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Abstract—The increased resolution in today’s radar systems
enables tracking of small targets. However, tracking both small
and large targets in a dense target scenario raises considerable
challenges. The data association of tracks to measurement groups
is highly dependent on good target extension models for filtering
and likelihood computation. In our attempt to design a tracker
for extended targets, we start by adopting the results from the
technique referred to as random matrices, which enables us to
separate the filtering into an extension and a kinematical part.
We re-define the measurement model and discard the assumption
of independent Gaussian-distributed plots. Instead we assume the
principal components to be Gaussian distributed. Then, through
a heuristic approach, we create a two-stage Kalman filter, where
the first stage estimates the principal components, and the second
stage estimates the centre of gravity, using the output from
the first stage as measurement uncertainty. The advantage of
having a Kalman filter with data-driven measurement noise
over a standard Kalman filter is demonstrated using simulated
data, where a significant improvement in kinematical accuracy
is shown.
Keywords: Target tracking, extended targets, random
matrices, principal components, Kalman filtering.

I. INTRODUCTION

Extended target tracking is increasingly studied in radar
signal processing research. The main reason is the desire to
track both small and large objects. To distinguish between
small objects, the resolution is increased. That causes problems
when tracking large objects since the point-target assumption
no longer holds, i.e. each target is not represented by only one
plot. Given the point-target assumption, the tracking problem
is limited to association and filtering of target kinematics. By
relaxing this constraint, we add the problem of determining
which plots make up the target. Unless special care is taken,
large objects will produce erroneous tracks.

One situation when the tracking of both small and large
objects is important is sea or harbour surveillance, particularly
for seaborne radar. We may require the ability to track small
rafts at large distances, while having larger freighters passing
nearby. Also, we may want to detect small boats docking or
leaving large ships, which means that the resolution problem
coincides with the dense target tracking problem. Typically,
large ships will either produce several tracks, or be represented
by erroneous tracks updated with plots alternating between
fore and aft, thus yielding highly unreliable velocity vectors.

Either way, we will need to improve the maritime picture if
we require reliable situational awareness.

The literature contains many publications addressing the
problem of tracking extended objects, as the image analysis
community has dealt with this problem since the dawn of
video tracking [1], [2], [3], [4]. In optical video the update
rate is high, making the problem of finding what is the object
as the primary concern, and hence making motion modelling
less important. Radar trackers, on the other hand, traditionally
have the opposite problem of finding where is the target
since the update rate as well as the resolution is low in
comparison. Tracking of extended targets, or target groups, is
sometimes regarded as cluster tracking, and Bayesian solutions
have recently been developed using random matrices [5].
Our work is very influenced by [5], which contains an in-
depth description of the theory concerning Bayesian filtering
for extended targets. It does not cover the data association
part of tracking, however. Interesting examples concerning
the combined association of plot-to-cluster and cluster-to-track
can be found in [6], [8], [7], which use the multi-hypothesis
framework to handle clustering ambiguities.

The outline of the paper is as follows. In Section II,
we describe the random matrices approach and how our
approach differs from [5]. Further, we propose an alternative
measurement model, and postulate that the centre of gravity
and extension should be independent, rather than the plots
themselves. In Section III, we describe our extension to the
random matrices using principal components, and discuss how
it transforms the problem into the tracking of the physical
entities length, width, and orientation, in the ordinary state
vector format. From this we develop a two-stage Kalman filter
that is evaluated using synthetic data in Section V. The results
show improved performance compared to an ordinary Kalman
filter, and to the approach in [5].

II. RANDOM MATRICES

The basic idea of having a random matrix is to be able to
adapt the uncertainty of target position to incoming data. When
targets cannot be modelled as points, the concept of measure-
ment uncertainty has to be redefined. We will assume that,
in the standard Kalman filter terminology, the measurement
noise for the centre of gravity is directly proportional to the
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extension. Thus, we are trying to find a way to recursively
estimate the measurement noise for the centre of gravity.
However, data-driven noise estimation is not a trivial task,
since it affects the two-way coupling between track filtering
to plot association. While adaption of the process noise will
primarily affect the prediction and gating, adaption of the
measurement noise will affect the measurement likelihood and
hence primarily influence the data association. Naturally, both
the process noise and the measurement noise will be involved
in both track filtering and association, but what we want to
stress here is the risk for instabilities when adding data-driven
measurement noise to a tracker already utilizing data-driven
process noise in some form.

