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Abstract

Background: The Hill function and the related Hill model are used frequently to
study processes in the living cell. There are very few studies investigating the
situations in which the model can be safely used. For example, it has been shown, at
the mean field level, that the dose response curve obtained from a Hill model agrees
well with the dose response curves obtained from a more complicated Adair-Klotz
model, provided that the parameters of the Adair-Klotz model describe strongly
cooperative binding. However, it has not been established whether such findings
can be extended to other properties and non-mean field (stochastic) versions of the
same, or other, models.

Results: In this work a rather generic quantitative framework for approaching such a
problem is suggested. The main idea is to focus on comparing the particle number
distribution functions for Hill’s and Adair-Klotz’s models instead of investigating a
particular property (e.g. the dose response curve). The approach is valid for any
model that can be mathematically related to the Hill model. The Adair-Klotz model is
used to illustrate the technique. One main and two auxiliary similarity measures were
introduced to compare the distributions in a quantitative way. Both time dependent
and the equilibrium properties of the similarity measures were studied.

Conclusions: A strongly cooperative Adair-Klotz model can be replaced by a suitable
Hill model in such a way that any property computed from the two models, even
the one describing stochastic features, is approximately the same. The quantitative
analysis showed that boundaries of the regions in the parameter space where the
models behave in the same way exhibit a rather rich structure.

Background
The Hill function and the related Hill model [1] are used frequently to study biochem-

ical processes in the living cell. In strict chemical terms Hill’s model is defined as

C + hA ↔ Ch (1)

where C denotes a protein that binds ligands, A is a ligand, and Ch is a ligand-pro-

tein complex having hA molecules attached to C. The stoichiometric coefficient h

describes the number of ligand binding sites on the protein. All ligands bind at once.

Both the forward and the back reactions are allowed. It is relatively simple to derive

the expression for the dose response curve (the Hill function) which relates the

amount of free ligands, a, to the fraction of ligand-bound proteins (e.g. receptors) in

the system, �. The Hill function is given by
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ϕ =
ah

K0

1 + ah

K0

(2)

where K0 denotes the dissociation constant.

The Hill function is used frequently in various areas of physics, biology, and chemis-

try. For example, it is widely used in pharmacological modeling [2], as well as in the

modeling of biochemical networks [3]. In the most common scenario, the Hill function

is fitted to an experimentally obtained dose response curve to infer the value of the

stoichiometry coefficient, h. The value obtained in such a way is not necessarily an

integer number and is referred to as the Hill coefficient. The number of ligand binding

sites is an upper limit for the Hill coefficient. The Hill coefficient would reach this

limit only in the case of very strong cooperativity. More discussions on the topic can

be found in [4]. However, in present study, the variable h will be allowed only non-

negative integer values.

Hill’s model has been heavily criticized since it describes a situation where all ligands

bind in one step [5]. In reality, simultaneous binding of many ligands is a very unlikely

event. A series of alternative models have been suggested where such assumption is

not implicit [6-8]. A typical example is the Adair-Klotz model [6] defined as

Ci−1 + A
αi−→ Ci (3)

Ci

βi−→ Ci−1 + A (4)

with i = 1, ..., h’. Protein C binds ligands successively in h’ steps. Here, and in the fol-

lowing, the subscript i on C denotes the number of A molecules attached to it, with

the obvious definition C0 ≡ C. Apparently, in comparison to the Hill model, the alter-

native models - while being more realistic - are more complicated and harder to deal

with (e.g. the Adair-Klotz model shown above). Accordingly, the central question being

addressed in this work is whether it is possible to establish conditions where Hill’s

model can be used safely as a substitute for a more complicated reaction model. With

a generic understanding of when this can be done, it should be possible to study an

arbitrary reaction system with the elegance that comes with the use of Hill’s model,

knowing at the same time that the results are accurate. Also, even if there is evidence

that the Hill model might describe the problem, it is not immediately clear which fea-

tures of the problem can be described faithfully.

In the following, Hill’s model will be compared with a well chosen reaction model

that is more realistic, and not too complicated from the technical point of view. The

Adair-Klotz model discussed previously is a natural choice since it assumes that

ligands bind sequentially, and the model is relatively simple to deal with.

