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We develop a microscopic model to calculate point-contact spectra between a metallic tip and a supercon-
ducting heavy-fermion system. We apply our tunneling model to the heavy fermion CeColns, both in the
normal and superconducting states. In point contact and scanning tunneling spectroscopy many heavy-fermion
materials, such as CeColns, exhibit an asymmetric differential conductance, dI/dV, combined with a strongly
suppressed Andreev reflection signal in the superconducting state. We argue that both features may be ex-
plained in terms of a multichannel tunneling model in the presence of localized states near the interface. We
find that it is not sufficient to tunnel into two itinerant bands of light and heavy electrons to explain the Fano
line shape of the differential conductance. Localized states in the bulk or near the interface are an essential
component for quantum interference to occur when an electron tunnels from the metallic tip of the point

contact into the heavy-fermion system.
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I. INTRODUCTION

Point-contact spectroscopy (PCS) and scanning tunneling
spectroscopy (STS) have been widely used to characterize
the electronic behavior of heavy-electron materials, espe-
cially the transition into the superconducting state and the
opening of an excitation gap. Unlike point-contact junctions
with conventional metals, most heavy-fermion materials
show asymmetric conductances, which have been difficult to
explain. In addition to asymmetric normal-state conduc-
tances, many heavy-fermion superconductors (HFSs) are
known for strongly suppressed Andreev reflection (AR)
signals.!=* This is especially true for the heavy-fermion su-
perconductor CeColns.>"' Hallmarks of superconductivity
are phase coherence and AR, which require the existence of
a condensate of Cooper pairs. The AR signature occurs when
a quasiparticle retroreflects off a normal-superconducting
(N/S) interface as a quasihole while momentum and charge
get carried across the interface by the Cooper pair.

The Blonder-Tinkham-Klapwijk (BTK) formulation de-
scribes the differential conductance in conventional N/S
junctions remarkably well by invoking a dimensionless bar-
rier strength parameter Z, which depends on the barrier po-
tential and the mismatch ratio of Fermi velocities.!' For HFS
this formula predicts that N/HFS junctions are in the tunnel-
ing limit, i.e., low transmission, and AR cannot occur, con-
trary to experimental observations. Attempts to correct this
have been ad hoc by postulating boundary conditions at the
interface that are unaffected by the mass enhancement of the
itinerant heavy electrons.'” Alternatively, a single heavy-
band tunneling model with an energy-dependent quasiparti-
cle lifetime was proposed to explain the strongly reduced AR
signal but it lacks to account for the large voltage asymmetry
of the conductance in the normal state.!!*

Over time various models for Kondo scattering without
magnetic impurities have been proposed to explain point-
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contact studies ranging from tunneling into two-level tunnel-
ing systems coupled strongly to the conduction electrons!? to
localized electron spins at the point contact.'® Very recently,
Maltseva et al.'” presented a theory for electron cotunneling
into a dense Kondo lattice that can account for a Fano line
shape in the conductance. Also Yang!'® argued that the PCS
spectra for CeColns are consistent with a two-fluid picture
based on the Kondo lattice scenario. Common shortcomings
of all these approaches have been the ad hoc nature of addi-
tional parameters to explain the PCS spectra, the neglect of
localized states at the interface and the effects of pair-
breaking surfaces in unconventional superconductors.

In this paper, we present a multichannel tunneling model
for the solution of PCS and STS in heavy-fermion materials
that is derived from an analysis of the PCS measurements of
the heavy-fermion superconductor CeColns. While we focus
here on CeColns the proposed tunneling model has applica-
tions to heavy-fermion systems in general. Our multichannel
tunneling model quantifies the reduced AR signal and con-
ductance asymmetry observed in N/HFS junctions without
special constraints on tunneling barriers, Fermi velocity mis-
match, or itinerant band mass renormalization at the inter-
face.

The paper is organized as follows: In Sec. II we introduce
the multichannel tunneling model for the HFS and discuss
specific limits. In Sec. III we present our theoretical results
for a PCS junction and compare with several experimental
PCS conductance curves varying over a wide range of volt-
age biases, temperature, and orientations. Finally, we sum-
marize our results in Sec. I'V.

II. TUNNELING MODEL

Our theoretical understanding of the normal-state proper-
ties of heavy-fermion materials is based on either the Kondo
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lattice or periodic Anderson model. The Kondo lattice model
describes localized electronic magnetic moments at each lat-
tice site coupled weakly to an itinerant electron band while
the periodic Anderson model describes localized f electrons
hybridizing with itinerant electrons.!®-?

A. A microscopic model for heavy fermions

Solving the Kondo lattice or periodic Anderson model is a
formidable task for multiorbital materials. Instead we model
the heavy-fermion materials by two bands of itinerant elec-
trons with localized surface states, which may be caused by
broken f-electron bonds at the surface due to the broken
translation symmetry,

HHF = E ga(k)cz;kaca;ko + EOE fjafio" (1)

ak,o io

The heavy-fermion Hamiltonian Hyg represents two bands
of itinerant conduction electrons with band index
a e {light,heavy} and localized electrons near the surface
with site index i. The operators ¢!, (c.o) create (destroy)
an itinerant electron with momentum k and spin o in band «,
while operators f! (f;,) create (destroy) an f electron at site i
with spin o. £,(k) are the respective electronic dispersions
and E| is the energy level of the localized f electrons.