We will denote the set of nk measurements (plots) at time
tk by zk, and all sets of measurements up to time tk by Zk.
Further, the kinematic states of a target are captured by the
state vector xk, and the target extent is modeled by a positive
semi-definite random matrix Xk. The problem that we study
is hence the calculation (approximation) of the joint posterior
density p

(
x,X

∣∣zk,Zk−1

)
.

Just as in [5], we rewrite the joint posterior density using
Bayes’ rule as

p (xk,Xk|Zk) = p (xk,Xk|zk,Zk−1) =

p (zk|xk,Xk) p (xk,Xk|Zk−1)

p (zk|Zk−1)
. (1)

Further, we make the same simplification as [5] on the joint
prior density, by stating that the temporal change of the exten-
sion does not affect the predicted density of the kinematical
state. It is shown in [5] that we can use this approximation to
compute the prior densities for xk and for Xk separately

p (xk,Xk,Zk−1) ≈∫
p (xk|Xk,xk−1)︸ ︷︷ ︸

motion model

p (xk−1|Xk,Zk−1)︸ ︷︷ ︸
≈previous update

dxk−1

·
∫
p (Xk|Xk−1)︸ ︷︷ ︸

transition model

p (Xk−1|Zk−1)︸ ︷︷ ︸
previous update

dXk−1. (2)

This approximation is visualized in the Bayesian network in
Figure 1, where the diagonal dependence Xk−1 → xk is
moved to Xk → xk.

The difference between the approach of this paper and the
one in [5] starts with the likelihood function p (zk|xk,Xk).
In [5] it is assumed that the nk plots in zk at time tk are
independently Gaussian-distributed around the centre position
xk, with covariance Xk. They rewrite the product of Gaussians
in terms of the measured centre of gravity z̄k = 1

nk

∑nk

i=1 z
(i)
k

and the scatter matrix Zk =
∑nk

i=1 (z
(i)
k − z̄k)2 as

p (zk|xk,Xk) =
nk∏
i=1

1

|4π2Xk|
1
2

exp

(
−1

2
(zi − xk)

ᵀ
X−1
k (zi − xk)

)
=

1

|4π2Σ|
1
2

exptr

(
−1

2
((z − xk) (z − xk)

ᵀ
)

(
Xk

nk

)−1
)

· 1

|4π2Σ|
nk−1

2

exptr
(
−1

2
ZX−1

k

)
, (3)

which means that the centre of gravity is Gaussian with mean
xk and covariance Xk

nk
, and that the scatter matrix has a

distribution proportional to the Wishart distribution with nk−1
degrees of freedom. We view nk as a deterministic parameter,
hence it is not being conditioned on in the declaration of the
likelihood function. By looking at equation (3) we can identify
the measurement equation as a product of the likelihood for
two independent observables z̄k and Zk, where the probability
density for the scatter matrix Zk is not dependent on the
kinematical state xk. The likelihood is hence

p (zk|xk,Xk) = p (z̄k|xk,Xk) p (Zk|Xk) . (4)

As in [5] we consider Gaussian-distributed plots, but instead
of assuming that each plot z

(i)
k at time tk is independent

we assume that the measured position and extension are
independent. Here, by position we mean centre of gravity. In
fact, we do not consider the individual plots at all. The position
measurement consists of an estimated centre of gravity z̄k,
which is modelled as a Gaussian with mean xk and covariance
Xk

nk
. The extension measurement is the scatter matrix Zk,
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Figure 1. Bayesian network for the random matrix and state vector. State
and random matrix transition models and measurement likelihood models are
shown. The approximation in (2) is visualized by the move of the diagonal
arrow. The reason for using a dashed line for the coupling from random matrix
Xk to measurement z̄k is explained in Section IV.



whose likelihood is represented by a Wishart distribution
with covariance matrix Xk and nk − 1 degrees of freedom,
instead of the Wishart proportional likelihood (3) as in [5].
Centering the scatter matrix to z̄k reduces the degrees of
freedom from nk to nk−1 [9]. Both the Gaussian distribution
for z̄k and Wishart distribution for Zk is consistent with
having Gaussian-distributed plots, however. In Figure 1 we
show the random matrices approach in a Bayesian network,
with the dependencies between the random variables and the
measurements.

