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Signal Statistics in Fiber-Optical Channels with
Polarization Multiplexing and Self-Phase

Modulation
Lotfollah Beygi, Erik Agrell, Magnus Karlsson, and Pontus Johannisson

Abstract—In this paper, the statistics of received signals in a
single-channel dispersion-managed dual-polarization fiber-optical
channel are derived in the limit of low dispersion. The joint
probability density function (pdf) of the received amplitudes
and phases of such a system is derived for both lumped and
distributed amplification. The new pdf expressions are usedto
numerically evaluate the performance of modulation formats over
channels with nonlinear phase noise. For example, a sensitivity
gain of up to 2 dB is calculated for a specific system using
polarization-multiplexed 8-ary phase shift keying compared with
a similar single-polarization system at the same spectral efficiency
and a symbol error rate of 5× 10−4. Moreover, the accuracy of
the derived pdf is evaluated for some single-channel dispersion-
managed fiber-optical links with different dispersion-maps using
the split-step Fourier transform method.

I. I NTRODUCTION

T HE high demand for increasing the data rate of fiber-
optical channels imposes utilizing all resources in these

channels. Recently, extensive efforts see, e.g., [1]–[4] have
been devoted to utilizing both polarizations of an optical
signal in a fiber channel to convey information. The dual
polarization (DP) scheme makes it possible to exploit all
degrees of freedom in a fiber-optical channel to boost the data
rate [5], [6]. A DP signal can be modeled in a four-dimensional
(4D) signal space [7], [8], which yields a more power-efficient
scheme for a fixed spectral efficiency by exploiting dense
sphere packing constellations.

In a long-haul dispersion-managed (DM) fiber-optical chan-
nel, the nonlinear phase noise (NLPN) [9, ch. 4] is a major
impairment for phase-modulated signals. NLPN is generated
by the interaction of a signal and amplified spontaneous
emission (ASE) noise from the optical amplifiers, due to
the nonlinear Kerr effect. Gordon and Mollenauer [10] first
showed this phenomenon in a fiber link with many spans, in
which optical amplifiers are used to periodically compensate
for fiber loss. This effect is known as self-phase modulation
and causes a major degradation in the performance of coherent
single-channel data transmission systems.

Bononi et al. [11] studied the resilience of on-off keying
(OOK), incoherent differential binary and quadrature phase-
shift keying (D(Q)PSK), and DSP-based coherent polarization
multiplexed QPSK (PDM-QPSK) to NLPN in a DM fiber
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link. They provided a quantitative understanding of the system
parameters for which NLPN sets the nonlinear performance of
these modulation formats.

The characteristic function (i.e., the Fourier transform of
pdf) of NLPN for a single-polarization (SP) system has been
studied analytically in [12]–[15] by taking into account the
correlation of the NLPN and the intensity of the received
signal. Moreover, the statistics of NLPN have been evaluated
experimentally in [16]. It was shown in [13], [14], [17] that
the NLPN distribution cannot be approximated by a Gaussian
distribution.

In [18], a technique based on Gauss–Hermite basis functions
was used to calculate the variance of phase noise in a coherent
system based on phase shift keying (PSK). A comprehensive
methodology and computational techniques for the analysis
and characterization of NLPN phenomena and their impact
on system performance have been presented in [19], based on
a linear perturbation/noise theory.

In order to evaluate the performance of a phase-modulated
signal, knowledge of the probability density function (pdf)
of the received phase, consisting of both NLPN and linear
phase, is necessary. Due to the dependence between NLPN
and the phase of amplifier noise, the joint pdf of these two
terms should be computed. Mecozzi derived this joint pdf
for distributed amplification in [12], [17] and Ho [20, ch. 5]
developed this joint pdf for both distributed and lumped
amplifications. The exact performance of PSK systems is
computed exploiting this joint pdf in [20, ch. 6].

The joint pdf of the received amplitude and phase given the
initial phase of the transmitted signal and the signal-to-noise
ratio (SNR) was derived in [20, ch. 5] for a fiber channel
with NLPN caused by distributed or lumped amplification.
This joint pdf was used to evaluate the performance of a
quadrature amplitude modulated (QAM) signal in a fiber-
optical channel with NLPN. Although the statistics of the
received signal provide a possibility of designing a maximum-
likelihood (ML) receiver for QAM signals, the analytical
computation of the exact performance of these systems is still
cumbersome. Moreover, the compensation of the NLPN has
been studied in [21], [22] based on the the aforementioned
pdf.

