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Abstract. Collocations between two satellite sensors are oc-1  Introduction

casions where both sensors observe the same place at roughly

the same time. We study collocations between the Mi-Atmospheric remote sensing from satellites is a major source
crowave Humidity Sounder (MHS) on-board NOAA-18 and of data for the atmospheric sciences and for operational
the Cloud Profiling Radar (CPR) on-board CloudSat. First, aweather forecasting{dd et al, 2009. Measurements from
simple method is presented to obtain those collocations anéarth observation satellites have a global or near-global cov-
this method is compared with a more complicated approacterage. However, the accuracy of products derived from such
found in literature. We present the statistical properties of themeasurements is often podViglicki et al, 1995 Wu et al,
collocations, with particular attention to the effects of the dif- 2009. A combination of observations from different instru-
ferences in footprint size. For 2007, we find approximately ments enables applications that are impossible with single-
two and a half million MHS measurements with CPR pixels instrument measurements. One way to combine measure-
close to their centrepoints. Most of those collocations con-ments is through collocations. A collocation is an event
tain at least ten CloudSat pixels and image relatively homo-where different (satellite) sensors observe the same location
geneous scenes. In the second part, we present three possilalieroughly the same time. The collocations considered here
applications for the collocations. Firstly, we use the colloca-are mainly between active measurements from the Cloud
tions to validate an operational Ice Water Path (IWP) productProfiling Radar on-board CloudSat, and passive measure-
from MHS measurements, produced by the National Envi-ments from microwave and infrared sensors on-board Na-
ronment Satellite, Data and Information System (NESDIS)tional Oceanic and Atmospheric Administration (NOAA)-

in the Microwave Surface and Precipitation Products Systemil8.

(MSPPS). IWP values from the CloudSat CPR are found to One product obtained by remote sensing measurements is
be significantly larger than those from the MSPPS. Secondlythe Ice Water Path (IWP), the vertically integrated Ice Water
we compare the relation between IWP and MHS channel SContent (IWC) or the column mass density of ice in the at-
(190.311 GHz) brightness temperature for two datasets: thenosphere. Ice clouds are important for the climate, because
collocated dataset, and an artificial dataset. We find a largethey absorb and scatter thermal radiation and reflect solar ra-
variability in the collocated dataset. Finally, we use the col-diation, and thus influence the radiation budget of the Earth
locations to train an Artificial Neural Network and describe (Stephens2005. As shown byJohn and Sode(2006), dif-

how we can use it to develop a new MHS-based IWP productferent General Circulation Models (GCMs) disagree by an
We also study the effect of adding measurements from therder of magnitude about the climatology of IWP. Also IWP
High Resolution Infrared Radiation Sounder (HIRS), chan-values from remote sensing measurements differ consider-
nels 8 (11.11 um) and 11 (8.33 um). This shows a small im-ably (Wu et al, 2009. Therefore, it is important to improve
provement in the retrieval quality. The collocations describedthe quality of ice cloud retrievals. A good understanding of
in the article are available for public use. the cloud signal in microwave radiometer measurements is
an important step in the development of retrieval algorithms
for possible future missions, such as the Cloud Ice Water
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Collocations between sensors on the same platform arperature and IWP, and compare this with the statistics of the
commonly used (for example, sy et al, 1996 Bennartz collocated dataset (Seet.2). Finally, in Sect.4.3 we use
2000. The idea to collocate data from different satellite plat- microwave radiances, with and without infrared measure-
forms is not new eitheiVielicki and Parke(1992 compare = ments, to train an Artificial Neural Network with the Cloud-
the cloud cover obtained with sensors of different spatial resSat IWP as a target. Such a network can then be used to de-
olution. The A-Train constellation was motivated by the ad- velop a new IWP product from microwave (and IR) measure-
vantages of using a combination of measuremestispghens ments. Such applications were not found in peer-reviewed
et al, 2002. Already before CloudSats laundtjller et al. literature.

(2000 described how to use active sensor data as a priori in-

formation for passive sensor retrievals, anticipating “a con-

siderable overlap of CloudSat with the Earth Observing Sys2 Instruments

tem (EOS) PM and Geostationary Operational Environmen-

tal (GOES) satellites”. Several recent studies use the newhe Cloud Profiling Radar (CPR) is a radar instrument
possibilities from the A-Train (for examplelolz et al, 2008 on-board the sun-synchronous CloudSat satelfiteghens
Kahn et al, 2008. However, not much work has been pub- et al, 2002, launched 28 April 2006. It has an operating
lished on actual collocation methods. The first publication onfrequency of 94 GHz and measures profiles of backscattering
the subject appears to be a technical note written in Japanegatio at a 0.16 off-nadir angle. CloudSat generates a pro-
(Aoki, 1980. Judging from the abstracfoki (1980 de- file every 1.1km along-track. A profile footprint is 1.3km
scribes how to match AVHRR and HIRS/2 if the instruments across-track and 1.7 km along-track. A profile is taken ev-
are on the same satellite. Other conference papers on the suery 0.16s. CloudSat is part of the A-Train constellation. It
ject areNagle (1998 andSun et al.(2006. The first peer- has an inclination of 98.26and a Local Time Ascending
reviewed publication on the subject appears ttNagle and  Node (LTAN) varying between 13:30 and 13:45 local solar
Holz (2009, discussed in more detail in Sestl.1 time. We use th&®OIWP(Radar-Only Ice Water Path) field

No literature exists that focusses on collocations betweerirom the2B-CWC-R{level 2b, Cloud Water Content, Radar
an active instrument such as the Cloud Profiling Radar (CPRPnly) product, version 008Austin et al.(2009 describe the
on-board CloudSat and passive, operational instruments oalgorithm to calculate IWC from radar reflectivity profiles.
Polar Orbiting Environmental Satellites (POES) such as theThey report an upper limit of the uncertainty of 40%. How-
MHS on the NOAA-18. However, such collocations have ever, throughout this article, we assume CloudSat CPR to
relevant applications. Although a satellite like CloudSat hasrepresent the truth since it is supposed to provide the most
high quality products, the coverage is small compared to op-accurate measurements of IWP. The data originate from the
erational satellites, and it will have a limited lifetime. If we CloudSat Data Processing Center. All measurements are ge-
can use collocations between CloudSat CPR and NOAA-1®located and time-associated.

MHS to improve the operational microwave IWP retrieval, The Advanced Microwave Sounding Unit-B (AMSU-B)
the advantages will last much beyond the lifetime of the A- and its successor the Microwave Humidity Sounder (MHS)
Train satellites and have a much higher spatial coverageare microwave radiometerSgunders et gl1995 Kleespies
Even passive microwave data from before CloudSat couldand Watts2007. MHS channels 3-5 correspond to AMSU-
be reprocessed with an improved algorithm. Whehgler B channels 18-20. We use the MHS channel numbers. Chan-
et al.(2000 describe a retrieval that requires collocated datanel 3 has a centre frequency of 18331100 GHz with a

for each individual retrieval, we show that collocations can bandwidth of 500 MHz, channel 4 has a centre frequency of
be used to develop new retrievals, that can then be used fat83.313.00 GHz with a bandwidth of 1000 MHz, and chan-
non-collocated passive radiometer measurements. nel 5 has a centre frequency of 1833100 GHz (AMSU-

The main purpose here is to study collocations betweerB) or 190.31 GHz (MHS) with a bandwidth of 2000 MHz
CloudSat CPR and NOAA-18 MHS. Collocations with MHS (AMSU-B) or 2200 MHz (MHS). We use channels 3-5
and AMSU-B on other POES were also located, but due tobecause of the prominent water vapour spectral line at
the large distances between the satellites, few useful collo183.31 GHz. In this article, we neglect the differences be-
cations were found. Hence, the study focuses on NOAA-tween AMSU-B and MHS. Although they are not the same,
18 MHS. The collocation procedure is described in S&ct. the standard deviation of the difference is much larger than
The secondary purpose of the study is to look at possiblehe mean difference, so that a simple correction is not pos-
uses of the collocations. Three applications are described isible Kleespies and Watt2007. Because of its proxim-
Sect.4. Firstly, the NOAA National Environmental Satellite, ity to CloudSat, we focus on NOAA-18 and MHS for the
Data and Information Service (NESDIS) Microwave Surface collocations. However, we have also looked for colloca-
and Precipitation Products System (MSPPS) IWP productions with MetOp-A (a satellite operated by the European
is compared with the IWP product from the CPR on-board Organisation for the Exploitation of Meteorological Satel-
CloudSat (Sect4.1). Simulated radiances from generated lites (EUMETSAT)), NOAA-15, NOAA-16 and NOAA-17,
clouds are used to study the relation between brightness tenso with a total of five satellites. The MHS field of view is
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around 1.2, and the footprint size at nadir is around 15 km

in diameter. It scans across-track in ang|es frod®.44 to lllustration of sensor footprints over the Kiruna region

49.4% with 90 measurements per scan line. A scan takes| = "~ IRy 4T s

8/3s. MHS is currently present on NOAA-18, NOAA-19 : Yol b4 ﬁ:&f(saat roximate)
and MetOp-A, whereas AMSU-B is present on NOAA-15 N e
through NOAA-17. All those satellites are sun-synchronous [* N

satellites. NOAA-18 has an inclination of 98°7and a LTAN
of 13:39". This is close to CloudSat, which leads to a large
number of collocations, as described later in the article.