Furthermore, it is necessary to choose which property to study. For example, Hill’s

and Adair-Klotz’s models have been compared in [5] where the property of interest

was the dose-response curve �(a). Using classical chemical kinetics, the dose-response

curves predicted from Adair-Klotz’s and Hill’s model were compared neglecting fluc-

tuations in particle numbers. It was found that for a strongly cooperative Adair-Klotz

model it is possible to find the parameters for Hill’s model that will result in similar
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dose response curves. The question is what happens for other properties, and what

happens when fluctuations in particle numbers are taken into account?

To avoid dealing with a particular choice of a property of interest, and to strive for

an exact treatment, the models will be compared on the level of the respective particle

number distributions. The position developed in this work is that the particle number

distribution function of a model is the fundamental quantity that describes all features

of the system. If the particle number distributions are similar, any property computed

from them should have numerical values that are close. For example, the relevant vari-

able for both models is the number of free ligands in the system. If the particle num-

ber distribution functions are same for both models then the resulting number of free

ligands will be same. However, the opposite might not hold: it might be that the num-

ber of free ligands is same but some other quantity (e.g. fluctuations in the number of

free ligands) might be be vastly different. To avoid such traps, the focus is on compar-

ing the particle number distribution functions directly.

The scope of the analysis in [5] will be extended in several ways. First, in addition to

studying the stationary (equilibrium) properties of the models, dynamics will be studied

as well. Many processes in the cell are strongly time dependent and involve coopera-

tive binding, such as the early stages of signalling processes, and cascades in later

stages of signal propagation phase. Likewise, many processes in the cell need to happen

in a particular order. Clearly, the time and dynamics play a crucial role in the workings

of cell biochemistry. Second, the previous mean field (classical kinetics) analysis will be

extended to account for effects of fluctuations (intrinsic noise). It has been recognized

that intrinsic noise (fluctuations in the numbers of particles) is not just a nuisance that

the cell has to deal with, but is an important mechanism used by the cell to function

[9-12]. Intrinsic noise becomes important when protein copy numbers are low. Such a

situation is frequent in the cell (e.g. gene expression networks). Third, a generic com-

parison of the models will be provided by focussing on the particle number distribu-

tion functions.

Results and discussion
Description of models

The models are parameterized as follows. Hill’s model is parameterized by two reaction

rates for the forward and the back reactions that will be denoted by a and b respec-

tively. The dissociation constant for the model K0 is governed by the ratio b/a and for

simplicity it will be assumed that

K0 = β
/
α (5)

The Adair-Klotz model involves more parameters: the forward and the back reaction

rates for an i-th reaction are given by ai and bi respectively, and i = 1, ..., h’. The disso-

ciation constants for the Adair-Klotz model are defined as

Ki ≡ βi

αi
; i = 1, . . . , h′ (6)

It is assumed that the particles mix well and that it is sufficient to count the parti-

cles. The models are stochastic and are described using the continuous time Markov

chain formalism [13]. The reaction rates govern the transition probabilities between
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states of the system. The master equations for the models are the consequence of the

corresponding forward Chapman-Kolmogorov equations for the transition probabilities.

The solutions of the master equations are the particle number distribution functions as

explained in the “Computation of the distribution functions” section. To compare the

distribution functions for the models, three similarity measures are defined in the

“Comparison of the distribution functions” and “Fine tuning the comparison proce-

dure” sections.

From the model-centric view taken in this investigation, the best way to compare the

distribution functions is to choose h = h’. This makes the number of binding steps in

the Adair-Klotz model equal to the stoichiometric coefficient of the Hill model. Also,

within the scope of this work, to simplify wording, the variable h will be simply

referred to as the Hill coefficient. The choice h = h’ makes it possible to relate the dis-

tribution functions in a rather natural way. Namely, if h = h’, it is possible to establish

a one to one correspondence between Hill’s model state space and a subspace of

Adair-Klotz’s model state space. The respective states in these spaces will be referred

to as common states, or the common state space.

The first similarity measure defined, δ(t), quantifies the similarity between the distri-

bution functions for Hill’s and Adair-Klotz’s models on the space of common states. In

the text this similarity measure is referred to as the main or fundamental similarity

measure. The states in Adair-Klotz’s model state space that are not part of the com-

mon state space are referred to as the complement (state) space. This set contains

states in which at least one of the intermediate species (section “Computation of the

distribution functions”) is present. These states are unique to Adair-Klotz’s model.

The second similarity measure introduced δ̄(t), measures the extent to which the

complement space is occupied. This is an auxiliary similarity measure that comple-

ments the information conveyed by the use of the fundamental similarity measure δ(t).