In this paper, we extend the statistics of the SP system to the
DP scheme for a fiber-optic channel with low dispersion. The
joint pdf of the received amplitudes and phases of the orthog-
onal polarizations, denoted by x and y, is derived analytically.
These statistics are introduced for both types of amplification,
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i.e., lumped and distributed. The derived statistics provide
the possibility of comparing the performance of SP and DP
systems for different system configurations. Some numerical
results are given for the symbol error rate (SER) of the DP
system with an 8-ary phase shift keying (8-PSK) signal set
in each polarization. According to these numerical results, the
DP scheme is superior to SP for a fixed spectral efficiency.

To verify the accuracy of the exploited fiber-optic model
with low dispersion (see section II), a general model of a
DM fiber-optic link, consisting of a number of spans with
optical amplifiers, single-mode fiber (SMF), and dispersion-
compensation fibers (DCF) is considered. For a DM link, the
pdf of the received signal will converge to a Gaussian-like
pdf at high-enough symbol rates [11], [15]. Therefore, the
derived pdf is a good approximation at low symbol rates for
a DM fiber-optical link. The numerical results reveal that the
exploited fiber-optic model with low dispersion [20, p. 154],
[10], [17], [21], [22] is not sufficiently accurate for increased
symbol rates in a DM fiber-optical link due to the high group
velocity dispersion.

This paper is organized as follows. In section II, we describe
the system model for a DP fiber-optic channel with low
dispersion. The derivation of statistics of this channel for
NLPN alone is described in section III. The joint pdf of the
received amplitudes and phases of the received signal for a DP
signal is performed in section IV. We exemplify the use of the
derived pdf in the SER evaluation of a particular systems with
8-PSK modulation in section V for a fiber-optic link with low
dispersion and then by using a general model based on the
split-step Fourier (SSFM) method [9, ch. 2], the accuracy of
the simplified model is studied for some DM links. Finally,
section VI concludes the paper.

II. SYSTEM MODEL

We neglect the effect of chromatic dispersion in this paper,
which makes this analysis applicable to fiber-optic systems
with low dispersion, similarly as, e.g., [10], [17], [21], [22].
However, we will evaluate the effect of chromatic dispersion
on the validity of this model for a DM fiber-optical link by
exploiting some numerical simulations with the SSFM.

A. Fiber-optic channel with low dispersion

For a zero polarization-mode and chromatic dispersion fiber-
optical channel, the nonlinear Schrödinger equation which
describes the light propagation in an optical fiber is [9, ch.
6]

j
∂E

∂z
+ γ(EE

†)E+ j
α

2
E = 0, (1)

whereE = (Ex, Ey) is the dual polarized launched envelope
signal into the fiber channel,γ is the fiber nonlinear coefficient,
α is the attenuation coefficient of the fiber,† denotes Hermitian
conjugation, andz is the distance from the beginning of the
fiber. The solution to (1) at timet can be written as

E(z, t) = E(0, t)q(z) exp

(

jγP0(t)

∫ z

0

q2(τ)dτ

)

, (2)

whereP0(t) = |Ex(0, t)|2 + |Ey(0, t)|2 is the instantaneous
launched power into the fiber andq(z) = exp(−αz/2) is a
function that describes the power evolution.

Here, we assume a fiber link with total lengthL, N spans
with lumped amplifiers, where the fiber loss is compensated
perfectly. Each amplifier adds complex circularly symmetric
Gaussian ASE noisenk

x and nk
y , k = 1, . . . , N in the

polarization x and y, respectively with varianceσ2
0 . Moreover,

we consider the noise within the optical signal bandwidth, i.e.,
ignoring the Kerr effect induced from out-of-band signal and
noise in a same way as [10].

