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A Comparative Analysis of the
Complexity/Accuracy Tradeoff in Power Amplifier
Behavior Models

Ali Soltani Tehrani, Haiying Cao, Thomas Eriksson, Magnsakksson, Christian Fager

Abstract—A comparative study of state-of-the-art behavioral modulation schemes. It is also noticed in such schemes, that
models for microwave power amplifiers (PA) is presented in the amplifier tends to exhibit strong memory effects on the
this paper. After establishing a proper definition for accuracy signal, which can further degrade the signal quality.

and complexity for power amplifier behavioral models, a shot Due to the i t f th lifi it i t
description on various behavioral models is presented. Theain ue to the importance o € power ampliier, 1t IS no

focus of this paper is on the modeling accuracy as a functionfo SUrprising that the interest in power amplifier modeling has
computational complexity. increased in recent years [2]-[4]. The main applicatiorhete
Data is collected from measurements on two PA's - a general models is for use in digital pre-distortion (DPD) lineatipa.

purpose amplifier and a Doherty PA designed for WIMAX - and - ppp pas peen shown to reduce the size and cost for lineariza-
at different output power levels. The models are characteded Hi d to other li izati thods T5
in terms of accuracy and complexity for both in-band and out- ion compared to other linearization methods [S].

of-band error. The results show that the generalized memory  In [4] power amplifier behavioral models in literature were
polynomial behavioral model has the best tradeoff for accuacy presented and classified in terms of memory: models without
vs complexity. memory, with linear memory and with nonlinear memory. A
Index Terms—Behavioral modeling, nonlinear distortion, non-  Similar presentation was done in [6] where a new behavioral
linear systems, power amplifier, radio communication, Volerra model was also proposed. In [7] some important \Volterra
series. series-based models were compared and analyzed. The first
attempts to compare these behavior models in an experimen-
|. INTRODUCTION tal setup was done in [8]. This work was extended in [2]
g{ith more behavioral models, more input signals, and cross-

HE development of future generation wireless transmis- """ " . .
sion schemes, that operate at higher frequencies a\@idatlon. The effect of signal bandwidth was also anadyze
’ 2].

require more bandwidth, has increased the demands on fhesl- . .

linearity of power amplifiers. At the same time, with the Wh|_le these yvorks provided a necessary basis for power
increase of wireless communication users, the number %pphﬁer modeling, the performar_me was given as a function
power consuming base stations has also increased. This %1%1(_)dell order, a_nd dol no;_conmder the cr(])mpflexny of prac-
augmented the importance of developing power-efficient, jjtica Imp emgntat:jons. nt IIS papera Wﬁ t er:e OLe pres;;nt ¢
ear devices in mobile base stations. Power consumptioreis e\t;orgp?nson asedon %Qr?]pheX|t)t/), an ﬁ 0;“ f”‘t ¢ 1€ humboer oh
more critical in mobile devices where the power is drivemdfro mode parameters - whic as been the dominating approac

limited battery supplies. - is not always a good complexity measure. In order to have a

One of the main power consuming devices in a transmitt r comparison between the models, and have a basis where

is the power amplifier. One way to reduce power consum Iture models may be derived from, an accuracy/complexity

tion in power amplifiers is to drive them to high efficienc omparison for behavioral models is proposed. It will be

regions. Unfortunately this has the adverse effect that Pﬁ‘gown _th_at as the number of parameter; grow, most models
ill exhibit similar performance and only differ on the anmu

become more nonlinear [1]. This nonlinearity can introdué@f lexi ded h thi ;
spectral regrowth, the degradation of signal quality, atietio of complexity heede to reac this performance. .
distortions. Nonlinearities can have even more dramatezef | "€ complexity of behavioral models can also be of interest

as the dependency on linearity grows in modern widebaWﬂen practical implementations of these models are neggssa
where the main factor is computational complexity. Having
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presented in Section IV. In Section V the measurement setup transmitters, it is essential that the power saved is not all
is introduced and in Section VI results of the comparison on  spent on processing the DPD algorithm.

two power amplifiers are provided and discussed. In this work, the focus is on running complexity due to its
heavy computational costs on the system.
II. COMPLEXITY A final issue for complexity in behavioral models is that

f parallelization. Some behavioral model algorithms have

In literature, complexity has been notated by dlffereqhe inherent capability to be parallelized easier whileecth

measures [9]. Often it is measured in orders denoted by the : . . L
. S do not. This can be important in some applications where
Landau symbolO(-). Unfortunately this representation is not

precise enough for practical applications [10]. parallelization is possible. All the models that are préseén

