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A Comparative Analysis of the
Complexity/Accuracy Tradeoff in Power Amplifier

Behavior Models
Ali Soltani Tehrani, Haiying Cao, Thomas Eriksson, Magnus Isaksson, Christian Fager

Abstract—A comparative study of state-of-the-art behavioral
models for microwave power amplifiers (PA) is presented in
this paper. After establishing a proper definition for accuracy
and complexity for power amplifier behavioral models, a short
description on various behavioral models is presented. Themain
focus of this paper is on the modeling accuracy as a function of
computational complexity.

Data is collected from measurements on two PA’s - a general
purpose amplifier and a Doherty PA designed for WiMAX - and
at different output power levels. The models are characterized
in terms of accuracy and complexity for both in-band and out-
of-band error. The results show that the generalized memory
polynomial behavioral model has the best tradeoff for accuracy
vs complexity.

Index Terms—Behavioral modeling, nonlinear distortion, non-
linear systems, power amplifier, radio communication, Volterra
series.

I. I NTRODUCTION

T HE development of future generation wireless transmis-
sion schemes, that operate at higher frequencies and

require more bandwidth, has increased the demands on the
linearity of power amplifiers. At the same time, with the
increase of wireless communication users, the number of
power consuming base stations has also increased. This has
augmented the importance of developing power-efficient, lin-
ear devices in mobile base stations. Power consumption is even
more critical in mobile devices where the power is driven from
limited battery supplies.

One of the main power consuming devices in a transmitter
is the power amplifier. One way to reduce power consump-
tion in power amplifiers is to drive them to high efficiency
regions. Unfortunately this has the adverse effect that PAs
become more nonlinear [1]. This nonlinearity can introduce
spectral regrowth, the degradation of signal quality, and other
distortions. Nonlinearities can have even more dramatic effects
as the dependency on linearity grows in modern wideband
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modulation schemes. It is also noticed in such schemes, that
the amplifier tends to exhibit strong memory effects on the
signal, which can further degrade the signal quality.

Due to the importance of the power amplifier, it is not
surprising that the interest in power amplifier modeling has
increased in recent years [2]–[4]. The main application of these
models is for use in digital pre-distortion (DPD) linearization.
DPD has been shown to reduce the size and cost for lineariza-
tion compared to other linearization methods [5].

In [4] power amplifier behavioral models in literature were
presented and classified in terms of memory: models without
memory, with linear memory and with nonlinear memory. A
similar presentation was done in [6] where a new behavioral
model was also proposed. In [7] some important Volterra
series-based models were compared and analyzed. The first
attempts to compare these behavior models in an experimen-
tal setup was done in [8]. This work was extended in [2]
with more behavioral models, more input signals, and cross-
validation. The effect of signal bandwidth was also analyzed
in [2].

While these works provided a necessary basis for power
amplifier modeling, the performance was given as a function
of model order, and do not consider the complexity of prac-
tical implementations. In this paper, we therefore presenta
comparison based on complexity, and show that the number of
model parameters - which has been the dominating approach
- is not always a good complexity measure. In order to have a
fair comparison between the models, and have a basis where
future models may be derived from, an accuracy/complexity
comparison for behavioral models is proposed. It will be
shown that as the number of parameters grow, most models
will exhibit similar performance and only differ on the amount
of complexity needed to reach this performance.

The complexity of behavioral models can also be of interest
when practical implementations of these models are necessary,
where the main factor is computational complexity. Having
an accurate and low-complex behavioral model can be a key
factor in evaluating communication system performance with
computer simulations or when the amount of processing power
is limited - such as in practical situations.

When analyzing models in terms of complexity, a proper
definition of complexity is needed. The definition of com-
plexity varies in different research fields, so an interpretation
for complexity in PA behavioral modeling is established in
Section II. In Section III some more-used behavioral models
are presented and analyzed. Model evaluation measures are
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presented in Section IV. In Section V the measurement setup
is introduced and in Section VI results of the comparison on
two power amplifiers are provided and discussed.

II. COMPLEXITY

In literature, complexity has been notated by different
measures [9]. Often it is measured in orders denoted by the
Landau symbolO(·). Unfortunately this representation is not
precise enough for practical applications [10].