If a 4D signalS = (Sx, Sy), consisting of two-dimensional
(2D) components from a signal setM, is transmitted on the
two orthogonal polarizations, x and y, of a fiber channel, it is
readily seen that each fiber span according to (2) contributes
the overall NLPN [10]ϕ = γPkLeff to the transmitted signal,
where

Leff =

∫ L/N

0

q2(z)dz =
1

α

[

1− exp

(

−αL

N

)]

is the effective nonlinear length of each span andPk = |Sx +
∑k

i=1 n
i
x|2 + |Sy +

∑k
i=1 n

i
y|2 is the input power of thekth

fiber span. The transmitted 4D signal experiences the total
NLPN of φn = φx + φy

1. The termsφx andφy are generated
by interaction of the signal and noise due to Kerr effect in
the polarizations x and y, respectively. This reveals the fact
that signals in both polarizations contribute to the generated
NLPN φn. Due to symmetry, we show the derivations for the
polarization x only, while one may easily find the results for
the other polarization by replacing x with y.

φx = γLeff

N
∑

i=1

∣

∣

∣Sx +

i
∑

k=1

nk
x

∣

∣

∣

2

, (3)

The received electric fieldE can be written2

E = Êe−jφn , (4)

whereÊ = S+
∑N

k=1 n
k is the linear part of the electric field

and n
k = (nk

x , n
k
y ). One may consider the distributed am-

plification as a discrete lumped amplification with an infinite
number of spans. This giveslimN→∞ NLeff = L. In this case,
a continuous amplifier noise vectorn(z) = (nx(z), ny(z))
is considered with elements as zero-mean complex-valued
Wiener processes with autocorrelation function [20, p. 154]

E[nx(z1)n
∗
x (z2)]= σ2

dmin(z1, z2),

where σ2
d = Nσ2

0/L. The NLPN can be computed for
distributed amplification by

φn =
γNLeff

L

∫ L

0

‖S+ n(z)‖2dz. (5)

1Here, we have used equation (6.2.5) of [9] withB = 1 based on the
Manakov model [23].

2By definition, E = E(L, t) is a time dependent electric field, not a
vector representation of the projected received electric field in a signal space.
We nevertheless use (4) to model the discrete-time system, whereE is a
complex signal vector. This is a standard approximation in the field and has
been shown numerically [24], [25] to be reasonably accurate, although the
theoretical justification is insufficient.
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×N

DCFSMF
EDFA

Fig. 1. A dispersion-managed fiber-optical link with N spans. Each span
consists of an SMF, a DCF, and an EDFA.

The ASE noisenx(L) and ny(L) generated by in-line am-
plifiers in polarization x and y, respectively and accumulated
at the receiver have the varianceLσ2

d = 2hνoptWLαnsp

[21], where hνopt is the energy of a photon,nsp is the
spontaneous emission factor, andW is the bandwidth of the
optical signal. The SNR vector is defined asρ = (ρx, ρy)
where ρx is |Sx|2/(Lσ2

d) or |Sx|2/(Nσ2
0) for distributed or

lumped amplification, respectively.

B. Dispersion-managed fiber-optical channel

We consider a general DM fiber link withN spans in
which an SMF and a DCF is used according to a dispersion
map (see Table I). The dispersion of each span is fully
compensated by a DCF fiber and neither pre-compensation nor
post compensation is used. An erbium doped fiber amplifier
(EDFA) compensates for the fiber loss in each span. The SSFM
is used to simulate a DM fiber-optical link shown in Fig. 1.
The following channel parameters are used for the numeri-
cal simulations: the nonlinear coefficientsγSMF = 1.4 and
γDCF = 5.2 W−1km−1, the optical frequencyνopt = 193.55
THz, the attenuation coefficientsαSMF = 0.25 andαDCF = 0.6
dB/km, the dispersion coefficientDDCF = −120 ps/nm/km,
and the fiber lengthsLSMF = 80 km. The rest of the parameters
are given in Table I for the numerical simulations (see section
V).

III. N ONLINEAR PHASE NOISE

In this section, we extend the results of [20, ch. 5] to DP
signals. Due to the difficulty of computing the pdf ofφn di-
rectly, we first compute the characteristic function. Sincenx(z)
andny(z) are independent,φx and φy are also independent.
Therefore, the pdf ofφn can be obtained by the convolution
of the pdfs ofφx andφy, or the product of their characteristic
functions [26]

ΨΦn(ν) = ΨΦx(ν)ΨΦy(ν). (6)

A. Distributed amplification

For distributed amplification, the characteristic function of
φx is given in [20, p. 157]3

ΨΦx(ν) = sec
(

Lσd

√

jγν
)

× exp
(

ρxLσd

√

jγν tan
(

Lσd

√

jγν
))

. (7)

3In contrast to [20], we have removed the normalization factor, γLeff, in
(7) and (11).