The third similarity measure, δ̂ (t),) quantifies the similarity between the shapes of

Hill’s and Adair-Klotz’s model distribution functions. It is also an auxiliary similarity

measure used to refine the information provided by inspection of the fundamental

similarity measure. To compare the shapes of the distribution functions, Adair-Klotz’s

model distribution function is re-normalized on the common state space.

Optimization of Hill’s model parameters

One needs to be careful not to compare an arbitrary Hill’s model to an arbitrary Adair-

Klotz’s model. Since the goal is to quantify which Adair-Klotz’s models can be replaced

by the related Hill’s models, it is natural to choose the best possible parameters for the

Hill model that maximize the fundamental similarity measure δ(t). Thus for each

choice of the parameters for the Adair-Klotz model, the parameters of the Hill model

will be optimized. The optimization procedure differs somewhat for plots that depict

time dependence from the ones that depict equilibrium properties.

In the equilibrium, δ(t) depends only on the values of the dissociation constants: δ∞
= limt®∞ δ(t) and

δ∞ = f (K0, K1, K2, . . . , Kh) (7)

For a fixed tuple (K1, K2, ..., Kh) the Hill model dissociation constant K0 is optimized

to make δ∞ as large as possible. This makes the Hill’s model dissociation constant
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dependent on Adair-Klotz’s model dissociation constants in a well defined way:

K0 = g(K1, K2, . . . , Kh) (8)

where g is the function resulting from the optimization procedure. Thus one can

write δ∞ = f(g(K1, K2, ..., Kh), K1, K2, ..., Kh), which defines the function δmax such that

for a given choice of dissociation constants for the Adair-Klotz model δ∞ is the largest

possible

δ∞ = δmax(K1, K2, . . . , Kh) (9)

The function δmax is depicted in all plots that analyze the equilibrium state.

Please note that the use of Eq. (8) only fixes the ratio b/a. Accordingly, for time

dependent plots, an additional choice has to be made for either a or b. For a time

dependent plot the value for a was adjusted so as to make the life-time of the initial

state the same in both models. (During the optimization, the value of b is given by

K0a).

Numerical results

The three similarity measures have been computed numerically by solving the master

equations for the models. Figure 1 shows how the similarity measures

�(t) ∈ {δ(t), δ̄(t), δ̂(t)} depend on time in the situation where it is expected that Hill’s

model cannot approximate the dynamics of Adair-Klotz’s model, i.e. when all reaction

rates are equal and Adair-Klotz’s reaction system cannot be described as cooperative.
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�

Figure 1 Similarity measures (weakly cooperative Adair-Klotz model, h = 2). Time dependence of the
similarity measures for h = 2 case: �(t) ∈ {δ(t), δ̄(t), δ̂(t)}. This and all other figures in the
manuscript were generated with P0 = 2 and L0 = 5. In this figure weakly cooperative Adair-Klotz model has
been considered with ai = bi = 1s-1 for i = 1, ..., h. The parameters for the Hill model were optimized so
that δ(t) is largest possible (b/a = 0.5 and a = 0.5s-1). The time t is expressed in units of s. The full line is
for Δ = δ, while the dashed and the dotted lines are for � = δ̄ and � = δ̂ respectively.
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The similarity is perfect at t = 0 by construction, since in principle both systems are

prepared in identical states. The similarity starts decreasing since the intermediate

states become populated. This can be seen from the fact that the dashed line goes up,

starting from zero. Please note that after some time the intermediate states become

de-populated since the dashed line goes down after the initial peak around t ≈ 0.25.

The choice of reaction rates for the Adair-Klotz model clearly makes the intermediate

states long lived. In such a case it is not possible to find the parameters a and b such

that the fundamental (main) similarity measure is large.

The first auxiliary similarity measure that relates the shapes of the distribution func-

tions (the dotted line in the figure) exhibits interesting behaviour: δ̂(t) ≈ 1 for all times

(early, intermediate, and asymptotic). Given this insight, one can conclude that only

properties (observables) that are shape sensitive can be described by Hill’s model,

despite the fact that intermediate states are highly populated. For example, the

moments of the particle number distributions do not fall into this category (e.g. the

average numbers of particles in the systems or the variances); however, ratios of

moments (defined on the common state space) do.