MHS measures the antenna temperature, which can be cal
ibrated to obtain a brightness temperature in units of Kelvin. [~
We use the ATOVS and AVHRR Pre-processing Package
(AAPP) software package to apply this calibration, described
by Labrot et al (2006 (ATOVS stands for Advanced TIROS
Operational Vertical Sounder, where TIROS stands for Tele-
vision InfraRed Observation Satellite). We obtain the radi-
ances from the NOAA CLASS archive.

All those satellites also carry the infrared radiometer
High Resolution Infrared Radiation Sounder (HIRS), either
HIRS/3 or HIRS/A. HIRS measures in 20 channels, one vis- | #
ible and nineteen infrared. We use channels & (@11 um,

a window channel) and 11 & 7.33 um, a humidity chan-
nel) because ice clouds are clearly visible at those wave- )
lengths. HIRS/3 is present on NOAA-15 through NOAA-17 Fig. 1. Fogtprlnt of the MHS, HIRS/L} and CPR sensors. The
and HIRS/4 is present on NOAA-18, NOAA-19 and MetOp- MHS footprint sizes are calculgted using an gxpressmery-

A. HIRS scans the atmosphere in 56 angles betwet.5 nartz (2000. The HIR_S footprints are approximate. Map data
and 49.5. Those measurements are not on the same gri(?(-)IoenStreeWIap contributors, CC-BY-SA.

as the MHS measurements (see Hig.A HIRS scan takes
6.4s.

. :§

averaged. For each MHS measurement, we note the number
of CPR pixels inside the MHS pixel, the average CPR IWP
value, the standard deviation of the CPR IWP and the frac-
tion of cloudy CPR pixels. For the averaging, we consider
The footprint size of the considered sensors is in the ordethe CPR pixels as point measurements and the MHS pixels
of kilometres, whereas the measurement duration is in thé@s circular measurements with a radius of 7.5km and a con-
order of milliseconds. The spatial extent of a measurement i§tant sensor spatial response function inside this area. In re-
of the same order as the physical extent of a cloud or largeglity, the sensor spatial response function of MHS is better
(kilometers), but the time order of a measurement (fraction@pproximated by a Gaussian shape. Although this might re-
of a second) is much smaller than a typical cloud lifetime duce the representativeness, this effect is small compared to
(minutes to hours)Rogers and Yaul979. other error sources. The total area covered by the CPR pixels

Thus, to have a meaningful collocation, the footprints needis still much smaller than the MHS footprint area. This leads
to have a physical overlap. However, the time between thd0 & sampling error, as discussed in S8c.below.
measurements can be much larger than the duration of a mea- Both datasets are available for public use.
surement. Hence, a collocation occurs when the sensors ob-
serve exactly the same place at approximately the same time&.1  Collocation finding procedure

As shown in Figl, an MHS footprint is an order of mag-
nitude larger than a CPR footprint and HIRS measurementd he collocation finding procedure consists of four steps. The
are not on the same grid as MHS measurements. steps are described in detail in the following text.

We create two collocated datasets. In the first dataset, there
is an entry for each CloudSat measurement collocating with 1. Orbits (granules) with time overlap are selected.
an MHS measurement, so that there can be many collocations
for the same MHS pixel. In the second dataset, each collo-
cation has a unigue MHS measurement and CPR pixels are

3 Finding collocations

2. Orbit sections are selected according to a rough tempo-
ral criterion.

1As of 5 February 2009 00:00:00 from the Polar Orbiting Envi- 3. Measurements possibly fulfilling the spatial criterion
ronmental Satellites (POES) Spacecraft Status website. are selected.
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4. The temporal criterion is applied to the selected 4CloudSat pixel to all MHS pixels

measurements. 5 X 10
The measurement data as obtained from the data providers —all ]
is stored as one file for each orbit. Those files, known =super-interva
as granules, contain geolocated, time-referenced measure- 1.5} X samples

ments. The geolocation refers to the actual measurementc
the position of the satellite is not available and not required <
for the procedure (in contrast dagle and Hol2009 dis- L 1
cussed further down). The filenames contain information &
about the starting and ending time of the data contained by ®
the granule. ©

For each CPR granule, we locate all NOAA and MetOp
granules that have a time overlap with the CPR granule.
Those are two granules for each POES for each CPR gran-
ule, or a total of ten files for each CPR granule to search for 00 560 10‘00 15‘00 20‘00
collocations (MetOp-A and NOAA-15 through NOAA-18). MHS pixel number

We read the CPR file along with each of the associated
POES files. The start and end times of the files are dif'ferentFig. 2. lllustration of collocation principle. For this example, we
The segment with time overlap is selected, plus the segmen{snsider the CloudSat granule starting 6 January 2007 at 01:10 UTC
where the time difference is less than the maximum time in-and the MHS granule starting at the same date at 00:26 UTC. The
terval for a collocation to be considered. For example, if thefigure shows the distance from pixel number 11166 from the Cloud-
CPR granule covers 10:00-11:30UT, and a POES granul&at granule to all MHS pixels at a viewing angle-60.56°. The
covers 11:00-12:30 UT, and our maximum time difference iscrosses show twenty equally spaced samples and the thick line
15 min, we consider the data in the interval 10:45-11:45, orshows the super-interval to be searched for collocations. Refer to
more precisely 10:45-11:30 in the CPR granule and 11:00-the text for further explanation.

11:45 in the POES granule.

As defined above, a collocation has a spatial and a tem-
poral criterion. We use a two-step approach: first we look
for any collocations that might meet the spatial criterion, and 3. Find close points ta\, in B. Here, A, is then-th mea-
then whether those also meet the time criterion. surement in trackd. Figure2 shows the distance from

Starting from the orbit data screened according to the first a CloudSat CPR pixel to all pixels in a MHS track for a
temporal criterion as explained above, we find the measure-  fixed viewing angle. If any collocations exist, they will
ments that meet the spatial criterion. In the first step, we do be close to the global minimum. Find points meeting
not consider the true pixel size or the sensor spatial response  the distance criterion by the following method.
function of either sensor. Instead, we treat the measurements
as points and define a maximum distance to select the mea- (&) ChooseN equidistant points (henceforsamplep

0.5}

2500

2. Start withn = 1.

surement pair for further consideration. The sensor spatial from B as shown in Fig2. Combined with the first
response function and the effective field of view can be used and the last point of the track, the samples define
later to select a subset of those collocations or a weighting of the edges foV +1 intervals. All intervals contain
them to consider the MHS spatial response function. the same number of points, with the exception of
We consider the ground track of each scan angle of the the last interval, that may contain less points than
MHS (trackA) and compare it to the single scan in the CPR the others.
(track B), but the following procedure works as well if both (b) Find which sample is closest t,. Call this sam-
instruments are scanning. ple B,,.

If two ground tracks are plotted, a human observer can ©
see immediately whether there is any spatial overlap or not.
Computers can not, so the following algorithm is used to
identify points where the spatial overlap condition is met.