A simple description of a tunneling experiment is com-
prised of Hamiltonians for the heavy-fermion material, the
counter electrode, and the transfer or tunneling processes be-
tween them: H=Hyp+ Helecrode+ H- The counter electrode
is given by normal conduction electrons

7_(electrode = 2 ge(k)eltgeka (2)
k.o

and the tunneling Hamiltonian describes all possible trans-
fers

Hr= 2

r !
ak,ok’ o

! loct 4
+ 2 [ gCihion + gl igrial- 3)

’
koo

a T at T
[tk,o;k’o-’eko-ca;k’rr/ + tk!a.;krg.rca;k(rekro./]

In addition to the standard overlap integrals 7, between the
conduction band in the point contact and itinerant heavy-
fermion bands there is a finite overlap, 7,,., from the point
contact to the localized states in the heavy fermion. We also
account for weak interaction between the localized surface
electrons and itinerant electrons through scattering terms v,
[see Eq. (7) below]. In general, to get a Fano resonance in
the conductance one needs interference between different
tunneling paths.?! The resulting differential conductance cal-
culated from this model Hy will have an asymmetric Fano
line shape. Our setup is similar to the one for scanning tun-
neling microscope (STM) tunneling through a magnetic atom
on a metallic surface.?”>> The difference between a STM
and a point contact is that while the STM is defined by
conduction through one or very few quantum channels a
point contact consists of many conducting quantum channels
in parallel. Figure 1 shows a cartoon of the processes that are
active in tunneling between a metallic point contact and
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FIG. 1. (Color online) A cartoon of the different tunneling pro-
cesses from the tip of the point contact to the heavy-fermion mate-
rial (localized and itinerant electrons), which are necessary to ac-
count for the measured asymmetry in point-contact junction
conductances and reduced Andreev reflection signals. In (a) the
localized state appears as a broad resonance at the interface while in
(b) the localized state forms a sharp surface state, which acts as a
resonant tunneling center.

heavy-fermion material. Here we will extend the picture of
conduction through individual quantum channels to a tunnel-
ing model to account for point contacts on a heavy-fermion
material. We consider strong overlap between electron states
in the contact and the heavy-fermion compound and thus go
beyond the strict tunneling limit. We then extract micro-
scopic model parameters in form of the overlap integrals and
the energy of the localized state from fits made to the asym-
metric conductances in the normal state of CeColns reported
in the experiments by Goll et al.%’ and Park et al.°

B. Tunneling current

To calculate the tunneling current through a quantum
channel we employ the standard nonequilibrium
Green’s-function technique.?®?” In Keldysh notation the
tunneling current per conducting channel is given by

v

. [T % ey
](V) = ZTI’ 7-3|:t100 ° Gloc,c e ® GCJOC
. X v % K
5 <raocac—zaocm>] . 4)

The trace (Tr) is a short-hand notation for summation over
momentum and spin k,o, and the o-product indicates a
folding over common arguments, e.g., tv,,,COGl,,C,C
=2 tpe sk Groe (k' k"), and [ ]¥ denotes the Keldysh com-
ponent of the matrix Green’s function. Notation for matrices
is: a “hat” (£) denotes a Nambu matrix while a “check” (X)
represents a Keldysh matrix (see below). For ease of read-
ability, we suppress the explicit dependence of the tunneling
elements and the Green’s-function components on momen-

tum and spin. In Eq. (4), Gv,»j are Green’s-function compo-
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nents of the full matrix in reservoir space [c=point contact,
a=light (I) and heavy (k) conduction bands of the HF, and
loc is the localized state in the HF]. It is the components of
G that straddle the interface (e.g., éch,éd,éclloc) which en-
ter Eq. (4). G is to be determined in the presence of a voltage
bias across the interface. The tunneling Green’s function is
calculated by summing up single tunneling events in the self-
consistent noncrossing approximation resulting in the Dyson
equation

v v v

G=G"+G VoG '+G VoGl VoGo4 - (5)
or equivalently
G=(1-G V)" G". (6)

The transfer matrix ‘7, which is derived from the tunneling
Hamiltonian Hr, and sketched in Fig. 1, details all possible
tunneling processes of electrons between the metallic tip,
localized and itinerant electrons in the HFS,

0 Lockk'  Tnak' Tk

o~k ~ ~
. Loetkr 0 Unpr Uppir
Vie=1 .;k (7)
Do Vpgr O 0
~k ~k
U Ve O 0

Here 7),. ;44 are the wave function overlap integrals be-
tween contact and heavy-fermion material making up the
tunneling elements between states k and k', while 0}, ;s are
surface-induced scattering elements between the localized
state and the conduction bands #,/ in the heavy-fermion ma-
terial. CeColns is a very pure material with a mean-free path
of order of 100 nm. Therefore, we assume that the junctions
are in the ballistic limit where all tunneling events conserve
momentum, i.e., 7, =1, 0k—k").

To further simplify our calculations, we shall assume that
the itinerant microscopic Green’s functions are described by
quasiclassical Green’s functions near the Fermi energy while
it is essential to keep the full energy dependence of the lo-
calized Green’s function. In the case of nonsuperconducting
electrodes the different unperturbed Green’s functions are

GO=—iNH[R - & +2¢,()K], (8)
Gy = = iNGy [ &R = & + 2pyyp(£) K], 9)
evR éA

~0

G,.= +
! Nioc A A
oc SR’T3—E0 SA'T3—E0

1 1 K

+ (SR%3—E0 SA:I._3_E0)¢I()C(8)6 :| (10)
with e®4=g+i»n and #; is the third Pauli matrix in Nambu
space. The distribution functions for the electrons are
¢ (T)=tanh(e—eV,)/2T, ¢yp(T)=tanh(e—eVyg)/2T, and
b1oo(T)=tanh £/2T. The parameter 7, gives the fraction of
localized states and is a dimensionless quantity. The 2 X2
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Keldysh matrix structure of the Green’s functions and hop-
ping element above is given as

éR=<1 0), éA=<0 0), (11)
00 01
x [0 1) v_(l o)
e_(oo’ =10 1) (12)

For the Green’s function of the localized state, é?w we as-
sume a single level at e=E,,. To further simplify our model,
we will assume that only the heavy electrons undergo a su-
perconducting transition at 7=7, while the light electrons
remain uncondensed. Similar arguments were entertained for
the unconventional multiband superconductor Sr,Ru0,,2%-3
although one might expect, based on general grounds, that
both bands go superconducting because of interband interac-
tions leading to a proximity effect.’!

