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We present a method for predicting the low-temperature behavior of spherical and Ising spin models

with isotropic potentials. For the spherical model the characteristic length scales of the ground states are

exactly determined but the morphology is shown to be degenerate with checkerboard patterns, stripes and

more complex morphologies having identical energy. For the Ising models we show that the discretization

breaks the degeneracy causing striped morphologies to be energetically favored and therefore they arise

universally as ground states to potentials whose Hankel transforms have nontrivial minima.
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The study of pattern formation in simple systems has
received much attention the last 20 years. Not only are the
pictures visually arresting, producing reviews with consi-
derable artistic qualities [1,2], but spatially inhomogene-
ous phases present difficulties for standard theoretical
methods, calling for new principles to describe the physics
of systems exhibiting them [3]. Whatever weight can be
assigned to the former as an explanation for the interest, the
latter is justification enough, especially as the experimental
evidence of stripes, spots and checkerboards in practically
important materials abound. Examples include lipid mono-
layers [4], adsorbates on metals [5], and various magnetic
fluids [6,7]. Striped phases are also hypothesized to play a
role in the high-temperature superconductivity of transi-
tion metal oxides [8,9].

Many experimental systems displaying heterogeneous
patterns involve a competition between long- and short-
range interactions [10] and most theoretical work concen-
trate on specific examples of such interactions [11–15],
e.g., spin models with Hamiltonians on the form

H ¼ K
X
j

s2j � L
X
hi;ji

sisj þQ

2

X
i�j

sisj
r�ij

; (1)

where the spins typically represent some coarse-grained
feature of the system of interest, for example, local charge
density in a Mott insulator [3] or phases in a Langmuir film
[16]. However, the qualitative success of such models may
have little to do with the underlying physics as noted by
Zaanen in the context of Mott insulators [17]. Indeed, the
same general behavior can be observed in models with, for
example, only short-ranged, purely repulsive forces [18].
An explanation for the universality of striped morphologies
must therefore be independent of specific details of the
involved forces. The aim of this Letter is to present such a
general treatment. As expected our method shows that
stripes appear naturally for large classes of models, but
the added generality also leads to new tools allowing us to
design potentials with desired properties.

Here we study a generic Hamiltonian with isotropic
pairwise interactions,

H ¼ XN
ij

Vijsisj; (2)

where Vij ¼ Vðji� jjÞ is a matrix representation of the

potential that only depends on the distance between spins i
and j, here denoted ji� jj, with (1) as a special case.
Depending on considerations regarding experimental fit
or theoretical ease, one may take the spins in (2) to assume
continuous values with the restriction

P
is

2
i ¼ N, corre-

sponding to a spherical model [19], or take values from
some finite set, where s 2 f�1g and s 2 f0;�1g are the
most common choices, equivalent to different Ising models
[12,15].
Consider now the spherical model. Because of the

quadratic form of the Hamiltonian (2) and the constraint,
sTVs and sTs ¼ N in matrix notation, the ground state is
given by an eigenvector of the interaction matrix V corre-
sponding to the lowest (energy) eigenvalue [20]. The cen-
tral observation for our analysis is the existence of a
common basis of eigenvectors for all radial potentials,
namely, the Fourier basis. To prove this we start by recall-
ing the fact that if two matrices commute, then it is possible
to find a set of eigenvectors that simultaneously diagonal-
ize them [21]. Consider the commutator for two interaction
matrices V and W:X

k0
Vik0Wk0j �

X
k

WikVkj: (3)

Each term, Vik0Wk0j, in the first sum can be represented by a

triangle, A in Fig. 1. Assuming that the lattice is periodic or
infinite, there will for each such triangle exist a unique
triangle B, constructed as a reflection of A in the line
equidistant from point i and j (dashed in the figure), corre-
sponding to the term WikVkj in the second sum. From the

reflection symmetry and the pure radial dependence of the
potential it follows that Vik0Wk0j �WikVkj ¼ 0, which

proves that V andW commute.
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It now suffices to find a set of eigenvectors for a par-
ticular potential. Perhaps the simplest choice is a nearest
neighbor interaction, Vij ¼ 1 if ji� jj ¼ 1 and Vij ¼ 0 if

ji� jj> 1. If we in addition make an appropriate choice of
self-interaction, which only shifts the eigenvalues and do
not affect the eigenvectors, Vii ¼ �2d where d is the
lattice dimension, Vij becomes a discrete finite difference

Laplacian on the lattice. It is well known that both the
discrete and continuous Laplacian have harmonic eigen-
functions, e.g., f ~kð ~xÞ ¼ C~k

Q
d
i cosð2�kixi=Lþ�iÞ which

is an orthogonal eigenbasis in d dimensions when ~k goes
over all distances on the reciprocal lattice, L is the linear
size of the lattice, �i ¼ ��=4 and C~k is an appropriate

normalization constant. We have thus shown that all inter-
action matrices have a Fourier eigenbasis. An alternative,
more direct but for our purposes less illustrative, argument
for the common Fourier basis is to note that the structure of
V implies that it is a so-called circulant matrix [22], for
which the result is known in the signal processing litera-
ture. That the Fourier base effectively diagonalize the
Hamiltonian in the spherical model with translationally
invariant interactions has also been pointed out by
Nussinov [23].