To which extent are the findings discussed so far sensitive to the value of the Hill

coefficient? Figure 2 was constructed in the same way as Figure 1, but with a higher

value of the Hill coefficient. To make the computations faster, the lowest possible

value for the Hill coefficient was used, i.e. h = 3. In comparison to the h = 2 case, the

fundamental similarity measure decreases further. It can be seen that δ̄(t) increases,

which indicates that the complement space becomes more populated. It is very likely
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Figure 2 Similarity measures (weakly cooperative Adair-Klotz model, h = 3). Generated in the same
way as Figure 1, but with a higher value for the Hill coefficient (h = 3). The parameters of the Hill model
were optimized in the same way as for Figure 1, resulting in a = 0.5s-1, b = 0.083s-1. Increase in the Hill
coefficient makes the discrepancy larger since there are more intermediate states that can be populated.
The similarity in the distributions shape increases for large times.
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that this is because more intermediate states are available. The shape similarity mea-

sure δ̂ (t) decreases for intermediate times, as the dotted curve has a deeper minimum

than the dotted curve in Figure 1.

For the case in which intermediate states are short lived, one intuitively expects that

Hill’s model could be a useful substitute for Adair-Klotz’s model. Figure 3 depicts the

dependence of the similarity measures on time, for systems that are expected to behave

in a similar way. In particular, the reaction rates for the Adair-Klotz model used were

chosen in such a way that the intermediate states are short lived. Indeed, the value of

δ̄(t) stays very close to 0. The shapes similarity measure δ̂ (t) stays very close to one,

finally leading to large values for the fundamental similarity measure δ(t). This is an

important finding since it indicates that Hill’s model can be used to investigate an arbi-

trary observable, e.g., not just the average number of free ligands, but also the noise

characteristics of that quantity. Naturally, such a claim comes with the implicit con-

straint that the observable should be interpreted in the context of Hill’s model state

space. For example, quantities such as the number of free receptor proteins, or the

number of fully occupied receptors, fall in this category. However, any quantity that

would involve counting the number of intermediates does not.

The time dependence of the similarity measures was investigated to confirm that

these analysis tools work as expected. It is important to check that the analysis will

work for both dynamics and the equilibrium state. In the following, the focus is on

understanding equilibrium properties. The goal is systematically to identify situations
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Figure 3 Similarity measures (strongly cooperative Adair-Klotz model, h = 2). Generated in the same
way as Figure 1, but with different values for the reaction rates. The particular choice of the reaction rates
makes the intermediate states weakly populated: a1 = 1s-1, b1 = 10s-1, a2 = 10s-1, and b2 = 1s-1. The
parameters for the Hill model were optimized in the same way as for the Figure 1 resulting in a = 0.5s-1

and b = 0.25s-1. δ(t) stays relatively close to one indicating a good match. The dashed curve stays low,
which indicates that intermediate states are short lived. The dotted line stays close to one indicating that
the distributions have a similar shape.

Konkoli Theoretical Biology and Medical Modelling 2011, 8:10
http://www.tbiomed.com/content/8/1/10

Page 7 of 17



when Hill’s and Adair-Klotz’s model distribution functions are similar. Technically, this

will be done by mapping out regions in the Adair-Klot’s model parameter space where

the fundamental similarity measure δmax is relatively high.

Figure 4 shows how δmax depends on the values of the Adair-Klotz model reaction

rates for the case h = 2. The figure depicts contours where δmax = const in the (K1, K2)

plane. The first interesting region is in the range 0 ≤ K1 ≲ 45 and below the full curve.

In this range (the grey region below the full curve) K1 ≫ K2 guarantees high similarity

measure values. This analysis confirms the previous mean field study [5] where it was

shown that choosing K1 ≫ K2 leads to similar dose response curves. In the present

article it has been shown that the results holds for any observable (average numbers,

variances, etc). The second interesting region is for K1 ≳ 45. In that region the funda-

mental similarity measure is large for any K2. Cases with relatively large values of K2

are not interesting chemically, since such reactions would be chemically non-func-

tional: K1K2 ≫ 1 would lead to the situation where the fraction of final products
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Figure 4 Equilibrium state similarity measure for h = 2. The contour plot that depicts how long time
limit of δ∞ = limt®∞ δ(t) depends on the dissociation constants K1 = b1/a1 and K2 = b2/a2; δ∞ = f(K0, K1,
K2). For a fixed pair (K1, K2) the Hill model dissociation constant K0 = b/a is optimized to make δ∞ as large
as possible, making the Hill’s model dissociation constant dependent on Adair-Klotz’s model dissociation
constants in a well defined way; K0 = g(K1, K2) leading to the function δ∞ = f(g(K1, K2), K1, K2) = δmax(K1, K2)
that is depicted in the plot.
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(complexes) in the system would be vanishingly small. However, a reaction with K1 ≳
45 and K2 ≪ 1 could be functional provided K1K2 ~1.