The main motivation for assuming independent position
and extension is to modify the extension part and devise a
likelihood function that is less sensitive to the number of plots
nk. When having a model with independent scatterers, the
likelihood causes the track-to-object association to favor single
measurements over large clusters. This is usually compensated
by including a false alarm density parameter in the likelihood,
which penalizes the non-assigned plots. We believe that, given
a model for the object size, it should be possible to assign the
correct plots without being dependent on this parameter. Fur-
thermore, we would also like to be able to filter the extension
with other information than just the position scattering of a
collection of plots. By modifying the likelihood function we
are able loosen the inherent dependence on the number of
plots and their scattering. We will continue focusing on the
likelihood function and association probabilities also in the
next section, before returning to the filtering aspects.

III. TWO-STAGE TRACKING FILTER FOR EXTENDED
TARGETS

In the previous section we have assumed independent posi-
tion and extension measurements by formulating the likelihood
as a function of measured centre of gravity and scatter matrix
(4). The scatter matrix parameterizes the extension by an
ellipse in two dimensions. This ellipse can also be expressed
in terms of two principal axes and their orientation. We denote
the principal axes and orientation l1,l2,α for the normalized
scatter matrix Zk

nk
, and λ1,λ2,θ for the random matrix Xk. The

axes are ordered such that l1 > l2 and λ1 > λ2. For clarity
reasons we have skipped the temporal index k. Now we can
write the eigen-decomposition as

Zk
nk

=

[
cosα − sinα
sinα cosα

] [
l21 0
0 l22

] [
cosα sinα
− sinα cosα

]
(5)

Xk =

[
cos θ − sin θ
sin θ cos θ

] [
λ2

1 0
0 λ2

2

] [
cos θ sin θ
− sin θ cos θ

]
(6)

It is reasonable to believe that the lengths of the principal
axes and their orientation are independent, thus we postulate
the likelihood for the extension and orientation to be

p (Zk|Xk) = p
(
l21, l

2
2|Xk

)
p (α|Xk) (7)

Now, given that the scatter matrix Zk is Wishart distributed
with covariance Xk we can derive the joint distribution of the
eigenvalues p

(
l21, l

2
2|Xk

)
and the distribution of the orientation

p (α|Xk) analytically. They becomes surprisingly complex and

contain hypergeometric series which can only be evaluated
through approximations, see Appendix A.

Even if we could use those formulas for evaluating the
likelihood of the extension, it is unfeasible to find an approxi-
mate Bayesian solution for updating the stochastic parameters
λ1, λ2, and θ, given Wishart distributed scatter matrices,
i.e. Gaussian-distributed plots. But is the Gaussian model for
plots justifiable from a physical point of view? If we take
a naval ship as an example, the scatterers are more likely
to be situated at the edges, and less likely to appear at the
centre. Hence, instead of approximating the distributions, we
suggest redefining the model assumption by stating that the
principal components are Gaussian-distributed. Tracking the
random matrix Xk is then replaced by tracking the state vector
Λk = [λ1, λ2, θ]

T
k , which includes the principal components

of Xk and its rotation.
Our approach, which we call two-stage filtering, is based on

the fact that we can separate the extension from the kinematics.
And thus, we perform the filtering of the extension in the first
stage, and then use the extension estimate in the second stage,
in order to achieve better filtering of the kinematics. This setup
is visualized in Figure 2.

Stage 1:
measurement
update

Xk k| xk|k

zk

Stage 2:
measurement
update Pk|k

Stage 2:
prediction
and gating

xk|k-1

Pk|k-1

Stage 1:
prediction
and gating

clustering and
association

k k|

k|k-1

yk

zk

k- k1 k- k1

Figure 2. The two-stage filter where the matrix Xk|k is being transferred
from the extension filter to the kinematical filter.

For updating the first stage filter, we use a measurement yk
that includes information about the length, width and rotation
of the targets. We thus have a general approach, which is
not limited to plot scattering solely as information about the
extension, but can utilize any type of information representing
the length, width, and orientation. If plots are the source of
information about the target extent, the normalized scatter
matrix provides the measurement vector yk = [l1, l2, α]

T
k ,

comprising the principal components and the orientation of
the scatter matrix. With linear-Gaussian models, the prediction
and measurement update equations are

Λk =

 1 0 0
0 1 0
0 0 1

Λk−1 +

 σ2
λ 0 0
0 σ2

λ 0
0 0 σ2

θ

 (8)

yk =

 1 0 0
0 1 0
0 0 1

Λk +

 σ2
l 0 0

0 σ2
l 0

0 0 σ2
α

 , (9)

where the process noise σλ, σθ and measurement noise σl, σα
are design parameters.