One may interchange x and y in (7) to obtainΨΦy and by
substitutingΨΦx andΨΦy into (6), we get

ΨΦn(ν) = sec2
(

Lσd

√

jγν
)

× exp
(

(ρx + ρy)Lσd

√

jγν tan
(

Lσd

√

jγν
))

. (8)

The pdf of the NLPN is illustrated in Fig. 2 for SNR = 15 dB
by taking the inverse Fourier transform of (8). The mean and
the variance of the NLPN can be obtained as

E{Φn} = −j
d

dν
ΨΦn(ν)

∣

∣

∣

∣

∣

ν=0

= γL2σ2
d(ρx + ρy + 1) (9)

and

σ2
Φn

= γ2L4σ4
d(
2

3
(ρx + ρy) +

1

3
), (10)

where we usedE{Φ2
n} = −j d2

dν2ΨΦn(ν)
∣

∣

∣

ν=0
. As seen in

Fig. 2, the mean and the variance of the NLPN have been
doubled for the DP case compared with SP [20, p. 157]
provided that the transmitted signals in both polarizations have
the same SNR.

B. Lumped amplification

The characteristic function of NLPN for a SP system with
lumped amplification is given in [20, ch. 5] by

ΨΦn(ν)=

N
∏

k=1

1

1− jγLeffνλkσ2
0

exp

(

jγν|Sx|2Leff(Λk · χ)2
λk − jγLeffνλ2

kσ
2
0

)

,

(11)

whereχ = (N,N − 1, . . . , 2, 1)T, · is the inner product of
two real vectors, andλk and Λk are the eigenvalues and
eigenvectors, respectively, of the covariance matrix [20,p. 149]

Π =











N N − 1 N − 2 . . . 1
N − 1 N − 1 N − 2 . . . 1

...
...

...
. . .

...
1 1 1 . . . 1











.

The characteristic function of the NLPN for a DP system with
lumped amplification can be derived by an analogous approach
as III-A and using (11) as

ΨΦn(ν)=
N
∏

k=1

1

(1− jγLeffνλkσ2
0)

2

× exp

(

jγν‖S‖2Leff(Λk · χ)2
λk − jγLeffνλ2

kσ
2
0

)

. (12)

The mean and the variance of the NLPN for a DP system
with lumped amplification can be readily obtained exploiting
the results for an SP system in [20, sec. 6.2], as

E{Φn} = NγLeff(‖S‖2 + 2(n+ 1)σ2
0), (13)

and

σ2
Φn

=
4

3
N(N + 1)(γLeffσ0)

2

×
[(

N +
1

2

)

‖S‖2 + 2(N2 +N + 1)σ2
0

]

. (14)
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Fig. 2. Pdfs of the normalized NLPN for a fiber-optic link withlow dispersion

and distributed (φn/L) and lumped (φn/(NLeff);
N = 8, 16, and32) amplification (ρx=ρy= 15 dB,

L = 4000 km, andRs = 10 Gbaud).

Analogously, it can be shown using (13) and (14) that the
mean and the variance of NLPN of a DP system are twice of
those for an SP system, which was first shown in [27]. As seen
in Fig. 2, the pdf of NLPN for a lumped amplification will be
overlapped with distributed one forN > 32. The pdf of the
NLPN is plotted by taking the inverse Fourier transform of the
characteristic functions (8) and (12). As seen in Fig. 2, theDP
scheme has larger mean and variance than the SP system.

IV. T HE JOINT PDF OF THE RECEIVED AMPLITUDES AND

PHASES OF THEDP SIGNAL

In the SP case, the system transmits in only one polarization
and the joint pdf of the amplitude and the phase of the received
signal is [20, p. 225]

fΘx,Rx(θx, rx) =
fRx(rx)

2π
+

1

π

∞
∑

k=1

Re
{

Cx
k(rx)e

jkθx
}

, (15)

where the normalized received amplituderx is denoted
by |Ex|/(σd

√
L) and |Ex|/(σ0

√
N) for distributed and

lumped amplifications, respectively. Here, the induced phase
noise from the noise of the orthogonal polarization and
the out-of-band noise is ignored. Moreover,fR(r) =