A simple and common representation for behavioral model
complexity is to only consider the number of modeling param-
eters and disregard the computing process complexity. This
can determine the memory size needed for each behavioral
model, and can be used when there are restrictions on the
memory size.

Another approach is to simply record the running time of
the different behavioral models in a software package. Thisis
severely dependent on the hardware setup and the algorithm
utilized. In order to have a fair comparison in this case,
the algorithms must be optimized for the different behavioral
models and for the hardware where they are tested.

The number of floating point operations or FLOPs is an-
other widely used measure for complexity. In DSP hardware,
complexity mainly stems from additions and multiplications.
Since FLOPs is actually a measure for the number of additions,
subtractions, and multiplications, it is sufficiently accurate to
make a fair comparison between behavioral models. Hence, it
will be used as the complexity measure in this paper.

Another important issue in behavioral model complexity
is where the complexity originates from. The computational
complexity can be classified intoidentification complexity,
running complexityandadaptation complexity.

• Identification complexity: The identification procedure
differs for the behavioral models. Due to statistical prop-
erties of measured signals, most Volterra-based models
can be identified with a least squares estimate. Since the
identification of the behavioral model is typically done
offline, this complexity is normally not a major issue.

• Adaptation complexity: In practical systems, due to slight
changes in the power amplifier such as temperature
change or different mismatching effects, behavioral mod-
els might need to be updated at time intervals. These time
intervals can normally be much larger than the symbol
period. The adaptation of the behavioral model to these
changes is considered adaptation complexity. In many
instances where the variations are slow, this complexity
may be of less importance.

• Running complexity: Running complexity is the number
of calculations that is done on each sample when the
model is utilized. This complexity severely limits the
system due to the fact that it is a real-time problem.
Depending on the application the maximum acceptable
complexity varies. For a base station, there might be
room for more complex algorithms and behavioral models
while for mobile hand-held devices requirements are
stricter. Since one of the main justifications for DPD
linearization techniques is to have more power-efficient

transmitters, it is essential that the power saved is not all
spent on processing the DPD algorithm.

In this work, the focus is on running complexity due to its
heavy computational costs on the system.

A final issue for complexity in behavioral models is that
of parallelization. Some behavioral model algorithms have
the inherent capability to be parallelized easier while others
do not. This can be important in some applications where
parallelization is possible. All the models that are presented
in this study have this capability.

A. Complexity for Volterra-based models

The Volterra series is a widely used mathematical tool for
modeling nonlinearities and memory in power amplifiers. The
discrete baseband-equivalent form of the Volterra series which
consists of a sum of multidimensional convolutions can be
written as1 [12]

yVolterra[n] =
P∑

p=1
p odd

M∑

m1=0

M∑

m2=m1

· · ·
M∑

m(p+1)/2=m(p−1)/2

· · ·

M∑

m(p+3)/2=0

· · ·

M∑

mp=mp−1

hp,m1,m2,··· ,mp

×

(p+1)/2
∏

i=1

x[n − mi]

p
∏

k=(p+3)/2

x∗[n − mk]. (1)

The Volterra series can be rewritten as:

yVolterra = h ∗ X (2)

whereh is the vector containing allhp,m1,m2,··· ,mp , andX is
a matrix containing all permutations ofx[n]:

H(x[n]) =
∏

x[n − mi]
∏

x∗[n − mk].

Depending on the implementation of the behavioral model
algorithm, the complexity for the Volterra-based behavioral
models will differ. In [13] a general algorithm for implement-
ing the Volterra series as a behavioral model is proposed. Here
it is simplified and given in two steps:

Step i) Construct the basis functions (permutations of
X = H(x[n])).

Step ii) Filter the basis with the kernels (h ∗ X).

The second step is directly related to the number of kernels,
since each kernel will be multiplied by the according basis
function and then summed with the remaining results. Thus,
it is solely dependent on the number of coefficients. The
behavioral models will, however, differ in the construction of
the basis functions.