We have seen that the assumption of Gaussian-distributed
plots leads to complicated equations (14)-(16). The reversed
situation, i.e. assuming Gaussian-distributed principal com-
ponents l1, l2, α, corresponds to a complicated non-Gaussian
distribution for the plots, and thus non-Gaussian estimated
centre of gravity (unless we have many plots). Nevertheless,
we approximate the estimated centre of gravity as Gaussian
although it may be theoretically incompatible with Gaussian
principal components. Along with this heuristic we will also
make a crucial simplifying assumption by neglecting the
uncertainty in the extension when filtering the kinematical
state xk. Hence, we assume that Xk is stochastic between
measurements, but deterministic when used in the update of
position.

p (xk|Xk,Zk) ≈ p
(
xk|Xk|k,Zk

)
(10)

This assumption is indicated in the Bayesian network in Figure
1 by making the connection between the random matrix and
the position measurement dashed. To put all this in other
words, we build a Kalman filter for estimating the centre of
gravity, with data-driven measurement noise that is estimated
through the principal components. This is a heuristic approach
that enables us to build a two-stage Kalman filter for the
tracking of extended objects. The first stage is a Kalman
filter for the principal components, and the second stage is a
Kalman filter for the centre of gravity (position). It produces
the extension-filter state vector Λk|k, which is used in equation
(6) to form Xk|k. The second filter is also linear Gaussian
using Xk|k as measurement noise. In this paper we use the
following linear-Gaussian process and measurement models
for the centre of gravity:

xk =


xk
yk
ẋk
ẏk

 =

[
1 ∆T
0 1

]
⊗
[

1 0
0 1

]
xk−1

+

[
∆T 4

4
∆T 3

2
∆T 3

2 ∆T 2

]
⊗
[
σ2
a 0

0 σ2
a

]
(11)[

z̄kx
z̄ky

]
=

[
1 0 0 0
0 1 0 0

]
xk + Rk. (12)

We will consider three different measurement noise models
for the second stage filter: one fixed and two data driven.

1)Rk =

[
σx 0
0 σy

]
, 2)Rk = Xk|k, 3)Rk =

Xk|k

nk
(13)

We have assumed that the distribution of the centre of gravity
is Gaussian, and if the plots are Gaussian the estimated
measurement uncertainty would be Xk|k

nk
. However, in the

evaluation we will also examine the larger measurement un-
certainty Xk|k. Imagine that the plots are not independently
distributed, and that we for example get a cluster of measure-
ments from only the fore or the aft of a large ship. Then,
the estimated mean should not decrease with nk. Our goal in
this study is to both investigate the advantage of having data-
driven measurement noise over fixed, and to evaluate different
modelling of the measurement noise.

IV. IMPLEMENTATIONAL ASPECTS

In a multiple extended target scenario, or in the presence of
background clutter, we need to spawn measurement hypothe-
ses by grouping plots. The problem of constructing cluster
hypotheses can be solved in a number of ways. Here, we
use a hierarchical clustering algorithm called single linkage
clustering, based on the distances between the plots. Unlike
the average linkage clustering, this method recomputes the
distances between the clusters. It assigns a plot to a cluster
based on the smallest distance between the plot and any of
the plots in the cluster. Hence, it is computationally efficient.
Moreover, it does not result in a combinatorial explosion of
hypotheses; nk plots will generate 2nk− 1 cluster hypotheses
in total. An example of the clustering is shown in Figure
3, which is taken from the two-target scenario presented in
Section V. The cluster dendrogram is displayed along with
the plots from the two horizontally aligned elliptical targets.
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Figure 3. The single linkage cluster dendrogram with association likelihood
(for the track representing the uppermost target to the right) at each node
using measurement noise model Rk = Xk|k . Each node represents one of the
2nk−1 measurement hypotheses (see Figure 1). The likelihood is the product
of the stage one and stage two Kalman filter likelihoods. The maximum log-
likelihood of −6.9 is marked in red and represents the clustering hypothesis
shown by the ellipses.