Figure 5 shows similar kind of analysis as done for Figure 4 but for the first higher

value of the Hill coefficient, h = 3. Unfortunately, because the structure of the para-

meter space is more complicated, it is not possible to use a single contour plot.

Instead, various hyperplanes in the parameter space are studied. Panel (a) depicts the

regions in the (K1, K2) plane where δmax = 0.9 for different choices of K3. The region

with δmax > 0.9 is always to the right of each curve. For example, in the grey region in

panel (a), for K3 = 1000, it is always true that δmax > 0.9. On the one hand, it can be

seen that increase in K3 reduces the area where the fundamental similarity measure is

large. On the other hand, for a fixed value of K3, and for a chemically functioning reac-

tions (K1K2 ~1), choosing K1 ≫ K2 makes the fundamental similarity measure large.

Likewise, panel (b) indicates that to obtain a large value for the fundamental similarity

measure K1 should be as large as possible. For a given value of K1 one should take K2

≫ K3. In brief, one can say that K1 ≫ K2 ≫ K3 ensures that δmax is large but the plot

shows that there are many subtle details associated with such a statement. Again, this

confirms the previous finding in [5] that K1 ≫ K2 ≫ K3 results in similar dose

response curves for both models, but please note that the statement made in here is

much more general.

The quantitative analysis reveals rather rich structure of the parameter space where

the two models have very similar noise characteristics (distribution functions). It would

be useful to simplify such criteria. In that respect, it is tempting to express the strong-

cooperativity criteria

K1 	 K2 	 . . . 	 Kh (10)

in another way, e.g. by introducing a measure of the degree of cooperativity ξ as

(K1, K2, . . . , Kh) = (K1,
K1

ξ
, . . . ,

K1

ξh−1
) (11)

The strong cooperativity can be characterized by ξ ≫ 1. Naively, one would expect

that in such a way one should obtain high values for δmax uniformly in K1.

Figure 6 is a contour plot that depicts how δmax depends on K1 and ξ for h = 4. The

figure shows that many parameter choices that are chemically interesting do lead to a

high value of the fundamental similarity measure (the grey region in the plot). Since

there is no upper limit for ξ, for any value of K1, it is possible to choose ξ so that the

reaction is chemically operational: for large ξ the product K1K2K3K4 ∼ K4
1

/
ξ6 becomes

very small. However, there is rather large region close to the origin (the white region

in the plot) where the Hill model is not a good replacement for the Adair-Klotz

model. The minimal value of ξ that guarantees a good match needs to be adjusted

depending on a value of K1. Interestingly, for K1 ≳ 65 any value of ξ will lead to large

δmax. Unfortunately, it was not possible to generate similar figures for h ≥ 5 owing to

the limitations of the computer hardware.

Conclusions
Particle number fluctuations as predicted by Hill’s and Adair-Klotz’s model have been

studied quantitatively. To compare the fluctuation characteristics of the two models,
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Figure 5 Equilibrium state similarity measure for h = 3. The plot depicts equilibrium state similarity
measure for h = 3 case. For each triple (K1, K2, K3) an optimal value is found for K0 that maximizes δ∞. In
such a way δ∞ = δmax(K1, K2, K3). The lines plotted in both panels denote the δ∞ = 0.9 boundaries. For a
given curve, the region with δ∞ > 0.9 is always to the right of the curve. Panel (a): the reaction rates
parameter space is projected on to (K1, K2) plane with K3 fixed at the values indicated in the panel. Panel
(b): the parameter space is projected on the (K2, K3) plane with several choices for K1 as indicated in the
panel.
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the similarity between the particle number distribution functions was characterized by

three quantitative measures of similarity. The fundamental similarity measure δ(t)

expresses the degree of overlap between the distribution functions on the common

state space. Two auxiliary similarity measures δ̄(t) and δ̂ (t) have been introduced to

refine the analysis further by measuring the degree of occupancy of intermediate states,

and measuring the similarity in the shape of the distributions on the common set of

states.