An important issue in efficient algorithm design, is to refrain
from generating already available data. For instance, while
multiplying two signal values may require a certain number of
FLOPs, delaying a signal does not. Therefore it is necessaryto
fully utilize all available permutations in the behavioralmodel

1In transmitter architectures the effect of filtering the output of the PA
results in only odd order nonlinear power terms in the behavioral models
[11].
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algorithms. For example,x[n− 1]x[n− 2]x∗[n− 3] can easily
be constructed fromx[n]x[n− 1]x∗[n− 2] by a simple delay.

Another issue is that terms that will be used in different
combinations should be generated beforehand. For example,
when constructing|x[n]|

4, if |x[n]|
2 is already available, using

it will result in much lower complexity than constructing from
scratch.

Finally, it is important to distinguish between multiplication
of two complex numbers, and multiplication of two real-valued
numbers. The latter is much less complex and only consists
of 1 FLOP, while the former requires6 FLOPs. Table I shows
the operation-FLOP conversion used in this work.

TABLE I
NUMBER OF FLOPS FOR DIFFERENT OPERATIONS

Operation Number of FLOPs

Conjugate 0

Delay 0

Real addition 1

Real multiplication 1

Complex addition 2

Complex-real multiplication 2

|.|2 3

Complex multiplication 6

In the following sections, these considerations were taken
into account to generate the behavioral models with minimum
complexity.

III. B EHAVIORAL MODELS

PA behavioral models in literature can be classified into
a few main groups namely Volterra-based, Artificial Neural
Networks, table-lookup methods, and etc. In this section,
we derive the computational complexities for Volterra-based
models, due to their widespread use.

A. Volterra series

1) Definition: As discussed before, the Volterra series ex-
pands the impulse response model of a linear system by
representing nonlinearity as a set of higher-order impulse
responses named kernels [14]. It has been shown that a wide
class of nonlinearities can be represented with good precision
with a Volterra filter with nonlinear orderP and memory
lengthM [15], [16].

It can be seen that with the increase in memory depth and
nonlinear order, the number of coefficients in the Volterra
series grows exponentially, rendering the Volterra seriesuseful
only for weakly nonlinear systems.

2) Identification method:Due to the nature of the Volterra
filters it is possible to identify the coefficients for the kernels
with any linear estimation method. In this work after recording
the values for the input and output of the amplifier, the least-
square (LS) estimator is used with the pseudoinverse (Moore-
Penrose pseudoinverse) of the output vs the permutations of
the input. In [17] proof for the uniqueness of the results can
be obtained.

3) Complexity: Efficient algorithms for implementing
Volterra filters has been studied in literature. The complexity
of the Volterra series has also been analyzed in [12]. In [13]
the complexity for a non-optimized normal implementation of
the Volterra series algorithm is given for a real input signal.

An important note to consider for this behavioral model is
that all basis that do not contain thex[n] term can be generated
freely from previous terms with a simple delay. This follows
simply from the previous example,x[n− 1]x[n− 2]x∗[n− 3]
can easily be constructed fromx[n]x[n−1]x∗[n−2] with little
complexity. The number of multiplications for the basis func-
tions of a Volterra series behavioral model can be calculated
as:

N(M, P ) =
P∑

p=1
p odd

fVolterra(M, p) − fVolterra(M − 1, p) (3)

whereM is the memory depth,P is the nonlinear order, and
fVolterra(M, p) is the number of coefficients in each kernel and
is

fVolterra(M, p) =

(
M + p+1

2
p+1
2

)(
M + p−1

2
p−1
2

)

. (4)

Since all these are complex multiplications exceptx[n]x[n]∗,
the total number of FLOPs for the basis construction is:

CVolterra, basis(M, P ) = 6N(M, P ) − 3. (5)

For the filtering each coefficient requires6 FLOPs for the
complex multiplication and2 for the complex summation. The
total number of FLOPs for filtering is thus:

CVolterra, filter(M, P ) = 8

P∑

p=1
p odd

fVolterra(M, p). (6)

The total number of FLOPs thus becomes:

CVolterra(M, P ) = CVolterra, basis+ CVolterra, filter. (7)

With the rather large number of FLOPs needed for the
algorithm, it can be noticed that the Volterra series is useful
practically only for relatively low nonlinear orders and mem-
ory lengths.