. . . in this study have this capability.
A simple and common representation for behavioral model y P y

complexity is to only consider the number of modeling param-
eters and disregard the computing process complexity. This Complexity for Volterra-based models
can determine the memory size needed for each behaviorarhe Volterra series is a widely used mathematical tool for
model, and can be used when there are restrictions on thedeling nonlinearities and memory in power amplifiers. The
memory size. discrete baseband-equivalent form of the \olterra serigistw
Another approach is to simply record the running time afonsists of a sum of multidimensional convolutions can be
the different behavioral models in a software package. Ehiswritten as [12]
severely dependent on the hardware setup and the algorithm

P M M M

utilized. In order to have a fair comparison in this case, .. .in] =
the algorithms must be optimized for the different behaalior pz:; m;() m;rn m<p+1>/;n<p1)/2
models and for the hardware where they are tested. p odd

The number of floating point operations or FLOPs is an- M M
other widely used measure for complexity. In DSP hardware, Z Z hp,my ma - s,
complexity mainly stems from additions and multiplicaton M(pt3)/2=0  Mp=mp_1
Since FLOPs is actually a measure for the number of addijtions (p+1)/2 P
subtractions, and multiplications, it is sufficiently acate to X H x[n — my] H r*n—mgl. (1)
make a fair comparison between behavioral models. Hence, it i=1 k=(p+3)/2
will be useq as the co_mplex_ity measure in this paper. “The Volterra series can be rewritten as:

Another important issue in behavioral model complexity
is where the complexity originates from. The computational Yvolterra = h x X (2)

complexity can be classified intmentification complexity
running complexityand adaptation complexity

« ldentification complexity The identification procedure
differs for the behavioral models. Due to statistical prop- H(z[n]) = H x[n —my) HI* [n — my].

erties of measured signals, most \olterra-based modelsD . . : .
. I . ) . epending on the implementation of the behavioral model
can be identified with a least squares estimate. Since t(,ge

identification of the behavioral model is typically done gorithm, the complexity for the Volterra-based behasior

. : o T models will differ. In [13] a general algorithm for implemten
offline, this complexity is normally not a major issue. . . : .
. . ) ' ing the \Volterra series as a behavioral model is proposeck He
« Adaptation complexityin practical systems, due to slight, > .~ .. ; ) )
. o it is simplified and given in two steps:
changes in the power amplifier such as temperature ) i _ )
change or different mismatching effects, behavioral mod- SteP i) Construct the basis functions (permutations of
els might need to be updated at time intervals. These time . X_ = H(x[”]))'_ )
intervals can normally be much larger than the symbol SteP ii) Filter the t-)aS|s with the kernelh ¢ X).
period. The adaptation of the behavioral model to thedée second step is directly related to the number of kernels,
changes is considered adaptation complexity. In magjpce each kermel will be multiplied by the according basis
instances where the variations are slow, this Comp|exﬁynct|0n and then summed with the remaining results. Thus,
may be of less importance. it is solely dependent on the number of coefficients. The
« Running complexityRunning complexity is the numberbPehavioral models will, however, differ in the constructiof
of calculations that is done on each sample when tfee bgsis functipns. . o . o .
model is utilized. This complexity severely limits the Animportantissue in efficient algorithm design, is to reira
system due to the fact that it is a real-time problenifom generating already available data. For instance, evhil
Depending on the application the maximum acceptabRultiplying two signal values may require a certain numkfer o
complexity varies. For a base station, there might BeLOPs, delaying a signal does not. Therefore it is neceseary
room for more Comp|ex a|go|’ithms and behavioral modefylly utilize all available permutations in the behaviombdel
while for mobile hand-held devices requirements are, _ _ i
. . S In transmitter architectures the effect of filtering the puit of the PA
S.t”Cte_r- S_'nce One. of th.e main JUSt'f'CauonS for I;)If-)Desults in only odd order nonlinear power terms in the bedralimodels
linearization techniques is to have more power-efficienqti].