2re−(r
2+ρ2)I0

(

2r
√
ρ
)

is the Ricean pdf and the coefficients
Cx

k of the polarization x for both types of amplifications is
obtained as

Cx
k(rx) =

rxΨΦ (k)

τ2(k)
exp

(

−r2x +m2
x(k)

2τ2(k)

)

Ik

(

mx(k)rx

τ2(k)

)

,

(16)

whereIq(·) denotes theqth-order modified Bessel function of
the first kind. For distributed amplification

τ2(ν)=tan(Lσd

√

jγν)/(2Lσd

√

jγν), (17)

mx(ν)=
√
ρx sec(Lσd

√

jγν), (18)

andΨΦn (jν) is given in (7). In the case of lumped amplifi-
cation,

τ2(ν) = σ2
0

N
∑

k=1

(Λk · χ)2
1− jνγLeffλkσ2

0

, (19)

mx(ν) = Sx

N
∑

k=1

(Λk · χ)(Λk.Γ)/λk

1− jνγLeffλkσ2
0

, (20)

in which Γ = (1, 1, . . . , 1)T, andΨΦn (jν) is given in (11).
Here, the statistics of a DP 4D signal after propagation through
a DM fiber channel are derived for distributed and lumped
amplification. The motivation for derivingfΘ,R(θ, r), i.e., the
joint pdf of the normalized received amplitudesr = (rx, ry)
and phasesθ = (θx, θy), is to design an ML receiver for
such systems. The joint pdf of the two normalized independent
Ricean random variablesrx and ry can be written by [28, p.
50]

fR(r)=4rxrye
−(‖r‖2+ρx+ρy)I0 (2rxρx) I0 (2ryρy) . (21)

According to the model (4), the received phase vectorθ

is the sum of the transmitted phase vector, the phase vector
of the received linear part̂θ = (θ̂x, θ̂y), and the NLPN vector
(φn, φn). Without loss of generality, we assume the transmitted
phase vector to be (0,0). Therefore, we have

θ = θ̂ − (φn, φn). (22)

Theorem 1:The joint pdf of the received phase vectorθ

and the normalized amplitudesr of a DM fiber channel with
distributed amplificationis

fΘ,R(θ, r) =
fR(r)

4π2
+

1

2π2

∞
∑

kx=1

Re
{

Ckx(r)e
jkxθx

}

+
1

2π2

∞
∑

kx=1

∞
∑

ky=1

Re
{

Ck(r)e
jk·θ + Ck∗(r)ejk

∗·θ
}

+
1

2π2

∞
∑

ky=1

Re
{

Cky(r)e
jkyθy

}

, (23)

where

Ck(r) =
rxryΨΦn (kxy)

τ4(kxy)
exp

(

−‖r‖2 + ‖m(kxy)‖2
2τ2(kxy)

)

× Ikx

(

mx(kxy)rx

τ2(kxy)

)

Iky

(

my(kxy)ry

τ2(kxy)

)

. (24)

Here,k = (kx, ky) is a vector with positive integer elements,
kx = (kx, 0), ky = (0, ky), k∗ = (kx,−ky), kxy = kx + ky,
m(ν) = (mx(ν),my(ν)), τ(ν) andmx(ν) are given in (17)-
(18), andΨΦn (jν) is given in (8).

Proof: See Appendix A.
Theorem 2:In the case oflumped amplification, the joint

pdf of the received phase vectorθ and normalized amplitudes
r of a DM fiber channel is given by (23)-(24), whereτ(ν)
andmx(ν) are given in (19)-(20),ΨΦn (jν) is given in (12),
and the rest of the parameters are the same as in Theorem 1.

Proof: The proof is analogous to Theorem 1, exploiting
the results of [20, p. 185] for a finite number of spans with
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Fig. 3. The SER of a fiber-optic link with zero dispersion, 10 Gbaud, and
Nspan= 50 for DP and SP 8-PSK constellation versus transmitted power per
polarizationPt.

lumped amplification.
Interestingly, the Fourier series coefficientsCk for a DP

system are the product of the Fourier series coefficients of the
two polarizations x and y,

Ck(r) = Cx
k
(rx)C

y
k
(ry). (25)

The coefficientsCx
k
(rx) of the polarization x for both types of

amplifications are

Cx
k(rx) =

rxΨΦ (kxy)

τ2(kxy)
exp

(

−r2x +m2
x(kxy)

2τ2(kxy)

)

× Ikx

(

mx(kxy)rx

τ2(kxy)

)

. (26)

Hence, the coefficientsCx
kx

of (16) for an SP system can be
obtained as a special case of (26) by settingk = kx.