The model of a single superconducting band may be jus-
tifiable for CeColns, where no multiband gaps have been
seen in the PCS data by Park et al.’ and Goll et al.” However,
thermal-conductivity measurements have been interpreted in
terms of uncondensed electrons’> or fully paired
electrons.>3* In this work, we shall take the view point that
the light electrons remain uncondensed and explore the the-
oretical consequences for the PCS spectra. Thus for tempera-

tures T<<T, only the heavy electron Green’s function 62
becomes

Gvg = Nh{gfurf(g)evR + g?urf(s)evA
+ (85 ,4&) = &h(e) prr(e) e} (13)
~R.A

with gmrf(s) the self-consistently determined surface Green’s
functions. It is worth noting that the surface Green’s func-
tions are calculated in the quasiclassical approximation. They
can fully account for surface pair breaking due to the crys-
tallographic orientation of the surface, disorder pair break-
ing, and realistic band structure.’3® Surface pair breaking
can happen for anisotropic order parameters depending on
the crystal orientation but not for isotropic s-wave order pa-
rameters for which the standard BTK expressions were de-
rived.

The g%4(e) are the usual (quasiclassical) retarded and
advanced superconducting Green’s functions. Here we
made the usual quasiclassical approximation of a constant
density of states per unit energy and per spin for
conduction electrons at the Fermi surface, both in the

contact of the metal tip (é?) and the heavy fermion (éz):
Nowie)=Z cpzdle—E. (k) ]=N.,,;. However, we kept the
energy dependence of the localized density of states. To
compactify our notation, we move the density-of-states fac-
tors V.., ; and 7, into the tunneling elements by rewriting
\ 0N eftoe = tioes NNN 1= thgs and N 71Ny 01— V-
The new tunneling elements #;,; are dimensionless while 7,
and v,,; have dimension Venergy.

Now we can solve through matrix inversion for the full

Green’s function G in Eq. (6). With the previous definitions
we calculate the Green’s-function components needed in the
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expression for the tunneling current in Eq. (4) through a
point contact. First, we focus on the case of a heavy-fermion
material in the normal state. For this case, we derive an ana-
Iytic expression for the differential conductance for a single-
quantum channel, which leads to a modified Fano expression
for the multiband tunneling model

dl 21 (* de (gl + & — E)* + B2
—(V)=De——f de (qr 03
av AT) .2 F2+(8—E0)2
—-eV
X cosh‘z{ £-¢ ] . (14)
2T

In Eq. (14) D is the transparency, E, is the tunneling-
renormalized position of the localized energy relative to the
Fermi level, I is the half width of the resonance, and g is
the quantum interference parameter that controls the reso-
nance shape. The additional parameter B is present for multi-
band models only, when tunneling through a resonant local-
ized state couples differently to the HF conduction bands
(see below). B adds a Lorentzian to the conventional Fano
resonance which may be absorbed into a complex Fano pa-
rameter ¢p— q=qp+iqg with gg=B/T". If one introduces the
following two angles 6, and 6, and writes

ty,=tcos b, v,=vcosb,, (15)

t;=tsin 6,, v,;=v sin 6,, (16)

then the five phenomenological model parameters introduced

in Eq. (14) depend on five microscopic parameters
(t,v,1¢,Ey, 6=6,—0,) given by the following relations:
4
=, 17
(1+7)? (17)
F_r 2t),.0t €COS O (18)
0= 0 1+72 7
2 2 2 2
t. + 07 (1 +¢° sin” 6)
= , 19
1+ (19)
1(Ey—Ep) 1 -7
= 20
U 5 T 2 (20)
= gy/(t,%,c +02P)sin 8. (21)

The angle 6, is a free parameter that quantifies the relative
weight of the overlap integrals 1, ;. ¢, cannot be determined
from normal-state PCS measurements. The transparency of a
single channel, D, depends only on t= Vm. The parameter
B is nonzero only if §#0, i.e., 6,# 6,. Finally, we see that in
order to observe a Fano-shaped normal-state conductance,
i.e., a finite g, one needs to be in the limit of small to
intermediate tunneling coupling, <1 or D<1, and have a
sizable renormalization due to tunneling into the localized

state, EO * E,.
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At this point we like to comment that the differential con-
ductance derived in our multichannel tunneling model with
localized nonmagnetic surface states, shown in Eq. (14), re-
duces to the Fano expression by Yang!® obtained for a Kondo
lattice model with hybridized c-f electrons. Hence, we con-
clude that the observation of a Fano line shape in the con-
ductance is not a sufficient condition for probing bulk f elec-
trons in the normal state. In order to associate the Fano peak
with bulk f electrons additional tests are necessary, e.g., ob-
serving the bare localized state E,, crossing the Fermi level
with temperature or a magnetic field dependence of the line
width.

