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Abstract. In this paper a new method for fast initialization of radial
basis function (RBF) networks is proposed. A grid of possible positions
and widths for the basis functions is de�ned and new nodes to the RBF
network are introduced one at the time. The de�nition of the grid points is
done in a speci�c way which leads to algorithms which are computation-
ally inexpensive due to the fact that intermediate results can be reused
and do not need to be re-computed. If the grid is dense one obtains es-
timators close to estimators resulting from an exhaustive search for the
initial parameters which leads to a lower risk to be caught in local min-
ima in the minimization which follows. The usefulness of the approach is
demonstrated in a simulation example.

1 Introduction

Typically the parameters in the neural nets are estimated using criterion opti-
mization using a gradient based iterative algorithm. Such a minimization re-
quires 1) the de�nition of the model structure of the neural network, 2) the
supply of an initial model structure and initial parameter values.

For RBF networks there exists a large number of suggestions of algorithms
deciding positions and widths of the basis functions so that only the amplitude
parameters need to be estimated, which can be done with least squares. Many
suggested initialization algorithms, like the one proposed in this paper, are in-
cremental where the size of the network is stepwise increased with new basis
functions. Some of the �rst of such algorithms were suggested in [1] and [2].
These algorithms normally need to be combined with some kind of stopping al-
gorithm, see e.g. [3]. A more recent contribution is [4] where the authors suggest
an algorithm deciding both positions of the basis functions and their radii by
including knowledge of the output data. Many other ideas exist and an overview
can be found in, e.g., [5].

The suggested algorithm adds one important idea compared to the algorithms
mentioned above. It starts with a re-sampling of the data so that an equidistant
sampled data set is obtained. Alternatively, in some applications the data might
be regular from the beginning. The equidistant data is used in the initialization
where basis functions are stepwise introduced. The position and the width of
each introduced basis function can only take values on a pre speci�ed regular
grid. With this setting it is possible to test all combinations given by the grid
within a reasonable computation time. With a dense grid one obtains estimators
which are close to estimators obtain using an exhaustive search, which means



that local minima become less likely. After the initialization all parameters are
adapted using the original data.

The method applies in general multi-input multi-output settings. However,
due to space limitations, a simpli�ed version of the algorithm in one dimension
is explained, and an example on a two dimensional problem with non-regularly
sampled data is given. For a complete description of the algorithm see [6].

The paper is organized as follows: In the next section the considered problem
is presented. The proposed algorithm is detailed in Section 3 for the case of
uniformly spaced input data. Extensions to non-uniformly spaced data sets as
well as for bivariate data sets are discussed in Section 4. The performance is
illustrated in an example in Section 5. Finally Section 6 concludes the paper.

2 Problem Statement

The data set is assumed to be generated according to

yi = f(xi) + ei (1)

where {ei}i=1,...,N are i.i.d. with mean zero and variance σ2 and {xi}, i =
1, . . . , N is the input signal. In the �rst step it is assumed that (for some x1)

xi+1 = xi + ∆x, i = 1, . . . , N − 1,

i.e. that the input signal is equidistantly spaced.
The goal is to use {yi, xi}, i = 1, . . . , N to estimate the unknown function

f : IR→ IR using the RBF network of the
following form:

fK(x, θ) = c+
K∑
k=1

αkϕ(|x− βk|/γk) = c+
K∑
k=1

αk exp(−|x− βk|2/γ2
k) (2)

where K is the number of basis functions. The function is parameterized with
c and {αk, βk, γk}Kk=1, where the latter ones are the amplitude, position and
width. All parameters are stored in a common parameter vector θ.

The estimation problem consists in �nding the parameter value θ such that
the squared sum of estimation errors, εi(θ) = yi − fK(xi; θ),

Q(θ) =
N∑
i=1

εi(θ)2 =
N∑
i=1

(yi − c−
K∑
k=1

αkϕ(|xi − βk|/γk))2 (3)

is minimized. For given K the usual approach to minimize Q(θ) is to �rst �nd

an initial estimate θ̂(0), which is the starting point for an iterative search for
the minimum. In each iteration, j, one �nds a new estimate θ̂(j+1) with a lower
value of Q(θ). Typically, for this numerical search Levenberg-Marquardt, or
some other gradient based method, is used, see, eg, [5].

