Input Distributions

Throughout this paper, we useX to represent the set of
symbols used for transmission. Each element ofX is an N -
dimensional symbolxi, i = 0, . . . , M −1, where|X | = M =
2m and X ⊂ R

N . We define theinput alphabetusing an
M × m matrix X = [xT

0 , . . . , xT
M−1]

T which contains all the
elements ofX .

For practical reasons, we are interested in well-structured
input alphabets. AnM -PAM input alphabet is defined by the

column vectorXPAM wherexi,1 = −(M − 2i − 1) with i =
0, . . . , M − 1. An M -PSK input alphabet is the matrixXPSK

wherexi = [cos((2i + 1)π/M), sin((2i + 1)π/M)] with i =
0, 1, . . . , M−1. Finally, a rectangular(M ′×M ′′)-QAM input
alphabet is theM ′M ′′ × 2 matrix XQAM = X′

PAM ⊗ X′′
PAM,

whereX′
PAM and X′′

PAM are vectors of lengthM ′ and M ′′,
respectively.

For a given input alphabetX, the input distributionof the
symbols is denoted by the pmfPX(x), which represents the
probabilities of transmitting the symbolsx, i.e.,Pr{X = x}.
We define the matrixP as an ordered list containing the proba-
bilities of the symbols, i.e.,P , [PX(x0), . . . , PX(xM−1)]

T.
We use UM , [1/M, . . . , 1/M ]T to denote the discrete
uniform input distribution.

We define aconstellation as the list of matricesΩ ,

[X, L, P], i.e., an input alphabet using a given labeling and in-
put distribution. Finally, for a given pair[X, L], we denote with
Ik,u ⊂ {0, . . . , M −1} the set of indexes of the symbols with
a binary labelu ∈ {0, 1} at bit positionk ∈ {0, . . . , m − 1},
i.e., Ik,u , {i ∈ {0, . . . , M − 1} : ci,k = u}.

D. System Model

In this paper, we analyze coded modulation schemes (CM)
as the one shown in Fig. 1. Each of theK possible messages
is represented by the binary vectorw ∈ {0, 1}kc , where
kc = log2 K. The transmitter maps each message to a
sequencex = [x(0)T, . . . , x(Ns − 1)T]T ∈ XNs , which
corresponds toNs N -dimensional symbols (Ns channel uses3).
The codeC is a subset ofXNs such that|C| = K, which
is used for transmission. The transmitter is then defined as
a one-to-one function that assigns each information message
w to one of theK possible sequencesx ∈ C. The code
rate in information bits per coded bits is then given by
R = kc/(mNs) or, equivalently,Rc = kc/Ns information bits
per channel use (information bits per symbol, or information
bits per N real dimensions). At the receiver’s side, based
on the channel observations, a maximum likelihood sequence
receiver generates an estimate of the information bitsŵ

selecting the most likely transmitted message.
We consider transmissions over a discrete-time memoryless

fast fading channel

Y (n) = H(n) ◦ X(n) + Z(n), (3)

where the operator◦ denotes the so-called Schur product
(element-wise product) between two vectors,X(n), H(n),
Y (n), andZ(n) are the underlying random vectors forx(n),
h(n), y(n), andz(n) respectively, withn = 0, . . . , Ns−1 be-
ing the discrete time index, andZ(n) is a Gaussian noise with
zero mean and varianceN0/2 in each dimension [21], [42,
App. 2.A]. The channel is represented by theN -dimensional
vectorH(n), and it contains real fading coefficientsHi which
are assumed to be random variables, possibly dependent, with
same pdfpH(h). We assume thatH(n) andN0 are perfectly
known at the receiver or can be perfectly estimated. Since the

3A “channel use” corresponds to the transmission of oneN -dimensional
symbol, i.e., it can be considered as a “vectorial channel use”.
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BICM Encoder
CM Channel

w cπ c
ENC π Φ

x

h z

y
Φ−1 π−1 DEC

l lπ

BICM Decoder

ŵ

Figure 1. A CM system based on a BICM structure: A binary channel encoder, a bit-level interleaver, a memoryless mapper, the fading channel, and the
inverse processes at the receiver side.

channel is memoryless, from now on we drop the discrete-time
index n.

The conditional transition pdf of the channel in (3) is given
by

pY |X=x,H=h(y) =
1

(N0π)N/2
exp

(

−
‖y − h ◦ x‖2

N0

)

. (4)

We assume that bothH andX have finite and nonzero second
moments, thatX, H, andZ are mutually independent, and
that there exists a constantω > 0 such that for all sufficiently
large∆ > 0 the vectorH satisfies

Pr{‖H‖2 > ∆} ≤ exp(−∆ω). (5)

This condition will be used in the proof of Theorem 7 in
Sec. IV-C.

Each transmitted symbol conveysRc information bits and
thus, the relation between the average symbol energyEs ,

EX [‖X‖2] and the average information bit energyEb is given
by Es = RcEb. We define the average signal-to-noise ratio as

SNR ,
EH,X [‖H ◦ X‖2]

N0

= EH [H2]
Es

N0

= EH [H2]Rc
Eb

N0
. (6)

The AWGN channel is obtained as a special case of (3)
by taking H as the all-one vector. Another particular case
is obtained whenH0 = H1 = . . . = HN−1 = A,
which particularizes to the Rayleigh fading channel when
A =

√

A2
1 + A2

2 andA1, A2 are independent zero-mean Gaus-
sian random variables. In this case, the instantaneous SNR
defined byEX [‖H ◦ X‖2]/N0 = A2Es/N0 follows a chi-
square distribution with one degree of freedom (an exponential
distribution). Similarly, the Nakagami-m fading channel is
obtained whenA follows a Nakagami-m distribution. It can
be shown that the condition (5) is fulfilled in all the cases
above.

In a BICM system [21], [22], the transmitter in Fig. 1
(BICM Encoder) is realized using a serial concatenation of
a binary encoder of rateR = Rc/m, a bit level interleaver,
and a memoryless mapperΦ. The mapperΦ is defined as
a one-to-one mapping rule that maps the length-m binary
random vectorC = [C0, . . . , Cm−1] to one symbolX,
i.e., Φ : {0, 1}m → X . At the receiver’s side, the BICM
decoder is based on a demapper that computes soft information
on the coded bits, which are then deinterleaved and passed to

the channel decoder. The a posteriori L-values for thekth bit
in the symbol and for a given fading realization are given by

lk(y) , loge

Pr{Ck = 1|Y = y, H = h}

Pr{Ck = 0|Y = y, H = h}
(7)

=
∑

u∈{0,1}

(−1)u+1 loge

∑

i∈Ik,u

exp

(

−
‖y − h ◦ xi‖

2

N0

)

(8)

≈
1

N0

∑

u∈{0,1}

(−1)u min
i∈Ik,u

‖y − h ◦ xi‖
2, (9)

where to pass from (8) to (9), the so-called max-log [43]
approximation was used.

The max-log metric in (9) (already proposed in [21], [22])
is suboptimal; however, it is very popular in practical im-
plementations because of its low complexity, e.g., in the 3rd
generation partnership project (3GPP) working groups [44]. It
is also known that when Gray-labeled constellations are used,
the use of this simplification results in a negligible impacton
the receiver’s performance [45, Fig. 9] [46, Fig. 6]. The max-
log approximation also allows BICM implementations which
do not require the knowledge ofN0, for example, when a
Viterbi decoder is used, or when the demapper passes hard
decisions to the decoder. Moreover, the use of the max-log
approximation transforms the nonlinear relationlk(y) in (8)
into a piecewise linear relation. This has been used to develop
expressions for the pdf of the L-values in (9) using arbitrary
input alphabets [47] (based on an algorithmic approach),
closed-form expressions for QAM input alphabets labeled by
the BRGC for the AWGN channel [48], [49], and for fading
channels [50]. Recently, closed-form approximations for the
pdf of the L-values in (9) for arbitrary input alphabets and
binary labeling in fading channels have been presented [51].

E. The Hadamard Transform

The Hadamard transform (HT) is a discrete, linear, orthog-
onal transform, like for example the Fourier transform, but
its coefficients take values in±1 only. Among the different
applications that the HT has, one that is often overlooked is
as an analysis tool for binary labelings [52], [53]. The HT is
defined by means of anM ×M matrix, the Hadamard matrix,
which is defined recursively as follows whenM is a power
of two [36, pp. 53–54].

H1 , 1, H2M ,

[
HM HM

HM −HM

]

, M ≥ 1.
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Example 2 (Hadamard matrixH8):

H8 =















+1 +1 +1 +1 +1 +1 +1 +1
+1 −1 +1 −1 +1 −1 +1 −1
+1 +1 −1 −1 +1 +1 −1 −1
+1 −1 −1 +1 +1 −1 −1 +1
+1 +1 +1 +1 −1 −1 −1 −1
+1 −1 +1 −1 −1 +1 −1 +1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 −1 +1 −1 +1 +1 −1















.

(10)

In the following, we will drop the index, lettingH represent
a Hadamard matrix of any sizeM = 2m. Hadamard matrices
have the following appealing properties.

HT = H, H−1 =
1

M
H. (11)

It can be shown [54, Sec. 1.1] [55, Sec. III] that the elements
of a Hadamard matrix arehi,j =

∏m−1
k=0 (−1)bk(i)bk(j), from

which we observe for future use that for alli = 0, . . . , M − 1
and l = 0, . . . , m − 1,

hi,0 = 1, hi,2l =

m−1∏

k=0

(−1)bk(i)bk(2l) = (−1)bl(i), (12)

wherebl(i) is the lth bit of the base-2 representation of the
integeri.

At this point it is interesting to note the close relation
between the columns of the matrixQ(N3) in Example 1
and the columns2l of H8 in (10) for l = 0, 1, 2. Its
generalization is given by the following lemma, whose proof
follows immediately from (2), the definition of the NBC in
Sec. II-B, and (12).

Lemma 1:Let Q = Q(Nm) be the modified labeling matrix
for the NBC of orderm, and letH be the Hadamard matrix.
For anym, and fork = 0, . . . , m − 1 and i = 0, . . . , M − 1,

qi,k = hi,2k . (13)

The HT operates on a vector of lengthM = 2m, for any
integerm, or in a more general case, on a matrix withM = 2m

rows. The transform of a matrixX is denotedX̃ and has the
same dimensions asX. It is defined as

X̃ ,
1

M
HX (14)

and the inverse transform isX = HX̃. Equivalently,

x̃j =
1

M

M−1∑

i=0

hj,ixi, xi =
M−1∑

j=0

hi,jx̃j , (15)

where from (11) we have thathj,i = hi,j , and where we have
introduced the row vectorsxi and x̃j such that

X =
[
xT

0 , . . . , xT
M−1

]T
, X̃ =

[
x̃T

0 , . . . , x̃T
M−1

]T
.

Because of (12), the first element of the transform is simply
x̃0 = (1/M)

∑M−1
i=0 xi.

Finally, using
∑M−1

j=0 ‖x̃j‖
2 = trace

(
X̃TX̃

)
, (14), and (11),

we note that a variant of Parseval’s theorem holds:
M−1∑

j=0

‖x̃j‖
2 =

1

M

M−1∑

i=0

‖xi‖
2. (16)

III. C APACITY OF CODED MODULATION SYSTEMS

In this section we analyze the capacity of CM schemes,
i.e., the so-called CM and BICM capacities. We review their
relation and we analyze how the selection of the constellation
influences them. We pay special attention to the selection of
the binary labeling and the use of probabilistic shaping for
BICM.