Each node corresponds to a cluster hypothesis and the
maximum likelihood hypothesis for the uppermost target is
marked red. To evaluate the cluster hypotheses we use the
likelihood from both the first and the second stage Kalman
filters. This means that we have to calculate the number of
plots nk, the centre of gravity z̄k, and the scatter matrix Zk,
for each node. This is performed in a bottom-up fashion using
the simple formulas displayed in Appendix B. Then, for all
nodes, we calculate the extension measurements l1, l2, and
α by diagonalizing the normalized scatter matrix Zk

nk
using

the equations found in Appendix C. These are used to update
λ1, λ2, and θ using the first stage of the Kalman filter, which
inserted into equation (6) yields the estimated extension Xk|k.



Now, there are a few exceptions when we get less than three
measurements. If nk = 1, we simply use the predicted values
for λk|k−1

1 , λk|k−1
2 , and θk|k−1 and hence use Xk|k−1 in the

second stage of the filter. If nk = 2, we use the predicted
semi-minor axis λk|k−1

2 and the updated semi-major axis λk|k1

and orientation θk|k2 .

V. SIMULATIONS AND RESULTS

We will generate uniformly distributed plots from ellipti-
cally shaped two-dimensional targets, representing large-sized
naval ships. The semi-major axis is set to 40m and the semi-
minor axis is 10m, hence the target is 80m long and 20m
wide. The target is travelling with a speed of 10m/s and the
measurement interval is ∆T = 1s. In the first simulation, we
consider a single target moving in a figure-of-eight pattern,
see Figure 4, and analyze the difference between simulated
centre of gravity and the filtered position (estimated centre of
gravity) from the second stage Kalman filter.

-250 -200 -150 -100 -50 0 50 100 150 200 250
-150

-100

-50

0

50

100

150

m

m

Figure 4. The single target scenario trajectory, displayed using accumulated
plots from one lap. This scenario is used for evaluating the filtering perfor-
mance in terms of position error.

The second simulation is a typical two-target scenario, see
Figure 5, for analyzing how the combined likelihood estimate
from both the first stage (extension) and the second stage
(kinematic) Kalman filter can improve the ability to keep the
track identity. Two targets moving at a speed of 10m/s are on
collision course, but make a rapid 45◦ turn when their centres
of gravity are 50m apart, and travel side by side for 200m
before separating. Resolution aspects and radar measurement
errors are not considered here. Also, we do not include
background clutter, which is a significant simplification of the
general target tracking problem.

A. Filter parameter settings

For the two-stage Kalman filter presented in Section III,
we used the following parameter setting. For the first stage
extension filter, the process noise for the major and minor
semi-axes should be low (target size is relatively constant);
we use σλ = 1m. Further, the orientation process noise is set
to σθ = 10◦. The measurement noise for the extension is set
to σl = 5m and σα = 30◦. The second stage filter, estimating
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Figure 5. Trajectories of the two-target scenario, displayed using accumulated
plots. This scenario is used for evaluating the filtering performance, and the
association performance in terms of track loss probability.

the centre of gravity, uses a process noise for the kinematical
state vector set according to equation (11) with acceleration
uncertainty σa = 1m/s2. The fixed measurement noise model
in (13) is set to σx = σy = 5m. This is such that two standard
deviations matches the size of the semi-minor axis 10m.

B. Single target filtering

In this part we do not consider the association problem. The
simulated target follows the trajectory shown in Figure 4 and
generates a number of plots nk, which are used for updating
the states of the first and second-stage filters. The plots are
generated from a Poisson distribution with two different values
for the expected number of plots: E[nk] = 3 and E[nk] = 5.
We compare the error, i.e. the Euclidian norm of difference
between simulated position and the position given by the
filtered state vector xk|k for the three different measurement
noise models given in (13) and the Bayesian extended target
filter given by [5]. To get a good statistical basis we generated
500 laps. The relative frequency of the errors is shown in the
histogram in Figure 6.

We see that the smallest errors are obtained when the
measurement noise is estimated by Xk|k

nk
. This is expected,

since the measurement uncertainty decreases with the number
of plots for uniformly distributed plots. When using Xk|k as
measurement noise, and thus neglecting this information, we
lose accuracy by over-estimating the measurement uncertainty.
The Bayesian filter has no intrinsic coupling between position
and extension, which means that the extension estimate does
not aid the filtering of the centre of gravity in the same
way as for the proposed two-stage filtering approach. On
the other hand, it will not deteriorate the results either, in
case the extension estimate is unreliable. Nevertheless, in this
evaluation of the estimation of the centre of gravity, where
the association is perfect, the two-stage filter with R =

Xk|k
nk

performs better.
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Figure 6. Histogram of the error of the centre-of-gravity estimate of the
two-stage Kalman filter for the single-target scenario in Figure 4, for three
different measurement noise models (see (13)). The number of plots are
Poisson distributed with two different expected values.

