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Figure 1: Molecular systems which are part of our computational laboratory for
development and accuracy calibration of van der Waals density functional (vdW-
DF) calculations [1]. With SNIC resources we pursue projects to determine binding
in graphitics test systems — from C60 dimers (a) to graphene exfoliation [2] —
and in molecular crystals such as cubane (b) [3]. We furthermore use vdW-DF to
characterize molecular physisorption and adsorbate diffusion barriers (c) [4]. Unlike
most semi-empirical approaches (like DFT-D), the vdW-DF method1, 2 provides a
natural framework for inclusion of image-plane effects [5], a prerequisite for achieving
transferability across a range of distances [3, 5, 6]. It is gratifying that a detailed
calibration against the measured shape of the physisorption well for H2 on Cu(111)
(d) [7] suggests a strong performance particularly for the most recent formulation,2

vdW-DF2, and a possibility to refine descriptions of, for example, lateral adsorbate
interactions [4] and DNA structure [8].

Sparseness [1] is a defining property of a very broad class of condensed-matter
phenomena but it represented, until recently, an outstanding challenge for efficient
investigation through use of density functional theory (DFT). Materials are sparse



2

Figure 2: Nature of adhesion and role of nonequilibrium deposition environment
in oxides and oxide nucleation. Inclusion of van der Waals forces is essential for
a correct description of layered oxides like V2O5 (left panel [6]) and for an ex-
foliating alumina/TiC overlayer (structure motifs predicted in middle panel [9]);
traditional covalent and ionic binding describe the adhesion in a wear-resistant alu-
mina/TiC coating (right panel [9]). Inclusion of the nonequilibrium nature of de-
position growth [10, 11] corrects the thermodynamical predictions of the nature of
alumina/TiC overlayer nucleation (from exfoliating) to wear resistant, a coating.

when they contain important regions with low electron concentration where van
der Waals (vdW) forces contribute significantly to the structure and behavior. Ex-
amples are molecular crystals and supramolecular complexes, physisorption and/or
weak adsorption of molecules on surfaces and self-assembly of functional overlayers.
Sparseness is also important in hollow materials and grain boundaries, as well as
for the broad class of layered materials, particularly those which undergo facile ex-
foliation. Such systems did represent a challenge for DFT only because the density
functional was approximated from a local or semi-local variation in density. As part-
ners in a Rutgers-DTU-Chalmers collaboration we are helping to develop a new truly
nonlocal approximation for the density functional.1, 2 A new method, called vdW-
DF, is proving itself useful in extending the power and efficiency of first-principle
DFT from hard materials to the even greater class of sparse-matter challenges [1].

Nonequilibrium thermodynamics often plays an essential role in materials and
nano science. It is possible to couple traditional DFT calculations with kinetic simu-
lations of, for example, materials growth and nanoscale transport. However, a ther-
modynamical atomistic description (with a full quantum-physical account of the elec-
tron behavior) is still highly desirable. Unfortunately, the nonequilibrium nature and
open boundary conditions contradicts the ground-state, canonical-ensemble founda-
tion of standard DFT and we are motivated to seek formal extensions. Progress
includes a formal proof for a DFT for nonequilibrium tunneling.3 We have also de-
veloped a new nonequilibrium thermodynamical account of deposition growth [10].

Allocations of SNIC resources have been instrumental for progress. The pro-
grams involve both basic and applied research. We are grateful that SNIC shares
our view that the catalytic value is enhanced by a direct coupling to advanced com-
putation projects on problems with materials and nano-science relevance. Due to
space limitations we can only exemplify — using figures and figure captions — the
set of projects pursued with computer resources provided by our SNIC allocations.
We refer to the above-listed web pages for a more complete account.
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[5] J. Kleis, E. Schröder, and P. Hyldgaard: Nature and strength of bonding in a crys-
tal of semiconducting nanotubes: van der Waals density functional calculations and
analytical results, Phys. Rev. B 77, p. 205422, 2008.
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