whereh is the vector containing ak, ., m.,,...,m,, andX is
a matrix containing all permutations afn]:



algorithms. For example;[n — 1]x[n — 2]z*[n — 3] can easily =~ 3) Complexity: Efficient algorithms for implementing

be constructed from[n]z[n — 1]z*[n — 2] by a simple delay. Volterra filters has been studied in literature. The comiplex
Another issue is that terms that will be used in differerdf the Volterra series has also been analyzed in [12]. In [13]

combinations should be generated beforehand. For examphe, complexity for a non-optimized normal implementatidn o

when constructingz[n]|*, if |z[n]|? is already available, using the Volterra series algorithm is given for a real input signa

it will result in much lower complexity than constructingfmn An important note to consider for this behavioral model is

scratch. that all basis that do not contain thé:] term can be generated
Finally, it is important to distinguish between multiplitan  freely from previous terms with a simple delay. This follows

of two complex numbers, and multiplication of two real-vedu simply from the previous example|[n — 1]z[n — 2]z*[n — 3]

numbers. The latter is much less complex and only consis@n easily be constructed franin|x[n— 1]z*[n— 2] with little

of 1 FLOP, while the former requires FLOPs. Table | shows complexity. The number of multiplications for the basis dun

the operation-FLOP conversion used in this work. tions of a Volterra series behavioral model can be calcdlate
as:
TABLE |
NUMBER OF FLOPS FOR DIFFERENT OPERATIONS P
N(Mv P) = Z fVoIterra(Ma p) - fVoIterra(M - 1,p) (3
Operation Number of FLOPs p=1
dd
Conjugate 0 P
Delay 0 where M is the memory depthP is the nonlinear order, and
Real addition 1 fvoiterra(M,, p) is the number of coefficients in each kernel and
Real multiplication 1 IS
iti ptl p—1
Complex addl.'[l().n . 2 Featera( M, p) = M + 5 M + 5 @)
Complex-real multiplication 2 Volterral 1% pzil % :
l-I? 3 . N
Complex multiplication 6 Since all these are complex multiplications except]z[n]*,

the total number of FLOPs for the basis construction is:

. In the following sections, these _considerations. were _taken Colterra, basié M, P) = 6N (M, P) — 3. (5)
into account to generate the behavioral models with minimum
complexity. For the filtering each coefficient requirésFLOPs for the
complex multiplication an@ for the complex summation. The
I1l. BEHAVIORAL MODELS total number of FLOPs for filtering is thus:
PA behavioral models in literature can be classified into P
a few main groups namely Volterra-based, Artificial Neural Cvolterra, fiter M, P) = 8 Z Tvotterra( M, p). (6)
Networks, table-lookup methods, and etc. In this section, p=1
we derive the computational complexities for Volterradzhs p 0dd
models, due to their widespread use. The total number of FLOPs thus becomes:
C’Volterra(jw 5 P ) = C’Volterra, basist C’Volterra, filter- (7)

A. Volterra series

1) Definition: As discussed before, the Volterra series ex- With the rather large number of FLOPs needed for the
pands the impulse response model of a linear system orithm, it can be noticed that the Volterra series is wlsef

representing nonlinearity as a set of higher-order impu|géactically only for relatively low nonlinear orders and me

responses named kernels [14]. It has been shown that a wij¥ lengths.

class of nonlinearities can be represented with good poecis

with a Volterra filter with nonlinear orde” and memory B. Memory Polynomial

length M [15], [16]. Definition: Th | ial behavioral (MP
It can be seen that with the increase in memory depth andl) efinition: The memory polynomial behavioral (MP)

nonlinear order, the number of coefficients in the Volterr?'OOIeI is an extension of the basic polynomial model with

series grows exponentially, rendering the \Volterra sargesful ;n;rﬁkggtrgi?\r)i/n [I?tSe]r.atTJ?éS i;ngdezlj\,raallllji)zaktir:)(?qwgf gsn(?:;ﬁ"m
only for weakly nonlinear systems. ’ P

2) ldentification methodDue to the nature of the VolterralfuntCtlon followe(I:i by a Illneardrr;emonb/. Thgttbaseb.and equiva-
filters it is possible to identify the coefficients for the kels ent memory polynomial model can be written as.

with any linear estimation method. In this work after redogd P M
the values for the input and output of the amplifier, the least ymp[n] = Z Z hpmaln —m]|zln —m][P~" . (8)
square (LS) estimator is used with the pseudoinverse (Moore p=1 m=0

Penrose pseudoinverse) of the output vs the permutations of p odd

the input. In [17] proof for the uniqueness of the results can The MP is linear in parameters, and the identification is thus
be obtained. similar to the unconstrained Volterra.