C. Two-target filtering and association

In this part we include the data association problem, and
will hence not always update the filters with the correct plots.
We use the two-target scenario in Figure 5, where two targets
come as close as having 30m between them, see Figure 7. In a
simplistic approach we assign the target to the cluster having
the largest likelihood estimates from the Kalman filters. We
sum the log-likelihood from the first and second stage filter,
see Figure 2, to get the combined likelihood. A false alarm
probability for penalizing unassigned plots is not included.
Furthermore, the association is performed locally, meaning
that the tracks do not know of each other. This enables for
unwanted track merging, and make the association much more
difficult. To simplify things we restrict the number of plots to
be constant, and use three different values in the simulation
nk = 3, 5, 10. Also, we do not allow for assigning tracks to
single plots. This is a significant simplification, but the benefit

is that the problem of determining the extension likelihood for
single plots in the first stage filter is avoided.

The two-target scenario was not evaluated in terms of error
in position, but in track loss probability. If the two targets are
correctly identified after having travelled the path in Figure
5 we count a correct assignment. If any of the tracks loses
the target we count one error. This can be due to a track
merge, or if one of the tracks is assigned to the top cluster
node when the targets part, i.e. assigned to all plots from both
targets. The latter causes the extension to grow while the track
continues straight ahead during the separation. If both tracks
lose their target we count two errors. This can be due to a
switch of target identities, or that both tracks associate with
the top cluster node. The biggest challenge for the tracking
filter is to handle the situation when the targets come close
and make the first rapid 45◦ turn. In Figure 7 we visualize
how the data-driven measurement noise adapts the uncertainty
to avoid track merge or mix-up.

As mentioned previously, we compute the log-likelihood
as the sum of the first and second stage filter log-likelihood.
An example of the likelihood for each cluster is shown in
Figure 3, where the two targets are traveling side by side. The
correct node is the one with the highest log-likelihood, much
thanks to the contribution from the first stage filter. Since we
do not allow for single-plot assignment (for simplicity) the
log likelihood is minus infinity for leaves in the dendrogram.
In the evaluation we will compare the results to a standard
Kalman filter with fixed measurement noise, utilizing only the
second stage filter. Thus the likelihood will only consider the
cluster centre of gravity, which leads to an increased risk of
false assignments.

A total of 100 iterations were run for the two-target scenario,
for each of the three choices of measurement noise model in
(13). In Figure 8, the results of the evaluation are presented.
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Figure 7. Visualization of the stage two filter measurement noise Rk =
Xk|k by ellipses for every 10th measurement update as the two targets come
together. The number of plots is constant, nk = 5. The inner and outer
ellipses show the first and second standard deviation, i.e. λ1, λ2 and 2λ1, 2λ2
including the orientation θ.



The results indicate, in contrast to the results from the single
target filtering, that the coupling between the extension and
kinematics is not beneficial. False cluster association leads
to incorrect measurement uncertainty which in turn generate
a bias for the next association likelihood, and so on. The
improvement in kinematical accuracy from the filtering is
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(b) Data-driven Rk = Xk|k
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Figure 8. The results in terms of the proportion of correct/one error/two
errors tracks, for three different choices of measurement noise are displayed
in (a)-(c). As we increase the number of plots generated by the target, the
proportion of correct tracks increases rapidly. Note that the best results,
achived in (b), corresponds to the measurement noise model Rk = Xk|k
that yielded mediocre filtering result in the single target simulation.

overshadowed by the increased risk for false associations due
to instabilities. This problem can, and should, be handled in
a multi-hypothesis framework. Of course, the fact that the
maximum likelihood association is not computed globally also
affects the performance negatively.

VI. CONCLUSIONS

We have designed a two-stage Kalman filter for extended
target tracking using random matrices. The filter is based on
the assumption that the principal components and the centre of
gravity of the random matrix that describes the extension are
Gaussian distributed. As measurements, we consider the two
independent variables of estimated mean and scatter matrix.
As a consequence, this filter is not restricted to information
only represented by the scattering of the plots. Extension
information may be encapsulated in single plots, for example.