This result has two important consequences. First, it
helps us to understand why systems with different interac-
tions are expected to have similar ground states. Second,
knowledge of the universal eigenbasis allows us to compute
the energy spectrum for any particular system using a linear
transform of the potential. From (2) it follows that the
energy per spin for a harmonic eigenfunction with wave

vector ~k are given by Eð ~kÞ ¼ 1
N

P
~x; ~yVðj ~x� ~yjÞf ~kð ~xÞf ~kð ~yÞ.

Using various trigonometric identities and the radial struc-
ture of V this expression can be reduced to a radial Fourier
transform

Eð ~kÞ ¼ X
~r

Vðj~rjÞY
d

i¼1

cosð2�kiri=LÞ (4)

where the sum goes over all distances ~r on the lattice. Note
that the energy of a configuration can be computed through
a fast Fourier transform over the lattice.

The ground state of the spherical model is the eigenvec-

tor f ~k corresponding to the minimum of Eð ~kÞ. The simplest

ground state patterns in two dimensions are checkerboards
and stripes with the corresponding wavelength, exempli-
fied in Figs. 2(a) and 2(c). Further, the subspace of the

eigenbasis corresponding to the minimum can contain two
kinds of degeneracies. First, any change of the phases �i

leaves the energy invariant. In two dimensions this means
that anything between checkerboards and stripes can be
produced, as illustrated in Figs. 2(a)–2(c). Second, the
energy is similarly unaffected by arbitrary permutations

of the elements of ~k, reflecting that the energy only de-
pends on the magnitude of the wave vector [seen most
clearly in the continuous limit (5)]. Linear combinations of
vectors with different permutations give rise to complex
morphologies, exemplified in Fig. 2(d).
The eigenmode analysis is exact for the spherical model

but also has implications for the discrete Ising models. It is
not directly applicable as in general an eigenvector of the
interaction matrix cannot be constructed in the restricted
discrete space of the Ising spins. However, continuous
eigenvectors are often used to approximate solutions to
discrete optimization problems, for example, graph color-
ing [24] and partitioning networks into modules with mini-
mal intraconnectivity [25,26]. Here we use the same
strategy to predict ground states for Ising spin-1=2 models
with corresponding potentials by mapping the spins in the
spherical model to �1 or þ1 depending on their sign:

f̂ ~kð ~xÞ ¼ sgnðf ~kð ~xÞÞ [27]. The discretization breaks the en-

ergy degeneracy and stripes become energetically favor-
able compared to checkerboards and more complex
patterns. To see why we note that in each group of degen-

erate eigenmodes, with wavelength j ~kj, there exist linear

combinations that produce stripes, for example cosð ~k � ~xÞ.
The error introduced by the discretization, kf̂ ~kð ~xÞ �
f ~kð ~xÞk2 with the standard L2 norm, always increases the

energy in the discrete configurations when compared to

FIG. 2 (color online). Examples of eigenmodes of the two
dimensional spherical model. (a)–(c) Any phase shift of a ground
state is a new ground state, so checkerboards, stripes and every-
thing between can be produced by the same model. Linear
combinations of fð2;2Þ with different phase shifts are shown, all

having the same energy. (d) Exchanging the elements of ~k gives a
new ground state and linear combinations of them give rise to
complex morphologies. Shown is 1

2 fð3;4Þ þ 1
2 fð4;3Þ.

FIG. 1. Reflection symmetry of triangles on a lattice causes the
interaction matrices from any two radial potentials to commute.
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the continuous ground state. Because of the� symmetry of

the harmonic functions, the difference between f̂ ~kð ~xÞ and
f ~kð ~xÞ (with appropriate scaling) is largest in regions where
the continuous function is close to 0, i.e., at the interface
between þ and � regions. From this argument it follows
that the error tends to be smallest for the striped eigen-
mode since the interface is minimized (assuming that the
width of the stripes is large compared to the lattice
spacing).

There are two exceptions when the ground state does not
have stripes. Energy spectra with minimum at the boundary
produce ground states that are either a uniform ferromag-
net (the zero frequency mode) or a checkerboard pattern
(the highest frequency mode allowed on the lattice) asso-
ciated with an antiferromagnet. These two cases can be
viewed as degenerate cases of stripes with infinite respec-
tive infinitesimal width.