A. AMI and Channel Capacity

In this subsection, we assume the use of a continuous input
alphabet, i.e.,X = R

N , which upperbounds the performance
of finite input alphabets.

Theaverage mutual information(AMI) in bits4 per channel
use between the random vectorsX andY when the channel
is perfectly known at the receiver is defined as

IX(X ; Y ) , EX,Y

[

log2

pX,Y (X, Y )

pY (Y )pX(X)

]

(17)

= EX,Y

[

log2

pY |X(Y )

pY (Y )

]

, (18)

where we useX as the index ofIX(X ; Y ) to emphasize
the fact that the AMI depends on the input PDFpX(x). For
an arbitrary channel parameterH, the AMI in (17) can be
expressed as5

IX (X; Y ) = EX,Y ,H

[

log2

pY |X,H(Y )

pY |H(Y )

]

, (19)

wherepY |X=x,H=h(y) is given by (4).
The channel capacityof a continuous-input continuous-

output memoryless channel is defined as the maximum AMI
between its input and output [56, Ch. 4] [57, eq. (3)]

C (SNR) , max
pX(x)

IX(X ; Y ), (20)

where the maximization is over all possible input distributions.
The capacity in (20) has units of [bit/channel use] (or equiv-
alently [bit/symbol]), and it is an upper bound on the number
of bits per symbol that can be reliably transmitted through
the channel, where a symbol consists ofN real dimensions.
Shannon’s channel coding theorem states that it is not possible
to transmit information reliably above this fundamental limit,
i.e.,

Rc ≤ C (SNR) = C

(

RcEH [H2]
Eb

N0

)

. (21)

TheAWGN capacity, denoted byCAW (SNR), is defined as
the channel capacity of the AWGN channel (obtained from (3)
usingH(n) = 1), and it is given by [56, Sec. 9.4]

C
AW (SNR) =

N

2
log2

(

1 +
2

N
SNR

)

. (22)

This capacity is attained whenX are i.i.d. zero-mean Gaussian
random variables with varianceEs/N in each dimension and

4Throughout this paper all the AMIs are given in bits.
5We note that the AMI with perfect channel state information is usu-

ally denoted byIX (X; Y |H); however, for notation simplicity, we use
IX (X; Y ).
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it follows from the fact that the noise is independent in each
dimension, and thus, the transmission ofX can be considered
as a transmission throughN parallel independent Gaussian
channels.

We define theconditional AMI for discrete input alphabets
as the AMI betweenX and Y conditioned on the outcome
of a third random variableU , i.e.,

IX|U=u(X; Y ) , EX,Y |U=u

[

log2

pY |X,U=u(Y )

pY |U=u(Y )

]

(23)

= EX,Y ,H|U=u

[

log2

pY |X,H,U=u(Y )

pY |H,U=u(Y )

]

, (24)

which is valid for any randomH.

B. CM Capacity

TheCM capacityis defined as the AMI betweenX andY

for a given constellationΩ, i.e.,

I
CM
Ω (SNR) , IX (X; Y ) (25)

= IX (C; Y ) (26)

=

m−1∑

k=0

IX(Ck; Y |C0, . . . , Ck−1), (27)

where to pass from (25) to (26), we used the fact that the
mapping rule betweenC andX is one-to-one. To pass from
(26) to (27) we have used the chain rule of mutual information
[56, Sec. 2.5], whereIX(Ck; Y |C0, . . . , Ck−1) represents a
bit level AMI which represents the maximum rate that can be
used at the(k + 1)th bit position, given a perfect knowledge
of the previousk bits.

The CM capacity in (25) corresponds to the capacity of the
memoryless “CM channel” in Fig. 1 for a given constellation
Ω. We note that different binary labelings will produce dif-
ferent values ofIX (Ck; Y |C0, . . . , Ck−1) in (27); however,
the overall sum will remain constant, i.e., the CM capacity
does not depend on the binary labeling. We use the name
“CM capacity” for ICM

Ω (SNR) in (25) following the standard
terminology6 used in the literature (cf. [22], [30], [33], [34],
[60]), although we recognize a misuse of the word capacity
since no optimization over the input distribution is performed
(cf. (20)). Moreover, it is also possible to optimize the input
alphabet in order to obtain an increase in the AMI (so-called
signal shaping [61]). Nevertheless, throughout this paperwe
will refer to the AMI for a givenΩ in (25) as the CM capacity.

In this paper we are interested in optimal constellations, and
therefore, we define themaximum CM capacityas

C
CM (SNR) , max

Ω
I
CM
Ω (SNR) (28)

= max
[X,P]

m−1∑

k=0

IX(Ck; Y |C0, . . . , Ck−1). (29)

As mentioned before, the CM capacitydoes notdepend on the
binary labeling, i.e., it does not depend on how the mapping
rule Φ is implemented, and therefore, in (29) we only show

6Sometimes, this is also called joint capacity [37], or (constellation)
constrained capacity [58], [59].

two optimization parameters: the input alphabet and the input
distribution.

The CM capacity in (25) (for a given constellationΩ)
is an upper bound on the number of bits per symbol that
can be reliably transmitted using for example TCM [14] or
MLC with multistage decoding (MLC-MSD) [15], [62]. MLC-
MSD is in fact a direct application of the summation in (27),
i.e., m parallel encoders are used, each of them having a rate
Rk = IX (Ck; Y |C0, . . . , Ck−1). At the receiver’s side, the
first bit level is decoded and the decisions are passed to the
second decoder, which then passes the decisions to the third
decoder, and so on. Other design rules can also be applied
in MLC, cf. [62]. The maximum CM capacityCCM (SNR)
in (29) represents an upper bound on the number of bits per
symbol that can be reliably transmitted using a fully optimized
system, i.e., a system where for each SNR valueSNR, the
input alphabet and the input distribution are selected in order
to maximize the CM capacityICM

Ω (SNR).

C. BICM with Arbitrary Input Distributions

It is commonly assumed that the sequence generated by the
binary encoder in Fig. 1 is infinitely long and symmetric, and
also that the interleaver (π) operates over this infinite sequence,
simply permuting it in a random way. Under these standard
assumptions, it follows that the input symbol distributionwill
be alwaysP = UM . Since in this paper we are interested
in analyzing a more general setup where the input symbol
distribution can by modified, we develop a more general
model in which we relax the equiprobable input distribution
assumption.

Let Ck ∈ {0, 1} the binary random variable representing the
bits at thekth modulator’s input, where the pmfPCk

(u) rep-
resents the probability of transmitting a bitu at bit positionk.
We assume that in general

∑m−1
k=0 PCk

(0) 6=
∑m−1

k=0 PCk
(1),

i.e., the coded and interleaved sequence could have more zeros
than ones (or vice-versa). Note that sincePCk

(u) is a pmf,
PCk

(0) + PCk
(1) = 1.

Let ci = [ci,0, . . . , ci,m−1] be the binary label of the symbol
xi. We assume that the bits at the input of the modulator are
independent, and therefore, the input symbol probabilities are

PX(xi) =

m−1∏

k=0

PCk
(ci,k). (30)

The independence condition on the coded bits that results
in (30) can be obtained if the interleaver block in Fig. 1
completely breaks the temporal correlation of the coded bits.
The condition that the coded and interleaved sequence could
be asymmetric can be obtained for example by using an
encoder with nonuniform outputs, or by a particular puncturing
scheme applied to the coded bits. This can be combined with
the use of multiple interleavers and multiplexing [63], which
would allow PCk

(u) 6= 1/2. Examples of how to construct a
BICM scheme where nonuniform input symbol distributions
are obtained include the “shaping encoder” of [64], [65] and
the nonuniform signaling scheme based on a Huffman code
of [66].
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For future use, we also define the conditional input symbol
probabilities, conditioned on thekth bit beingu, as

PX|Ck=u(xi) =







m−1∏

k′=0
k′ 6=k

PCk′
(ci,k′ ), if ci,k = u,

0, if ci,k 6= u

=







PX(xi)

PCk
(u)

, if i ∈ Ik,u,

0, if i /∈ Ik,u,
(31)

whereIi,k is defined in Sec. II-C.

D. BICM Capacity

The BICM capacity was originally defined in [22] using an
equivalent channel model that consists ofm parallel binary-
input continuous-output channels. Using this model and the
definitions in Sec. III-C, the BICM capacity for a given
constellationΩ is defined as

I
BI
Ω (SNR) ,

m−1∑

k=0

ICk
(Ck; Y ) (32)

=
m−1∑

k=0

ECk,H,Y

[

log2

pY |Ck,H(Y )

pY |H(Y )

]

(33)

=

m−1∑

k=0

∑

u∈{0,1}

PCk
(u)

·EH,Y |Ck=u

[

log2

pY |H,Ck=u(Y )

pY |H(Y )

]

(34)

= (see (35) at the bottom of the page),

where (35) follows from (34) by expanding the expectation
as integrals overh and y, expandingpY |H,Ck=u(y) as the
marginal

∑

i∈Ik,u
PX|Ck=u(xi)pY |X=xi,H(y) and similarly

for pY |H(y), and simplifying the probabilities using (31). The
BICM capacity in (35) is a general expression that depends
on all the constellation parametersΩ. This can be numerically
implemented using Gauss–Hermite quadratures [67, p. 70], or
alternatively, by using a one-dimensional integration based on
the pdf of the L-values developed in [47], [49]–[51]. Recently
Martinez et al. [60] recognized the BICM decoder in Fig. 1
as a mismatched decoder and showed that the BICM capacity
in (35) corresponds to an achievable rate of such decoder.

The AMIs ICk
(Ck; Y ) in (32) are, in contrast to the ones

in (29), not conditioned on the previous bit values. Becauseof
this, and unlike the CM capacity, the binary labeling strongly
affects the BICM capacityIBI

Ω (SNR) in (32). Note that the
BICM capacity is equivalent to the capacity achieved by MLC
with (suboptimal) parallel decoding of the individual bit levels,
because in BICM, the bits are treated as independent [62]. The

differences are that BICM uses only one encoder, and that in
BICM the equivalent channels are not used in parallel, but
time multiplexed. Again, following the standard terminology7

used in the literature (cf. [22], [30], [33], [34], [60]), weuse
the name “BICM capacity” even though no optimization over
the input distribution is performed.

If all the bits at the input of the modulator are equally likely,
i.e., PCk

(u) = 1/2 for k = 0, . . . , m − 1 andu ∈ {0, 1}, we
obtain from (30)PX(x) = 1/M . Under these constraints, and
assuming an AWGN channel (H = 1), the BICM capacity in
(35) is given by

I
BI
Ω (SNR) =

1

M

m−1∑

k=0

∑

u∈{0,1}

∑

i∈Ik,u

∫

RN

pY |X=xi
(y)

· log2

2
∑

j∈Ik,u
pY |X=xj

(y)
∑

x∈X pY |X=x(y)
dy, (36)

where the constellation isΩ = [X, L, UM ]. This expression
coincides with the “standard” BICM capacity formula (cf. [42,
Sec. 3.2.1], [22, eq. (15)], [60, eq. (11)]).

One relevant question here is what is the optimum label-
ing from a capacity maximization point of view. Once this
question is answered, approaching the fundamental limit will
depend only on a good design of the channel encoder/decoder.
Caire et al. conjectured the optimality of the BRGC, which,
as the next example shows, is not correct at all SNR. This was
first disproved in [35] for PAM input alphabets based on an
exhaustive search of binary labelings up toM = 8.