The minimization of Q(θ) can be decomposed into two parts using the fact
that given βk, γk, k = 1 . . . ,K the problem of �nding the optimal αk in (3)



reduces to a linear regression which can be solved explicitly. De�ne the following
symbols ȳ = 1

N

∑N
i=1 yi, ỹi = yi − ȳ and

ϕ̄k = 1
N

∑N
i=1 ϕ(|xi − βk|/γk), ϕ̃i,k = ϕ(|xi − βk|/γk)− ϕ̄k

as the mean and the deviations from the mean of the output data and the output
ϕ̃i,k of the basis function evaluated at data point i, respectively.

For K = 1 and given β1 and γ1 it is straight forward to show that

ĉ = ȳ − ϕ̄1α̂1, α̂1 =
∑N
i=1 ỹiϕ̃i,1∑N
i=1 ϕ̃

2
i,1

. (4)

Combining (4) and (3) one obtains

Q(θ) =
N∑
i=1

ỹ2
i −

(
∑N
i=1 ỹiϕ̃i,1)2∑N
i=1 ϕ̃

2
i,1

. (5)

Hence, if we have several possible positions and widths {βm, γj},m = 1, . . . ,M ,
j = 1, . . . , J to choose from we should select that pair maximizing the second
part of (5), ie,

V (m, j) =
(
∑N
i=1 ỹiϕ̃i,(m,j))

2∑N
i=1 ϕ̃

2
i,(m,j)

=
D(m, j)2

N(m, j)
. (6)

where the index (m, j) of ϕ̃i,(m,j) indicates the particular choice of βm and
γj for basis function k, and D(m, j) and N(m, j) are de�ned as D(m, j) =∑N
i=1 ỹiϕ̃i,(m,j) and N(m, j) =

∑N
i=1 ϕ̃

2
i,(m,j).

Maximizing V (m, j) provides the exact solution to a problem approximating
the choice of the optimal location (β, γ) ∈ IR2 of the basis function. Once
the basis functions are evaluated on the grid points, the calculation of V (m, j)
mainly involves the formation of inner products which can be done numerically
e�cient. It is the key insight used in this paper that, thanks to the regular grid,
the value of the basis functions needed in V (m, j) and N(m, j) are the same for
di�erent m and j. Hence, these values do not need to be re-computed, and this
saves an enormous amount of time. The detailed expression of this is shown in
[6] but the e�ect is illustrated in the example in Section 5.

3 The Proposed Algorithm

The grid is de�ned as

γj = γ1/2j−1, j = 2, . . . , J,
βm = x1 + p(m− 1)∆x, m = 1, . . . ,M (7)

where γ1 denotes the largest scaling factor for the width and p is a positive
integer.



The computations to obtain D(m, j) for all values of m and j can compactly
be written using matrix multiplications. Put all the output data in a vector
Ỹ = [ỹ1, ỹ2, . . . , ỹN ]T . Then, for γj ,

AM,j Ỹ = [D(1, j) D(2, j) . . . D(M, j)]T (8)

where

AM,j =


ϕ̃1,(1,j) ϕ̃2,(1,j) · · · ϕ̃N,(1,j)
ϕ̃1−p,(1,j) ϕ̃2−p,(1,j) · · · ϕ̃N−p,(1,j)

...
...

. . .
...

ϕ̃−p(M−1)+1,(1,j) ϕ̃−p(M−1)+2,(1,j) · · · ϕ̃−p(M−1)+N,(1,j).

 (9)

Also, N(m, j), m = 1, . . . ,M become

diag(AM,jA
T
M,j) = [N(1, j) N(2, j) . . . N(M, j)]T (10)

where the full matrix multiplication can be omitted in the implementation since
only the diagonal is used. As mentioned in the previous section, due to the
grid and the equidistant data, most of the elements of the AM,j matrices are
identical which decreases the number of computations: In particular ϕ̃i−k,(1,j) =
ϕ̃k−i+2,(1,j) for i− k < 1. For details see [6].

With the insights from above an RBF network of the form (2) for given K
is initialized as follows.

Algorithm 3.1 1)De�ne a grid according to (7).

2) For the �rst basis function, set k = 1 and de�ne ỹ
(1)
i = ỹi, i = 1, . . . , N .