B. Memory Polynomial

1) Definition: The memory polynomial behavioral (MP)
model is an extension of the basic polynomial model with
linear memory [18]. This model, also known as parallel
Hammerstein in literature, is a parallelization of a nonlinear
function followed by a linear memory. The baseband equiva-
lent memory polynomial model can be written as:

yMP[n] =

P∑

p=1
p odd

M∑

m=0

hp,mx[n − m] |x[n − m]|
p−1

. (8)

The MP is linear in parameters, and the identification is thus
similar to the unconstrained Volterra.
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2) Complexity:Due to the inherent reusability of the basis
functions in this model, the running complexity is much lower
than Volterra series model. In general the only term that has
to be generated isx[n] |x[n]|p for eachp. All other terms, i.e
x[n − m] |x[n − m]|

p can be generated by delaying existing
terms. The basis can be constructed with:

CMP, basis(M, P ) = 3 + (P − 1) (9)

FLOPs.
The number of coefficients in this model is equal to(M +

1)(P +1)/2 [2] and these will require 8 FLOPs each (similar
to the Volterra series):

CMP, filter(M, P ) = 8

(
P + 1

2

)

(M + 1). (10)

We notice that the complexity for this model grows linearly
with the number of parameters, and the main source of the
complexity is in the filtering and summation part.

C. Generalized Memory Polynomial

1) Definition: The generalized memory polynomial (GMP)
behavioral model was proposed in [6] and extends the memory
polynomial model by including more cross-terms. The formu-
lation is for this model is:

yGMP[n] =

P∑

p=1
p odd

M∑

m=0

G∑

g=0

hp,m,gx[n − m]

× |x[n − m − g]|
p−1

. (11)

This model adds an extra degree of freedom in parameters
for the behavioral model that corresponds to the amount of
memory in lagging terms which will be calledG. WhenG = 0
this model becomes equivalent to the MP model. Identification
is similar to the MP and Volterra series model.

2) Complexity:The complexity of this behavioral model is
similar to the MP model, but with the added terms. The initial
basis construction is slightly higher than MP and is equal to:

CGMP, basis(M, P, G) = 3 + (P − 1)(G − 1) (12)

FLOPs.
The number of coefficients for this model is equal to(G +

1)(M + 1 − G)(P + 1)/2, and they have to be filtered. The
complexity for the filtering becomes:

CGMP, filter(M, P, G) = 8(G + 1)

× (M + 1 − G)
(

P+1
2

)
. (13)

The main source of complexity for this model is in the
filtering, like the MP model.

D. Volterra with Dynamic Deviation Reduction

1) Definition: In [19] a new mathematical model for power
amplifiers is presented based on modeling the static and
dynamic parts separately. This work was constructed into the
behavioral model format in [20] and [21]. Further work was
done in [22] and [23]. The latter is the model that is used in
this paper.

In this model the Volterra series is reconstructed with
respect to the dynamic deviation in the coefficients, and a
parameter which we denote asR is introduced which is the
number of dynamic deviations in the model. This gives an
extra restriction so the Volterra series can be reduced. The
identification is similar to the previous methods. A baseband
equivalent of this model here is expanded from [24] and can
be written as:

yDDR[n] =

P∑

p=1
p odd

hp,0 x[n]|x[n]|p−1

︸ ︷︷ ︸

zero order dynamic

+

P∑

p=1
p odd

M∑

m1=1

hp,m1 x[n − m1]|x[n]|p−1

︸ ︷︷ ︸

1st order dynamics path 1

+

P∑

p=3
p odd

M∑

m2=1

hp,m2 x∗[n − m2]x
2[n]|x[n]|p−3

︸ ︷︷ ︸

1st order dynamics path 2

+

P∑

p=3
p odd

M∑

m3=1

M∑

m4=m3

hp,m3,m4

× x[n − m3]x[n − m4]x
∗[n]|x[n]|p−3

︸ ︷︷ ︸

2nd order dynamics path 1

+

P∑

p=3
p odd

M∑

m5=1

M∑

m6=1

hp,m5,m6

× x[n − m5]x
∗[n − m6]x[n]|x[n]|p−3

︸ ︷︷ ︸

2nd order dynamics path 2

+

P∑

p=5
p odd

M∑

m7=1

M∑

m8=m7

hp,m7,m8

× x∗[n − m7]x
∗[n − m8]x[n]|x[n]|p−5

︸ ︷︷ ︸

2ndorder dynamics path 3

. (14)