Example 3 (CM and BICM capacities for AWGN): In
Fig. 2, we show the BICM capacity in (36) and the
CM capacity in (25) for 8-PAM,P = U8, and the four
binary labelings in Example 1. Fig. 2 (a) illustrates that
the difference between the CM capacity and the BICM
capacity is small if the binary labeling is properly selected.
The best of the four binary labelings is the NBC for low
SNR (Rc ≤ 0.43 bit/symbol), the FBC for medium SNR
(0.43 ≤ Rc ≤ 1.09 bit/symbol), and the BRGC for high SNR
(Rc ≥ 1.09 bit/symbol). The gap between the CM capacity
and the BICM capacity for the BSGC is quite large at low to
moderate SNR. The low-SNR behavior is better elucidated
in Fig. 2 (b), where the same capacity curves are plotted
versusEb/N0 instead ofSNR. Interestingly, the CM capacity
and the BICM capacity using the NBC achieve the SL at
asymptotically low rates; Gaussian inputs are not necessary,
cf. [68, Sec. I].

Formally,Eb/N0 is bounded from below byf(Rc), where

f(Rc) ,
C−1(Rc)

EH [H2]Rc
. (37)

7It is also called parallel decoding capacity in [37], or receiver constrained
capacity in [58].

∫

RN

pH(h)

m−1∑

k=0

∑

u∈{0,1}

∑

i∈Ik,u

PX(xi)

∫

RN

pY |X=xi,H=h(y) · log2

1
PCk

(u)

∑

j∈Ik,u
PX(xj)pY |X=xj ,H=h(y)

∑

x∈X PX (x)pY |X=x,H=h(y)
dy dh (35)
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Figure 2. CM capacity and BICM capacity for 8-PAM withU8 using the
four labelings defined in Sec. II-B: plotted vs.SNR (a) andEb/N0 (b), and
their corresponding functionsg(Rc) (c). The shadowed regions represent the
achievable rates using the BSGC. The black squares represent the minimum
Eb/N0 for the BSGC. The black circles represents theEb/N0 needed for
a rateR = 1/15 turbo code to reachBER = 10−6 (cf. Sec. VI-A).

This function always exists, because the capacity8 C(SNR)
is a strictly increasing9 function of SNR and thus invertible,
while in contrastf(Rc) is in general not monotone. This is the
reason why a givenEb/N0 for some labelings maps to more
than one capacity value, as shown in [30]. The phenomenon
can be understood by considering the functionI

BI
Ω (SNR) in

a linear SNR scale, instead of logarithmic as in Fig. 2 (a).
If plotted, the function would pass through the origin for all
labelings. Furthermore, any straight line through the origin
represents a constantEH [H2]Eb/N0 by (6), where the slope is
determined by the value ofEH [H2]Eb/N0. Such a line cannot
intersectIBI

Ω (SNR) more than once forSNR > 0, if IBI
Ω (SNR)

is concave. This is the case for the BRGC, NBC, and FBC,
and therefore the functionRc = f−1(EH [H2]Eb/N0) exists,
as illustrated for in Fig. 2 (b). However, for some labelings
such as the BSGC (and many others shown in [34, Fig. 3.5]),
IBI
Ω (SNR) is not concave andf(Rc) is not invertible. This
phenomenon has also been observed for linear precoding for
BICM with iterative demapping and decoding [70, Fig. 3],
punctured turbo codes [71, Fig. 3], and incoherentM -ary PSK
[72, Figs. 2 and 5] and frequency-shift keying channels [73,
Figs. 1 and 6].

Since analytical expressions for the inverse function of the
capacity are usually not available, expressions forf(Rc) are
rare in the literature. One well-known exception is the capacity
of the Gaussian channel given by (22), for which

fAW(Rc) =
N

2Rc
(22Rc/N − 1), (38)

which results in the SL

lim
Rc→0+

fAW(Rc) = loge(2) = −1.59 dB. (39)

Analogously, we will use the notationfCM
Ω (Rc) andfBI

Ω (Rc)
when the capacity considered is the CM and the BICM
capacity, respectively.10

The results in Fig. 2 (a)–(b) suggest a more general ques-
tion: What are the optimal constellations for BICM at a
givenSNR? To formalize this question, and in analogy to the
maximum CM capacity in (28), we define themaximum BICM
capacityas

C
BI (SNR) , max

Ω
I
BI
Ω (SNR) , (40)

where the optimization is in this case over the three parameters
defining Ω. In analogy to the maximum CM capacity, the
maximum BICM capacity represents an upper bound on the
number of bits per symbol that can be reliably transmitted
using a fully optimized BICM system, i.e., a system where
for eachSNR, the constellation is selected to maximize the
BICM capacity.

8From now on we will refer to “capacity” using the notationC(SNR) in
a broad sense.C(SNR) can be the AWGN capacityCAW(SNR) in (22), the
CM capacityICM

Ω
(SNR) in (25), or the BICM capacityIBI

Ω
(SNR) in (32).

9This can be proved using the relation between the AMI and the minimum
mean square error (MMSE) presented in [69], i.e., that the derivative of the
AMI with respect toSNR is proportional to the MMSE for anySNR. Since
the MMSE is a strictly decreasing function ofSNR, the AMI is a strictly
increasing function ofSNR.

10The same notation convention will be used for other functions that will
be introduced later in the paper.
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We conclude this subsection by expressing the BICM ca-
pacity as a difference of AMIs and conditional AMIs , which
will facilitate the analysis in Sec. IV. The following result is a
somehow straightforward generalization of [30, Proposition 1],
[59, eq. (65)] toN -dimensional input alphabets, nonuniform
input distributions, and fading channels.

Theorem 2:The BICM capacity can be expressed as

I
BI
Ω (SNR) =

m−1∑

k=0

∑

u∈{0,1}

PCk
(u)

·
[
IX(X; Y ) − IX|Ck=u(X ; Y )

]
. (41)

Proof: For any functione(X, Y , H),

EH,Y |Ck=u

[

log2

pY |HCk=u(Y )

pY |H(Y )

]

=

EX,Y ,H|Ck=u

[

log2

e(X, Y , H)

pY |H(Y )
− log2

e(X, Y , H)

pY |H,Ck=u(Y )

]

.

Using this relation in (34), letting e(X, Y , H) ,

pY |X,H(Y ) = pY |X,H,Ck=u(Y ), observing that the first
term is independent ofu, and utilizing (19) and (24) yields
the theorem.

E. MinimumEb/N0 for Reliable Transmission

In this section, we determine the minimumEb/N0 that
permits reliable transmission, for a given input alphabet and
labeling. As observed in Fig. 2 (b), this minimum does not
necessarily occur at rateRc = 0.

Theorem 3 (MinimumEb/N0): The minimumEb/N0 is
given byf(R̃c), whereR̃c = 0 or R̃c is one of the solutions
of g(Rc) = 0, where

g(Rc) ,
df(Rc)

dRc
=

1

Rc

dC−1(Rc)

dRc
−

C−1(Rc)

R2
c

. (42)

Proof: Any smooth function has a minimum given by
the solution of its first derivative equal to zero or at the
extremes of the considered interval. Since in general0 ≤
Rc < ∞, two extreme cases should be considered. However,
limRc→∞ fAW(Rc) = limRc→m− fΩ(Rc) = ∞, and there-
fore, the only extreme point of interest is̃Rc = 0.

Since f(Rc) is in general not known analytically, the
functiong(Rc) must be numerically evaluated usingC(SNR).
An exception to this is the capacity of the AWGN channel,
wheregAW(Rc) can be calculated analytically. Moreover, it
can be proved that in this case, a minimumEb/N0 for nonzero
rates does not exist.

Corollary 4 (MinimumEb/N0 for the AWGN channel):
The minimumEb/N0 for the AWGN channel is unique, and
it is obtained for zero-rate transmissions.

Proof: The derivative offAW(Rc) in (38) is given by

gAW(Rc) =
N + (2Rc loge 2 − N)22Rc/N

2R2
c

,
gAW
num(Rc)

gAW
den (Rc)

.

(43)

To prove that a zero for a nonzero rate does not exit, we need
to prove thatgAW

num(Rc) > 0 for Rc > 0, sincegAW
den (Rc) > 0

for Rc > 0. This follows becauselimRc→0+ gAW
num(Rc) = 0

and the first derivative ofgAW
num(Rc) is strictly positive:

dgAW
num(Rc)

dRc
=

4

N
Rc(loge 2)222Rc/N > 0.

In Fig. 2 (c), we present the functiong(Rc) in (42) for the
same constellations presented in Fig. 2 (a)–(b). Ifg(Rc) =
0 has at least one solution forRc > 0, the capacity curve
will have a local minimum (shown with a filled square in
Fig. 2 (b)–(c) for the BSGC). Note also that the BSGC has
an interesting property, namely,limRc→0+ gBI

Ω (Rc) = −∞,
and consequently,limRc→0+ fBI

Ω (Rc) = +∞. In this sense,
the BSGC is an extremely bad labeling forM -PAM input
alphabets and asymptotically low rates.

F. Probabilistic Shaping

The maximum BICM capacity in (40) is an optimization
problem for which analytical solutions are unknown. In this
subsection, we study the solution of (40) when the input
alphabet and the binary labeling are kept constant, i.e., we
study the so-called probabilistic shaping. Formally, we want to
solve P∗(SNR) , argmaxP IBI

Ω (SNR), whereΩ = [X, L, P],
for a given input alphabetX and labelingL. Since this
optimization problem turns out to have multiple local minima
and no analytical methods are known for solving it, we
perform a grid search with steps of 0.01 based on Gauss-
Hermite quadratures. The optimization is performed over the
three variables defining the input distribution:PC1

(0), PC2
(0),

and PC3
(0). For each SNR value, the input distribution that

maximizes the BICM capacity is selected.
In Fig. 3, we show the BICM capacity for an 8-PAM

input alphabet labeled by the BRGC and the NBC, when the
optimized input distributions are used. We use the notation
Ω∗ = [X, L, P∗]. The results in this figure show how, by
properly selecting the input distribution, the BICM capacity
can be increased. The gap between the BICM capacity and
the AWGN capacity is almost completely eliminated for
Rc ≤ 2 bit/symbol (in contrast to a gap of approximately
1 dB in Fig. 2 (b)). Similar results have been presented recently
in [74] for 4-PAM. Interestingly, Fig. 3 shows that if the
input distribution is optimized, the NBC is not the optimal
binary labeling for low SNR anymore, but the BRGC with an
optimized input distribution achieves the SL. This is also the
case for the FBC, but we do not show those results not to
overcrowd the figure.

IV. BICM FOR ASYMPTOTICALLY LOW RATES

In this subsection, we are interested in finding an asymp-
totic expansion for the CM and the BICM capacities when
SNR → 0.

A. Relation between AWGN and BICM capacity

We start by proving that the BICM capacity can be optimal
in the sense of being equal to the AWGN capacity only for zero
rate. This very simple result motivates the developments in
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Figure 3. BICM capacity for 8-PAM usingU8 and P∗ for the BRGC and
the NBC versus (a)SNR and (b)Eb/N0.

order to characterize the behavior of BICM for asymptotically
low SNR.

Theorem 5:The AWGN capacity, the CM capacity, and
the BICM capacity are related through the following two
inequalities.

i) ICM
Ω (SNR) ≤ CAW (SNR) with equality if and only if
SNR = 0, and

ii) IBI
Ω (SNR) ≤ ICM

Ω (SNR).