The PCS experiments measure a weak Fano-type conduc-
tance superimposed on a large background conductance
Gy (V). The asymmetry of the Fano shape in the conductance
with respect to voltage accounts only for 3—5 % of the total
conductance. To capture both these contributions we need to
go beyond the single-quantum-channel conductance calcu-
lated in Eq. (14). Since a point contact forms over a sizable
area, S, compared to atomic scales (~k;l), one should ex-
pect thousands of channels present, each acting as a single-
quantum channel. The conductance should then be written as
a sum over the contributions of the individual channels

dl dl
P
av PC  iechannels av i

The interface of a point contact is probably not atomically
smooth, which means that the majority of localized states
near the surface will be broadened to resonances due
to destructive scattering in the interface [see panel (a) in
Fig. 1]. In the simplest case, this means that the localized
state is broadened into a resonance as prescribed by
Ey— Eg+iVp,0qq- If the resonance is broad enough the con-
ductance kernel in Eq. (14) gives only a broad and feature-
less contribution resulting in the background conductance.
This applies to our analysis if y;,,,0~20—100 meV is the
largest energy scale of the problem. From these types of
tunneling channels, i.e., those dominated by ¥;,,.s Eq. (14)
gives a weakly voltage-dependent background conductance
Gy(V)=Gy+6Gy(V). For the remaining few channels,
the localized state forms a sharp surface state with
Eo— Eo+iYsharp, Where ¥y, is much smaller compared to
other energies of the problem. To describe these channels we
extract a phenomenological parameter CO:nShmpDez/ fi from
the PCS data (ny,,, is the fraction of channels having a
sharp localized state at the interface). C, gives the proper
magnitude of the Fano resonance relative to the background
conductance. This bimodal distribution of two types of tun-
neling channels can be resolved in the normal state by nu-
merical fits to the various data sets being considered here.
For the tabulated values of C, and G, see Table I, we find
that their ratio (Cy/G) is typically between 3% and 5% for
the point contacts we analyze. Another important point is
that both Cj and G, are only weakly temperature dependent,
which indicates that the bimodal distribution of channels is a
stable feature of each contact realization in a PCS experi-
ment. Therefore the phenomenological differential tunneling
conductance expression for a point contact accounting for
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TABLE 1. The extracted values of the temperature-dependent
model parameters from data shown in Figs. 3 and 4 with constraint
B=0.

E, r Co Gy
Expt. Parameter (meV) (meV) ¢ (kQ)™' (kQ)™!
Figure 3 Xo 2.01 13.0 -2.16 5.6 163
x,(45K)72 1.08 225 1.59 2.1 2.7
Figure 4 Xo 1.30 11.7 -4.44 1.66 166
x;(45K)71 -14.2 442 -192 -3.29 3.81
x,(45K)72 16.4 0 5.67 4.11 -0.07

this type of distribution of single-quantum channels becomes

dl * de (qFl“+s—EO)2+B'2
—(V)=C, Z
v 4T 124 (e _EO)Z

><cosh-2[ £ V} +Go(V). (23)

2T

The integrand in Eq. (23) depends on a set of four parameters

(Ey.T',qp,B) that can be extracted from PCS experiments.
These determine four microscopic parameters
[t10c(2) ,v(2) ,Eo(2), 8(2)] that depend on the transparency D
through the tunneling parameter z. The factors Cy and Gy(V)
are determined from the large voltage-scale conductance and
in principle determine the distribution of channels
(Ybroads Ysharp)- In what follows we will assume the simplest
bimodal distribution of only two possible values of
Yoroaa= 1" and ¥4, — 0. So far 6, is the only model param-
eter undetermined by normal-state PCS data.

One should think about the sharp channels as a set of
single-channel atomic point contacts. If we have a lattice
mismatch between the tip and the HFS one may expect that
a two-band model, as the one proposed here, should show a
distribution of the angle 6,. It seems natural to assume that

*'p=0.01

[ AG=20kQ"

200

180

—

160

dI/dv [kQ

140

120
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the wave function of the tip may have different overlaps with
each of the itinerant bands in the individual atomic point
contacts but still have a uniform transmission over the whole
contact area. A consequence of this will be that different
metallic tips, e.g., Au vs Pt, should result in different over-
laps with the itinerant bands of the HFS. We conclude that a
more general formulation of the differential point-contact
conductance should be written as

dl dl
<E/>PC = f d6,p(6,) |: E/(at)]mmp + Gy, (24)

where p(6,) is the distribution of 6, and the (dI/dV),,, is
the numerically obtained conductance. Instead of modeling
the distribution p(6,), we will look at PCS spectra for differ-
ent values of 6,.

C. Special limits of the tunneling conductance

The normal-state differential conductance in Eq. (23) has
several instructive limits depending on the particular choice
of microscopic model parameters. We consider the following
four cases.

(a) A one-channel tunneling model. Tunneling into one
band only, i.e., #;,,=0 and §,=0, 7/2, reduces to the standard
expression for a single-channel contact with a transparency
D=472/(1+1*)%> and a featureless differential conductance.

The Fano parameters g, I', and EO all vanish, thus resulting
in no Fano resonance. When the single band goes
superconducting one obtains the standard Andreev conduc-
tance for HFS. This case corresponds to the special limit of
0,=0 (1,=0) of the two-channel model to be discussed next.

(b) A two-channel itinerant tunneling model. Tunneling
into both light and heavy bands but keeping #,,,=v=0 will
not generate a Fano resonance in the conductance as seen

from Eqgs. (17)—(21) with I'=¢z=E,=0. In the normal state
and for a constant density of states at the Fermi level in light
and heavy bands, this limit gives a conductance which is
constant. When the heavy band goes superconducting,

D=0.85

[ AG=-5kQ"

|D=1.0

»

\
)
i i T O s Eirsnial ettt |
L L == L L L

-1 0
V (mV)