ConsiderB,,+1, Bu+2,++, B+ WhereB,, ., is the
first sample that does not meet the spatial condition
or the last measurement point of the granule. Con-
siderB,,—1, By—2, -+, B,—; whereB,,,_; is the first

1. The distance in km between successive points of the sample that does not meet the spatial condition or
ground track is computed for both ground tracks, con- the first point of the granule. ¥ is large enough,
sidering only the segments screened according to the all points that meet the spatial criterion are con-
temporal criterion discussed above. The maximum tained by the super-intervaB,,_;, B,,+,), because
speed of the ground tracks is assumed to be the max- the minimum of the distance from, to B will
imum distance. be contained by it (ifV is too small, this interval
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may contain only a local minimum). An example  For each collocation and for each sensor (CPR, MHS,

of such a super-interval is shown by the thick line HIRS and AMSU-A), we store the location (lat/lon), the

in Fig. 2. Consider this super-interval. measurement time, the time of the first measurement in the

file (to help finding the file containing the measurement) and

the location of the point inside the datafile (row/column). We

) . . .. . also store the distance of each centerpoint to the CPR center-

(¢) Note all points for which the spatial condition is - qint and the time difference (MHS time minus CPR time).
met. If there are no such points, remember the dis-jit, this information, one can find exactly which of the CPR
tance of the closest point. pixels fall inside the MHS pixels, possibly considering the

e Sensor spatial response function.

(d) Calculate the distance betwedp and every point
in the super-interval.

As shown in Fig2, N = 20 is already sufficiently larg ) i
to guarantee that any points ® meeting the spatial For the second dataset, we collect the CPR pixels in an
criterion are contained in the super-interval. However, MHS pixel and calculate the number of CPR measurements,

with N = 20 the number of points in the super-interval thg average, the sta_nd.ard dgyiation and the coefficient of vari-
for which the distance tat, will be calculated is still ~ &tion (standard deviation divided by mean) of the IWP prod-
quite large. A largeiv means the super-interval will be uct. Here, we choose a C|_rcular MHS pixel area with a rao_llus
smaller, but the number of samples for which the dis- of 7.5 km, so we are certain that the CPR pixels are contained
tance will be calculated will be larger. The choicerof ~ PY the MHS pixel independently of the scan angle. We also
is thus an optimisation problem to reduce the number ofhote the cloud fraction, defined as the number of CPR pixels
with at least 1 gm? of ice divided by the total number of
CPR pixels inside the MHS measurement.
4. If there were any points for with the spatial condition

was met, increase by 1 and start again from 3. 3.1.1 Comparison withNagle and Holz(2009

distance calculations. We have cho2én- 200.

5. If there were no points for which the spatial condition
was met, calculate the least number of points remainin
before it could be met: increaaeby

The method described above is quite different from the
%method described biMagle and Hol2009, henceforth re-
ferred to as “NH”.

NH divide the two instruments to be collocated intmas-
ter and aslave where the small slave observations are pro-
jected on the large master footprint. They find the location of
the satellites as a function of timéofward navigation and
tance is 120 km, the spatial condition distance 20 km,“estimate the time at which a slave satellite passes abeam of a
and the max speed 10 km/pointwill be increased by master FQV on the surface_ih(/erse na_vigatioh They then
120-20 _ 1. calculatesimultaneous nadir observatisffSNO), when two
10 satellites pass over any point on the ground within a certain
This works, because if the minimum distance framto B time window. For this calculation, NH use an orbital predic-
is 120 km and the distance betwegpnandA, 110is 100km,  tion model. They search the scan lines around the SNO for
the maximum distance between 10 and B cannot be less  overlap with the master FOV. NH assign weights to each of
than 20 km. the slave observations based on the sensor spatial response
The procedure described above is not the fastest possibiinction of the master.
(for example, point (d) could be optimised further) but with  NH claim that their method works for any combination of
this algorithm, the bulk of the time running the code search-satellite, aircraft and ground observations. However, a scan-
ing for collocations was spent on downloading files from a ning instrument might very well collocate with a ground ob-
local server and decompressing them. servation without any SNO if the measurement is strongly
From all points obtained with the procedure describedoff-nadir. For (near)-parallel orbits, this can be the case be-
above, those for which the time difference is less than 15 mirtween different satellites as well. In fact, at one point NH
are selected. Even though many of those CPR measuremeritgresuppose that the two orbital planes are not nearly coinci-
are outside the MHS pixel, all are stored in the collocateddent”.
dataset, because the MHS pixel size is a function of the scan NH use the satellite position to calculate the projected sen-
angle, and some applications may allow for the CPR pixel tosor spatial response function on the Earth surface. We use an
be (just) outside the MHS measurement. Also, it is cheap teexpression fronBennartz(2000 to calculate the size of the
select a subset of collocations, but to find pixels slightly fur- pixel, and we do not presently consider the sensor spatial re-
ther away than the initial criterion, the algorithm would need sponse function.
to be rerun.

smallestdistance- spatialcondition
max.speed

and start again from 3. For example, if the shortest dis-

www.atmos-meas-tech.net/3/693/2010/ Atmos. Meas. Tech., 376832010



698 G. Holl et al.: Collocations — methodology and usage

NH was designed to be computationally efficient and may
very well be faster than our method. However, our method is x 10°

Collocations 2007-01
conceptually simpler than NH. Our method does not require ‘ ‘

- NOAAI15

any forward or inverse navigation. It finds collocations re-
gardless of the presence of simultanuous nadir observations. - NOAA16
For some applications, only simultanuous nadir observations & 3 NOAAL7 ]
are of interest; in this case, NH and our method should give % - NOAA18
the same result. 3 - METOPA

The processing of slightly more than two years of data E 2 .
from CloudSat and five AMSU/MHS sensors with our meth- ~ ©
ods took around two weeks of computer time on a pow- & T
erful workstation (Intel Xeon Dual Quadcore 3.20GHz, £ 1 enooonts i
16 Gigabyte Random Access Memory (RAM)). Most of this 2 i
time was due to transferring files over the network and de- s
compressing them. We did not carry out a comparison of 0 ‘ ‘ J
speed and results using a common set of source data. 0 20 40 60 80

Absolute latitude (degrees)

3.2 Collocation statistics

Fig. 3. A histogram of the number of collocations between the
We have located collocations for the period between 15 Jun€ioudSat CPR and the AMSU-B or MHS sensors on various satel-
2006 13:12 and 4 October 2008 10:34. For the year 2007, wétes in January 2007. The maximum distance for a collocation is
have found 124 822 977 collocations between the NOAA-1815 km; the maximum time between the collocated measurements is
MHS and the CloudSat CPR, where the maximum distancél5 min (900s). The number of collocations refers to the number of
between MHS and CPR centre points did not exceed 15 knPR pixels collocating with an AMSU-B or MHS pixel.
and the time difference between MHS and CPR measure-
ments was limited to 15 min. With a maximum distance of
7.5km and counting the MHS pixels, the number of colloca-
tions reduces to 2669 135. If only tropical nadir points are

selected (within 30 degrees of the equator, within 1 degree o CloudSat and NOAA-18 are in some sort of “orbital res-

. 5 ) .
nadir), around 1% or 26 410 MHS pixels remain. onance”, as shown in Figh, showing the collocations in

Figure 3 shows the latitudes at which collocations occur January 2007. Figurd shows a time series of the number
between the CloudSat CPR and the MHS/AMSU-B on dif- ¢ o) 15cations per hour, where the upper left is 1 January,

ferent satellites. It shows that only the NOAA-18 MHS has 44.90_00:59 and the lower right is 31 January, 23:00-23:59

collocations with the CPR globally. This is due tq the fact (inclusive). The figure shows a collocation pattern with a
that the LTAN of the NOAA-18 (13:39) is always similar to 56-h period: 16 h with collocations, 40 h without.

the CloudSat LTAN (13:30-13:45). NOAA-18 is near the A-

Train constellation and thus near CloudSat, because Cloud3 3 Sampling effects

Sat is part of the A-Train. All other POES considered in

this study have collocations with CloudSat CPR only nearAs shown in Fig.1, an MHS footprint is an order of mag-

the poles. nitude larger than a CPR footprint. The smallest MHS pixel
Figure 4 shows at which angles and latitudes the collo-is the nadir-viewing pixel, which has a diameter of 16 km.

cations occur. At the equator, no nadir collocations with The CPR pixel can be approximated by an ellipse of 1.3 by

a time difference of less than one minute occur. Rather1.7 kn?. It covers at most 0.65% of the area an MHS pixel:

the viewing angle is sligthly off-nadir. If two satellites A 1317

pass through the same place in spasith one minute in CPR_ 77 2,

between, the Earth rotates so their subsatellite points aré!MHs n<1_26>

roughly 1 m/24 0075 km=27.8km apart. For a NOAA-

18 altitude of 850 km, the viewing angle then needs to beMany CPR measurements fit in one MHS measurement.

tan 1(27.8/850) = 1.9°. In reality, the satellites do not pass Since the CPR is not a scanning instrument, CPR pixels

through the exact same point, and the viewing angles for colnever fill an MHS pixel completely. In the best case, a

locations within one minute are slightly larger. The Cloud- nadir MHS pixel contains around 15 CPR pixels (or only

Sat has a slightly lower inclination than NOAA-18, so for a 13 when we limit the collocations to CPR pixels within
7.5km of the MHS centrepoint). The total area is less than

2The same place in space in an Earth-centered inertial referencé5- 0.65%= 9.75% because of the overlap between subse-
system. quent CPR pixels. Usually, the CloudSat ground track does

collocation to occur, NOAA-18 has to look to the left when
it reaches its northernmost point and to the right when it
Feaches its southernmost point.