Proof: We start by proving that IAW
Ω (SNR) <

C
AW (SNR) for SNR > 0, where I

AW
Ω (SNR) is the CM

capacity of the AWGN channel. From (25) andIX (X; Y ) =
h(Y ) − h(Z), we express the CM capacity for a givenΩ
in terms of differential entropies asIAW

Ω (SNR) = h(Y ) −
N/2 log2(2πN0e). Since the differential entropyh(Y ) =
−
∫

RN pY (y) log2 pY (y) dy is maximized if and only ifY
is Gaussian distributed [56, Theorem 8.6.5], the use of any
constellationΩ (discrete input alphabet) will give a smaller
differential entropyh(Y ) than for a GaussianY , which proves
that IAW

Ω (SNR) < CAW (SNR) for SNR > 0.

We now prove thatICM
Ω (SNR) < IAW

Ω (SNR) for any fading
channel andSNR > 0. To do this, we note that the CM
capacity for fading channels is equal to the CM capacity
for the AWGN channel averaged over the distribution of
the instantaneous SNR. Furthermore,IAW

Ω (SNR) is a strictly
concave function ofSNR for SNR > 0, because the second
derivative of the AMI as a function of the SNR (the first
derivative of the MMSE, see footnote 8) is strictly negative
for SNR > 0 [75, Proposition 5] [76, Proposition 7]. There-
fore, Jensen’s inequality holds, which yieldsICM

Ω (SNR) =
EH [IAW

Ω

(
H2Es/N0

)
] < IAW

Ω

(
EH [H2]Es/N0

)
= IAW

Ω (SNR)
for SNR > 0. This and the fact thatICM

Ω (0) = CAW (0) = 0
proves item i). The proof of item ii) was presented in [22,
Sec. III].

Corollary 6: The BICM capacityand the maximum BICM
capacity can be equal to the AWGN capacityonly for zero
rates, i.e.,IBI

Ω (SNR) = CBI (SNR) = CAW (SNR) only if
SNR = 0.

Proof: From Theorem 5, we know that for anySNR > 0,
the inequalityIBI

Ω (SNR) ≤ ICM
Ω (SNR) < CAW (SNR) holds.

Therefore, for anySNR > 0, IBI
Ω (SNR) < CAW (SNR).

The proof for the BICM capacity is completed noting that
I
BI
Ω (0) = C

AW (0) = 0. The proof for the maximum BICM
capacity follows from the fact that Theorem 5 holds also when
an optimization overΩ is applied.

Corollary 6 simply states that the only rates for which the
AWGN will be equal to the BICM capacity and the maximum
BICM capacity isRc = 0 (or equivalentlySNR = 0). In the
following subsections, we analyze the asymptotic behaviorof
the BICM capacity whenSNR = 0.

B. A Linear Approximation of the Capacity and the SL

Any capacity functionC(SNR) can be approximated using
a Taylor expansion aroundSNR = 0 as C(SNR) = αSNR +
O(SNR

2). By inversion of power series [77, Sec. 1.3.4.5], we
find

C
−1(Rc) =

1

α
Rc + O(R2

c),

and using (37), it is possible to obtain a linear approximation
of the functionf(Rc) as

f(Rc) =
1

α
+ O(Rc). (44)

For asymptotically low rates, (44) results in

lim
Rc→0+

f(Rc) =
1

α
, (45)

and since from (39)1/α ≥ loge(2), we obtain

α ≤ log2 e. (46)

It is clear from (46) that a capacity functionC(SNR) that has a
coefficientα = log2 e achieves the SL−1.59 dB11. Moreover,
based on the results for the BSGC in Fig. 2 (b), the coefficient
α can be as low as zero.

11Or equivalently, if we measure the AMI in nats,α = loge e = 1.
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C. First-Order Asymptotics of the BICM Capacity

Theorem 7 (Linear approximation of the AMI):When the
channel is perfectly known at the receiver, and for any input
distributionPX(x), the AMI betweenX andY in (3) can be
expressed as

IX(X ; Y ) = αSNR + O(SNR
2)

whenSNR → 0, where

α = log2 e

(

1 −
‖EX [X]‖2

Es

)

. (47)

Proof: The proof is given in Appendix A.
Theorem 7 shows how to calculate the first-order asymp-

totics of an AMI with arbitrary input distribution. The follow-
ing corollary follows directly from the definition of the CM
capacity in (25), where the input distribution is given by (30).

Corollary 8 (CoefficientαCM
Ω ): The CM capacity can be

expressed as

I
CM
Ω (SNR) = αCM

Ω SNR + O(SNR
2)

whenSNR → 0, whereαCM
Ω is given by (47).

The next theorem gives the first-order asymptotics for the
BICM capacity.

Theorem 9 (CoefficientαBI
Ω ): The coefficientα for the

BICM capacityIBI
Ω (SNR) is given by

αBI
Ω =

log2 e

Es

[
m−1∑

k=0

∑

u∈{0,1}

PCk
(u)

· ‖EX|Ck=u[X]‖2 − m‖EX [X ]‖2

]

. (48)

Proof: Reordering the result of Theorem 2, we have that

I
BI
Ω (SNR) =

m−1∑

k=0

{

IX(X ; Y ) −
∑

u∈{0,1}

PCk
(u)IX|Ck=u(X; Y )

}

.

Since IX(X ; Y ) and IX|Ck=u(X ; Y ) are AMIs, we can
apply (47) to each of them, which gives

αBI
Ω =

log2 e

Es

m−1∑

k=0

{

Es − ‖EX [X ]‖2 −
∑

u∈{0,1}

PCk
(u)

·
(
EX|Ck=u[‖X‖2] − ‖EX|Ck=u[X]‖2

)
}

.

We recognize
∑

u∈{0,1} PCk
(u)EX|Ck=u[‖X‖2] as the aver-

age symbol energyEs, which completes the proof.
The first-order coefficients of the expansion of the CM and

BICM capacities in Corollary 8 and Theorem 9 do not depend
on the fading. This simply states that, under the constraints
imposed onH , the fading has no effect on the first-order
behavior of the BICM capacity. Consequently, the analysis of
the optimal constellations for fading channels at low SNR can
be reduced, without loss of generality, to the AWGN case.

Corollary 8 and Theorem 9 generalize the results in [30],
[31] by considering constellations with nonuniform input dis-
tributions and arbitrary dimensions, mean, and variance. This

generalization will allow us to analyze optimal constellations
Ω in the next section.

In general, we know from (46) thatαBI
Ω ≤ log2 e, which can

be interpreted as the penalty of a certain BICM system over
an optimal CM system (without interleaving). In the following
section we analyzeαBI

Ω for PAM and PSK input alphabets with
different binary labelings andP = UM and we also show how
to obtainαBI

Ω = log2 e for general constellations.

V. FIRST-ORDER OPTIMAL CONSTELLATIONS FORBICM

Shannon stated in 1959, “There is a curious and provocative
duality between the properties of a source with a distortion
measure and those of a channel” [78]. Many instances of
this duality have been observed during the last 50 years
of communications research. A good summary of this is
presented in [57, Sec. V]. The coefficientα is mathematically
similar to the so-calledlinearity index [52], which was used
to indicate the approximative performance of labelings in a
source coding application at high SNR. The usage of the HT
in this section was inspired by the analysis in [52].

A. FOO Constellations

In view of the SL (46), we define afirst-order optimal
(FOO) constellationfor BICM12 as a constellationΩ that
results in a coefficientαBI

Ω = log2 e.
Theorem 10 (CoefficientαBI

Ω for arbitrary constellations):
For any constellationΩ,

αBI
Ω =

log2 e

2Es

m−1∑

k=0

{∥
∥
∥
∥

M−1∑

i=0

qi,kxiPX(xi)
√

PCk
(ci,k)

∥
∥
∥
∥

2

+

∥
∥
∥
∥

M−1∑

i=0

xiPX (xi)
√

PCk
(ci,k)

∥
∥
∥
∥

2

− 2
∥
∥EX [X]

∥
∥

2

}

, (49)

whereqi,k are the elements of the modified labeling matrix in
(2).

Proof: The proof is given in Appendix B.
Theorem 10 is a very general theorem valid for any con-

stellationΩ. From this theorem, it is clear that the problem of
designing FOO constellations for BICM has three degrees of
freedom: the input alphabetX, the binary labelingL, and the
input distributionP.

From now on, we restrict our attention to uniform input
distributionsP. This restriction can be justified from the fact
that due to the digital implementation of the transceivers,
changing the input alphabet or the binary labeling can be
implemented without complexity increase. On the other hand,
implementation of probabilistic shaping requires a modifica-
tion of the channel encoder and/or the interleaver. IfP = UM ,
then PCk

(u) = 1/2 for k = 0, 1, . . . , m − 1 and u ∈ {0, 1},
and (49) simplifies into

αBI
Ω =

log2 e

Es

m−1∑

k=0

∥
∥
∥
∥

1

M

M−1∑

i=0

qi,kxi

∥
∥
∥
∥

2

. (50)

12A similar first-order optimality criterion for the CM capacity can be
defined. In this case, based on (47), any constellation basedon a zero-mean
input alphabet is an FOO constellation for the CM capacity, regardless of
the input distributionPX (x). Conversely, no FOO constellation can have
nonzero mean.
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KeepingX fixed and changing the labelingL is equivalent
to fixing L and reordering the rows ofX. Therefore, a joint
optimization ofΩ = [X, L, UM ] over X and L can without
loss of generality be reduced to an optimization overX only,
for an arbitraryL. In the following analysis, we will hence
sometimes fix the labeling to be the NBC, without loss of
generality.

The expression forαBI
Ω in (50) can be simplified further

using the HT, as elaborated in the next theorem.
Theorem 11 (The HT andαBI

Ω ): The coefficientαBI
Ω for a

constellationΩ = [X, Nm, UM ] is given by

αBI
Ω =

log2 e

Es

m−1∑

k=0

‖x̃2k‖2,

wherex̃2k are elements of the HT ofX defined by (14).
Proof: Using Lemma 1 and (15) in (50), we obtain

αBI
Ω =

log2 e

Es

m−1∑

k=0

∥
∥
∥
∥
∥

1

M

M−1∑

i=0

hi,2kxi

∥
∥
∥
∥
∥

2

=
log2 e

Es

m−1∑

k=0

‖x̃2k‖2.

It follows from Theorem 11 and (16) that

αBI
Ω ≤

log2 e

Es

M−1∑

j=0

‖x̃j‖
2 =

log2 e

MEs

M−1∑

i=0

‖xi‖
2 = log2 e (51)

for any constellation, which is in perfect agreement with (46).
We now proceed to determine the class of input alphabets and
labelings for which the bound (51) is tight.

Theorem 12 (Linear projection of a hypercube):A con-
stellationΩ = [X, L, UM ] is FOO if and only if there exists
an m × N matrix V = [vT

0 , . . . , vT
m−1]

T such that

X = Q(L)V. (52)

Proof: Consider first the NBC. Equality holds in (51) if
and only if x̃j = 0 for all j = 0, . . . , M − 1 exceptj =
1, 2, 4, . . . , 2m−1. For such input alphabets, (15) yields

xi =

m−1∑

k=0

hi,2k x̃2k .