FIG. 2. (Color online) PCS spectra calculated self-consistently for a two-band model in the absence of scattering to localized states and
between bands (i.e., f;,.=v=0). We assumed d-wave superconductivity in one band and uncondensed electrons (normal state) in the other
band. The black (dark) and red (fair) lines are for a [100] (0°) and a [110] (45°) interface, respectively. We vary the transparency D from
tunneling (left panel) to high transmission (right panel). The relative weight of tunneling, 6,, into either band is varied from top to bottom
for given D. For clarity the conductances for different 6, are shifted vertically by AG. The zero-temperature gap is Ay=0.6 meV and the

background conductance is Gy=174 (kQ)7".
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FIG. 3. (Color online) Panel (a): tunneling fits for several normal-state conductances (O) taken with a Au tip on a [001] surface of
CeColns for a set of temperatures. The curves are shifted down by 4 (k)™ for each temperature trace. Panels (b)—(d): fitted Fano
parameters and extracted microscopic model parameters based on dI/dV curves in (a). The dotted lines in (a) are dI/dV curves calculated
from Eq. (4) using the microscopic parameters (open diamonds < ; closed diamonds are a lower bound for parameters) shown in panels (c)

and (d), which were extracted from the fitted Fano parameters (solid circles @) shown in panel (b). We fit each model parameter (I" and EQ
are in units of millielectron volt) in panel (b) to a temperature-dependent function x(7T) =xy+x,(7/45K)? and recalculate dI/dV [dashed lines
in panel (a)]. In panels (c) and (d) we show the dependence of the microscopic parameters (#,.,v) and E, on temperature for transparencies
0<D=0.175. For transparencies D >0.175 the fitting procedure fails and no solutions are found for Egs. (17)-(21). Here we set B=0.

T<T,, the two-band model gives an Andreev conductance,
which may be reduced in signal with respect to the back-
ground conductance. In Fig. 2 we show conductances for
fixed values of transparency D but with varying relative
weight of the tunneling elements via the tunneling angle 6,.
The key result of these self-consistent calculations (for de-
tails see Sec. III C) is that for high transparency junctions
(D—1) and overwhelmingly tunneling into paired heavy
electrons (6,<r/8) it is impossible to differentiate between
a d-wave superconductor with nodal lines along [100] vs
[110]. Note that for 6,=/4 the renormalized tunneling ma-
trix element for paired heavy and normal light electrons is
equal. The situation is reversed for §,=37/8 when tunneling
is predominantly between the normal metallic tip and the
normal light electrons in the HFS, see bottom curves in Fig.
2. This generic two-band tunneling model demonstrates that
in principle PCS data can differentiate between tunneling
preferentially into paired heavy electrons versus uncon-
densed light electrons.

(¢) A two-channel hybridized tunneling model. Simulta-
neously tunneling into a single itinerant band (here we con-
sider a single heavy band, i.e., ;=0 and #,# 0) and a local-
ized state #,,. # 0 with nonzero scattering between localized
and itinerant heavy electrons, i.e., v;=0 and v, #0. This
point-contact tunneling setup will generate a Fano resonance
in the differential conductance with gg=5=0, for details see
previous general Eqs. (17)—(21). Very recently, Yang'® dis-

cussed a Kondo lattice model of hybridized c-f electrons. He
derived a normal-state Fano conductance similar to the one
in our microscopic model in Eq. (14). In order to fit the Fano
resonance in CeColns, he introduced a voltage-dependent
Fano parameter I'(V) and a large interband term ¢z> gy,
which he attributed to multiband and correlation effects be-
yond c-f hybridization of electrons. Assuming a constant g
implies a strongly temperature-dependent interband scatter-
ing coefficient B~1'(T), which is difficult to reconcile
within our model. Furthermore, as we have shown above,
introducing a nonzero gy is equivalent to introducing asym-
metric scattering between different itinerant bands and local-
ized states, 0 # 0, invalidating the model assumption of only
two species of electrons used in the standard Kondo lattice
model with only c-f hybridization.

(d) A multichannel tunneling model. Simultaneously tun-
neling into localized and itinerant bands is of topic interest
and will be discussed in the next section.

III. RESULTS AND DISCUSSION

We take the following approach for extracting the micro-
scopic tunneling elements (¢,6,,v,t,.,0,E,) from point-
contact conductance data: we fit the differential conductance
in Eq. (23) to an experimental dI/dV curve at a given tem-
perature by extracting all model parameters, i.e., the four

Fano parameters E(,,q 71, B, the relative weight of the Fano-
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FIG. 4. (Color online) Tunneling fits for the same data as in Fig. 3, however, assuming a weak voltage-dependent background conduc-
tance 6G(V). Panel (a): the conductance curves are shifted down by 4 (kQ)~! for each temperature trace. The dotted lines are dI/dV curves
calculated from Eq. (4) using the microscopic parameters (solid @ and open O circles) shown in panels (¢) and (d), which were extracted
from the fitted Fano parameters (solid circles @) in panel (b). Again, we fit each model parameter in panel (b) to a temperature-dependent
function x(T) =xo+x,(T/45K) +x,(T/45K)?* and recalculate dI/dV [dashed lines in panel (a)]. In panels (c) and (d) we show the dependence
of the microscopic parameters (f;,.,v) and E, on temperature for transparencies 0 <D =0.03. For transparencies D>0.03 the fitting
procedure fails over the full range of temperatures and no solutions for Egs. (17)—(21) are found. At low temperatures though, one can find
solutions for transparencies up to D =<0.047. As in Fig. 3 the parameter B=0 and A;=0.6 meV.

type conductance C,, and the background conductance
G(V). After extracting the set of phenomenological param-

eters (EO,qF,I’,B) through numerical fits, we solve for the
set of microscopic parameters (Ey,v, 1., d) by treating ¢ and
0, as free fit parameters. Consequently, the parameters ¢ or
equivalently D=4¢>/(1+1*)> and 6, can only be determined
by studying the conductance in the superconducting state as
they effectively drop out from the normal-state conductance,
see Eq. (23).