=0.0065=0.65%
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Colloc. angles 1 min. 2007-01 occurences Collocations, January 2007 4
: ' x 10
! 0 ‘ - — ‘
2500
5
-50¢ >
~ 2000 £10 4
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5 0 1500 g 15 3
= >
20
- 1000 8 2
50¢
500 25 1
"'.-.'- 0 30
-50 0 50 0 5 10 15 20 0
Viewing angle (°) Time of day (UTC)

Fig. 4. This two-dimensional histogram shows at which angles theFig. 5. Number of collocations per hour in January 2007. The
collocations between the NOAA-18 MHS and the CloudSat CPRyertical axis shows the day of the month. The horizontal axis shows
occured in January 2007. The figure shows collocations with a maxthe universal time.

imum time interval of 1 min.

deviation is likely to be much larger for clouds with a high
not pass through the centre of the MHS pixel, and the situaiWP than for clouds with a low IWP. Selecting collocations
tion is worse. Hence, sampling effects need to be taken intdased on the standard deviation would throw away many of
consideration. the measurements with high IWP. The coefficient of varia-
A collocation is considered representative, or good, if thetion is largest when some CPR pixels measure a strong cloud
CPR IWP statistics for the area covered by CPR are the samand others do not measure any cloud at all. This indicates
as the statistics of a hypothetical CPR IWP covering the fullthe presence of a strong, localised cloud, which significantly
MHS pixel. reduces our trust in the representativeness of the CPR pixels.
CPR pixels inside the MHS pixel have the same statis- [N Fig. 6¢, the distribution of CPR inside MHS is shown
tics as they would if they would fill the entire MHS pixel. for three cases. The red dots show a case with an extremely
Whether the collocation is representative cannot be knowrligh coefficient of variation (2.106; note in panel (b) that a
exactly, because high-resolution information on the part ofcoefficient of variation larger than 2 is so rare that it is not vis-
the MHS pixel not covered by CPR pixels is not available ible in the histogram). Since a thick cloud that is only 1km
in this approach. However, we can look at some indicatorsn diameter is unlikely, this happens usually when the cloud
to make an educated guess as to how well the CPR pixel® just on the edge of the MHS pixel. In either case, the CPR
represent the MHS pixel. pixels do probably not share the same statistics as the MHS
Figure6 shows three graphs that give some insight in thefootprint and the collocation is not useful. The green dots

sampling error. The MHS pixel is assumed to be circular Show a case with a very low coefficient of variation (0.017;
with a radius of 7.5 km. cases where all CPR pixels have the same nonzero measure-

ment and the coefficient of variation is 0 occur as well, but
the IWP value tends to be 1 gTh so it would not be visi-
ble in this graph). The portion of the cloud imaged by CPR

In Fig. 6a we can see that most collocations contain a rel-
atively large number of CPR pixels, but many do not. When

the number of CPR pixels inside the collocation is small, the ) .
. PIXEIS IS on ! has a roughly constant IWP of around 70gm It is quite

CPR pixels are close to the MHS footprint edge and poorly,. ) L2
represent the MHS pixel. The highest number of CPR piXeISIlkely that the rest of the MHS pixel looks similar. The exam-

inside a MHS pixel occurs when the CPR groundtrack passeg)le in blue shows a collocation with a coefficient of variation

close to the centre of the MHS footprint. This is the optimal 07 0.354. o . .

case. When the criteria discussed above are applied, sampling

) . - ... effects are reduced and a large number of collocations

Figure6b shows a histogram of the coefficient of variation remain

of the CPR IWP product for the CPR pixels within 7.5 km of '

the MHS centrepoint. A small coefficient of variation cor-

responds to a homogeneous cloud. The more homogeneous

the cloud, the more representative the CPR pixels are for the

complete MHS footprint area. We use the coefficient of vari-

ation rather than the standard deviation because the standard
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Fig. 6. Some collocation properties for 200(&) shows a histogram of the number of CPR pixels that fit inside a MHS pixel (circular with a
7.5 km radius)(b) shows a histogram for the coefficient of variation of all collocations that contain only cloudy pigehows examples
of how CPR IWP may be distributed inside a MHS pixel. See text for a discussion.

4 Applications find a dry bias in the NESDIS IWP product. They explain
this from theZhao and Wend2002 screening criteria and
Collocations can be used in many different ways. This secthe MHS insensitivity for ice particles smaller than 0.4 mm.
tion presents some possible applications of collocations be- ~5,dsat IWP has a systematic uncertainty of up to 40%
tween CloudSat CPR and NOAA-18 MHS. Three examples astin et al, 2009. Judging from the available data, the
are e>tqt)lor<re]d in t::et foIIovt\)/mg subsc_atrr:]tlonsr.] Th|TI secttlgndstdetecﬁon limit for CloudSat IWP is 1 gm.
meant to show what can be done with such a collocated data _. .
i . . Figure7 shows a comparison of the NESDIS MSPPS IWP
Zﬁi 2;&?02?;22 provide a comprehensive study of the dlf-Iter\-/vith the _CloudSat IWP. It shows that the NESDIS IWP is
systematically smaller than the CPR IWP. For many nonzero
4.1 Comparison with NESDIS WP CloudSat measurements, the NESDIS IWP is zero. This is
because thin clouds are (almost) transparent for microwave
Various algorithms exist to determine IWP from microwave radiation in the frequencies at which MHS operat8seen-
radiometer measurementsiyf and Curry 200Q Zhao and ~ Wald and Christophe2003. For some NESDIS IWP mea-
Weng 2002 Weng et al, 2003. The National Environ- surements, the CloudSat IWP is zero. This happens due to
ment Satellite, Data and Information Service (NESDIS) pub-the different footprint sizes. The MHS footprint is much
lishes an operational IWP product from MHS measurementdarger than the CPR footprint. A cloud that does not cover
in the Microwave Surface and Precipitation Products Systenft complete MHS pixel may be missed by the CPR (see
(MSPPS)Zhao and Weng2002 assume spherical ice par- Sect.3.3).
ticles and calculate the effective particle diameter from the MSPPS IWP is systematically lower than CPR IWP by ap-
ratio between the scattering at 89 GHz and 150 GHz. Theyproximately 70-90%Austin et al.(2009 estimate the CPR
assume a constant bulk volume density and calculate the IWRccuracy to 40%, based on a retrieval blind comparison study
from this. They also discuss how errors propagate in the reby Heymsfield et al(2008, which was based on simulated
trieval algorithm, but no discussion of systematic error andradar observations for ice particle data from aircraft in-situ
no validation for the NESDIS MSPPS IWP was found in this measurements. While the profiles considered in that study
paper, nor elsewhere in the literatutd/aliser et al.(2009 may not be representative for all atmospheric cases, we can
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still consider the CPR data to be considerably better validated WP CPR/MHS 2007

10 .
than the MSPPS data. It is therefore likely that the difference log(fraction

reflects a real low bias in the MSPPS data. This is partly -1

a fundamental problem, because of the transparency of thin

clouds to radiation at MHS frequencies. However, MSPPS & -2

underestimates the IWP for thick clouds as well. A more £

accurate IWP product based on microwave measurements is S 3

probably possible. One way to obtain such a product is by %

using a neural network, described later in the article. 5 -4
I

4.2 Comparison of BT-IWP relations = -5

As a second application example, we investigate the relation ! i

between the MHS channel 5 brightness temperature and the 0 2000 4000 6900 8000

associated Ice Water Path for two different datasets. The CPR IWP (g/m©)

first dataset consists of the collocations, providing a map-

ping between brightness temperatures and independent IWPig- 7. Two-dimensional histogram of CloudSat CPR Ice Water

The second dataset consists of a mapping generated froff@th (averaged over an AMSU pixel) and NOAA NESDIS MSPPS

30000 synthetic atmospheres as described below. Note thaf/P: for all collocations in the year 2007. The figure is similar

this mapping predates the collocated measuremeRial- toa scatt.er plot, but it shows the density ef points rther than the

berg et al.(2009 use this method to derive IWC from the actual points. Only measurements \_Nhere either value is nonzero are
- . . . shown. The black line shows the ideal case. The colour scale is

Sub—M|II|metre Radiometer (S_MR) on the Odin satellite. It logarithmic. See text for a discussion.

can potentially be used to derive IWP from MHS.