where up to2nd order dynamics are shown.
2) Complexity: In this model it is important to note that

all basis functions in this model contain the termx[n], and
while this is desirable for the accuracy of the modeling, it
reduces the reusability of the basis functions and increases
complexity. Therefore efficient algorithms for this behavioral
model are harder to achieve compared to previous models.

Setting P > 3 and R = 2 and using the methods to
reduce complexity as previously discussed, the complexityfor
constructing the basis is calculated as:

CDDR, basis= 9 + 6M + (M + 1)(P − 1) + 6M
(

P−3
2

)

+ 6
(

P−3
2

) (

M2 + M(M+1)
2

)

+ 6
(

P−5
2

) M(M+1)
2 . (15)

The first two terms represent the initial construction of impor-
tant combinations. The complexity for the zero order and first
order dynamic path one is the third term, and the rest are for
the different path of the formulation above.
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The number of coefficients for this model is given by:

fDDR(P, M) = P+1
2 (1 + M) + P−1

2 (16)

× (M + M(M+1)
2 + M2) + P−3

2
M(M+1)

2

and the complexity for filtering is thus:

CDDR, filter(P, M) = 8fDDR(P, M). (17)

E. Kautz-Volterra and Laguerre-Volterra

1) Definition: The first attempts at constructing orthogonal
functions as basis functions for power amplifiers was presented
in [25] and [26]. This idea was further expanded in [27]
and [28] which resulted in the Laguerre and Kautz-Volterra
behavioral models, respectively. The main difference between
these two behavioral models is that in the Volterra expansions
model with Laguerre functions the orthonormal basis poleλ is
chosen to be real, while in the Kautz-Volterra behavioral model
these poles are chosen to be complex. In [28] the model’s
ability to separate linear and nonlinear memory effects was
introduced, i.e. the poles for the nonlinear orders could be
different from the linear ones.

These models are actually generalizations of the Volterra
series model, i.e. the Volterra series is a special case of the
Laguerre and Kautz-Volterra model when the poles are at zero.

2) Identification method:Due to the nature of these behav-
ioral models, the identification procedure is not as straightfor-
ward as in the previous models. Many identification methods
exist, but in this work a full search of poles for per each
nonlinear order was done. After finding the optimum poles,
the problem becomes a normal least square estimation and can
be performed with the same technique as in the Volterra filter.
This method becomes attractive when the poles are known
beforehand, or when it is possible to have an initial off-line
identification of the amplifier to identify the poles. Further
extraction methods can be found in [27]. If the orthonormal
basis poles are not known before hand the identification is
much more complex and can be prone to local minima and
maxima.

3) Complexity: While the identification for such models
may be problematic, the running complexity is not affected
much. Once the poles for the different power levels are
calculated, the behavioral model is similar to the Volterrafilter
with the addition of an extra filter with one pole per nonlinear
order. Therefore the construction of basis function requires:

CKV, basis(M, P ) = 6N(M, P ) − 3 + 8

(
P − 1

2

)

. (18)

where N(M, P ) is from (3). The filtering is similar to the
Volterra series since they have the same number of parameters:

CKV, filter(M, P ) = 8
P∑

p=1
p odd

fVolterra(M, p) (19)

wherefVolterra(M, p) is given in (4).