Letting vk , x̃2k for k = 0, . . . , m − 1 and using (13), we
obtain

xi =

m−1∑

k=0

qi,kvk, i = 0, . . . , M − 1. (53)

Letting V = [vT
0 , . . . , vT

m−1]
T completes the proof forL =

Nm. That the theorem also holds for an arbitrary labeling
follows by synchronously reordering the rows ofX and L,
as explained before Theorem 11.

Theorem 12 has an appealing geometrical interpretation.
Writing the set of constellation points as in (52), each row of Q

can be interpreted as a vertex of anm-dimensional hypercube,
andV as anm×N projection matrix. Hence, a constellation
for BICM is FOO if and only if its signal set is alinear
projection of a zero-mean hypercube.This interpretation, as
well as all theorems presented so far, holds for an arbitrary
dimensionN . In the rest of this section, we will exemplify
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Figure 4. The two FOO constellations defined in Example 4 (m = 3 and
N = 2). Graphically, the OTTO constellation in (a) gives the impression of
a projected cube. The OTOTO constellation in (b) gives the impression of a
6-PSK input alphabet with two extra points located at the origin.

the results forN = 1 and2, because such input alphabets are
easily visualized (Figs. 4–5) and often used in practice (PAM,
QAM, and PSK).

Example 4 (OTTO and OTOTO constellations):To exem-
plify the concept of Theorem 12, we present two constellations
that are FOO. The projection matrices for the “one-three-
three-one” (OTTO) and the “one-two-one-two-one” (OTOTO)
constellations are defined as

VOTTO =





−1 −1
+1 0
−1 +1



 ,

VOTOTO =





−1 0
cos (π/3) sin (π/3)
cos (π/3) − sin (π/3)



 .

Both constellations are shown in Fig. 4. The figure illustrates
that the minimum Euclidean distance, which is an important
figure-of-merit at high SNR, plays no role at all when con-
stellations are optimized for low SNR.

A particular case of Theorem 12 are the nonequally spaced
(NES) M -PAM input alphabets, as specified in the following
corollary.

Corollary 13: If a NES M -PAM input alphabetX consists
of the points±v0 ± v1 ± · · · ± vm−1, there exists a binary
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Figure 5. Hierarchical 8-PAM constellation. The constellation is FOO andV = [−d0,−d1, . . . ,−dm−1]T.

labelingL such that the constellation[X, L, UM ] is FOO.
Example 5 (Hierarchical constellations): The so-called

“hierarchical constellations” [79]–[81] are defined by theone-
dimensional input alphabet [79, eq. (3)]

xi =

m−1∑

k=0

(2bk(i) − 1)dk, (54)

wherebk(i) was defined in Sec. II-A as the base-2 represen-
tation of the integeri = 0, . . . , M − 1 (b0(i) being the least
significative bit), and wheredk > 0 for k = 0, . . . , m − 1
are the distances defining the input alphabet. The additional
conditionxi < xi+1 for i = 0, . . . , M − 2 is usually imposed
so that overlapping points in the input alphabet are avoided.
This condition also keeps the labeling of the input alphabet
unchanged.

In Fig. 5, we show a hierarchical 8-PAM input alphabet. In
this figure, theM constellation points are shown with black
circles, while the white squares/triangles represent 2- and 4-
PAM input alphabets from which the 8-PAM input alphabet
can be recursively (hierarchically) constructed.

The binary labeling used in hierarchical constellations is
usually assumed to be the BRGC. In this case, we find that
whenX is given by (54), the system in (52) has no solutions
for V, and therefore, the constellation is not FOO. However,
if the NBC is used instead (as in Fig. 5), all hierarchical
constellations are FOO, becauseX = Q(Nm)V gives a
projection matrixV = [−d0,−d1, . . . ,−dm−1]

T.

B. Labelings for PAM, QAM, and PSK

While we have so far kept the labeling fixed and searched
for good input alphabets, we now take the opposite approach
and search for good labelings for a given input alphabet. In
this section we analyze the practically relevant input alphabets
PAM, QAM, and PSK defined in Sec. II-B. Throughout this
section, we assumeP = UM .

Example 6 (NBC forM -PAM): Let V =
[v0, v1, . . . , vm−1]

T = [−1,−2,−4, . . . ,−2m−1]T and
let L = Nm. With qi,k given by (13), we obtain from (52)
the constellationXPAM , [−M + 1,−M + 3, . . . , M − 1]T,
which shows that the constellation[XPAM, Nm, UM ] is FOO.
In view of Theorem 11, the optimality ofM -PAM input
alphabets comes from the fact that the HT ofXPAM has its
only nonzero elements in them positions1, 2, 4, . . . , 2m−1.

It follows from Example 6 that the constellation
[XPAM, Nm, UM ] is FOO, which has also been shown in [33].
The following theorem states that the NBC is the unique
labeling with this property, apart from trivial bit operations
that do not alter the characteristics of the labeling.

Theorem 14:The constellation[XPAM, L, UM ] is FOO if
and only if L = Nm, or any other binary labeling that can be
derived from the NBC by inverting the bits in certain positions
or by permuting the sequence of bits in all codewords.

Proof: The proof is given in Appendix C.
In order to extend this result to rectangular QAM constel-

lations, we first state a theorem about product constellations
in general.

Theorem 15:A two-dimensional constellation[X, L, UM ],
whereX = X′ ⊗X′′ is the ordered direct product of two one-
dimensional input alphabetsX′ andX′′ and all symbolsxi are
distinct, is FOO if and only if both the following items hold.

• There exist labelingsL′ and L′′ such that[X′, L′, UM ′ ]
and [X′′, L′′, UM ′′ ] are both FOO (whereM ′ and M ′′

are the sizes ofX′ andX′′, resp.).
• L = ΠC(L′ ⊗ L′′), whereΠC is an arbitrary column

permutation.

Proof: The proof is given in Appendix D.
As a special case, the theorem applies to rectangular QAM

constellations since they are defined as the ordered direct
product of two PAM input alphabets. In view of Theorem 14,
and sinceNm′ ⊗ Nm′′ = Nm′+m′′ , the following corollary
gives necessary and sufficient conditions for a rectangular
(M ′ × M ′′)-QAM constellation to be FOO.

Corollary 16: A constellation [XQAM, L, UM ], where
XQAM is an (M ′ × M ′′)-QAM input alphabet and
M = M ′M ′′ = 2m, is FOO if and only if L = Nm,
or any other binary labeling that can be derived fromNm

by inverting the bits in certain positions or by permuting the
sequence of bits in all codewords.

Can a constellation based on anM -PSK input alphabet be
FOO with a suitably chosen labeling? What about constant-
energy constellations in higher dimensions? A complete an-
swer to these questions is given by the following theorem.
An intuitive interpretation is that a constellation based on a
constant-energy input alphabet is FOO if and only if it forms
the vertices of an orthogonal parallelotope, or “hyperrectan-
gle.”

Theorem 17:A constellation[X, L, UM ], where ‖xi‖
2 is

constant for alli = 0, . . . , M − 1, is FOO if and only if
X can be written in the form (52) with orthogonal vectors
v0, . . . , vm−1.

Proof: The proof is given in Appendix E.
The case of PSK input alphabets follows straightforwardly

as a special case of Theorem 17. Indeed, the fact that a set of
m orthogonal vectors cannot exist in fewer thanm dimensions
leads to the following conceptually simple corollaries.

Corollary 18: FOO constellations based on constant-energy
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input alphabets inN dimensions cannot have more than2N

points.
Corollary 19: No FOO constellations based onM -PSK

input alphabets exist forM > 4.
Observe that the criterion in Theorem 17 is that

v0, . . . , vm−1 should be orthogonal, not necessarily orthonor-
mal. Thus, FOO constellations based on constant-energy input
alphabets are not necessarily hypercubes. In particular, a4-
PSK input alphabet does not have to be equally spaced to give
an FOO constellation. Indeed, any rotationally symmetric but
nonequally spaced 4-PSK input alphabet (i.e., a rectangular
one) gives an FOO constellation.

C. M -PAM andM -PSK Input Alphabets

In this subsection, we particularize the results in Sec. IV-B
to practically relevant BICM schemes, i.e.,M -PAM andM -
PSK input alphabets with uniform input distributions usingthe
four binary labelings defined in Sec. II-B.

Theorem 20 (CoefficientαBI
Ω for Ω = [XPAM, Lm, UM ]):

For M -PAM input alphabets usingUM , the coefficientαBI
Ω

for the binary labelings defined in Sec II-B is given by

αBI
Ω =







3M2

4(M2 − 1)
log2 e, if Lm = Gm or Lm = Fm,

log2 e, if Lm = Nm,

0, if Lm = Sm.

(55)

Proof: The proof is given in Appendix F.
Theorem 21 (CoefficientαBI

Ω for Ω = [XPSK, Lm, UM ]):
For M -PSK input alphabets usingUM , the coefficientαBI

Ω

for the binary labelings defined in Sec II-B is given by

αBI
Ω =







8 log2 e

M2 sin2 π
M

, if Lm = Gm,

4 log2 e

M2 sin2 π
M

, if Lm = Nm,

4 log2 e

M2 sin2 π
M

[

1 +
(
1 − sec 2π

M

)2
]

, if Lm = Sm,

4 log2 e

M2 sin2 π
M

[

1 +

m∑

k=2

tan2 π

2k

]

, if Lm = Fm,

(56)

wheresecx = 1/ cosx is the secant function.
Proof: The proof is given in Appendix G.

In Fig. 6, we present the pmf of the coefficientαBI
Ω obtained

via an exhaustive enumeration of the8! = 40320 different
binary labelings (without discarding trivial operations)for 8-
PAM and 8-PSK withU8. For 8-PAM, Fig. 6 (a) shows that
many binary labelings are better than the BRGC at low SNR,
the best one being the NBC as found in [33]. On the other
extreme we find the BSGC, which gives a coefficient equal to
zero, reflecting the inferior performance in Fig. 2 (b). Based
on (45), we obtain that theEb/N0 for reliable transmission at
asymptotically low rates in this case is∞, and it is independent
of M . We find that among the8! possible binary labelings,
there exist 72classesof binary labelings that have a different
αBI

Ω , and therefore, a different first-order asymptotic behavior.
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Figure 6. The pmf ofαBI

Ω
for 8-PAM (a) and 8-PSK (b) withU8. The four

labelings defined in Sec. II-B are shown with white markers.

We also note that the BICM capacity for the BRGC and the
FBC in Fig. 2 (b) are different forSNR > 0. However, their
coefficientαBI

Ω in (55) is the same, and thus, the curves for
these labelings in Fig. 2 (b) merge at low rates.

Fig. 6 (b) shows that for 8-PSK, there exist only 26 classes
of binary labelings with different coefficientsαBI

Ω . In particu-
lar, the NBC and the BSGC result in a moderate coefficient,
and the BRGC in a quite high coefficient. We found that
the FBC is the asymptotically optimal binary labeling for 8-
PSK, unique up to trivial operations, and we conjecture it
to be optimal for anyM -PSK input alphabet andm ≥ 2.
Interestingly, there are no binary labelings for 8-PSK thatgive
a coefficient zero or one, and the number of distinct pmf values
is only ten (25 for 8-PAM).