The two-stage filter is evaluated on a single-target scenario,
without data association problems, and a two-target scenario.
The results from the single-target simulation clearly show
that the filter using a data-driven measurement noise model
Rk =

Xk|k
nk

for the centre of gravity performs better than both
the standard Kalman filter and the Bayesian extended target
filter derived in [5]. However, in the two target simulation this
noise model exhibits worse performance than both the noise
model Rk = Xk|k and the fixed noise model. Hence, the filter
that produces the lowest error given a correct association does
not necessarily yield the best tracking result when including
the track-to-cluster association problem. This relates to the dis-
cussion in the beginning of Section II regarding the dynamics
between track filtering and data association.

We believe that the identified difference in tracking perfor-
mance for the three considered measurement models can be
equalized when the likelihood is computed for a global hypoth-
esis, including the probability of false alarm. Thus, future work
will comprise the development of more sophisticated data
association, and will also contain a comparative study with the
Bayesian filter including association. Another logical next step
for the evaluation of tracking and data association performance
would be to incorporate the two-stage filter in a multiple
hypothesis framework, where we utilize the cluster nodes
to hypothesize over both target movement and measurement
clustering. This would mitigate potential instabilities caused
by data-driven noise adaption in the case of large clusters and
motion ambiguities.

In any case, we have seen in this study that a Kalman filter
can be used to filter clustered measurements by utilizing a
pre-stage filter on the principal components. The results are
promising although much testing and evaluation remain.
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APPENDIX A
PROBABILITY DISTRIBUTIONS FOR PRINCIPAL

COMPONENTS OF 2D WISHART MATRICES

The distribution of the orientation α in (5) is derived in [10]
and is written as

p (α|Xk) = p
(
ξ(α);λ2

1, λ
2
2, nk

)
=

1

π (nk + 1)

 λ2
1λ

2
2(

λ2
1+λ2

2

2

)2


nk
2

2F1

(
2, nk,

nk + 3

2
; ξ(α)

)
(14)

where 2F1 is Gauss hypergeometric series of scalar argument.
The argument ξ(α) is defined as

ξ(α) =
[

cosα sinα
] Xk

tr (Xk)

[
cosα
sinα

]
(15)

In order to evaluate 2F1 we recommend using the Laplace
approximation for Gauss hypergeometric function on one
scalar argument, which is given in [11]. The joint distribution
of the eigenvalues is [9]

p
(
l21, l

2
2|Xk

)
=
(nk

2

)nk π2

|X|
nk
2 Γ2

(
nk

2

)
Γ2 (1)

·

lnk−3
1 lnk−3

2

(
l21 − l22

)
0F0

(
−nk

2

[
l21 0
0 l22

]
,X−1

k

)
(16)

where 0F0 is the hypergeometric function of lowest order,
which is basically an exponential trace. However, it is a
function of two matrix arguments which means that we need
to make an approximation in order to evaluate the function
[12].

APPENDIX B
COMPUTING THE SCATTER MATRIX

To compute the measurements centre of gravity z̄k and
scatter matrix Zk for the whole cluster tree bottom up, use
the following simple equations. The node indexed 3 is the
parent of node 1 and 2.

n3 = n1 + n2 (17)

z3 =
1

n1 + n2
(n1z1 + n2z2) (18)

R3 = R1 +R2 +
n1n2

n1 + n2
(z1 − z2) (z1 − z2)

ᵀ (19)

APPENDIX C
COMPUTING THE PRINCIPAL COMPONENTS

To compute the principal components we use the following
eqautions for the eigenvalues

l1 =
r11 + r22

2
+

√
(r11 + r22)

2

4
− (r11r22 − r2

12) (20)

l2 =
r11 + r22

2
−

√
(r11 + r22)

2

4
− (r11r22 − r2

12) (21)

and eigenvectors

qr11≥r221 =

[
(r11−r22)

2 +

√
(r11−r22)2

4 + r2
12

r12

]
(22)

qr11≥r222 =

[
r12

− (r11−r22)
2 −

√
(r11−r22)2

4 + r2
12

]
(23)

qr11<r221 =

[
r12

− (r11−r22)
2 +

√
(r11−r22)2

4 + r2
12

]
(24)

qr11<r222 =

[
(r11−r22)

2 −
√

(r11−r22)2

4 + r2
12

r12

]
(25)

q =
q

|q|
(26)
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