Atmospheric states, including clouds, are generated fol-
lowing the procedure described Bydberg et al(2009, and  entirely of spherical water particles and the PSD of stratus
a brief overview is given here. Cloud states are generated in 8loud derived byDeirmendijian(1963 is used.
series of steps, where two-dimensional (2-D) radar reflectiv- \Weather data (temperature, humidity, and pressure) and
ity fields from the Cloud Profiling Radar on-board CloudSat ozone information, originating from the European Centre for
serve as the basis for obtaining realistic cloud structures. OrpMedium-Range Weather Forecasts (ECMWF), are obtained
bit sections of CloudSat data (with a resolution~250m  from the CloudSat auxiliary data archive (ECMWF-AUX).
in vertical by 2km along the scan line) are transformed toECMWF-AUX contains ECMWF state variable data inter-
3-D by inputting those into a stochastic iterative amplitude polated to each CPR bin. These fields are handled as de-
adjusted Fourier transform algorithignema et a).2008.  scribed byRydberg et al(2009 in order to have a realistic
This algorithm generates surrogate 3-D radar measuremerfariability that accounts for variations on scales not resolved
fields with the same spatial resolution as the original fields. by ECMWF.

Cloud microphysical fields are generated in such a way Radiative transfer simulations of nadir viewing AMSU-B
that the surrogate 3-D radar reflectivity fields are conservedchannel 20 (corresponding to MHS channel 5) are performed
This is done by assuming that spherical ice particles can baising version 1.1 of the Atmospheric Radiative Transfer
used to represent the single scattering properties of natur&gimulator (ARTS). This is a development of the first ver-
occuring ice particle populations. We lack information about sion, ARTS-1 Buehler et al. 2005, where two scattering
the true shape of the ice particles, which is different for dif- modules, a discrete ordinate iterative meth&dh(le et al.
ferent cloud types, and the most generic assumption is to a2004 and a reverse Monte Carlo algorithrbdvis et al,
sume spheres. This is also the assumption mad&usyin 2005 have been implemented to solve the polarised radia-
et al. (2009 for the CloudSat CPR IWP retrieval. The ac- tive transfer equation. The Monte Carlo module is used
curacy of this approximation is difficult to assess, becauseand the 3-D variability of the atmosphere is fully consid-
the true microphysical parameters are unknown. Furtherered in the radiance simulations. The lower and upper side-
more, the cloud ice particle size distribution (PSD) param-bands of AMSU-B channel 20 are represented by single fre-
eterisation derived byicFarquhar and HeymsfieldL997) quencies of 176.01 and 189.91 GHz, respectively. For a di-
(hereafter MH97) is assumed to be the best representatiomerse set of atmospheric profiles, the root mean square er-
of the tropical mean PSD. MH97 depends on temperaturgor between this approximation and a setup with a finer fre-
and ice water content (IWC), and is used to map radar reflecquency grid is 0.020K. The instrument antenna spatial re-
tivity fields to IWC and PSD fields. However, it should be sponse function is assumed to be a 2-D Gaussian with a
clear that local PSD may deviate significantly from MH97. full-width half-power beamwidth of 1in both dimensions.
For temperatures above 273 K, clouds are assumed to consiBencil beam simulations with a grid spacing matching the
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atmospheric states horizontal resolution are performed. Afacterise the mapping between radiometric measurements and
ter the antenna weighting the precision of the simulationsrelated geophysical variables (elkgasnopolsky2007). We

is better than 0.5K. The IWP is extracted along each penuse an ANN to characterise the mapping between MHS ra-
cil beam where radiative transfer simulations are performeddiances and the CPR IWP, and then use the trained ANN to
The atmospheric scenario has a higher spatial resolution tharetrieve IWP from the MHS measurements. We call this re-
AMSU-B, so the simulated IWP are weighted according to trieval MHS-CPR IWP.

the antenna pattern to obtain the AMSU-B IWP. MHS-CPR IWP has both advantages and disadvantages
Figure 8 shows a comparison between the two relations.compared to other retrieval approaches. One can use a neu-
We average the CPR IWP over the MHS pixel, and select &al network with simulated rather than measured radiances,
subset of collocations. For the collocations, only measureor one can use a more classical retrieval method. As we
ments that are within 20 degrees of the equator are used, ise the collocated measurements, an advantage is the rela-
order to prevent a signal from the surfaBughler and John  tive simplicity; there is no need for a potentially complicated
2009. Only collocations where the MHS measurement is radiative transfer model with many possible sources of error.
within 5 degrees of nadir are used, so that no significanton the other hand, the collocations approach may introduce
limb effect occurs. Finally, collocations are selected wherea number of errors, as discussed in S4@.1 However, an
all CPR pixels are cloudy and the coefficient of variation is MHS-CPR IWP can complement the other existing retrieval
smaller than one, for reasons discussed in Se8above. methods. The retrieval quality can never become as good as
The figure shows AMSU-B channel 20 or MHS channel 5 CloudSat, but the spatial and temporal coverage will be much
brightness temperature as a function of the IWP (logarithmic)larger.
for the two different datasets. In blue are the collocated mea- The neural network approach described below is in the ex-
surements (MHS channel 5 and CPR IWP). The red boxegoration phase and will be developed further.
show simulated radiances for generated atmospheric states

We select a subset of collocations that provide a relativel
(AMSU-B channel 20 and generated IWP). P y

homogeneous dataset. The subset is restricted to pixels over
istical f d he of Gcean within 20 degrees of the equator, because a warm (and
statistical features. For IWP up to aroun .100@2"“ eer . humid) atmosphere prevents the MHS from getting a signal
fect on the brightness temperature is minimal, because thig. - o surfaceBuehler and Johr2005. Due to these re-

clouds artladnotdreSﬁl\_/ed at MHS channr(1a_lsh3—5 frlequer}ciegtrictions' the neural network is only applicable to the trop-
(Greenwald and Christophe2002. For higher values o ics. A strongly off-nadir measurement is colder due to the

IWP, the brightness temperature decreases Iogarithmicallylmb effect @uehler et al.2004. For the training, we re-

B 2 .
as a function of IWP. For IWP-100gn7?, the simulated strict ourselves to measurements within 5 degrees of nadir.

brightness temperatures are slightly higher than the ObserVeflhis avoids the need to compensate for this effect (described

Ones. below). The neural network works for nadir measurements

The microphysical assumptions for the generated atmoy, measurements where the limb effect is compensated.

spheric states are based on MH97, which differ from the as- As discussed in Sec8.3 the MHS measurement com-

sumptions in the CloudSat retrieval. This might contribute to .
the observed differences promises a larger area than the CloudSat measurement, even
S : . when we average the CPR pixels inside an MHS pixel. If
Overall, the variability in the simulated brightness temper- . . )
a small, strong event is present inside an MHS pixel, the

atures is smaller than the variability in the observed bright- ; o .
. . . CloudSat might miss it completely or measure exactly this
ness temperatures. This effect is stronger for higher values . .
. N event. In both cases, the observed MHS radiance is the same,
of the IWP. Several factors may contribute to this discrep- .
: .~ but the CPR IWP can vary considerably. For that reason,
ancy. The CPR pixels are much smaller than the MHS pix- ) )
. we select only homogeneous measurements: the collocation
els, so the measured value is averaged over a smaller areg, . : .
shall contain at least ten CPR pixels, all measuring at least

If a small, concentrated cloud exists inside a MHS pixel, the ) o
. . s ; : . ~1gm <, and the standard deviation shall not exceed the mean
CPR might either see it, in which case it measures a higher

WP thanthe S, o ight i 5o msures alower 10 1 SSE10r o 1 clouey P or e v
IWP. This adds to the variability. Additionally, the generated '

atmospheric states miaht not fully resolve the natural Vari_mean state if it has insufficient information from the input.
P 9 y We want to explore the effect of adding HIRS channels on

?ebrlrlw)é(Srfac;:?ridar:cljcrﬁm)é?tl;al parameters and of atmosphencthe neural netvx_/ork retrieyal. Hence_, we choose collocations
where at least five CPR pixels are within 10 km of the nearest
HIRS pixel.
Finally, only collocations where the time interval is at most
An artificial neural network (ANN) is an interconnected ten minutes are selected.

assembly of processing units called neurons (&ménez For the year 2007, we find 2627 collocations that meet the
etal, 2003. Neural nets are widely used to statistically char- criteria described above.