IV. M ODEL EVALUATION MEASURES

In this section, we analyze different model performance
measures. Many performance measures have been used in
literature to validate power amplifier behavioral models. A
study on the different measures used is done in [29]. Some of
the more used measures include normalized mean square error
(NMSE), adjacent channel power ratio (ACPR) and adjacent
channel error power ratio (ACEPR). NMSE is defined as [2]

NMSE =

∑

n |ymeas[n] − ymodel[n]|2
∑

n |ymeas[n]|2
. (20)

The input signal to power amplifiers is normally band-limited,
but due to the nonlinearity effect of the PA the output signal
has some spectral regrowth. Since most of the power is in-
band, NMSE has the inherent characteristic that it mainly
measures the in-band error. In instances where the out-of-band
performance of the power amplifier is of more importance the
adjacent channel power ratio (ACPR) and the adjacent channel
error power ratio (ACEPR) are normally used [30].

ACEPR is a measure of the modeling error in the adjacent
channels related to the power in the channel and is given by

ACEPR = max
m=1,2






∫

(adj)m

|Ymeas(f) − Ymod(f)|2

∫

ch
|Ymeas(f)|2




 (21)

where Ymod(f) is the Fourier transform of the model data,
Ymeas(f) is the Fourier transform of the measurement data.
The integration in the denominator is over the in-band channel
signal bandwidth and the integration in the numerator is over
the adjacent channels to the signal channel with the same
bandwidth. As seen in (21) the ACEPR is defined as the larger
of the values evaluated for both the lower (m = 1) and upper
(m = 2) adjacent channels.

Since both NMSE and ACEPR are error measures, lower
values show better agreement between the model and the PA
measurement. It is important to note that having a low NMSE
does not necessarily correspond to having a low ACEPR, i.e,
some models have lower NMSE while others can have lower
ACEPR.

Further measures also exist in literature like the weighted
error-to-signal power ratio (WESPR) proposed in [30], the
memory effect ratio (MER) and the memory effect modeling
ratio (MEMR) [31], but are not considered in this work.

V. M EASUREMENT SETUP

The block diagram of the measurement setup used to
characterize the power amplifier behavior models is shown
in Fig. 1. The modulator used is an Agilent E4438C vector
signal generator (VSG) and an Agilent 54845A digital storage
oscilloscope (DSO) is used as a vector signal analyzer. The
baseband I/Q data is generated in the computer and down-
loaded to VSG. The VSG modulates the data to an RF carrier
and in order to have enough input power for the PA under
test, fed through a preamplifier. This signal is then fed to
the power amplifier which is the device under test (DUT)
and both the input of the DUT and the output are captured
simultaneously by the DSO. The DSO sends the RF signals
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Fig. 1. Outline of the measurement setup used for evaluationof the behavioral
models.

back to the PC where they are down-converted to baseband
I/Q data. All devices are connected by GPIB and triggered in
synch.

To enhance the dynamic range of the signal and decrease
the noise variance a statistical averaging technique is used
[32]. The experimental results reported here are based on
500 averaged measurements, which resulted in an effective
dynamic range of65 dB. In order to have time alignment the
DSO is triggered by the VSG and a10 MHz reference is
connected from the DSO to the VSG. Also to obtain more
precise time alignment correlation techniques are utilized.

In order to have a proper open test analysis, the validation
of the behavioral models should be done with a different data
set than the one used for identification. The procedure that has
been analyzed in this paper is as follows:

• Download an I/Q input signal to the VSG to construct the
RF signal and record the input and output of the DUT.

• Split the data set to identification data and validation data
• Calculate the behavioral model parameters using the

identification data
• Compare the power amplifier output to the behavioral

models’ prediction using the validation data
The reason for splitting the data set and not re-downloading
it to the VSG is to make sure the identification data and
validation data are subject to the same temperature and bias
conditions.

A. Input Signals

Since the identification process is dependent on the input
signal, the experiment should be done with data as similar to
a practical case as possible. The WCDMA data used in this
work had a bandwidth of3.84 Mchips/s and was modulated to
a carrier frequency of 1 GHz to match the PAs available. The
peak to average ratio of this data was7.6 dB. The WiMAX-
like data had4 MHz bandwidth, peak to average of7.4 dB
and was modulated to a2.6 GHz carrier.

The in-band channel in this work was defined as the signal
bandwidth at the center frequency, and the adjacent channels
were defined as the signal bandwidth at±5 MHz from the
center frequency.