2) Complexity:Due to the inherent reusability of the basis In this model the \olterra series is reconstructed with
functions in this model, the running complexity is much lowerespect to the dynamic deviation in the coefficients, and a
than Volterra series model. In general the only term that hparameter which we denote d@sis introduced which is the
to be generated is[n] |x[n]|” for eachp. All other terms, i.e number of dynamic deviations in the model. This gives an
x[n — m] |z[n — m]|” can be generated by delaying existingxtra restriction so the Volterra series can be reduced. The
terms. The basis can be constructed with: identification is similar to the previous methods. A baseban
equivalent of this model here is expanded from [24] and can

Cwp, basid M, P) =3 + (P —1) ©) pe written as:
FLOPs. P
The number of coefficients in this model is equal(fd +  yppr[n] = Z hp.o x[n]|z[n][P~*

1)(P+1)/2 [2] and these will require 8 FLOPs each (similar —1 Wic

to the \olterra series): . LOdd

P+1 -1
Cwp, fier(M, P) = 8 <T+) (M +1). (10) + Z Z hp,my [ — my]|z[n][P
zédnn:l 15* order dynamics path 1

p
We notice that the complexity for this model grows linearly Pp
with the number of parameters, and the main source of the + Z

h z*[n — mo)z?[n]|z[n][P~3
complexity is in the filtering and summation part. pma & 2l Inllafn]

=3 =1
;f ddm2 1%t order dynamics path 2
i i P M M
C. Generalized Memory Polynomial
+ > > > lmam

1) Definition: The generalized memory polynomial (GMP)
behavioral model was proposed in [6] and extends the memory
polynomial model by including more cross-terms. The formu- X z[n — ma)z[n — my)a*[n]|z[n] P2
lation is for this model is:

274 order dynamics path 1

P M &
. b o= m] P M M
Yemp(n ; n;)g; p,m,g L[ — M Z Z Z hip,ms,me

+
p odd If)dedm5:1 me=1
p—1
X [zl —m — g]| ) (11) X x[n —mglz*[n — mﬁ]x[n]|x[n]|p_3

This model adds an extra degree of freedom in parameters 274 order dynamics path 2
for the behavioral model that corresponds to the amount of P M M
memory in lagging terms which will be called. WhenG = 0 Z Z Z Pipoams
this model becomes equivalent to the MP model. Identificatio o5 mamlmemmy
is similar to the MP and Volterra series model. p odd

2) Complexity:The complexity of this behavioral model is z*[n — mrlz*[n — mgla[n]|z[n] P70 . (14)
similar to the MP model, but with the added terms. The initial
basis construction is slightly higher than MP and is equal to

_|_

X

2™4order dynamics path 3

Comp, basié M, P,G) =3+ (P —-1)(G-1) (12) where up to2*? order dynamics are shown.
FLOPS 2) Complexity: In this model it is important to note that
The ﬁumber of coefficients for this model is equal @+ all basis functions in this model contain the temfn]|, and
. while this is desirable for the accuracy of the modeling, it
1)(M +1—-G)(P+1)/2, and they have to be filtered. The - . . .
complexity for the filtering becomes: reduces_the reusability c_)f_the ba3|§ functions _and inceease
' complexity. Therefore efficient algorithms for this belaail
Cowmp, fiter(M, P, G) = 8(G+1) model are harder to achieve compared to previous models.
x (M+1-G)(E2). (13 Setting P > 3 and R = 2 and using the methods to

reduce complexity as previously discussed, the compléaity
The main source of complexity for this model is in theonstructing the basis is calculated as:

filtering, like the MP model.
CDDR, basis— 9+ 6M + (M + 1)(P - 1) +6M (%)

D. Volterra with Dynamic Deviation Reduction + 6 (52) (M2 + %)

1) Definition: In [19] a new mathematical model for power P—5\ M(M+1)

o : . + 6 (52) =5 (15)
amplifiers is presented based on modeling the static and

dynamic parts separately. This work was constructed irgo tfihe first two terms represent the initial construction of amp
behavioral model format in [20] and [21]. Further work wasant combinations. The complexity for the zero order and firs
done in [22] and [23]. The latter is the model that is used iorder dynamic path one is the third term, and the rest are for
this paper. the different path of the formulation above.