It was shown that the similarity measures work as expected by studying their time

dependence. The value of δ(t) always follows 1 − δ̄ (t). This quantifies the intuitive

expectation that the occupancy of the intermediate states governs whether models

behave in the same way. In addition, it was found that, interestingly, δ̂ (t) stayed rela-

tively close to one, even when δ(t) was relatively small.

Furthermore, the equilibrium similarity measure δ∞ = limt®∞ δ(t) was analyzed,

where dependence of δ∞ on values of the dissociation constants K1, K2, ..., Kh was care-

fully investigated. The analysis revealed that a value of the similarity measure in the

equilibrium state is high when K1 ≫ K2 ≫ ... ≫ Kh. This is in agreement with findings

Δ>0.9

Δ<0.9

0 10 20 30 40 50 60 70

2

4

6

8

10

K1

Ξ

Figure 6 Validity region of a K1 ≫ K2 ≫ K3 ≫ K4 parameterization. The plots depicts the boundary of
the δmax(K1, K2, K3, K4) > 0.9 region in (K1, ξ) plane with the parameterization K2 = K1/ξ, K3 = K1/ξ

2, and K4 =
K1/ξ

3. (K0 has been optimized as in the previous figures.)
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in an earlier work [5], which showed that the dose response curves for both models

agree in this regime, provided the condition on the dissociation constants holds.

This work extends previous findings by avoiding the mean field approximation,

and focussing on the distribution functions. By doing so it is possible to extend the

previous finding to any property of interest that can be obtained from the particle

number distribution functions. Furthermore, it was shown that the boundaries of the

parameter space where δ∞ is high have a rather rich structure. While it is true that

the condition K1≫ K2≫ ... Kh guarantees that a given Adair-Klotz model can be

substituted by a Hill’s model, there are subtle details that need to be attached to

such a statement.

The findings of this work should shed some light on the applicability of the previous

uses of Hill’s model. For example, Hill-like models have been used in the past to study

characteristics of fluctuations in particle numbers during the process of complex for-

mation [14-16]. This study shows that findings in these studies can be extrapolated to

more realistic reaction models of complex formation, without doing the advanced tech-

nical analysis required for understanding more realistic reaction models.

This work can be extended in many ways. First, it should be possible to consider

more challenging limits, with larger values of the Hill coefficient and particle copy

numbers. Relatively small values for these parameters were considered owing to the

limitations of the computer hardware (memory and CPU). Likewise, only pure states

were considered, and it would be interesting to see whether the same conclusions can

be drawn for other types of initial conditions. Second, instead of analyzing the full dis-

tribution functions, it should be possible to investigate the similarity of the underlying

moments, and to define similarity measures accordingly. This could be advantageous

for studying the problematic limits discussed above. Third, the similarity with, and

among, other reaction models could be studied in a way similar to that presented here.

For example, the issue of model reduction is a perpetual everlasting problem in the

modelling of intracellular processes.

Methods
Computation of the distribution functions

To compare the models the particle number distribution functions will be investigated.

It will be assumed that particles mix well. In such a setup, it is sufficient to count the

particles. The numbers of C0, C1, C2, ..., Ch and A particles will be denoted by n0, n1,

n2, ..., nh and nA respectively.

Each system has a configuration space associated with it. The configuration spaces of

the system are similar but not identical. For Hill’s model a configuration of the system

is given by cH = (n0, nh, nA), while for Adair-Klotz’s model cA = (n0, n1, n2, ..., nh, nA).

The difference comes from the fact that molecules C1, C2, ..., Ch-1 need to be counted.

In the following these molecules will be referred to as the intermediate molecules or,

in brief, the intermediates.

The systems are stochastic and in course of time transitions within the configuration

spaces of the systems occur randomly. The rapidity of transitions is governed by the

previously introduced reaction rates. Both systems can be described by their respective

master equations.
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The master equation for Hill’s model is given by

∂tPH(cH, t) = α

(
nA + h

h

)
PH(cH[+, −, +], t)

+β(nh + 1)PH(cH[−, +, −], t)

−
[
α

(
nA

h

)
+ βnh

]
PH(cH, t)

(12)

where ∂t denotes the time derivative. The states cH[+,-, +] and cH[-,+,-] are defined

by.

cH[±, ±, ±] = (n0 ± 1, nh ± 1, nA ± h) (13)

where any combination of the plus and the minus signs can be picked at will (a

choice has be to made consistently by picking either all upper or all lower signs). The

particle number distribution function PH(cH, t) defines the occupancy probability for a

state cH at a time t.