4.3 Developing a retrieval using neural nets
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In Fig. 9 we show an example of how a NN IWP product
might look like. The data is for 1 January 2008. The left pan-
els show the MHS brightness temperatures between 08:56
and 19:02 UTC, the right panel shows the IWP retrieved by
the neural network.

4.3.1 Error analysis

Four sources of error can be identified: (a) The CPR IWP un-
certainty is up to 40%Austin et al, 2009. This propagates
directly into the MHS-CPR IWP. (b) Collocation mismatches
add noise to the training data, as discussed in Se®tThis
may or may not result in an error in the MHS-CPR IWP
(noise in the input data need not change the best fit). (c) The
inversion from MHS data inherently has a limited accuracy,
leading to a significant uncertainty in the MHS-CPR IWP.

(d) The MHS has a radiometric noise of up to 0.55K and

Fig. 8. Modified boxplot of Ice Water Path and MHS channel 5 or Might suffer from calibration errors.
AMSU-B channel 20 brightness temperature. Radiances are binned Figure10shows a scatter plot between CPR IWP and col-
in 1%0g IWP bins with a width of 0.1 log g/ In each bin, the  located MHS-CPR IWP. Both axes are logarithmic. (a) and
median brightness temperature is shown as a horizontal line. Th¢d) do not contribute to the variability seen here. MHS-CPR
upper and lower bars of the rectangle show the 1st and 3rd quartil¢yWP could still perfectly reproduce MHS-CPR IWP even
(25th and 75th percentile). From the rectangles, dashed lines corconsidering the MHS radiometric noise, because this noise
necF to the 1st and 99th percentile. All pther points are _defined agg part of the training data. If it would do so, CPR IWP might
o_utllers_ and plotted as _pluses. Collocations are shown in blue ancéti” be off by 40% compared with the true atmospheric WP,
simulations are shown in red. . L
but Fig.10would not show variability.
The variability is consistent with simulations similar to the

For the neural network calculations, we use the MATLAB ones described inJ{ménez et a.2007. Since those simu-
Neural Network toolbox V6.0.1 (R2008b). The collocations lations did not use collocations, the dominant source of the
are divided in 60% training, 15% testing and 25% validation. variability in Fig. 10is likely to be the inversion error (c).
MHS channels 3, 4 and 5 are the inputs. As a target, we For low IWP, the network exhibits a wet bias. Thin
choose the log IWP which was found to work better than theclouds are (almost) completely transparent at MHS frequen-
ordinary IWP. The transformation is reversed after the appli-cies Buehler et al.2007), so with only those measurements,
cation of the neural network. Throughout the process, CPRhere is no information for thin clouds. With no information,
IWP is assumed to be the truth. The training is considered tahe neural network tends towards the mean state. Since only
be finished if the error with the testing data increases for fif-cloudy CPR pixels were used for the training, this explains
teen consecutive iterations. After training, we store a neurathe wet bias.
network that we can then use for our retrieval. Figure 11 shows the neural network sensitivity to MHS

To compensate for the limb effect, we correct the bright- radiometric noise. A subset of tropical nadir measurements
ness temperatures before we input them to the networkfor 2007 are selected. For practical reasons, this subset con-
For each viewing angle and channel, the mean brightnessists of the MHS measurements for where collocations could
temperature is calculated. We use only tropical measurepe found; however, as the CloudSat values are not used for
ments (within 30 degrees of the equator) to prevent an anglethis figure, those measurements are effectively a sample of
dependent signal from Antarctica, which is mainly seen byall MHS measurements for 2007. The figure shows the mean
one side of the scan. The limb effect is minimal for the two fractional IWP error as a function of IWP and input noise.
viewing angles closest to nadir. The average brightness temgor this figure, the neural network is applied twice. First,
perature for those angles is the reference. The limb effect cathe unperturbed input data (MHS brightness temperatures for
be quantified by the difference between the reference brightchannels 3, 4 and 5) are fed into the ANN. This gives an un-
ness temperature and the mean brightness temperature forparturbed IWP for each measurement. Then, we add gaus-
certain viewing angle. We compensate for the limb effect bysian noise, starting with=0.1 K, to the input data, and feed
adding this difference to all measurements for this viewingthis perturbed daft\q to the ANN. This results in a perturbed
angle. IWP denoted by\WP. For each collocation, the fractional

W

error is calculated aHWE — 1‘. Those fractional errors are
divided into bins according to the unperturbed IWP value.
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NOAA-18 MHS 2008-01-01 10:54 — 17:20 UTC
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Fig. 9. The neural network (see text) can be used to retrieve IWP from radiances. The figure shows observations by NOAA-18 in the
descending node on 1 January 2008 between 10:54 and 17:20UTC (local time during the night). The left panels show the brightness
temperatures as observed by the MHS channels 3-5. The right panel shows the IWP as generated with the neural network as described in th
text. Cold areas in the left panel correspond to wet areas in the right panel.

For each bin, we calculate the mean fractional error. Thisquite sensitive to input noise. The actual radiometric noise

process is repeated for higher valuesogfup to 0=2.0K, for MHS depends on the channel, but is always below 0.55 K

taking steps 0&6=0.1K. (Kleespies and Watt007). This means that radiometric
noise is unlikely to be a dominant error source for this kind

Unsurprisingly, Fig.11 shows that a higher input noise of WP retrieval method.

results in a higher error in the output. This effect is lin-

ear. The mean fractional error as function of IWP is less4.3.2 Adding HIRS

straightforward. The error is largest for IWP values of around

100gnT2 and smaller for values that are either larger or Thin clouds are not visible by MHS channels 3-5 because

smaller. This can be explained as follows. For small IWP,the effect of ice clouds on microwave radiation at those fre-

a small perturbation in the brightness temperatures has litquencies is relatively small. In the infrared, the situation

tle influence on the IWP. The ANN does not interpret the is different: even a small cloud has an observable effect,

brightness temperature noise as IWP. This is in line with thebut an infrared sensor does not see the difference between

observation that thin clouds are transparent to the frequenciea medium cloud and a thick cloud, because the sensor is sat-

at which MHS operates3reenwald and Christophet002), urated quickly Jiménez et al.2007). Hence, we can expect

and can also be seen in Fig). For large IWP, MHS chan- the retrieval quality to improve if we combine infrared and

nels 3-5 will observe large depressions in brightness temmicrowave measurements.

perature, and a 2K noise is much smaller than the signal, Figurel2 shows a scatter plot similar to FigO, but with

so its effect on the output is also small. However, for in- additional HIRS channels 8 and 11 (chosen for their clear

termediate values of IWP, around 100 gfnthe noise is of  cloud signal). The number of collocations used for the neural

a similar order of magnitude as the signal, and the ANN isnet remains the same, because we already preselected the
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Fig. 10. Scatter plot showing the performance of the ANN using Fig. 12. Scatter plot to show the performance of the neural network,
MHS channels 3 to 5. The retrieved IWP is plotted against the inputMHS 3-5, HIRS 8 and 11.
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Fig. 13. Comparison of the median fractional error between

Fig. 11. ANN sensitivity to errors in the input brightness tempera-
tures. Here, only the MHS channels are used as input to the ANN
See the text for an explanation and a discussion.