From (45) we know thatαBI
Ω determines the behavior of

the functionfBI
Ω (Rc) for asymptotically low rates. Following

the idea introduced in [30], we analyze how the values
of αBI

Ω for PAM and PSK input alphabets behave when
M → ∞. A summary of the values oflimM→∞ αBI

Ω and
limRc→0+ fBI

Ω (Rc) for M -PAM and M -PSK input alphabets
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Table I
FIRST-ORDER ASYMPTOTICS OFM -PAM AND M -PSK INPUT ALPHABETS

USING UM FOR DIFFERENT BINARY LABELINGS.

PAM PSK

Lm lim
M→∞

αBI

Ω lim
Rc→0+

fBI

Ω (Rc) lim
M→∞

αBI

Ω lim
Rc→0+

fBI

Ω (Rc)

Gm
3

4
log2 e −0.34 dB 8

π2 log2 e −0.68 dB

Nm log2 e −1.59 dB 4

π2 log2 e 2.33 dB

Sm 0 ∞ 4

π2 log2 e 2.33 dB

Fm
3

4
log2 e −0.34 dB 8.89

π2 log2 e −1.14 dB

using UM are presented in Table I, for the four labelings
previously analyzed13. For most of the constellations, there
is a bounded loss with respect to the SL whenM → ∞. For
the BRGC, this difference is 1.25 dB forM -PAM and 0.91 dB
for M -PSK. On the other hand, for the NBC andM -PAM,
the difference is zero for anyM . Note that all the coefficients
αBI

Ω in (55) and in (56) are nonincreasing functions ofM .

VI. N UMERICAL EXAMPLES

A. Turbo-coded System Simulation

In order to validate the analysis presented in the pre-
vious sections, we are interested in corroborating if the
use of the NBC instead of the BRGC for PAM input al-
phabets actually translates into a real gain when capacity-
approaching codes are used. To this end, we simulate a BICM
scheme which combines a very low rate capacity-approaching
code withM -PAM input alphabets. We use Divsalar’s rate-
1/15 turbo code, formed by a parallel concatenation of
two identical 16-state rate-1/8 recursive systematic convolu-
tional (RSC) encoders defined by their polynomial gener-
ators (1, 21/23, 25/23, 27/23, 31/23, 33/23, 35/23, 37/23)8
[82]. The two RSC encoders are separated by a randomly
generated interleaver of lengthN = 16384, and 64 tail bits
are added to terminate the trellis, giving an effective coderate
of R = 16384/(15 · 16384+64). We combine this turbo code
(via a randomly generated interleaver) with 4-PAM and 8-PAM
using NBC or BRGC, yieldingRc ≈ 0.13 bit/symbol and
Rc ≈ 0.2 bit/symbol respectively. The constellation symbols
are equally likely, the decoder is based on the Log-MAP
algorithm, and it performs 12 turbo iterations. In Fig. 7, the bit
error rate (BER) performance of such a system is presented.

We study theEb/N0 needed for the four different con-
stellations to reach a BER targetBER = 10−6. For 4-PAM,
the values for the BRGC and the NBC are, respectively,
Eb/N0 = 0.99 dB and Eb/N0 = 0.59 dB, i.e., the NBC
offers a gain of0.4 dB compared to the BRGC. For 8-PAM,
the obtained values areEb/N0 = 1.05 dB and Eb/N0 =
0.45 dB, which again demonstrate the suboptimality of the
BRGC in the low SNR regime. Moreover, we also simulated
an 8-PAM input alphabet labeled by the BSGC. We obtained in
this caseEb/N0 = 8.40 dB, i.e., a degradation of 7.95 dB is

13The limits limM→∞ αBI

Ω
for M -PSK are obtained based on

limM→∞ M2 sin2(π/M) = π2 (obtained by L’Hôpital’s rule). For the
NBC, we obtain numerically that

P

∞

k=2
tan2 (π/2k) ≈ 1.2240, which gives

the coefficient 8.89 in Table I.
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Figure 7. BER for the rate-1/15 turbo code with 4-PAM and 8-PAM for the
BRGC and the NBC (Rc ≈ 0.13 bit/symbol and Rc ≈ 0.2 bit/symbol
respectively). The metrics’ computation is based on (8), the interleaver size
is N = 16384, the decoder is based on the Log-MAP algorithm, and it
performs 12 turbo iterations. The filled circles represent the Eb/N0 needed
for the configuration to reach aBER = 10−6, which are also shown for
8-PAM in Fig. 2 (b).

caused by a bad selection of the binary labeling. The values of
Eb/N0 obtained for these last three cases are shown in Fig. 2
(b). These results show that the turbo-coded system performs
within 1 dB of capacity, and that the losses of0.6 dB and
7.95 dB can be observed from the capacity curves as well.
This indicates that the results obtained from Fig. 2 for different
labelings can be used as ana priori estimate of the system
performance when capacity-approaching codes are used.

B. Capacity vs.Eb/N0

In Fig. 8 (a), we show the functionfAW(Rc) andfCM
Ω (Rc),

defined in Sec. III-D, using 4-PAM and 8-PAM input alpha-
bets. We also showfBI

Ω (Rc) for 4-PAM and 8-PAM input
alphabets for different binary labelings and for hierarchical 4-
PAM and 8-PAM constellations (Example 5). The curves in
Fig. 8 (a) intersect the horizontal axis atEb/N0 = 1/αΩ,
where 1/αAW = 1/ log2 e = −1.59 dB represents the SL.
From this figure, we observe that for CM both constellations
are FOO, while for BICM only four of them are FOO, the
ones labeled by the NBC.

In Fig. 9 (a), similar results for 8-PSK are shown. We also
include the results for the OTTO and OTOTO constellations
in Fig. 4 (Example 4). From this figure, we observe that for
the CM capacity the 8-PSK input alphabet gives an FOO
constellation, and for BICM, the OTTO and the OTOTO
constellations are FOO. Moreover, for high SNR, the OTTO
constellation results in a higher capacity than the constellations
based on 8-PSK input alphabets.
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Figure 8. (a) AWGN capacity, CM capacity, and BICM capacities for M -
PAM with the BRGC, NBC and FBC. The BICM capacity for hierarchical
4-PAM with V = [−1,−5]T and 8-PAM with V = [−1,−2,−6]T is
also shown. The white circles give the performance atRc = 0, where
αBI

Ω
determines the BICM capacity. The BRGC and FBC are equivalent for

M = 4. (b) SNR gap∆Ω(Rc) in (57) for the same capacities and for 16-
PAM.

C. The SNR Gap

Borrowing the idea from [37], we define theSNR gapas the
horizontal difference14 between the CM and BICM capacity
and the capacity of the AWGN channel for a givenRc, i.e.,

∆CM
Ω (Rc) =

fCM
Ω (Rc)

fAW(Rc)
, ∆BI

Ω (Rc) =
fBI
Ω (Rc)

fAW(Rc)
. (57)

These expressions, which represent the additional energy
needed for a given constellation to achieve the sameRc

as the optimal scheme (the AWGN capacity), are evaluated
numerically in Figs. 8 (b) and 9 (b). In Table II, we present
a summary of the SNR gap at asymptotically low rates for
different constellations. This asymptotic SNR gap is givenby

14The gap is the same regardless of whether the horizontal axisrepresents
Eb/N0 or SNR.
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Figure 9. AWGN capacity, CM capacity, and BICM capacities for 8-PSK
with the BRGC, NBC, FBC and BSGC. The BICM capacity for the OTTO and
OTOTO constellations are also shown. The white circles givethe performance
at Rc = 0, whereαBI

Ω
determines the BICM capacity. (b) SNR gap∆Ω(Rc)

for the same capacities.

log2 e/αBI
Ω , and is a scaled special case of the results presented

in Sec. V-C.

VII. C ONCLUSIONS

In this paper, we introduced a general model for BICM
which considers arbitrary input alphabets, input distributions,
and binary labelings, and we analyzed different aspects of the
BICM capacity. Probabilistic shaping for BICM was analyzed
and the relation between the BICM capacity andEb/N0 was
studied. Four binary labelings (BRGC, NBC, BSGC, and FBC)
were analyzed in detail, and for 8-PAM with uniform input
distribution, the results showed that asEb/N0 increases, the
BICM capacity is maximized by, in turn, the NBC, the FBC,
and the BRGC.

First-order asymptotic of the BICM capacity for arbitrary
constellations were presented, which allowed us to analyze



IEEE TRANSACTIONS ON INFORMATION THEORY, to appear, 2011. 17

Table II
THE SNRGAP AT ASYMPTOTICALLY LOW RATES FORBICM AND

DIFFERENT CONSTELLATIONS.

Constellation log2 e/αBI

Ω
[dB]

4-PAM
BRGC/FBC 0.96

NBC 0

4-PAM Hierarchical 0

8-PSK

BRGC 0.69

NBC 3.69

FBC 0.32

BSGC 3.01

OTTO 0

OTOTO 0

8-PAM Hierarchical 0

8-PAM
BRGC/FBC 1.18

NBC 0

BSGC ∞

16-PAM
BRGC/FBC 1.23

NBC 0

BSGC ∞

the behavior of the BICM capacity for low rates. TheEb/N0

required for reliable transmission at asymptotically low rates
was found to take values between the SL−1.59 dB and
infinity. The asymptotic analysis was used to compare binary
labelings for PAM and PSK input alphabets, as well as to pre-
dict the actual system performance at low rates when capacity-
approaching codes are used. The asymptotically best labelings
for M -PAM and M -PSK with uniform input distributions
appear to be the NBC and FBC, respectively.

Using the first-order asymptotic of the BICM capacity,
we analyzed the problem of FOO constellations for BICM.
We showed that, under some mild conditions, the fading
does not change the analysis of FOO constellations made for
the AWGN channel. Interpreting the codewords of a binary
labeling as the vertices of a hypercube, a constellation for
BICM with uniform input distributions is FOO if and only if
the input alphabet forms a linear projection of this hypercube.
Important special cases of this result are that constellations
based on equally spacedM -PAM and M -QAM input al-
phabets are FOO if and only if the NBC is used. Another
particular case are the hierarchical (nonequally spaced)M -
PAM input alphabets labeled by the NBC. We also showed
that constellations based on constant-energyM -PSK input
alphabets can never be FOO ifM > 4, regardless of the
binary labeling.

In this paper, we focused on asymptotically low rates, and
we answered the question about FOO constellations for this
case. The analysis of second-order optimal constellationsfor
BICM, and the dual problem for asymptotically high rates, or
more generally, for any rate, is still an open research problem.

APPENDIX A
PROOF OFTHEOREM 7

In [83, Theorem 3], the modelY = H̃X+Z is considered,
where H̃ is a matrix. This theorem states that the AMI
betweenX and Y when H̃ is known at the receiver can
be expressed as

IX(X; Y ) =
log2 e

N0
trace

(

E
H̃

[H̃ cov (X) H̃
T
]
)

+O(N−2
0 )

(58)

whenN0 → ∞, if the two following conditions are fulfilled:

• There exist finite constantsc > 0 and d > 0 such that
EX [‖X‖4+d] < c.

• There exists a constantν > 0 such that the matrixH̃
satisfiesPr{‖H̃‖ > δ} ≤ exp(−δν) for all sufficiently
largeδ > 0.

Since we consider real-valued vectors only, we have re-
placed the Hermitian conjugates in [83] by transpositions in
(58). Moreover, [83, Theorem 3] requiresZ, X, andH̃X to
be “proper complex”. Nevertheless, the results are still valid if
the two conditions in the items above are fulfilled, as explained
in [83, Remark 6].