The master equation for Adair-Klotz’s model is given by

∂tPA(cA, t) =
h∑

i=1

[αi(ni−1 + 1)(nA + 1)×

×PA(cA[i, +], t) + βi(ni + 1)PA(cA[i, −], t)

−(αini−1nA + βini)PA(cA, t)]

(14)

where

cA[i, ±] ≡ (n0, . . . , ni−1 ± 1, ni ∓ 1, . . . , nA ± 1) (15)

where either the upper or the lower set of signs can be picked at will.

By solving the master equations (12) and (14) it is possible to obtain the distribution

functions PH and PA for Hill’s and Adair-Klotz’s models respectively. In the next sub-

section the procedure for comparing the distributions will be discussed.

Structure of the configuration spaces

To make a fair comparison between the models it is natural to use the same initial

conditions for both. Since Hill’s model does not have information about the intermedi-

ates, the initial conditions will be chosen so that the copy numbers of the intermediate

species are all zero.

For Hill’s model the dynamics will be started from a pure state with initial configura-

tion given by

c0
H = (P0, 0, L0) (16)

where P0 and L0 denote the number of protein complexes and the number of ligand

molecules in the system at t = 0. Likewise, for Adair-Klotz’s model, the system will be

started from

c0
A = (P0, 0, . . . , 0, L0) (17)

For the pure initial state the dynamics of Hill’s model occurs on the one dimensional

space defined by the following states
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ci
H = (P0 − i, i, L0 − hi) (18)

where i = 0, 1, 2, . . . , iH
max

and the upper limit for the state index i is given by

iH
max

= min(L0
/

h, P0). The initial state corresponds to i = 0. This set of states will be

referred to as

SH = {ci
H|i = 0, 1, 2, . . . , i

H

max} (19)

Likewise, for a pure initial state, following set of states emerge for the Adair-Klotz

model,

ci1,i2,...,ih
A = (P0 − (i1 + i2 + . . . + ih),

i1, i2, . . . , ih,
L0 − (i1 + 2i2 + . . . + hih))

(20)

Such set of states will be referred to as the Adair-Klotz space and denoted by

SA = {ci1,i2,...,ih
A |i1, i2, . . . , ih = 0, 1, . . . ∗} (21)

where symbol * in the equation indicates that the upper limit has to be chosen such

that occupancy numbers for each configuration are positive. Equation (20) indicates

that protein molecules are either free from ligands, or have one or more ligands

attached to them. From the perspective of the ligands, the equation states that all

ligands that are not free are bound to protein molecules either as a single molecule, or

in pairs, triples etc.

The inspection of the configurations for Hill’s and Adair-Klotz’vs models, in (18) and

(20), reveals that the configuration spaces are rather similar, up to the fact that the

Adair-Klotz space has much higher rank.

Furthermore, it is possible to see that a vector in Adair-Klotz space with i1 = 0, i2 =

0, ..., ih-1 = 0 (Eq. 20) has a natural correspondence with the vector in the Hill space

with i = ih (Eq. 18). In what follows it will be useful to formalize this mapping.

Symbol ℐA(cH) will denote the image of a state cH in the Adair-Klotz space,

IA(cH) ≡ (n0, 0, 0, . . . , 0, nh, nA) (22)

The set of images of all vectors in the Hill space will be denoted by

IA(SH) ≡ {I(cH)|cH ∈ SH} (23)

Please note that this mapping defines a one to one correspondence between the

states in the Hill and the Adair-Klotz spaces. For example, given that i and h are fixed,

there is only one combination of i1, ... ih for which i = i1 + i2 + ...+ ih and hi = i1 + 2i2
...+ hih.

Clearly, IA (SH) ⊂ SA, and the set of states that are in the Adair-Klotz space but not

in the image space (i.e. a complement) will be denoted by CA (SH) = SA\IA (SH).

Comparison of the distribution functions

To compare the probability distributions for the models, the distribution function for

Adair-Klotz’s model will be projected on to the state space of Hill’s model:

P̃A(cH, t) = PA(IA(cH), t) (24)
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The direct comparison of PH (cH) with P̃A(cH) can reveal whether there is a region in

the parameter spaces of the two models where the respective dynamical behaviour is

similar.