The number of coefficients for this model is given by: IV. M ODEL EVALUATION MEASURES
In this section, we analyze different model performance

foor(P, M) = %(H'M) + % (16)  measures. Many performance measures have been used in
X (M + w + M?) + %w literature to validate power amplifier behavioral models. A
study on the different measures used is done in [29]. Some of
and the complexity for filtering is thus: the more used measures include normalized mean square error
(NMSE), adjacent channel power ratio (ACPR) and adjacent
CboRr, fiiter(P, M) = 8 fopr(£, M). (17)  channel error power ratio (ACEPR). NMSE is defined as [2]
NMSE = Zn |ymea5{n] B ym0d9|[n]|2 ] (20)
E. Kautz-Volterra and Laguerre-Volterra > [Ymeadn]|?

1) Definition: The first attempts at constructing orthogonal he input signal to power amplifiers is normally band-lirdite
functions as basis functions for power amplifiers was presen but due to the nonlinearity effect of the PA the output signal
in [25] and [26]. This idea was further expanded in [27as some spectral regrowth. Since most of the power is in-
and [28] which resulted in the Laguerre and Kautz-Volterfd@nd, NMSE has the inherent characteristic that it mainly
behavioral models, respectively. The main difference betw measures the in-band error. In instances where the oudyud-b
these two behavioral models is that in the Volterra exparssioPerformance of the power amplifier is of more importance the
model with Laguerre functions the orthonormal basis pole ~ adjacent channel power ratio (ACPR) and the adjacent cthanne
chosen to be real, while in the Kautz-Volterra behavioratielo error power ratio (ACEPR) are normally used [30].
these poles are chosen to be complex. In [28] the model'SACEPR is a measure of the modeling error in the adjacent
ability to separate linear and nonlinear memory effects wggannels related to the power in the channel and is given by

introduced, i.e. the poles for the nonlinear orders could be [ [Yiead ) — Yod(f)2
different from the linear ones. (ad)) m
N ACEPR = max - (21)
These models are actually generalizations of the Volterra m=1,2 J [Ymead f)]?
series model, i.e. the \olterra series is a special caseeof th ch

Laguerre and Kautz-Volterra model when the poles are at zefghere Ymod(f) is the Fourier transform of the model data,
2) Identification methodDue to the nature of these behavymeas(f) is the Fourier transform of the measurement data.
ioral models, the identification procedure is not as strégh The integration in the denominator is over the in-band ckann
ward as in the previous models. Many identification methodgynal bandwidth and the integration in the numerator isr ove
exist, but in this work a full search of poles for per eacthe adjacent channels to the signal channel with the same
nonlinear order was done. After finding the optimum polesandwidth. As seen in (21) the ACEPR is defined as the larger
the problem becomes a normal least square estimation and gathe values evaluated for both the lowet & 1) and upper
be performed with the same technique as in the Volterra.filtqm = 2) adjacent channels.
This method becomes attractive when the poles are knowrsince both NMSE and ACEPR are error measures, lower
beforehand, or when it is possible to have an initial ofelinvalues show better agreement between the model and the PA
identification of the amplifier to identify the poles. Furthemeasurement. It is important to note that having a low NMSE
extraction methods can be found in [27]. If the orthonorm@loes not necessarily correspond to having a low ACEPR, i.e,
basis poles are not known before hand the identification ggme models have lower NMSE while others can have lower
much more complex and can be prone to local minima aptEPR.
maxima. Further measures also exist in literature like the weighted
3) Complexity: While the identification for such modelserror-to-signal power ratio (WESPR) proposed in [30], the
may be problematic, the running complexity is not affecteshemory effect ratio (MER) and the memory effect modeling
much. Once the poles for the different power levels aratio (MEMR) [31], but are not considered in this work.
calculated, the behavioral model is similar to the Voltdiltar
with the addition of an extra filter with one pole per nonlinea V. MEASUREMENT SETUP

order. Therefore the construction of basis function rezgiir The block diagram of the measurement setup used to