independent and retrieved IWP, when only MHS channels are
used or when both MHS and HIRS channels are used as input
to the ANN. The median fractional error is defined as the me-

dian of all errors with a certain IWP, where the error is defined as
IWPNN—IWPCPR

collocations so that at least five CPR pixels are less thar{ WPcpR

10 km from the nearest HIRS pixel centerpoint.
By eye, it is hard to see whether there is any improvement
gained by adding them. nels. However, the error is still large, since a median relative
Figure 13 shows the fractional median error as a function error of 2 means that the retrieved IWP is on average a factor
of IWP for both cases. Here, the fractional median error is2 off. For larger values of IWP, the errors are roughly the
defined relative to CloudSat, so CloudSat is assumed to beame, as expected.
true. The dashed line shows the error for the ANN where the Why the retrieval does not strongly improve when adding
input consists only of MHS channels, the dotted line showsHIRS is not yet fully understood. One factor may be the
the error for the ANN with an input consisting of MHS chan- difference in footprint location for HIRS and MHS, even if
nels 3-5 and HIRS channels 8 and 11. For small values obnly collocations with at least 5 CPR pixels in the HIRS pixel
IWP there is an improvement when adding the HIRS chan-are considered. Additionally, HIRS might suffer from the
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beam-filling problem: the sensor may be saturated if only all to such an ANN. Unexpectedly, this leads to only a small
part of the pixel is cloud-covered, and be unable to tell theimprovement in the retrieval quality.
difference between a partly cloudy and a fully cloudy pixel. The IWP retrieval using an Artificial Neural Network
A further investigation is necessary and will be carried out. looks promising, but requires additional work. We can im-
prove the retrieval in various ways. One can make a stronger
restriction for homogeneous scenes by looking at MODIS or
AVHRR pixels inside the MHS, although this is limited as
5 Conclusions infrared measurements do not detect the vertical extent of
the cloud. Another alternative is to combine MHS with other
The coIIocatiorj—finding method described in this work finds {|rRs channels than those explored so far, or to directly input
many collocations between the NOAA-18 MHS and the 4 combination of MHS and AVHRR for the training. On the
CloudSat CPR. Those collocations are frequent and globallyiher hand, the ANN might be extended to work for more
distributed. Other POES collocations with CloudSat are lim- easurements. By having more input parameters or multiple
ited to the polar areas. Sampling effects due to different foot,q;ral networks, the retrieval could work globally,
print sizes need to be taken into consideration. One can extract additional information from other high-
There are numerous possible improvements to our procerespjution data, such as from the Moderate Resolution
dure. The procedure to find the collocations can be refined b)(maging Spectroradiometer (MODIKing and Greenstone
considering how the MHS footprint size depends on the scangog or the Advanced Very High-Resolution Radiometer
angle. Even better, one can project the MHS sensor spatiglayHRR; Cracknel] 1997). to better characterise the col-
response function onto the surface and calculate a weighteghcations. Those can be used to make a stronger estimate as
average of the collocated CPR pixels, similar to the proce+g how homogeneous the scene observed by MHS is.
dure described biagle and Hol42009. All the applications can be expanded upon and many other
In comparison wittNagle and Hol42009, our algorithm applications can be developed.
is relatively simple. For example, it does not need satellite  These and other issues will be adressed in further research.
pOSition data. It finds collocations even in the absence Of]n particu|ar, future work will focus on deve]oping a g|0ba|
simultaneous nadir observations. IWP product from passive microwave and infrared sensors
Our method was designed for the case where one instruavailable on operational polar orbiting satellites.
ment is scanning and the other has a fixed viewing angle. It The collocations are available for public use.
also works if both instruments are scanning, but in this case,
it is slow and a different method is more suitable. If either
satellite is geostationary or both instruments are on the samécknowledgementsThe bulk of the work was carried out as part
satellite, more optimised methods may be appropiate. The&f the Master’'s Thesis by first author Gerrit Holl. Thanks to the

method does not depend on the nature of the sensor (activ%patlz(en;aster elducation _pro_grammz for makinghthish possriblle. dWe
passive) or the footprint size. thank the people, organisations and institutes that have helped us
to obtain the satellite data. Thanks to to Lisa Neclos for helping

The collocations have various applications. They can beus with archived HIRS data, and to all involved with the NOAA

used to compare different IWP products. As an examplec| ass archive for recent and current MHS, AMSU-B and HIRS
we have compared the NOAA NESDIS MSPPS MHS IWP measurements.  Thanks to CloudSat for making available an

product against the CloudSat CPR IWP product. IWP valuesaccurate IWP product. We thank the UK MetOffice for providing
from the CloudSat CPR were found to be significantly largerthe AAPP package and the ARTS radiative transfer community
than those from the MSPPS. This may be partly attributedfor its work on ARTS. We would also like to thank the National
because thin clouds are transparent to radiation at MHS freGraduate School in Space Technology at Buleniversity of
quencies, but since the MSPPS underestimates IWP even fdechnology. Thanks to the OpenStreetMap community for the
high values, there should be room for improvement. freely u;eaple map-data in.Fig. We would like to thank the
As a second example, we have compared the IWP-BT rela?MT Editorial Board, associate edutgr _Bernh:?\rd Mayer, and two
tion for our collocations with the one for simulated radiances "™ mOUS FEVIEWErs, for their work in improving the article.
from synthetic atmospheric cases. The variability in the mea-
sured relation was found to be larger than the variability for ggiteq py: B. Mayer
the simulated relation.
The validation for simulated radiances was performed sta-
tistically. A stronger validation would be to simulate the ra-
diances for the exact cases where a collocation exists.
As a final example, we have used the collocations to train
an Artificial Neural Network to develop a new IWP product.
We have shown that this method is promising. Finally, we
have investigated the effect of adding HIRS channels 8 and

Atmos. Meas. Tech., 3, 693068 2010 www.atmos-meas-tech.net/3/693/2010/



G. Holl et al.: Collocations — methodology and usage 707

References tection and height evaluation using CALIOP, J. Geophys. Res.,
113, DO0A19, doi:10.1029/2008JD009837, 2008.

Aoki, T.: A Method for Matching the HIRS/2 and AVHRR Pictures  Jiménez, C., Eriksson, P., and Murtagh, D.: Inversion of Odin limb
of TIROS-N Satellites, Tech. rep., Meteorological Satellite Cen-  sounding submillimeter observations by a neural network tech-
ter, technical Note No. 2, 1980. nique, Radio Sci., 38, 8062, doi:10.1029/2002RS002644, 2003.

Austin, R. T., Heymsfield, A. J., and Stephens, G. L.. Re- Jiménez, C., Buehler, S. A., Rydberg, B., Eriksson, P., and Evans,
trievals of ice cloud microphysical parameters using the Cloud- K. F.: Performance simulations for a submillimetre wave cloud
Sat millimeter-wave radar and temperature, J. Geophys. Res., ice satellite instrument, Q. J. R. Meteorol. Soc., 133, 129-149,
114, DO0A23, doi:10.1029/2008JD010049, 2009. doi:10.1002/qj.134, 2007.

Bennartz, R.. Optimal Convolution of AMSU-B to AMSU- John, V. O. and Soden, B. J..: Does convectively-detrained
A, J. Atmos. Oceanic Technol., 17, 1215-1225, doi:10.1175/ cloud ice enhance water vapor feedback?, Geophys. Res.
1520-0426(2000)0%7215:0COABT2.0.CO;2, 2000. Lett., 33, L20701, doi:10.1029/2006GL027260, see cor-

Buehler, S. A. and John, V. O.: A Simple Method to Relate Mi-  rections in John and Soden (2006), GRL, 33, 123701,
crowave Radiances to Upper Tropospheric Humidity, J. Geo- doi:10.1029/2006GL028663, 2006.
phys. Res., 110, D02110, doi:10.1029/2004JD005111, 2005.  Kahn, B. H., Chahine, M. T., Stephens, G. L., Mace, G. G., Marc-

Buehler, S. A., Kuvatov, M., John, V. O, Leiterer, U., and Dier,  hand, R. T., Wang, Z., Barnet, C. D., Eldering, A., Holz, R. E.,
H.: Comparison of Microwave Satellite Humidity Data and Ra-  Kuehn, R. E., and Vane, D. G.: Cloud type comparisons of
diosonde Profiles: A Case Study, J. Geophys. Res., 109, D13103, AIRS, CloudSat, and CALIPSO cloud height and amount, At-
doi:10.1029/2004JD004605, 2004. mos. Chem. Phys., 8, 1231-1248, 2008,

Buehler, S. A., Eriksson, P., Kuhn, T., von Engeln, A., and Verdes, http://www.atmos-chem-phys.net/8/1231/2008/

C.. ARTS, the Atmospheric Radiative Transfer Simulator, J. Kidd, C., Levizzani, V., and Bauer, P.: A review of satellite mete-
Quant. Spectrosc. Radiat. Transfer, 91, 65-93, doi:10.1016/j. orology and climatology at the start of the twenty first century,
jgsrt.2004.05.051, 2005. Prog. Phys. Geog., 33, 474-489, 2009.