In Fig. 3 some examples of Ising spin-1=2 models with
different potentials are shown together with their energy

spectra in j ~kj space, examples of local minima [28] and
their ground states. First is a short-ranged, purely repulsive
potential related to the model studied in [18]. Second is a
nearest neighbor ferromagnet with long-range repulsive
Coulomb interaction on the form (1) from [12]. Last is
an attenuated Bessel function, J0ðrÞ=ðrþ 1Þ, chosen for its
similarity to the RKKY interaction in spin glasses [29]. We
see that, while the potentials are qualitatively very differ-
ent, the ground states are defined only by the minima in the
energy spectrum, i.e., by a single length scale. Through
rescaling, the potentials can be adjusted to have identical
ground states. This illustrates how little observing striped
behavior tells us about the interactions in a system. The
local minima do however show a qualitative difference
between the potentials in (a) and (b) and the RKKY-like
potential in (c), probably related to the difference in local-
ization in energy space.
Equation (4) also has implications for molecular self-

assembly. The Fourier basis in the transformation is

FIG. 3 (color online). Predicting ground states in different two dimensional Ising models. (Top) Potentials (inset) and their energy

spectra in j ~kj-space from the transform (4). (a) A purely repulsive potential [18], (b) two competing interactions [12] [see Eq. (1)], and

(c) an RKKY-like interaction [29]. For small k (long wavelengths) the spectra only depend on the magnitude of ~k, but for large k (short

wavelengths) lattice effects breaks the independence on the direction of ~k and Eðj ~kjÞ becomes multivalued. To illustrate this, we link
series with constant ky with lines and in (a) examples of such states are shown. (Below) Local minima as arrived by through

Monte Carlo annealing as well as ground states of Ising spin-1=2 models with corresponding potentials.

FIG. 4 (color online). Designing interactions to imitate observed striped patterns. (a) Stripes in a ferrofluid confined between two
glass plates in a magnetic field [from [1,6], reprinted with permission from AAAS and Elsevier] (b), the (negative) radial power
spectrum (blue) of previous picture together with a Gaussian (red), (inset) a pair potential VðrÞ constructed as the (inverse) transform
(4) of said Gaussian and (c), metastable state of an Ising spin-1=2 model with potential VðrÞ. Note that the chosen energy spectrum is
not unique. Many potentials having a spectrum minimized at the same wavelength will show similar low-temperature behavior.
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orthogonal and can be inverted to find the potential corre-
sponding to a given energy spectrum. This allows us to
design, from an observed striped state, families of poten-
tials that generate similar patterns at low-temperature by
identifying the dominant wavelength and invert an energy
spectrum with a minimum at this wavelength. A demon-
stration of the procedure is shown in Fig. 4: the Fourier
power spectrum of a pixelized image of a metastable state
in an experimental system [6] was calculated; an energy
spectrum was constructed with Gaussian minimum at the
same wavelength as the experimental system; and finally
the corresponding potential was found using the inverse
transform of (4). The constructed system has striped meta-
stable states similar to those found in the experimental
system. We conclude that it is relatively easy to construct
families of potentials with desired metastable striped
morphologies.

In the continuous limit the transformation (4) becomes a
Hankel transform, in two dimensions defined as

Eð ~kÞ ¼ 2�
Z 1

0
rdrVðrÞJ0ð2�j ~kjrÞ; (5)

where J0 is a Bessel function of the first kind. For the
general expression in higher dimensions, see [30]. Note
that in the continuum limit the energy only depends on the
magnitude of the wave vector since the effects of the
principal lattice directions disappear. As noted in Fig. 3,
this independence holds true on the lattice as well for small
wavevectors and sufficiently long-range interactions.
Equation (5) allows us to use the analytical properties of
the Hankel transform to qualitatively understand, for ex-
ample, why the Bessel function of Fig. 3(c) has such a
sharp spectrum: the Hankel transform of a Bessel function
is a Dirac delta function.

In summary we have shown that the energy spectrum of
spherical spin systems with isotropic interactions can be
derived directly from the Fourier transform of the poten-
tial. Because of a degeneracy in the energy eigenstates the
spherical model has ground states with various patterns
such as stripes, checkerboards, and more complicated
morphologies. In discrete spin models the degeneracy is
broken leading to striped ground states being energetically
favored. We suggest that this can offer a generic explana-
tion to why striped patterns are so frequently observed in
various experimental and natural systems.

The authors would like to thank Olle Häggström for
pointing out how purely repulsive potentials can give rise
to striped ground states.
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