The marginal joint pdf of the amplitude and the phase of
the received signal for solely polarization x can be obtained
from (23), (24), and (25) as

fΘx,Rx(θx, rx) =
fRx(rx)

2π
+

1

π

∞
∑

kx=1

Re
{

C′
kx
(rx)e

jkxθx
}

,

(27)

where

C′
kx
(rx) = Cx

kx
(rx)

∫ ∞

ry=0

Cy
kx
(ry)dry.

V. NUMERICAL RESULTS

In this section, we first compare the SER performance of an
SP and a DP fiber-optic link with low dispersion to evaluate the
SER degradation due to the NLPN contribution from the two
polarizations. Then, we check the accuracy of the exploited
model for DM fiber-optical links of Table I.

A. Fiber-optic channel with low dispersion

The performance of a polarization-multiplexed 8-PSK (PM-
8PSK) [29] modulation format is evaluated by simulations.
The approach proposed in [21] is implemented to attain a very
low complex ML detector based on the pdf derived in Theorem

TABLE I
SIMULATED DISPERSION-MANAGED SYSTEMS.

System I II III IV V VI VII
Symbol rate (Gbaud)6 10 15 20 3 5 7

D (ps/nm/km) 3 3 3 3 16.5 16.5 16.5
nsp 3.2 3.2 3.2 3.2 1.4 1.4 1.4
NSpan 25 14 10 8 25 22 14

1. We compute the SER of PM-8PSK and compare it with SP
8-PSK for the same powerPt per polarization. The exploited
symbol-by-symbol4 ML detector uses the derived pdf to detect
the received four-dimensional symbolS̃ by

S̃ = arg max
S∈M

fΘ−Θ0,R(θ, r), (28)

where fΘ−Θ0,R is the joint pdf of the differential received
phases and amplitudes of both polarizations in Theorem 1.
Here,Θ0 is the initial phase vector (i.e., at the transmitter)
of the transmitted symbols of both polarizations which was
assumed to be0 in Theorem 1. The signal setM denotes the
four-dimensional constellation, i.e.,(8-PSK)2 in our numerical
analysis. This evaluation is done for distributed amplification
with no dispersion similarly to [21], [22] (system VI). In
Fig. 3, the SER performance is plotted versus transmitted
power per polarization for the SP and DP systems with zero
dispersion, 10 Gbaud,Nspan = 50, and 8-PSK constellation.
As seen in this figure, the DP scheme shows a negligible
performance degradation (∼= 0.25 dB) in the linear regime
at the same symbol rateRs and SER =5 × 10−4, while for
a fixed spectral efficiency, one may observe a5 − 3 = 2 dB
performance improvement in exploiting the DP scheme rather
than SP (to compare at the same transmitted power, the DP
curve in Fig. 3 should be shifted 3 dB to the right). This result
has been demonstrated previously in [30]. Moreover, the SP
8-PSK system with symbol rate2Rs does not go below SER =
5× 10−4 for any power, while DP 8-PSK reaches a minimum
of 3 × 10−5. As expected in the nonlinear regime, the SP
scheme is superior to the DP case at the expense of losing
half of the spectral efficiency.

Another interesting point is the convergence of DP-Rs and
SP-Rs at low Pt and the convergence of DP-Rs and SP-2Rs

at highPt, as seen in Figs. 3. The convergence at lowPt is
due to disappearing nonlinear effects in this regime. At high
Pt, the major impairment is NLPN, which is a function of the
transmitted signal power and the added noise power in both
polarizations. In the DP system, the total transmitted power is
twice the power in the SP system. On the other hand, doubling
the symbol rate will boost the noise power by a factor of 2 for
the SP system. Therefore, the high-power SER performance
will be the same for the DP-Rs and SP-2Rs systems.

B. Dispersion-managed channel

To verify the accuracy of the theoretical pdf derived in
Theorem 1 for different scenarios, we compare it with the
numerical pdf estimated from extensive numerical simulations.