3) Calculate N(m, j) using (10).

4) With ỹ
(k)
i replacing ỹi, calculate D(m, j) using (8).

5) Select βk = β̃m and γk = γ̃j for those {m, j} maximizing D(m, j)2/N(m, j).
6) If k = K go to step 7. Else, regress ỹ

(k)
i onto {ϕ̃(|xi − βκ|/γκ)}kκ=1 and

the constant to obtain estimates {α̂(k)
κ }kκ=1 and ĉ(k), and the residuals ỹ

(k+1)
i .

Increase k to k + 1 and go to Step 4.
7) Recalculate the regression of yi onto {ϕ(|xi − βk|/γk)}Kk=1 and the constant

to obtain estimates {α̂k}Kk=1 and ĉ, and the residuals εi(θ̂).

4 Non-equidistant and Bivariate Data

Algorithm 3.1 requires equidistantly sampled data. A straight forward approach
to extend the algorithm proposed is to apply some interpolation or smoothing
technique and re-sample for the initialization. Many interpolation techniques
exists, see, eg, [7, 8].

In the last section the algorithm has been explained for the case of one
dimensional input space. The extension to higher dimensional input spaces is
straight-forward. The main challenge is to keep track of the matrix elements in
the AM,j matrices which are common. See [6] for some more details.



5 Simulation Study

The proposed algorithm is tried on a series of 10 two-dimensional examples. The
true functions consist of 50 basis functions of the form

f(x) =
50∑
k=1

αk exp(−‖x− βk‖2/γ2
k) + 14

where βk is chosen uniformly on [0, 20]×[−5, 20], γk is chosen uniformly on [1, 4],
and αk is chosen uniformly on [0, 1].

For each of the true functions, 1000 observations are generated as (1) where xi
is drawn bivariate uniformly from the same domain as β and {ei} is a realization
of a Gaussian stochastic variable with variance 0.1.

The models to be �tted in these 10 problems consist of 12 basis function.
Hence, the true functions are not in the model set. Since data is randomly
distributed, the �rst step is to use interpolation to resample in order to obtain
an equidistant data set which is used in the initialization.

The suggested method was applied and it needed on average 40 CPU sec-
onds to obtain a model in each of the problems. This time is almost equally
distributed for the interpolation, the computation of the initial estimate and the
iterative minimization. On average 200 iterations were needed in the �nal iter-
ative minimization. In one of the 10 problems, the chosen upper limit of 1000
iterations was reached.

The result from the proposed algorithm is benchmarked against random ini-
tialized models where the distributions of the randomly chosen parameters are
adapted to the data range. For each problem, 10 di�erent random initializations
were used in the iterative �tting. In 17 cases, out of in total 100 minimizations,
the minimization was stopped at the upper limit, 1000. On average 400 itera-
tions were used. The ten trials in generally took between 8 and 12 times longer
than the proposed algorithm. Hence, the computational cost of the proposed al-
gorithm in this case is approximately the same as for one single realization with
the random initialization. This directly relates to the average 400 iterations in
the search algorithm for the random initialization compared to approximately
200 for the proposed initialization.

In Figure 1 (a) the result for one of the ten problems is shown. Figure 1 (b)
shows an overview of the results from the 10 problems. The random initializa-
tion is better in three of the 10 problems, but the di�erence is small. In most
of the problems the suggested algorithm outperforms the random initialization
clearly. Considering CPU time used, the random initialization has been given
approximately 10 times more time. If both algorithms would have been given
an equal amount of time, only one random alternative could be tested.

In [6] a number of additional simulations in the univariate case can be found
which show the same behaviour.

6 Conclusions

An algorithm to initialize radial basis function models has been proposed. Com-
pared to a random initialization, the proposed algorithm has a much lower com-
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Fig. 1: (a) Obtained �nal model using the proposed algorithm for one of the test
examples. (b) MSE (vertical axis) for the 10 problems (horizontal axis). The
small dots illustrate the result using di�erent random initializations. The grey
large dot is the �t for the initial model given the suggested initialization and the
grey squared box is the result at the minimum using the suggested initialization.

putational load. The reason for this is that a grid with certain regularity of
positions and widths of the basis functions is used which opens up for a re-use
of a lot of the needed computations.
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