P_1 characterize the power amplifier behavior models is shown
Ckv, basisl M, P) = 6N (M, P) — 3+ 8 (T) . (18) in Fig. 1. The modulator used is an Agilent E4438C vector
signal generator (VSG) and an Agilent 54845A digital sterag

where N(M, P) is from (3). The filtering is similar to the oscilloscope (DSO) is used as a vector signal analyzer. The

\olterra series since they have the same number of parasnetB@seband 1/Q data is generated in the computer and down-
loaded to VSG. The VSG modulates the data to an RF carrier

Ll and in order to have enough input power for the PA under
Cv, fiter (M, P) = 8 > fotterra( M, p) (19) test, fed through a preamplifier. This signal is then fed to
;ﬁéd the power amplifier which is the device under test (DUT)

and both the input of the DUT and the output are captured
where fvoerra(M, p) is given in (4). simultaneously by the DSO. The DSO sends the RF signals



| data set sizeV. If N is not sufficiently large compared to

: Digital k, the estimation procedure can be hampered with over-fitting
Oscilloscope] .. . .
ch1 on2 and uncertainties in the model parameters can grow. Thésteff
. I ®| is seen in the mean-square error for the estimation, which
is roughly (1 + 2£ )02, whereo? is the measurement noise

variance [33]. In this work in order to fulfill this requiremi
25000 samples are used for identificatid8000 samples for

- validation, and the maximum number of model parameters
‘@Gengratcr Ezjver estimated i350.

Digital Domain | Analog Domain
1

(@)
o
3
©
ey
g
U
g

B. Power amplifiers

Two power amplifiers were studied in this research: a
wideband 3 W class AB commercial solid state’Pand a
100 W Doherty power amplifier for WiMAX applications.
The class AB amplifier was analyzed at two power levels, one
back to the PC where they are down-converted to basebati¢h input power—4 dBm and the other at-12 dBm. For
I/Q data. All devices are connected by GPIB and triggered éfarity the experiments are classified in three scenarios:

synch. ) _ Scenariol: Class AB power amplifier with WCDMA data
To enhance the dynamic range of the signal and decrease and input power—12dBm

the noise variance a statistical averaging technique isl US€ gcenario2: Class AB power amplifier with WCDMA data
[32]. The experimental results reported here are based on and input power—4dBm

500 averaged measurements, which resulted in an effectivescenarioa: Doherty power amplifier with WiMAX-like
dynamic range 065 dB. In order to have time alignment the data

DSO is triggered by the VSG and H) MHz reference is . e
connected from the DSO to the VSG. Also to obtain mor.-le-zhe dynamic AM/AM plot for these power amplifier is shown

o . : . . in Fig. 2(a), and the spectrum for the measured signals in
precise time alignment correlation techniques are utlize g 2() P 9

Fig. 2(b).

In order to have a proper open test analysis, the validatio
of the behavioral models should be done with a different data
set than the one used for identification. The procedure st h
been analyzed in this paper is as follows: In this section, the power amplifier models are compared

« Download an I/Q input signal to the VSG to construct th#ith respect to accuracy vs complexity. The accuracy was

RF signal and record the input and output of the DUT.evaluated using both NMSE and ACEPR.
« Split the data set to identification data and validation data The lowest NMSE that was obtainable regardless of com-
. Calculate the behavioral model parameters using tRéXity for the different behavioral models is shown in bl

Fig. 1. Outline of the measurement setup used for evaluafitime behavioral
models.

VI. RESULTS

identification data lI(a). Table ll(b) shows the best results obtained regasdte
« Compare the power amplifier output to the behaviorgomplexity for ACEPR. For the memory polynomial (MP),
models’ prediction using the validation data Volterra, and Kautz-Volterra models, the numbers inside th

The reason for splitting the data set and not re-downloadiRg"eénthesis represeqi®, M1). For Volterra with dynamic devi-
it to the VSG is to make sure the identification data arffion reduction (Volterra DDR) they represe(t, M, R) and

validation data are subject to the same temperature and JRisgeneralized memory polynomial (Generalized MP) they
conditions. represen{ P, M, G).