A. Model parameters in the normal state

In Figs. 3 and 4, we show results extracted from a set of
conductances taken at different temperatures using a Au tip
on [001]-oriented CeColns. For each individual dI/dV curve
we get a good fit to a Fano resonance over the entire mea-
sured voltage window of |[V|=20 mV. We note that while
the dI/dV curves are well fitted within the chosen voltage
window in both Figs. 3 and 4 the extrapolated large voltage-
scale conductances are very different as we assumed a con-
stant background G, in Fig. 3 while in Fig. 4 we modeled the
background conductance as Gy(V)=G,—G, tanh(V/V?),
where V* is an additional parameter that is always on the
order of the voltage window and will not be considered any
further. As seen in these figures, the Fano parameters

[Eo(T),q(T),T(T),B] depend sensitively on the details of
how the background conductance is modeled. Therefore, for

deriving meaningful Fano parameters from PCS measure-
ments it is very important to measure over voltage biases as
large as possible while at the same time avoiding heating.

The model parameters (qF,EO,F,B,CO,GO) all have a
temperature dependence that may be fitted with a polynomial
x(T) 22§26Xxp~(7"/7*)/’, with p.=1 or 2 and T" is a typical
temperature scale for the onset of the strongly correlated
heavy-fermion state. For CeColns we set =45 K. When
we recalculate the dI/dV curves with the fitted temperature-
dependent model parameters, we find that the goodness of a

single fit is sensitive to the precise values of g, EO, I', and B.
These recalculated dI/dV curves are shown as dashed lines
in Figs. 3 and 4, whereas the fits with the original parameter
sets are shown as dotted lines.

In Fig. 5 we show the temperature dependence of the
model parameters, when PCS data are collected over a larger
voltage bias window. We discover that (i) the parameters
depend significantly on the size of the voltage bias window
over which the fit is performed, although they exhibit similar
temperature trends and (ii) the interband scattering parameter
B is not uniquely determined (not shown). Only the localized

level EO, Fano line half width I', and Fano parameter ¢ are
insensitive to 3. The transparency parameter C is weekly
dependent on B. Since the parameter 5 has negligible impact
on fitting the conductance, we set =0 for the remainder of
this work.
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FIG. 5. (Color online) Model parameters vs temperature from fits to the normal-state conductances taken with a Pt tip on a [001] surface
of CeColns from Ref. 7. The voltage intervals over which fits were performed was varied between |V|<20 mV, |V|<30 mV, and
|[V| <40 mV, to test for robustness of fit parameters and fit procedure. All fits were constrained by setting B=0. Left panel: results for a
constant background conductance Gy(V)=G,. Right panel: results for a V-dependent background conductance Gy(V)=Gy—G, tanh(V/V*).

Quite unexpectedly, we find that the magnitudes and tem-
perature dependences of the phenomenological model pa-
rameters depend strongly on the treatment of the conduc-
tance background. The only robust feature that can be
extracted is a temperature-dependent Fano parameter I' of
order 16 meV that nearly doubles between 5 and 30 K. All
other parameters depend on the background modeling. The
extracted temperature dependence of I'(T) suggests the im-
portance of inelastic scattering at elevated temperatures. Spin
fluctuations seen in NMR measurements of CeColns and re-
lated materials are likely sources for this behavior.3>*? The

renormalized localized level EO is either positive (above the
Fermi level) and nearly independent of temperature (constant
background G,)) or negative (possibly below the Fermi level)
and decreases further with increasing temperature
(V-dependent background). We do not observe a crossing of
the localized bare level E,, from positive to negative as tem-
perature is increased. This suggests that the localized states
are most likely surface states since for bulk states localized f

50 T T T
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481 s 20K |
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46 <o fit (+-20mV) ||
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N

S
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=

38 | | | | |
-60 -40 -20 0 20 40 60
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electron levels should be pushed below the Fermi level for
temperatures higher than a characteristic heavy-fermion co-
herence temperature 7. Above T°~45 K the heavy-fermion
system CeColns exhibits well-developed localized f mo-
ments.

To further characterize the origin of the resonance, spec-
troscopic measurements at higher temperatures and in mag-
netic fields may distinguish between localized magnetic
Kondo states in a lattice**? and nonmagnetic surface states.
Currently the picture is not clear. If the resonance originates
from the Kondo lattice effect, one would expect that the
resonance disappears above the Kondo lattice (coherence)
temperature ~45 K in CeColns. However, this characteristic
temperature is only one quarter of what is expected from the
half width of the resonance I'=kzTx~16 meV or
Ty~ 160 K. Additionally, it has been suggested that a mag-
netic field splits the Kondo resonance due to the Zeeman
effect. However, there is no indication that fields as high as 9
T affect the conductance.!*43

In Fig. 6 we show selected normal-state conductance fits

50— T T

o 5K ]

T s 20K =
8 N —— fit (+/-40 mV)

_____ —==- fit (+/-30 mV) |

% <o it (+-20mV) |

dI/dVv (1/kQ)
[ S

B
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FIG. 6. (Color online) Tunneling fits to the normal-state conductance data (symbols) at 5 and 20 K with parameters displayed in Fig. 5.
For clarity the 20 K data set has been downshifted by 2/k{). Left panel: assuming G,(V)=G,, nearly perfect fits are possible in selected
voltage windows but not beyond. Right panel: assuming G,(V)=Gy—G tanh(V/V*), nearly perfect fits are possible in selected voltage
windows, as well as outside for large voltage windows in the case of the 20 K data set.
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FIG. 7. (Color online) Conductance for an s-wave superconductor with model parameters extrapolated from Fig. 3. Panel (a): we plot the
transparency D(E;) as a function of the energy relative to the Fermi energy of the localized state at the interface. Panels (b)—(d): the
conductance is plotted for a range of tunneling angles 6,. Panel (e): the conductances are compared to the standard BTK conductance vs
transparency D superimposed on the normal-state conductance with a Fano line shape. We assumed that 15% of the background conductance
is superconducting, i.e., 75rx=0.15 in Eq. (25). Each conductance curve is shifted up or down in steps of 10 (k€)' relative to the

conductance marked by the arrow. We used Ay=0.6 meV.

for CeColns at 5 and 20 K that were used to extract the
model parameters shown in Fig. 5. These fits highlight the
need for conductance measurements over voltage biases as
large as possible because fitting a Fano resonance over a
small voltage window leads to significant deviations outside
that region and hence quite different model parameters.