Buehler, S. A,, Jirenez, C., Evans, K. F., Eriksson, P., Rydberg, King, M. and Greenstone, R.: EOS reference handbook : a guide to
B., Heymsfield, A. J., Stubenrauch, C., Lohmann, U., Emde, C., NASAs Earth Science Enterprise and the Earth Observing Sys-
John, V. O., Sreerekha, T. R., and Davis, C. P.: A concept fora tem, NASA/Goddard Space Flight Center, 1999.
satellite mission to measure cloud ice water path and ice particlekleespies, T. J. and Watts, P.. Comparison of simulated radiances,
size, Q. J. R. Meteorol. Soc., 133, 109-128, doi:10.1002/qj.143, Jacobians and linear error analysis for the Microwave Humidity
2007. Sounder and the Advanced Microwave Sounding Unit-B, Q. J.

Cracknell, A.: The advanced very high resolution radiometer R. Meteorol. Soc., 132, 3001-3010, 2007.

(AVHRR), CRC Press, Boca Raton, FL, United States, 1997.  Krasnopolsky, V.: Neural network emulations for complex multi-

Davis, C., Emde, C., and Harwood, R.: A 3D Polarized Re- dimensional geophysical mappings: Applications of neural net-
versed Monte Carlo Radiative Transfer Model for mm and sub-  work techniques to atmospheric and oceanic satellite retrievals
mm Passive Remote Sensing in Cloudy Atmospheres, |IEEE and numerical modeling, Rev. Geophys., 45, RG3009, doi:
T. Geosci. Remote, 43, 1096-1101, doi:10.1109/TGRS.2004. 10.1029/2006RG000200, 2007.

837505, 2005. Labrot, T., Lavanant, L., Whyte, K., Atkinson, N., and Brunel, P.:

Deirmendjian, D.: Complete Microwave Scattering and Extinction ~ AAPP Documentation Scientific Description, version 6.0, doc-
Properties of Polydispersed Cloud and Rain Elements, Tech. rep., ument NWPSAF-MF-UD-001, Tech. rep., NWP SAF, Satellite
United States Air Force, RAND, r-422-PR, 1963. Application Facility for Numerical Weather Prediction, 2006.

Emde, C., Buehler, S. A., Davis, C., Eriksson, P., Sreerekha, T. R.Liu, G. and Curry, J. A.: Determination of Ice Water Path and Mass
and Teichmann, C.: A Polarized Discrete Ordinate Scattering Median Particle Size Using Multichannel Microwave Measure-
Model for Simulations of Limb and Nadir Longwave Measure-  ments, J. Appl. Meteorol., 39, 1318-1329, 2000.
ments in 1D/3D Spherical Atmospheres, J. Geophys. Res., 109McFarquhar, G. M. and Heymsfield, A. J.: Parameterization of
D24207, doi:10.1029/2004JD005140, 2004. Tropical Cirrus Ice Crystal Size Distribution and Implications

Frey, R. A., Ackerman, S. A., and Soden, B. J.: Climate Param- for Radiative Transfer: Results from CEPEX, J. Atmos. Sci., 54,
eters from Satellite Spectral Measurements. Part I: Collocated 2187-2200, 1997.

AVHRR and HIRS/2 Observations of Spectral Greenhouse Pa-Miller, S. D., Stephen, G. L., Drummond, C. K., Heidinger, A. K.,
rameter, J. Climate, 9, 327-344, 1996. and Partain, P. T.: A multisensor diagnostic satellite cloud prop-

Greenwald, T. J. and Christopher, S. A.: Effect of cold clouds on erty retrieval scheme, J. Geophys. Res., 105, 19955-19971,
satellite measurements near 183 GHz, J. Geophys. Res., 107, 2000.

D13, doi:10.1029/2000JD000258, 2002. Nagle, F. W.: The Association of Disparate Satellite Observations,

Heymsfield, A. J., Protat, A., Austin, R., Bouniol, D., Hogan, R.,  in: Second Symposium on Integrated Observing Systems, pp.
Delanc, J., Okamoto, H., Sato, K., van Zadelhoff, G.-J., Dono-  49-52, 1998.
van, D., and Wang, Z.: Testing IWC Retrieval Methods Using Nagle, F. W. and Holz, R. E.: Computationally Efficient Methods
Radar and Ancillary Measurements with In Situ Data, J. Appl.  of Collocating Satellite, Aircraft, and Ground Observations, J.
Meteorol. Clim., 47, 135-163, doi:10.1175/2007JAMC1606.1,  Atmos. Oceanic Technol., 26, 1585-1595, 2009.

2008. Rogers, R. and Yau, M.: A short course in cloud physics, Pergamon

Holz, R. E., Ackerman, S. A., Nagle, F. W,, Frey, R., Dutcher, S.,  press Oxford, 1979.

Kuehn, R. E., Vaughan, M. A., and Baum, B.: Global Moder- Rydberg, B., Eriksson, P., Buehler, S. A., and Murtagh, D. P.: Non-
ate Resolution Imaging Spectroradiometer (MODIS) cloud de-

www.atmos-meas-tech.net/3/693/2010/ Atmos. Meas. Tech., 376832010


http://www.atmos-chem-phys.net/8/1231/2008/

708

G. Holl et al.: Collocations — methodology and usage

Gaussian Bayesian retrieval of tropical upper tropospheric cloudWeng, F., Zhao, L., Ferraro, R. R., Poe, G., Li, X., and Grody, N. C.:

ice and water vapour from Odin-SMR measurements, Atmos.

Meas. Tech., 2, 621-637, 2009,
http://www.atmos-meas-tech.net/2/621/2009/

The Radiometric Characterization of AMSU-B, IEEE T. Microw.
Theory, 43, 760-771, 1995.

Stephens, G. L.: Cloud feedbacks in the climate system: A critical

review, J. Climate, 18, 237-273, 2005.

Advanced microwave sounding unit cloud and precipitation algo-
rithms, Radio Sci., 38, 8068, doi:10.1029/2002RS002679, 2003.

Wielicki, B. A. and Parker, L.: On the Determination of Cloud
Saunders, R. W., Hewison, T. J., Stringer, S. J., and Atkinson, N. C.:

Cover From Satellite Sensors: The Effect of Sensor Spatial Res-
olution, J. Geophys. Res., 97, 12799-12 823, 1992.

Wielicki, B. A., Cess, R. D., King, M. D., Randall, D. A., and Harri-

son, E. F.: Mission to Planet Earth: Role of Clouds and Radiation
in Climate, Bull. Amer. Met. Soc., 76, 2125-2153, 1995.

Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, KWu, D. L., Austin, R. T., Deng, M., Durden, S. L., Heymsfield,

Wang, Z., lllingworth, A. J., OConnor, E. J., Rossow, W. B., Dur-
den, S. L., Miller, S. D., Austin, R. T., Benedetti, A., Mitrescu,
C., et al.: The Cloudsat Mission and the A-Train, Bull. Amer.
Met. Soc., 83, 1771-1790, 2002.

Sun, H., Wolf, W., King, T., Barnet, C., and Goldberg, M.: Co-

A. J., Jiang, J. H., Lambert, A, Li, J.-L., Livesey, N. J., McFar-
quhar, G. M., Pittman, J. V., Stephens, G. L., Tanelli, S., Vane,
D. G., and Waliser, D. E.: Comparisons of global cloud ice from
MLS, CloudSat, and correlative data sets, J. Geophys. Res., 114,
DO00A24, doi:10.1029/2008JD009946, 2009.

Location Algorithms for Satellite Observations, in: 86th AMS Zhao, L. and Weng, F.. Retrieval of Ice Cloud Parameters Using
Annual Meeting, this paper appears in the Proceedings of the the Advanced Microwave Sounding Unit, J. Appl. Meteorol., 41,

14th Conference on Satellite Meteorology and Oceanography,

2006.

Venema, V., Ament, F., and Simmer, C.: A Stochastic Iterative Am-
plitude Adjusted Fourier Transform algorithm with improved ac-
curacy, Nonlin. Processes. Geophys., 13, 321-328, 2006.

Waliser, D. E., Li, J.-L. F., Woods, C. P., Austin, R. T., Bacmeister,
J., Chern, J., Genio, A. D., Jiang, J. H., Kuang, Z., Meng, H.,

Minnis, P., Platnick, S., Rossow, W. B., Stephens, G. L., Sun-

Mack, S., Tao, W.-K., Tompkins, A. M., Vane, D. G., Walker, C.,
and Wu, D.: Cloud ice: A climate model challenge with signs

and expectations of progress, J. Geophys. Res., 114, DO0A21,

doi:10.1029/2008JD010015, 2009.

Atmos. Meas. Tech., 3, 69308 2010

384-395, 2002.

www.atmos-meas-tech.net/3/693/2010/


http://www.atmos-meas-tech.net/2/621/2009/