The first condition is fulfilled sincex0, . . . , xM−1 are
all finite, and therefore,EX [‖X‖d] < ∞ for all d > 0.
The second condition is fulfilled becausẽH = diag (H)
and because of the condition (5) imposed onH. More-
over, sinceH̃ = diag (H) and H contains i.i.d. elements,

E
H̃

[H̃ cov (X) H̃
T
] = EH [H2] cov (X). The use of the

identity trace (cov (X)) = EX [‖X‖2] − ‖EX [X ]‖2, the
definition of Es, and the relationSNR = EH [H2](Es/N0)
in (58), gives (47).

APPENDIX B
PROOF OFTHEOREM 10

Expanding the inner sum in (48), we obtain

∑

u∈{0,1}

PCk
(u)‖EX|Ck=u[X ]‖2

= PCk
(0)

∥
∥
∥
∥

∑

i∈Ik,0

xiPX|Ck=0(xi)

∥
∥
∥
∥

2

+ PCk
(1)

∥
∥
∥
∥

∑

i∈Ik,1

xiPX|Ck=1(xi)

∥
∥
∥
∥

2

.
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Using the identity‖a‖2 + ‖b‖2 = ‖a − b‖2/2 + ‖a + b‖2/2
and (31), we obtain

∑

u∈{0,1}

PCk
(u)‖EX|Ck=u[X]‖2

=
1

2

∥
∥
∥
∥

√

PCk
(0)

∑

i∈Ik,0

xiPX|Ck=0(xi)

−
√

PCk
(1)

∑

i∈Ik,1

xiPX|Ck=1(xi)

∥
∥
∥
∥

2

+
1

2

∥
∥
∥
∥

√

PCk
(0)

∑

i∈Ik,0

xiPX|Ck=0(xi)

+
√

PCk
(1)

∑

i∈Ik,1

xiPX|Ck=1(xi)

∥
∥
∥
∥

2

=
1

2

∥
∥
∥
∥

1
√

PCk
(0)

∑

i∈Ik,0

xiPX(xi)

−
1

√

PCk
(1)

∑

i∈Ik,1

xiPX(xi)

∥
∥
∥
∥

2

+
1

2

∥
∥
∥
∥

1
√

PCk
(0)

∑

i∈Ik,0

xiPX(xi)

+
1

√

PCk
(1)

∑

i∈Ik,1

xiPX(xi)

∥
∥
∥
∥

2

.

In this expression, based on the definition ofqi,k in (2), we
recognize the first term as the first term inside the outer sum
in (49), and the second term as the second term inside the
outer sum in (49). This used in (48) completes the proof.

APPENDIX C
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Consider any FOO constellation[XPAM, L, UM ], where the
binary labeling is defined byqi,k for k = 0, . . . , m − 1 and
i = 0, . . . , M − 1. From Theorem 12, there exist real values
vk for k = 0, . . . , m − 1 such that

xi =

m−1∑

k=0

qi,kvk (59)

for i = 0, . . . , M −1. We wish to find all combinations ofqi,k

andvk that satisfy (59).
We start by giving two properties of the column vectorV =

[v0, v1, . . . , vm−1]
T that will be used later in the proof.

• Since all pairwise differencesxi − xj =
∑m−1

k=0 (qi,k −
qj,k)vk are even numbers, and sinceqi,k−qj,k ∈ {0,±2},
we conclude thatV ∈ Z

m.
• Because of (59), the sum±v0 ± v1 ± · · · ± vm−1, with

all combinations of signs, generates all the elements in
XPAM. SinceXPAM is formed byM distinct elements,
±v0±v1±· · ·±vm−1 must yieldM different values, and
therefore,|vk| for k = 0, . . . , m− 1 must all be distinct.

Consider a given bit positionl ∈ {0, . . . , m−1} and define,
for i = 0, . . . , M − 1,

si , xi mod 2vl

=

m−1∑

k=0
k 6=l

qi,kvk ± vl mod 2vl

=
m−1∑

k=0
k 6=l

qi,kvk + vl mod 2vl, (60)

where in the last step we have used the identity(a ± b)
mod 2b = (a + b) mod 2b. Becausexi is an odd integer,
si ∈ {1, 3, . . . , 2vl−1} for all i. We will now study the vector
S = [s0, s1, . . . , sM−1]

T and in particular count how many
times each odd integer occurs in this vector. We will do this
in two ways, in order to determine which valuesvl can take
on.

• It follows from (60) thatsi is independent ofqi,l for all
i. Thus, if two codewordsci andcj differ only in bit l,
thensi = sj. This proves that each value1, 3, . . . , 2vl−1
occurs an even number of times inS.

• BecauseX is a vector of odd integers in increasing order
andS consists of the same elements counted modulo2vl,
S consists of identical segments[1, 3, . . . , 2vl − 1]T of
lengthvl. If vl dividesM , thenS contains a whole num-
ber of such segments and each value in{1, 3, . . . , 2vl−1}
occurs exactlyM/vl times inS. If on the other handvl

does not divideM , then the first and the last segment are
truncated. In this case,S includes some values⌊M/vl⌋
times and other values⌊M/vl⌋ + 1 times, where⌊·⌋
denotes the integer part.

Since either⌊M/vl⌋ or ⌊M/vl⌋+ 1 is odd, and each value
must occur inS an even number of times, we conclude from
these two properties thatvl must divideM . Furthermore, the
number of occurrencesM/vl must be even, sovl must divide
M/2.

In conclusion,v0, . . . , vm−1 must all divideM/2, and their
absolute values must be all distinct. SinceM/2 has onlym
divisors, which are1, 2, 4, . . . , 2m−1, they must all appear in
V, but they can do so in any order and with any sign. If
V = [−1,−2,−4, . . . ,−2m−1]T, then (59) is fulfilled by the
NBC Nm (see Example 6). Negatingvk for anyk corresponds
to inverting bitk of the NBC, whereas reordering the rows of
V corresponds to permuting columns inNm.

APPENDIX D
PROOF OFTHEOREM 15

Let M ′ = 2m′

, M ′′ = 2m′′

, and M = 2m = 2m′+m′′

.
To prove the “if” part, we assume that there exist two FOO
constellations[X′, L′, UM ′ ] and [X′′, L′′, UM ′′ ]. Then, from
Theorem 12,

x′
i =

m′−1∑

k=0

q′i,kv′k, i = 0, . . . , M ′ − 1, (61)

x′′
i =

m′′−1∑

k=0

q′′i,kv′′k , i = 0, . . . , M ′′ − 1. (62)
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We analyze the two-dimensional constellationΩ constructed as
Ω = [X, L, UM ] = [X′⊗X′′, L′⊗L′′, UM ′M ′′ ]. It follows from
the definition of the operator⊗ that for all l = 0, . . . , M ′−1,
j = 0, . . . , M ′′ − 1, andk = 0, . . . , m − 1,

xM ′′l+j = [x′
l, x

′′
j ],

qM ′′l+j,k =

{

q′l,k, k = 0, . . . , m′ − 1,

q′′j,k−m′ , k = m′, . . . , m − 1.

We will now show thatΩ is FOO by explicitly constructing
a matrixV that satisfies Theorem 12. To this end, we define
the vectors

vk =

{

[v′k, 0], k = 0, . . . , m′ − 1,

[0, v′′k−m′ ], k = m′, . . . , m − 1,

with v′k and v′′k that satisfy (61)–(62). The vectorsvk con-
structed in this manner have the property that for alll =
0, . . . , M ′ − 1 andj = 0, . . . , M ′′ − 1,

m−1∑

k=0

qM ′′l+j,kvk

=
m′−1∑

k=0

qM ′′l+j,kvk +
m′′−1∑

k=0

qM ′′l+j,k+m′vk+m′

=

m′−1∑

k=0

q′l,k[v′k, 0] +

m′′−1∑

k=0

q′′j,k[0, v′′k ]

=





m′−1∑

k=0

q′l,kv′k,

m′′−1∑

k=0

q′′j,kv′′k





= [x′
l, x

′′
j ]

= xM ′′l+j .

SubstitutingM ′′l + j = i yields (53), which shows that
Ω is FOO. Finally, to show that the constellation[X′ ⊗
X′′, ΠC(L′ ⊗L′′), UM ′M ′′ ] is also FOO, it suffices to observe
that synchronously permuting the columns ofQ(L) and VT

does not change the right-hand side of (52), which completes
the proof of the “if” part15.

For the “only if” part, consider any two-dimensional FOO
constellation[X, L, UM ]. By Theorem 12, the elements ofX

fulfill (53), which can be decomposed into scalar equalitiesas

xi,u =

m−1∑

k=0

qi,kvk,u, i = 0, . . . , M − 1, u = 0, 1, (63)

where xi = [xi,0, xi,1] for i = 0, . . . , M − 1 and vk =
[vk,0, vk,1] for k = 0, . . . , m − 1. We will use this decom-
position to characterize the points with the largest coordinate
value in one of the dimensions. Becauseqi,k ∈ {−1, 1}, xi,u

takes values in the set±v0,u ± · · · ± vm−1,u. The largest of
these values is

x̂u , max
i=0,...,M−1

xi,u = |v0,u| + · · · + |vm−1,u|.

If vk,u 6= 0 for all k = 0, . . . , m − 1, then the symbolxi for
which xi,u = x̂u is unique. If vk,u = 0 for one value ofk,

15An intuitive explanation for this is that reordering the bits of all codewords
does not change the constellation’s performance.

thenxi,u = x̂u for two values ofi, and so on. Generalizing,
there exist2a symbols for whichxi,u = x̂u if and only if there
area zeros amongv0,u, . . . , vm−1,u. Analogous relations hold
for the minimum ofxi,u.

For the special case whenX is obtained from two one-
dimensional input alphabetsX′ and X′′ as X = X′ ⊗ X′′,
the two-dimensional symbols arexM ′′l+j = [x′

l, x
′′
j ] for

l = 0, . . . , M ′ − 1 and j = 0, . . . , M ′′ − 1. We will prove
that there exist labelingsL′ and L′′ such that[X′, L′, UM ′ ]
and [X′′, L′′, UM ′′ ] are both FOO, and we will identify the
set of all such labelings. We do this by analyzingvk,u for
u = 0 and 1 separately, beginning withu = 0. There areM ′′

symbolsxi having xi,0 = x′
l for each l = 0, . . . , M ′ − 1.

This holds in particular forx′
l = x̂0. From the result in

the previous paragraph, there are thereforem′′ zeros among
v0,0, . . . , vm−1,0. We will first consider the special case when
the zeros arevm′,0, . . . , vm−1,0, i.e., when

[v0,0, . . . , vm′−1,0, vm′,0, . . . , vm−1,0]

= [v0,0, . . . vm′−1,0
︸ ︷︷ ︸

m′ nonzero elements

, 0, . . . , 0
︸ ︷︷ ︸

m′′ zeros

], (64)

and will later generalize the obtained results to an arbitrary
location of them′′ zeros.

Assuming that (64) holds,x′
l can, for alll = 0, . . . , M ′−1,

be written as

x′
l = xM ′′l+j,0

=

m−1∑

k=0

qM ′′l+j,kvk,0

=

m′−1∑

k=0

qM ′′l+j,kvk,0, (65)

where the second line follows from (63) and the third from
(64). The relation holds for allj = 0, . . . , M ′′ − 1.