In Table I we report the temperature-dependent model
parameters for data shown in Figs. 3 and 4. From this
analysis we find that the only robust Fano parameter is I,
which measures the half width of the Fano resonance,
while all other parameters vary from measurement to
measurement and depend on the background fit, see
Figs. 3-5. The temperature behavior of the renormalized

parameter for the localized level EO can vary from
nearly flat to decreasing or increasing with increasing
temperature  depending on the treatment of the
background conductance. No universal behavior can be
identified that might relate to the bulk properties of CeColns,
as argued within a two-fluid interpretation of the PCS
data.’®" How to disentangle surface from bulk effects
remains a challenge. It should be possible, in principle, to
observe the nature of the correlated electronic state and the
duality** of f electrons in CeColns with tunneling
experiments.

B. Model parameters in the superconducting state

When a material shows superconductivity one can use the
nonlinear voltage dependence of its N/S conductance to ex-
tract further information about the undetermined parameters
D (or t) and 6,. In Fig. 7(a) we plot the calculated transpar-
ency as a function of E, for the conductances fitted in Fig. 3.
In panels (b)—(d) we show the corresponding conductances
calculated at T=0.1 K (CeColns has a T,=2.3 K) using the
extracted temperature-dependent model parameters with an
s-wave order parameter. In panel (e) we show the self-
consistent BTK N/S conductance'! superimposed on the
normal-state conductance (dI/dV)ggn,+Go as

dl_dl

_dt Mk dl
av_-av

25
D VP (25)

Fano T GO|:(1 - 77BTK) -

for the full range of transparencies D. Here 7gtx is the frac-
tion of sharp channels in accordance with the model for PCS

described by Eq. (23). The self-consistent BTK N/S conduc-
tance, (dI/dV)grk, is computed using quasiclassical Green’s
functions as done in Refs. 45 and 46 by accounting explicitly
for surface pair breaking, which goes beyond the standard
BTK formulation. Therefore our self-consistent method en-
ables the determination of the spectral properties of the su-
perconducting state by incorporating pair breaking through
surface scattering for anisotropic order parameters, elastic
impurity scattering, and inelastic scattering off from low-
frequency bosonic modes.

In panels (b)—(d) of Fig. 7, we vary the heavy-light
electron-tunneling angle 6, allowing for competition between
tunneling into a normal conducting and a superconducting
band in the heavy-fermion material. As seen, the N/S con-
ductance is sensitive to both the transparency D(f) and 6,
i.e., the relative ratio of tunneling into the superconducting
vs the normal-state band. Tunneling through a resonant state
enhances the effective transparency of the junction so that a
D(E;) =0.17 has an N/S conductance similar to a BTK con-
ductance of transparency D= 0.8. We also see in Figs. 7 and
8 that for junctions with “high” transparency D(E,), the sub-
gap conductance is enhanced. Another crucial result of this
multichannel model is that the conductance enhancement due
to AR is only ~10-15% relative to the normal-state conduc-
tance and not the conventional 100%. Note that the suppres-
sion of the AR signal in the HFS comes naturally about by
tunneling into either multiple bands or through localized
states into one heavy band. Hence the reduction in the AR

signal can be due to EO not being aligned with the Fermi
level and tunneling is slightly off-resonant. In turn this leads
to an incomplete Andreev reflection as there is a slight

particle-hole asymmetry with respect to EO [see Gv?oc in Eq.
(10)]. No ad hoc postulates are required for the Fermi veloc-
ity mismatch between point-contact tip and HFS or special
boundary conditions at the interface. Instead it is accounted
for in the tunneling matrix elements of the wave function
overlap between the metallic tip and the HFS.

C. Symmetry of the superconducting order parameter

There is quite a body of evidence that the heavy-fermion
material CeColns is an unconventional superconductor with
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FIG. 8. (Color online) Conductance for a d-wave HFS with the same model parameters as in Figs. 3 and 7. The conductance is plotted
for two crystal-to-surface orientations 0° and 45° and for two values of the tunneling angle 6,. The labels nc=nonself—consistent and
sc=self-consistent refer to taking surface pair breaking in to account (sc) or not (nc). The conductances are compared with the corresponding
self-consistent BTK conductance vs transparency D shown in panel (d). We assume a superconducting fraction 7g1g=0.15 in Eq. (25). Each
conductance curve is shifted up or down relative to the conductance marked by the arrow. We used Ag=0.6 meV. The inset shows PCS data
from Ref. 8 for comparison. There is a qualitative agreement between the computed PCS in panel (a).

a d-wave symmetry of the order parameter.'0-32-3447-51 We

follow the strategy outlined in Refs. 36-38, 45, and 46 and
use the quasiclassical theory to compute self-consistently the
surface states of a d-wave superconductor. The surface
Green’s function is then used to evaluate the conductance
taking into account surface pair breaking and hence a re-
duced order parameter at the surface. We emphasize that sur-
face pair breaking of the order parameter is not included in
the original BTK formulation and hence will lead to differing
results. The results of our self-consistent calculations are
shown in Fig. 8 using the same model parameters as in Fig.
7. As seen in panels (a)—(c) we have a sensitive dependence
on the surface orientation relative to the crystal-axis
orientation.”” If the surface normal is aligned with the
crystal axis along which the d-wave order parameter