An important issue in the identification process for PA
behavioral models is the number of model parametersk vs

data set sizeN . If N is not sufficiently large compared to
k, the estimation procedure can be hampered with over-fitting
and uncertainties in the model parameters can grow. This effect
is seen in the mean-square error for the estimation, which
is roughly (1 + 2 k

N )σ2, whereσ2 is the measurement noise
variance [33]. In this work in order to fulfill this requirement,
25000 samples are used for identification,28000 samples for
validation, and the maximum number of model parameters
estimated is350.

B. Power amplifiers

Two power amplifiers were studied in this research: a
wideband 3 W class AB commercial solid state PA2 and a
100 W Doherty power amplifier3 for WiMAX applications.
The class AB amplifier was analyzed at two power levels, one
with input power−4 dBm and the other at−12 dBm. For
clarity the experiments are classified in three scenarios:

Scenario1: Class AB power amplifier with WCDMA data
and input power−12dBm

Scenario2: Class AB power amplifier with WCDMA data
and input power−4dBm

Scenario3: Doherty power amplifier with WiMAX-like
data

The dynamic AM/AM plot for these power amplifier is shown
in Fig. 2(a), and the spectrum for the measured signals in
Fig. 2(b).

VI. RESULTS

In this section, the power amplifier models are compared
with respect to accuracy vs complexity. The accuracy was
evaluated using both NMSE and ACEPR.

The lowest NMSE that was obtainable regardless of com-
plexity for the different behavioral models is shown in Table
II(a). Table II(b) shows the best results obtained regardless of
complexity for ACEPR. For the memory polynomial (MP),
Volterra, and Kautz-Volterra models, the numbers inside the
parenthesis represent(P, M). For Volterra with dynamic devi-
ation reduction (Volterra DDR) they represent(P, M, R) and
for generalized memory polynomial (Generalized MP) they
represent(P, M, G).

It can be noticed from these tables that the generalized
memory polynomial model consistently outperforms the other
models in both NMSE and ACEPR. It can also be noted
that the second scenario, where the power amplifier is more
nonlinear, has lower values for both measures than the other
scenarios.

The results here differ from those of [2] in that a much wider
range of nonlinear order and memory tap combinations are
analyzed, and a more exhaustive search of model parameters
has been done.

It is also noticed that the best NMSE and ACEPR results
are close for different models. This is because as the nonlinear
order and memory depth grows in the models, the uncertainties
in modeling parameters increase and dominate the error.

2MiniCircuits ZHL-1000-3W
3NXP semiconductors
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Fig. 2. Characteristics for the PAs tested. Left:AM/AM plotfor the different scenarios analyzed. Right: Signal spectrum for the three scenarios, from top to
bottom scenario 2, scenario 3 and scenario 1 and input signal.

TABLE II
THE BEST RESULTS OBTAINED FOR THE DIFFERENT SCENARIOS

REGARDLESS OF COMPLEXITY. THE PARENTHESIS REPRESENT THE

CORRESPONDING MODEL ORDER.

(a) Best NMSE results.
Model Scenario 1 Scenario 2 Scenario 3

MP −50.6 (9,11) −36.5 (11,10) −44.7 (11,8)
Volterra −51.3 (7,2) −38.4 (5,3) −44.9 (9,1)

Kautz-Volterra −51.34 (5,3) −38.5 (5,3) −45.0 (9,1)
Volterra DDR −51.74 (9,3,2) −38.5 (9,4,2) −44.8 (11,3,2)

Generalized MP −51.8 (9,9,3) −38.5 (9,7,3) −45.0 (11,7,3)

(b) Best ACEPR results.
Model Scenario 1 Scenario 2 Scenario 3

MP −58.3 (11,12) −47.5 (11,12) −52.9 (11,10)
Volterra −60.1 (7,2) −49.7 (5,3) −53.7 (9,1)

Kautz-Volterra −60.2 (5,2) −49.8 (5,3) −53.7 (9,1)
Volterra DDR −60.6 (9,3,2) −49.4 (9,4,2) −53.3 (11,3,2)

Generalized MP −60.8 (13,9,3) −49.7 (9,6,3) −53.3 (11,8,3)

A. Scenario 1

Fig. 3(a) shows a comparison of NMSE between behavioral
models with respect to the number of parameters for the class
AB power amplifier. A static nonlinear model is also included
for reference.