We will now conclude from (65) that

qM ′′l+j,k = qM ′′l,k, l = 0, . . . , M ′ − 1,

j = 0, . . . , M ′′ − 1, k = 0, . . . , m′ − 1. (66)

This can be seen as follows. The sequence
qM ′′l+j,0, . . . , qM ′′l+j,m′−1 can take on2m′

= M ′ different
values, because each element is±1. For given values of
vk,0, these sequences all yield different values ofx′

l in
(65), because these values are, by assumption, all distinct.
Thus the sequenceqM ′′l+j,0, . . . , qM ′′l+j,m′−1 is uniquely
determined by x′

l and v0,0, . . . , vm′−1,0. Since both x′
l

and vk,0 are independent ofj, so is qM ′′l+j,k. Therefore
qM ′′l+j,k = qM ′′l,k.

From this conclusion, (65) simplifies into

x′
l =

m′−1∑

k=0

qM ′′l,kvk,0, l = 0, . . . , M ′ − 1,

which is a one-dimensional version of (53). It is satisfied only
if [X′, L′, UM ′ ] is FOO, where the elementsq′l,k of Q(L′) are

q′l,k = qM ′′l,k, l = 0, . . . , M ′ − 1, k = 0, . . . , m′ − 1.
(67)
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A similar analysis foru = 1 shows that[X′′, L′′, UM ′′ ] is
also FOO and, furthermore, yields analogous expressions to
(66) and (67) as

qM ′′l+j,k = qj,k, l = 0, . . . , M ′ − 1, j = 0, . . . , M ′′ − 1,

k = m′, . . . , m − 1, (68)

q′′j,k = qj,k+m′ , j = 0, . . . , M ′′ − 1, k = 0, . . . , m′′ − 1,
(69)

whereq′′j,k are the elements ofQ(L′′).
Together, (66), (67), (68), and (69) show that forl =

0, . . . , M ′ − 1 andj = 0, . . . , M ′′ − 1,

qM ′′l+j,k =

{

q′l,k, k = 0, . . . , m′ − 1,

q′′j,k−m′ , k = m′, . . . , m − 1,

or, equivalently, thatQ(L) = Q(L′)⊗Q(L′′). To convert this
relation into a relation between (unmodified) labeling matrices
L, L′, andL′′, we can apply (2) to conclude thatL is a column-
permuted version ofL′ ⊗ L′′.

To complete the proof, we need to consider the case when
the m′′ zeros amongv0,0, . . . , vm−1,0 are not the lastm′′

elements as in (64). To this end, we apply an arbitrary row
permutation to theV matrix, whose first column is given by
(64). Permuting them rows of V means permuting them
elements of (64), which in turn means that them′′ zeros are
shifted into arbitrary locations. Furthermore, as was observed
in the first part of this proof, a row permutation ofV
corresponds to a column permutation ofQ(L), or, equivalently,
a column permutation ofL. We can therefore conclude that
regardless of where them′′ zeros are located, the labelingL
must be a column-permuted version ofL′ ⊗ L′′.

APPENDIX E
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If v0, . . . , vm−1 are orthogonal, thenvkvT
l = 0 for k 6= l.

The symbol energies‖xi‖
2, for i = 0, . . . , M − 1, can be

calculated from (53) as

‖xi‖
2 =

m−1∑

k=0

m−1∑

l=0

qi,kqi,lvkvT
l

=

m−1∑

k=0

q2
i,k‖vk‖

2

=
m−1∑

k=0

‖vk‖
2,

which is independent ofi. This completes the “if” part of the
theorem.

For the “only if” part, we make use of the identity

8bcT = ‖a + b + c‖2 − ‖a + b − c‖2

− ‖a − b + c‖2 + ‖a − b − c‖2, (70)

which holds for any vectorsa, b, andc. Let X be any FOO
constant-energy input alphabet and letk and l be any pair of
distinct integers0 ≤ k, l ≤ m − 1. Define

a ,

m−1∑

j=0
j /∈{k,l}

vj ,

b , vk, andc , vl. From (53), the four vectorsa ± b ± c

all belong toX. Thus, all four have the same energy and the
right-hand side of (70) is zero. ThusvkvT

l = bcT = 0. This
holds for all pairs of distinctk and l, which completes the
proof.

APPENDIX F
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For P = UM , the average symbol energy is given by
Es = (M2 − 1)/3, and that the constellation is zero mean,
i.e., EX [X ]2 = 0. Therefore, the coefficientαBI

Ω in (48) is

αBI
Ω =

log2 e

Es

m−1∑

k=0

∑

u∈{0,1}

1

2
EX|Ck=u[X ]2. (71)

For the BRGC,EX|Ck=u[X ] = 0 for k = 1, . . . , m−1 and
u ∈ {0, 1}. For k = 0 we find that

EX|C0=u[X ]2 =




∑

i∈I0,u

2

M
xi





2

=
M2

4
,

which used in (71) gives the desired result.
For the NBC, we note that

EX|Ck=u[X ]2 =
(
(−1)u+12m−k−1

)2
=

M2

4

(
1

2

)2k

.

Using the fact that

m−1∑

k=0

(
1

2

)2k

=
4

3

(

1 −
1

M2

)

,

the resultαBI
Ω = log2 e is obtained.16

That αBI
Ω = 0 if Lm = Sm follows trivially because of

the construction of the BSGC, i.e.,EX|Ck=u[X ] = 0 for k =
0, . . . , m − 1 andu ∈ {0, 1}.

For the FBC, finally, its symmetry results in the same
condition as for the BRGC, i.e.,EX|Ck=u[X ] = 0 for
k = 1, . . . , m − 1 andu ∈ {0, 1}. Moreover, since fork = 0
the BRGC and the FBC are the same, the coefficientαBI

Ω is
also the same.

APPENDIX G
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For PSK and any k, PCk
(0)EX|Ck=0[X] +

PCk
(1)EX|Ck=1[X] = EX [X] = 0. Furthermore,

since PCk
(0) = PCk

(1) = 1/2, ‖EX|Ck=0[X]‖2 =
‖EX|Ck=1[X]‖2. From these equalities, (48) reduces to

αBI
Ω = log2 e

m−1∑

k=0

‖EX|Ck=0[X]‖2 =
4 log2 e

M2

m−1∑

k=0

∥
∥
∥
∥

∑

i∈Ik,0

xi

∥
∥
∥
∥

2

.

(72)

16A similar argument for the proof of the NBC has been used in [33].
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A. Proof for the BRGC

Because of the symmetry of PSK input alphabets and the
BRGC, ‖

∑

i∈Ik,0
xi‖

2 in (72) is zero fork = 2, . . . , m −

1. Moreover, by symmetry,‖
∑

i∈I0,0
xi‖

2 = ‖
∑

i∈I1,0
xi‖

2.
SinceI0,0 = {0, . . . , M/2−1}, the coefficient in (72) is given
by

αBI
Ω =

8 log2 e

M2

∥
∥
∥
∥

M/2−1
∑

i=0

xi

∥
∥
∥
∥

2

=
8 log2 e

M2

[(
M/2−1
∑

i=0

cos
(2i + 1)π

M

)2

+

(
M/2−1
∑

i=0

sin
(2i + 1)π

M

)2]

. (73)

Using [84, eq. (1.341.3)] we find that the first sum in (73)
is zero, and from [84, eq. (1.341.1)] the second sum in (73)
is equal to1/ sin(π/M). This completes the first part of the
proof.

B. Proof for the NBC

For the NBC,
∥
∥
∑

i∈Ik,0
xi

∥
∥

2
in (72) is zero for k =

1, . . . , m−1. Moreover, since the first column ofNm is always
equal to the first column ofGm, it is clear that the coefficient
for the NBC is half of the one for the BRGC.

C. Proof for the BSGC

By construction,Sm = Gm for all the columns except the
first one, and therefore, only two bit positions contribute in
the outer sum in (72), i.e.,k = 0 andk = 1. From the proof
for the BRGC, the contribution fork = 1 is known to be

∥
∥
∥
∥

∑

i∈I1,0

xi

∥
∥
∥
∥

2

=
1

sin2(π/M)
. (74)

For k = 0, we need the index set (cf. Example 1)

I0,0 = {0, 4, . . . , M/2 − 4} ∪ {3, 7, . . . , M/2 − 1}

∪ {M/2 + 1, M/2 + 5, . . . , M − 3}

∪ {M/2 + 2, M/2 + 6, . . . , M − 2}

=

M/8−1
⋃

k=0

{4k, M/2− 1 − 4k, M/2 + 1 + 4k, M − 2 − 4k}.

(75)

This partitioning ofI0,0 into four subsets will now be used to
calculate

∥
∥
∥
∥

∑

i∈I0,0

xi

∥
∥
∥
∥

2

=

(
∑

i∈I0,0

cos
(2i + 1)π

M

)2

+

(
∑

i∈I0,0

sin
(2i + 1)π

M

)2

. (76)

We split the sum overI0,0 in the second term of (76) into
four sums, one for each subset in (75), which yields
∑

i∈I0,0

sin
(2i + 1)π

M

=

M/8−1
∑

k=0

(

sin
(1 + 8k)π

M
+ sin

(M − 1 − 8k)π

M

+ sin
(M + 3 + 8k)π

M
+ sin

(2M − 3 − 8k)π

M

)

=

M/8−1
∑

k=0

(

2 sin
(1 + 8k)π

M
− 2 sin

(3 + 8k)π

M

)

. (77)

Applying [84, eq. (1.341.3)] twice yields
∑

i∈I0,0

sin
(2i + 1)π

M
=

(

2 cos
3π

M
− 2 cos

π

M

)

csc
4π

M

= −2 sin
π

M
sec

2π

M
, (78)

wherecscx = 1/ sinx is the cosecant function andsecx =
1/ sinx is the secant.

Expanding the first term of (76) by the same method as in
(77) reveals that this term is zero. Now the result follows from
(72), (74), (76), and (78).

D. Proof for the FBC

By construction, the first bit of the FBC is the same
as for the BRGC and the other bits are symmetric around
M/2. Therefore, the components in the second dimension of
‖
∑

i∈Ik,0
xi‖

2 are zero fork = 1, . . . , M − 1 and (72) can
be expressed as

αBI
Ω =

4 log2 e

M2




1

sin2(π/M)
+

m−1∑

k=1

(
∑

i∈Ik,0

cos
(2i + 1)π

M

)2




=
4 log2 e

M2




1

sin2(π/M)
+ 4

m−1∑

k=1

(
∑

i∈IU
k,0

cos
(2i + 1)π

M

)2


 ,

(79)

whereIU
k,0 , {i ∈ Ik,0 : i < M/2}.

The indexesIU
k,0 of the FBC for k = 1, . . . , m − 1 are

obtained as the indexes of the NBC of orderm − 1. For
example, forM = 32, we obtainIU

1,0 = {0, 1, 2, 3, 4, 5, 6, 7},
IU

2,0 = {0, 1, 2, 3, 8, 9, 10, 11}, IU
3,0 = {0, 1, 4, 5, 8, 9, 12, 13},

andIU
4,0 = {0, 2, 4, 6, 8, 10, 12, 14}. This regularity results in

a simplified expression of the inner sum in (79), i.e.,
∑

i∈IU
k,0

cos
(2i + 1)π

M

=
2k−1−1∑

j=0

2m−k−1−1∑

l=0

cos
( π

M
[2m−k+1j + 2l + 1]

)

(80)

=
tan(π/2k+1)

2 sin(π/M)
, (81)

where the final result was obtained by using [84, eq. (1.341.3)]
twice in (80), after some algebraic manipulation. Using (81)
in (79) gives the desired result.
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