4We use an uncoded scheme and the detector is memoryless (not an ML
sequence detector).
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Fig. 4. The SERs of systems (a) I–III, (b) V–VII with two different detectors versus transmitted power per polarizationPt.

The SSFM [9, ch. 2] is exploited to implement the fiber-
optical channel for the systems given in Table I. In this table,
we have considered systems with dispersion coefficients of
3 and 16.5 ps/nm/km for a range of symbol rates that the
pdf changes from a shape close to our theoretical result to
a Gaussian-like pdf. One may use a measure of similarity
between the two pdfs, i.e, the numerical pdf of a DM link,
extracted based on the NLSE and the theoretical pdf for a
fiber-optic channel with low dispersion, derived in Theorem1.
Since the numerical calculation of the pdf tails is cumbersome,
applying such measures of similarity like the Kullback-Leibler
distance [31, p. 251] are not feasible.

Instead, we only measure the advantage of using the
theoretical pdf rather than the Gaussian pdf quantitatively
by computing the SER using two different detectors: The
detector based on (28) and a standard DP receiver with ideal
polarization demultiplexing and phase synchronization. Since
the decision boundaries in the standard receiver are assumed
to be straight lines, its performance is optimal for Gaussian-
like pdf. On the other hand, a new detector based on (28)
outperforms the standard receiver for a non-Gaussian (bean-
like) pdf. Moreover, we perform the SER comparison for
two different types of fibers. In low-dispersion fibers, e.g.,
systems I–III as seen in Fig. 4(a), the new detector shows better
results for 6 Gbaud, while at 15 Gbaud, the standard receiver
outperforms the new detector. Therefore, the theoretical pdf is
not accurate for symbol rates above 10 Gbaud. An analogous
interpretation from Fig. 4(b) reveals that this threshold is even
smaller forD = 16.5 ps/nm/km (systems V–VII). Moreover,
we plotted the numerical marginal pdf of the received signal
in one polarization, e.g., x, of the received signal for four
different systems. Figs. 5(a)–5(d) show the pdf plots for (a) a
system without dispersion (the same system as Fig. 3), (b)
I, (c) system II, and (d) system IV, atPt = 1 dBm. The
numerical pdf is close to the theoretical one for system without
dispersion and I, but as seen in system II and, particularly,
in system IV by increasing symbol rate, the pdf converges
to a Gaussian-like pdf, as was previously reported in [11],

(a) (b)

(c) (d)
Fig. 5. The marginal joint pdf of the received phase and amplitude in one
polarization, e.g., x at transmit powerPt = 1 dBm for (a) system without
dispersion (the same system as Fig. 3), (b) system I, (c) system II, and (d)
system IV. The corresponding values of the contours are the same for all
subfigures.

[15]. Hence, this pdf can be approximated very well by a
Gaussian pdf for symbol rates higher 7 and 20 Gbaud for
systems with dispersion coefficients of 3 and 16.5 ps/nm/km,
respectively. A Gaussian pulse shape filtering and its matched
filter are considered for all simulations at the transmitterand
the receiver, respectively. The corresponding number of spans
in Table I were chosen such that the performance of the
given systems can be evaluated with reasonable Monte-Carlo
complexity.

VI. CONCLUSION

The signal statistics of a DP fiber channel including the
pdf of the NLPN and the joint probability of the received
amplitudes and phases given the SNR of both polarizations
have been derived. This makes it possible, for the first time,
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to analytically evaluate the performance of data transmission
systems over DP fiber channels with phase noise and low
enough symbol rate, and to optimize the performance of
such systems. Moreover, a quantitive approach is proposed
to measure the accuracy of the analytically derived pdf for a
specific dispersion-managed fiber-optical link.
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APPENDIX

PROOF OFTHEOREM 1

Before going into the detail of the proof of Theorem 1, we
define the partial characteristic function by

F−1
ω3→r{ΨΘ1,Θ2,R(ω1, ω2, ω3)} =

∫ ∞

−∞

ΨΘ1,Θ2,R(ω1, ω2, ω3)e
−jrω3dω3,

where F−1
ω3→r denotes the inverse Fourier transform with

respect toω3 and the characteristic functionΨΘ1,Θ2,R is given
by

ΨΘ1,Θ2,R(ω1, ω2, ω3) =

∫ 2π

0

∫ 2π

0

∫ ∞

0

fΘ1,Θ2,R(θ1, θ2, r)

×ej(θ1ω1+θ2ω2+rω3)dθ1dθ2dr. (29)

Moreover, we introduce the following lemma, which will be
used later.