An important issue that should be emphasized in the figures
is that an exhaustive search has been done on the parameter
space and the optimal curve for each model has been found.

It can be seen in this figure that as the number of param-
eters grow, the amount of improvement gained with excess
parameters is limited. With a large number of parameters, all
models have similar performance and higher nonlinear order
and memory depths do not yield better results. The rate at
which these models achieve this performance however differs
between models.

From Fig. 3(a) it can also be seen that the memory polyno-
mial model gives the lowest error compared to other models
with a low number of parameters. The Volterra with dynamic

deviation reduction model outperforms other models within
a range of parameters, and finally the generalized memory
polynomial model gives the lowest error when the number of
parameters increases further.

While this figure can give certain insight to how model
perform compared to one another, as previously discussed this
analysis can be unfair. In Fig. 3(b) the comparison is done vs
FLOPs.

In Fig. 3(b) we notice that the generalized memory poly-
nomial model outperforms other models consistently. This is
due to the fact that this model is less complex to run than the
Volterra with dynamic deviation reduction model. This figure
supports our hypothesis that complexity is a more appropriate
measure than number of parameters.

Finally in Fig. 3(c) the out of band performance given
by the ACEPR measure for the different models vs FLOPs
is presented. It should be noted that in the identification
procedure, the minimization criterion was NMSE and not out
of band performance.

The ACEPR values yield similar results for this signal input
power.

B. Scenario 2

The class AB power amplifier is driven harder and has
more nonlinear characteristics in this scenario, therefore the
modeling accuracy is degraded. In Fig. 4(a) the comparison is
done with respect to the number of parameters, while Fig. 4(b)
is with respect to the number of FLOPs.

From these two figures we can notice that while in Fig. 4(a)
several models have approximately the same accuracy vs
number of parameters (except for memory polynomial), in
Fig. 4(b) the generalized memory polynomial model shows
the best tradeoff behavior. It can also be noticed that as the
number of FLOPs increase, all behavioral models tend to have
the same accuracy. The ACEPR can be seen in Fig. 4(c)
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(c) ACEPR vs FLOPs

Fig. 3. Class AB power amplifier with low input power. Volterra DDR stands for the Volterra with dynamic deviation reduction model. The legend is identical
for all figures.
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Fig. 4. Class AB power amplifier with high input power. Volterra DDR stands for the Volterra with dynamic deviation reduction model. The legend is
identical for all figures.
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Fig. 5. Doherty power amplifier. Volterra DDR stands for the Volterra with dynamic deviation reduction model. The legendis identical for all figures.
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C. Scenario 3

In Fig. 5, the results of modeling the Doherty power
amplifier is shown. Once again it can be noticed that the GMP
model outperforms the other models, but in terms of ACEPR,
with a large number of parameters the Volterra and Kautz-
Volterra surpasses all other models.

Another important observation is that the models generally
do not have significant improvement from the static nonlinear
model. In the previous scenarios, a 7-10 dB accuracy gain was
achieved with the Volterra based behavioral models compared
to the static case. In this scenario only a 1-2 dB gain is
achieved compared to the static nonlinear model. One main
difference between the behavioral models analyzed and the
static model is that the latter does not model memory effects.
From these results, we can notice that memory effects are not
dominant compared to the static nonlinearity in the Doherty
architecture. This can be traced to the internal circuitry for
this class of PAs.

VII. C ONCLUSION

In this work, efficient algorithms for some widely used
behavioral models were developed, and the the computational
complexity of these algorithms were measured in FLOPs. The
behavioral models were tested on measurement data from
two power amplifiers and it was noticed that the generalized
memory polynomial model outperformed all other models in
terms of accuracy vs FLOPs consistently. It was also noticed
that number of parameters was not necessarily an appropriate
measure for behavioral model comparison.

The results indicate that for a Doherty power amplifier,
memory effects are not as pronounced as nonlinear distortions,
and the existing models are not able to model the memory
effects in this PA effectively. This is due to the inherent
characteristics of this power amplifier class.
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