It can be noticed from these tables that the generalized
memory polynomial model consistently outperforms the pthe
models in both NMSE and ACEPR. It can also be noted

Since the identification process is dependent on the MRHLt the second scenario, where the power amplifier is more

signal, the experiment should be done with data as similar 18, j,e4r has lower values for both measures than the other
a practical case as possible. The WCDMA data used in t@éenarios

work had a bandwidth a$.84 Mchips/s and was modulated to

a carrier frequency of 1 GHz to match the PAs available. Tl}g

peak to average ratio of this data was dB. The WiMAX-

like data had4 MHz bandwidth, peak to average Gf4 dB has been done.

and was modulated to 2.16 G.HZ carrier. ) . It is also noticed that the best NMSE and ACEPR results
The in-band channel in this work was defined as the &gn{%

bandwidth at the center frequency, and the adjacent ckﬁanrbele close for different models. This is because as the neanlin
were defined as the signal bandwidth-a5 MHz from the fder and memory depth grows in the models, the uncertaintie

in modeling parameters increase and dominate the error.
center frequency.

An .important issye in the identification process for PA 2pinicircuits ZHL-1000-3W
behavioral models is the number of model parameiers 3NXP semiconductors

A. Input Signals

The results here differ from those of [2] in that a much wider
nge of nonlinear order and memory tap combinations are
analyzed, and a more exhaustive search of model parameters
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TABLE Il
THE BEST RESULTS OBTAINED FOR THE DIFFERENT SCENARIOS
REGARDLESS OF COMPLEXITYTHE PARENTHESIS REPRESENT THE

CORRESPONDING MODEL ORDER

(a) Best NMSE results.

Model | Scenariol | Scenario2 | Scenario 3
MP —50.6 (9,11) | —36.5 (11,10) | —44.7 (11,8)
\olterra —-51.3 (7,2) —38.4 (5,3) —44.9 (9,1)
Kautz-Volterra —51.34 (5,3) —38.5 (5,3) —45.0 (9,1)
\olterra DDR | —51.74 (9,3,2) | —38.5 (9,4,2) | —44.8 (11,3,2)
Generalized MP| —51.8 (9,9,3) | —38.5(9,7,3) | —45.0 (11,7,3)
(b) Best ACEPR results.
Model | Scenario 1 | Scenario 2 | Scenario 3
MP —58.3 (11,12) | —47.5 (11,12) | —52.9 (11,10)
\olterra —60.1 (7,2) —49.7 (5,3) —53.7 (9,1)
Kautz-Volterra —60.2 (5,2) —49.8 (5,3) —53.7 (9,1)
\olterra DDR | —60.6 (9,3,2) | —49.4 (9,4,2) | —53.3 (11,3,2)
Generalized MP| —60.8 (13,9,3) | —49.7 (9,6,3) | —53.3 (11,8,3)

A. Scenario 1
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deviation reduction model outperforms other models within

a range of parameters, and finally the generalized memory
polynomial model gives the lowest error when the number of

parameters increases further.

While this figure can give certain insight to how model
perform compared to one another, as previously discussed th
analysis can be unfair. In Fig. 3(b) the comparison is done vs
FLOPs.

In Fig. 3(b) we notice that the generalized memory poly-
nomial model outperforms other models consistently. This i
due to the fact that this model is less complex to run than the
\olterra with dynamic deviation reduction model. This figur
supports our hypothesis that complexity is a more apprtgpria
measure than number of parameters.

Finally in Fig. 3(c) the out of band performance given
by the ACEPR measure for the different models vs FLOPs
is presented. It should be noted that in the identification
procedure, the minimization criterion was NMSE and not out
of band performance.

Fig. 3(a) shows a comparison of NMSE between behavioralThe ACEPR values yield similar results for this signal input
models with respect to the number of parameters for the classwver.
AB power amplifier. A static nonlinear model is also included

for reference.

An important issue that should be emphasized in the figur%s

Scenario 2

is that an exhaustive search has been done on the paramet&he class AB power amplifier is driven harder and has
space and the optimal curve for each model has been foundore nonlinear characteristics in this scenario, theeefoe
It can be seen in this figure that as the number of paramodeling accuracy is degraded. In Fig. 4(a) the comparison i
eters grow, the amount of improvement gained with excedene with respect to the number of parameters, while Fig. 4(b
parameters is limited. With a large number of parametels, & with respect to the number of FLOPSs.
models have similar performance and higher nonlinear orderFrom these two figures we can notice that while in Fig. 4(a)
and memory depths do not yield better results. The rate sstveral models have approximately the same accuracy vs
which these models achieve this performance however differumber of parameters (except for memory polynomial), in
between models.
From Fig. 3(a) it can also be seen that the memory polynthie best tradeoff behavior. It can also be noticed that as the
mial model gives the lowest error compared to other modeisimber of FLOPs increase, all behavioral models tend to have
with a low number of parameters. The Volterra with dynamithe same accuracy. The ACEPR can be seen in Fig. 4(c)