Lemma 1:The two-dimensional Fourier series coefficient5

Ck(r) of the joint pdf fΘ1,Θ2,R(θ1, θ2, r) with respect toθ1
andθ2 over [0, 2π) is obtained by

Ck(r) =
1

4π2
F−1

η→r{ΨΘ1,Θ2,R(−k1,−k2,−η)},

wherek = (k1, k2) is a vector with integer elements.
Proof: According to the definition of the partial charac-

teristic function,

F−1
ω3→r{ΨΘ1,Θ2,R(ω1, ω2, ω3)}
= F(θ1,θ2)→(ω1,ω2){fΘ1,Θ2,R(θ1, θ2, r)}

=

∫ 2π

0

∫ 2π

0

fΘ1,Θ2,R(θ1, θ2, r)e
−j(k1θ1+k2θ2)dθ1dθ2. (30)

Exploiting (30), the definition of the Fourier series coefficients

Ck(r)=
1

4π2

∫ 2π

0

∫ 2π

0

fΘ1,Θ2,R(θ1, θ2, r)e
−j(k1θ1+k2θ2)dθ1dθ2,

and (29), the proof is complete.
Proof of Theorem 1:Sinceφx and ûx are independent of

φy and ûy, the joint characteristic function of the normalized
NLPN φn and the linear part of the electric field̂u with polar

5Although the joint pdffΘ,R is not a periodic function ofθ, in order to
use the Fourier series expansion, we assume this pdf function is equivalent
to a periodic function only in its one period whereθx andθy are confined to
the range of[0, 2π).

coordinates can be written

ΨΦn,Θ̂,R(ν,µ,η) = ΨΦx,Θ̂x,Rx
(ν, µx, ηx)

×ΨΦy,Θ̂y,Ry
(ν, µy, ηy), (31)

whereµ = (µx, µy) and η = (ηx, ηy). Hence by taking the
inverse Fourier transform, we get

F−1
η→r

{ΨΦn,Θ̂,R}=F−1
ηx→rx

{ΨΦx,Θ̂x,Rx
}F−1

ηy→ry
{ΨΦy,Θ̂y,Ry

}. (32)

On the other hand, using the results in [20, p. 225], we have

F−1
ηx→rx

{ΨΦx,Θ̂x,Rx
(ν, µx, ηx)} =

rxΨΦx(ν)

τ2(ν)

× exp

(

−r2x +m2
x(ν)

2τ2(ν)

)

Iµx

(

rxmx(ν)

τ2(ν)

)

. (33)

One may replace x with y in (33) to obtainF−1
ηy→ry

{ΨΦy,Θ̂y,Ry
}

and then, by substituting it and (33) into (32), we get

F−1
η→r{ΨΦn,Θ̂,R(ν,µ,η)} =

rxryΨΦn(ν)

τ4(ν)

× e
− ‖r‖2+‖m(ν)‖2

2τ2(ν) Iµx

(

rxmx(ν)

τ2(ν)

)

Iµy

(

rymy(ν)

τ2(ν)

)

. (34)

The partial characteristic function (see Definition 1) of the
received phase vectorθ and amplitude vectorr of the received
signal can be computed by

Fθ→ν{fΘ,R(θ, r)} = F−1
µ→r

{ΨΘ,R(ν,µ)}. (35)

Now, one may use (35) to find the coefficients of the two-
dimensional Fourier series expansion of

fΘ,R(θ, r) =
1

4π2

∞
∑

kx=−∞

∞
∑

ky=−∞

Ck(r)e
jk·θ , (36)

with respect toθ for a givenrx andry. Therefore using (22),
(35), and Lemma 1, these Fourier series coefficientsCk are
obtained as

Ck(r) = F−1
η→r{ΨΘ,R}(−k, r)

= F−1
η→r

{ΨΦn,Θ̂,R}(kx + ky,−k, r). (37)

Substituting (34) into (37), one can get (24). On the other
hand, exploitingC−k = Ck

†, where† denotes the complex
conjugate,C(0,0) = fR(r), and some algebraic manipulations
on (36), one can obtain (23).

�
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