Once the projection is done, the comparison of the distribution functions is equiva-

lent to the comparison of two vectors in a Cartesian space. For example, it is possible

to use the scalar product between the vectors to compare them. However, for the pur-

pose of this work, the distributions will be compared using

δ(t) =
∑

cH∈SH

√
PH(cH, t)P̃A(cH, t) (25)

The advantage of the particular form used in (25) is that for the perfect match with

PH(cH) = P̃A(cH) for all cH Î SH, the similarity measure δ(t) equals one. This can be

seen from that fact that the sum in (25) becomes the normalization condition for the

distribution functions. The lowest value for δ(t) is clearly zero since the distribution

functions are positive definite. Also, please note that in the light of (16) and (17), δ(0)

= 1. The initial conditions are chosen so that the match is perfect at t = 0. In such a

way, any discrepancy detected by δ(t) is due to the dynamics of the systems.

Fine tuning the comparison procedure

In addition to the similarity measure defined in Eq. (25) it is useful to analyze the

extent to which the states in the complementary space CA (SH) are populated. In that

respect, it is useful to introduce

δ̄(t) =
∑

cA∈CA(SH)

PA(cA, t) (26)

This measure is important since it indicates to what extent the presence of inter-

mediates affects the value of δ(t) in (25).

If the intermediate states are short lived, they should not be populated, and accord-

ingly δ̄(t) ≈ 0. In such a case δ(t) has a fair chance of being equal to one. On the other

hand, for δ̂(t) ≈ 1, δ(t) will be small, although the fact that the shapes of Hill’s model

distribution and Adair-Klotz’s model distribution (projected on SH space) might be

similar.

To analyze quantitatively the effects discussed above, it is useful to introduce a mea-

sure of the similarity of Hill’s model distribution function and the normalized distribu-

tion function of Adair-Klotz’s model P̂(cH, t) on Hill’s space. To do this, it is useful to

renormalize Adair-Klotz’s model distribution function on the image space as

P̂A(cH, t) ≡ P̃A(cH, t)∥∥∥P̃A(cH, t)
∥∥∥ (27)

where the norm is given by
∥∥∥P̃A(cH, t)

∥∥∥ =
∑

cH∈SH

P̃A(cH, t) (28)

Please note that since Adair-Klotz’s model distribution function is normalized, the

following condition holds
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∥∥∥P̃A(cH, t)
∥∥∥ + δ̄(t) = 1 (29)

The similarity measure of Hill’s model distribution function PH and the renormalized

distribution function of Adair-Klotz’s model P̂A can be finally defined as

δ̂(t) =
∑
cH

√
PH(cH, t)P̂A(cH, t) (30)

Please note that δ̂ (t) measures the similarity in the shapes of the distribution func-

tions constrained on the Hill space, and in this work is referred to as the shape simi-

larity measure.

Finally, using the equations above, it is trivial to show that

δ(t) =
√

1 − δ̄(t)δ̂(t) (31)

The similarity of distributions can be factored in two contributions. The square root

term on the right hand side of the equation measures the extent to which the image of

the Hill space is populated for Adair-Klotz’s model. The second term on the right

hand side of the equation measures the similarity of the shape of the probability distri-

butions on Hill’s space image. To obtain a good match, both factors in the product

need to be large, the intermediates should be short lived, and the shape of the distribu-

tions should be similar.

Numerical computation setup

The distribution functions were computed by Mathematica using the technique of the

Laplace transform. The Laplace transform of a function f(t) is defined in the usual way

as

L [
f (t), s

] ≡
∫ ∞

0
dte−st f (t) (32)

The Laplace transform of the time derivative becomes an algebraic expression. Using

this property, a master equation can be converted into an algebraic equation. The

resulting linear algebraic equations were solved using the internal Mathematica solver.

The asymptotic time limits of time-dependent functions were computed easily using

lim
t→∞ f (t) = lim

s→0
sL [

f (t), s
]

(33)

Accordingly, the equilibrium quantities were computed with infinite precision.

For the time dependent quantities, the numerical inversion of the Laplace transform

for the distribution functions was done using the Durbin method. The computations

were performed using the Mathematica package developed by Arnaud Mallet and can

be found at the repository of Mathematica packages. Thus the numerical results shown

in the figures for time dependent quantities are exact to the accuracy of the numerical

inversion procedure. The inversion formula is based on an integral that needs to be

evaluated numerically. The accuracy of the result depends on the number of points

used to perform the integral. This number was doubled incrementally until the relative

change in the computed value was below 1%.
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