Fig. 4(b) the generalized memory polynomial model shows



NMSE [dB]

-50

2 5 10 ]
Number of coeffi

(@) NMSE vs number of parameters

Fig. 3. Class AB power amplifier with low input power. VoltearDDR stands for the Volterra with dynamic deviation redaretinodel. The legend is identical

for all figures.

i
50
cients

NMSE [dB]
g & ¢ g

|
@
<

-38

-39 i i
2

5

(&) NMSE vs number of parameters

Fig. 4.
identical for all figures.

10 50
Number of coefficients

-47

NMSE [dB]
&

!
IS
©

-50

-52

12

25

50 100
FLOPs

(b) NMSE vs FLOPs

I H
500 1000

NMSE [dB]

Class AB power amplifier with high input power.

i i
50 100 500 1000

FLOPs

(b) NMSE vs FLOPs

ACEPR [dB]

ACEPR [dB]

-56

!
o
2

-58

—*—Memory polynomial

—+—Volterra
Kautz-Volterra

—e—Volterra DDR

—*=Generalized MP

- - - Static nonlinearity

I
25 50 100

I H H
500 1000 3000
FLOPs

(c) ACEPR vs FLOPs

—44}

—#%— Memory polynomial

—+—Volterra
Kautz-Volterra

—e—Volterra DDR

——Generalized MP

- - - Static nonlinearity

i it i
25 50 100 500 1000 2800

FLOPs

(c) ACEPR vs FLOPs

VolerDDR stands for the Volterra with dynamic deviation redarctmodel. The legend is

—42 48— T -
' —#— Memory polynomial
!
! —+—Volterra
ol 1 Kautz-Volterra
H —e—\Volterra DDR
| —»—Generalized MP
—43 I | - - - Static nonlinearity
_ .
— — @ 1
g g g ||
x
w w — L
7} 7} & S
= = 5] A
=z =z < 1
-44 \
_gol Nmmimm ]
_s3l
-45 +
i i i i i i i i I i i i i
3 10 50 100 250 25 50 100 500 1000 3000 16 25 50 100 500 1000 3000
Number of coefficients FLOPs

FLOPs

(@) NMSE vs number of parameters (b) NMSE vs FLOPs (c) ACEPR vs FLOPs

Fig. 5. Doherty power amplifier. Volterra DDR stands for thaltstra with dynamic deviation reduction model. The legénddentical for all figures.



C. Scenario 3

In Fig. 5, the results of modeling the Doherty power
amplifier is shown. Once again it can be noticed that the GMB]
model outperforms the other models, but in terms of ACEPR,
with a large number of parameters the \olterra and Kautz-
Volterra surpasses all other models. [9]

Another important observation is that the models generagyo
do not have significant improvement from the static nonline ]
model. In the previous scenarios, a 7-10 dB accuracy gain was
achieved with the Volterra based behavioral models contparé!!
to the static case. In this scenario only a 1-2 dB gain is
achieved compared to the static nonlinear model. One mgin]
difference between the behavioral models analyzed and the
static model is that the latter does not model memory effecfg;
From these results, we can notice that memory effects are not
dominant compared to the static nonlinearity in the Dohert
architecture. This can be traced to the internal circuitry f[
this class of PAs.

[15]
VII. CONCLUSION [16]

In this work, efficient algorithms for some widely used
behavioral models were developed, and the the computétiopg
complexity of these algorithms were measured in FLOPs. The
behavioral models were tested on measurement data fr
two power amplifiers and it was noticed that the generalizegi
memory polynomial model outperformed all other models in
terms of accuracy vs FLOPs consistently. It was also noticBd!
that number of parameters was not necessarily an apprepriat
measure for behavioral model comparison. [20]

The results indicate that for a Doherty power amplifier,
memory effects are not as pronounced as nonlinear digtsrtio
and the existing models are not able to model the memdegy]
effects in this PA effectively. This is due to the inherent
characteristics of this power amplifier class.
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