]
=
]

A(T)cos 2(¢pp— ) has a lobe (¢=0°), then the conductance
shows qualitatively the same shape as an s-wave
superconductor, especially if one takes into account the tra-
jectory average over the order parameter A(T)cos 2(¢,— ).
If the surface normal is misaligned with the crystal
axis the surface is pair breaking for a d-wave
superconductor as the surface scattering connects
trajectories with different order-parameter values, i.e.,
A(T)cos 2(¢p;,,— @) # A(T)cos 2(¢p,,,— P). For trajectories
where the order parameter changes sign there is a zero-
energy Andreev bound state,’>>* which gives rise to a zero-
bias conductance peak.>? Therefore the NS conductance in a
d-wave superconductor will depend on the principal tunnel-
ing direction a point contact or STM tip has relative to the
crystal orientation. In panel (d) in Fig. 8 we show the self-
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FIG. 9. (Color online) Conductance for an HFS with the same model parameters as in Fig. 4. The conductance is plotted for both an
s-wave and a d-wave superconductor with two crystal-to-surface orientations 0° and 45° and for different values of the tunneling angle 6,.

We used Ay=0.6 meV. The curves have been shifted for clarity.
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consistent BTK conductance computed with Eq. (25) using
the superconducting fraction 7grg=0.15. For D<1 there is a
clear dependence on the surface-to-crystal orientation. For
fully transparent contacts on the other hand there is very
little difference between a ¢=0° contact and one with
¢=45°. For the dI/dV curves calculated using the model
parameters we never reach the fully transparent limit, as for
the s-wave case in Fig. 7, the resonant enhancement of tun-
neling via a localized state gives for D(E;) =0.17 a subgap
conductance similar to that of the self-consistent BTK sce-
nario with D=0.8. For smaller D(E,) the tunneling limit is
approached.

The high transmission case, D — 1, gives good agreement
between the self-consistent BTK conductance and experi-
mental data®® at all temperatures below T, irrespective of
surface-to-crystal orientation ¢, see Fig. 8. Similarly, the
conductances calculated with the multichannel tunneling
model reproduce to a large extent the experimental PCS data,
as can be seen in Figs. 8 and 9. In Fig. 9 we show the
corresponding conductance curves for an s-wave and d-wave
superconductors in the presence of a voltage-dependent
background G((V), where the model parameters are extracted
form normal-state fits shown in Fig. 4. It is clear from these
self-consistent calculations that PCS measurements should
be able to differentiate between tunneling into the nodal vs
the antinodal direction of the gap function, irrespective of the
transparency of the junction. Further, in the Fano scenario we
find that the amplitude of the conductance in the subgap
region has the proper suppressed magnitude compared to the
background. The suppression is a direct consequence of ei-
ther competing or interfering tunneling channels.

A key result of these self-consistent calculations is that a
modified expression for the BTK conductance for an HFS
point-contact junction, see Eq. (25), gives the correct de-
scription of experiment. However, an unphysical parameter
D—1, i.e., tunneling in the high transmission limit, is re-
quired. On the other hand, the multichannel tunneling model
gives the correct description with physically reasonable mi-
croscopic parameters, i.e., tunneling in the low transmission
limit with D<1.

IV. CONCLUSIONS

In summary, we developed a microscopic tunneling model
for heavy-fermion materials. A narrow spectroscopic feature
associated with localized states seen in the heavy-fermion
material CeColns is modeled through a multichannel tunnel-
ing junction. The asymmetric line shape of the differential
conductance is understood as a Fano resonance for localized
states in the vicinity of the interface coupled with itinerant
heavy electrons in the bulk of CeColns.

PHYSICAL REVIEW B 82, 014527 (2010)

We list the key results of our analysis: (1) the generic
two-channel itinerant tunneling model demonstrates that in
principle PCS data can differentiate between tunneling pref-
erentially into paired heavy electrons versus uncondensed
light electrons.

(2) A consequence of the self-consistent calculations for
the two-channel itinerant tunneling model in the absence of
localized states is that for high transmission junctions
(D—1) and overwhelmingly tunneling into paired heavy
electrons (6,<7/8) it is impossible to differentiate between
a d-wave superconductor with nodal lines along [100] vs
[110].

(3) The only robust Fano parameter, we succeeded to ex-
tract from several PCS measurements on different samples,
is I'(T) with I'(0) ~ 16 meV. It measures the half width of
the Fano resonance. Its temperature behavior suggests the
presence of significant inelastic scattering, which may be due
to self-energy effects like scattering off from spin fluctua-
tions or electrons.

(4) Finally, for a multichannel tunneling model the zero-
bias conductance enhancement due to Andreev reflection is
reduced to only ~10-15% relative to the normal-state con-
ductance compared to the conventional 100% effect. The ori-
gin of this suppression can be due to either tunneling into
multiple competing itinerant bands or through a localized
state into one itinerant band.

We conclude that it is desirable to have tunneling mea-
surements ranging from the low to high transmission limit.
Future measurements at higher magnetic fields, higher tem-
peratures, and over wider voltage bias windows will help to
probe quantum interference of electrons tunneling between a
metallic tip and itinerant heavy-fermion bands. In order to
identify the origin of the localized states nanosized PCS tips
or STM tips, which are in the single-quantum-channel limit
for tunneling, will prove to be critical for resolving the mys-
tery of tunneling into heavy-fermion materials. Since our mi-
croscopic multichannel tunneling model is quite generic, it
should also be applicable to other heavy-fermion materials.
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