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We study the impact of spin-active scattering on Andreev spectra of point contacts between superconductors
(SC) and strongly spin-polarized ferromagnets (FM) using recently derived boundary conditions for the qua-
siclassical theory of superconductivity. We describe the interface region by a microscopic model for the

interface scattering matrix. Our model includes both spin filtering and spin mixing and is nonperturbative in
both transmission and spin polarization. We emphasize the importance of spin-mixing caused by interface
scattering, which has been shown to be crucial for the creation of exotic pairing correlations in such structures.
We provide estimates for the magnitude of this effect in different scenarios and discuss its dependence on
various physical parameters. Our main finding is that the shape of the interface potential has a tremendous
impact on the magnitude of the spin-mixing effect. Thus, all previous calculations, being based on delta-

function or box-shaped interface potentials, underestimate this effect gravely. As a consequence, we find that
with realistic interface potentials the spin-mixing effect can easily be large enough to cause spin-polarized
subgap Andreev bound states in SC/FM point contacts. In addition, we show that our theory generalizes earlier
models based on the Blonder-Tinkham-Klapwijk approach.
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I. INTRODUCTION

The proximity effect near interfaces between super-
conductors and ferromagnetic materials has been a field
of intense research in recent years.'”'® This interest is
mainly triggered by the observation that exotic types of
pairing symmetries that are difficult (or impossible) to
be observed in bulk materials can be created in such
heterostructures.>!7!8 Examples are the recent revival of
pairing states that exhibit a sign change under the exchange
of the time coordinates of the particles that constitute a Coo-
per pair (odd-frequency pairing),' or mechanisms for the cre-
ation of long-range equal-spin pairing components in half-
metallic ferromagnets.!*2> Supercurrents in half metals have
subsequently been observed,”* which ignited a strong activity
in further theoretical modeling of this effect.*7:13-17.24-28
Spin-triplet pairing has proven to be at the heart of new
physical phenomena, such as O-7 transitions in Josephson
junctions with FM interlayers>%1229-31 or the interplay be-
tween magnons and triplet pairs.

So far, transport calculations in superconductor/
ferromagnet (SC/FM) hybrids have mostly been concen-
trated on either fully polarized FMs, so-called half metals
(HM), or on the opposite limit of weakly polarized systems.
However, most FMs have an intermediate exchange splitting
of the energy bands on the order of 0.2-0.8 times the Fermi
energy Egp, which we here refer to as strongly spin-polarized
ferromagnets (sFM). As an alternative to solving full
Bogoliubov-de Gennes equations,'>2%33-35 we have recently
presented a quasiclassical (QC) theory appropriate for this
intermediate range of spin polarizations, which is of consid-
erable importance for applications.'!

For such strongly spin-polarized materials, it has been
argued that Andreev point contact spectra can be used to

28,32

1098-0121/2010/81(9)/094508(17)

094508-1

PACS number(s): 72.25.Mk, 74.45.+c, 73.63.—b, 85.25.—j

obtain the spin polarization of the FM,3¢-3° which is an im-
portant information for spintronics applications. Experimen-
tal studies of point contact spectra with strongly spin-
polarized systems have been performed for a number of
systems.*0-4° However, Xia et al.’® have objected rightfully,
that without taking into account a realistic description of the
interface region, the results obtained with this method are
questionable.

In the quasiclassical approach to superconducting hybrid
structures, interfacial scattering is taken into account by the
interface scattering matrix S of the structure in its normal
state. This is ideal for discussing microscopic models of in-
terfacial scattering which go well beyond the standard
Blonder-Tinkham-Klapwijk (BTK) approach.’! The latter
has been employed to fit experimental data of SC/FM point
contact spectra’® with the interface being described by a
single parameter Z related to its transparency and the ferro-
magnet by its spin-polarization P. The modification of the
Andreev point contact spectrum compared to a normal-metal
contact is then uniquely related to the spin-dependent density
of states (DOS) in the FM bulk. This model allows for good
fits to experimental data. However, comparing different
probes with varying interface transparency, a systematic de-
pendence P(Z) was found by Woods et al.** This shows that
the extracted spin polarization is not a bulk property, as was
originally assumed, but at least partially an interface prop-
erty. This important difference has been emphasized also in
Ref. 45.

From the theoretical point of view, it is obvious that if
scattering is spin-active, i.e., the scattering event is sensitive
to the spin of the incident electron, this may not only imply
a spin-dependent transmission probability (spin filtering) (for
a review, see Ref. 52) but also a spin-dependent phase shift
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of the wave function.’® The latter is called the spin-mixing
effect and it has been shown to be of crucial importance for
the creation of exotic pairing correlations.>!%37 So far, es-
timates of the magnitude of this effect and its dependence on
physical parameters including not only the structure of the
interface but also the Fermi-surface geometry of the adjacent
materials and the FM exchange splitting are still lacking.
Instead, phenomenological models have been adopted that
introduce a free parameter to account for it.19-3438

The main point of this paper is to provide a microscopic
analysis of the characteristic interface parameters. In the fol-
lowing we adopt a model of the interface region consisting
of a spin-dependent scattering potential whose quantization
axis may be misaligned with that of the adjacent FM. We
allow for an arbitrary shape of this scattering potential and
illustrate that this may enhance the spin-mixing effect con-
siderably compared to the previously used box-shaped or
delta-function potentials. We also study in detail the relation
between spin-mixing angle and impact angle of the quasipar-
ticle, showing that this relation is nontrivial for transparent
interfaces. Furthermore, we provide a very general math-
ematical discussion of suitable parameterizations and repre-
sentations of the scattering matrix in this context.

Andreev bound states have proven invaluable for studying
the internal structure of the superconducting order
parameter.>® Andreev states are also induced at spin-
polarized interfaces by the spin-mixing effect.* In fact, the
measurement of such bound states at spin-active interfaces
would be an elegant method do determine the spin-mixing
angle of the interface. To date this quantity has never been
determined in experiment. Our results show, that a measur-
able effect is more likely to appear when leakage of spin
polarization into the superconductor takes place, for ex-
ample, due to diffusion of magnetic atoms. Our theory can
discriminate between conventional Andreev-reflection (AR)
processes and spin-flip Andreev reflection (SAR), the latter
being responsible for the long-range triplet proximity effect.
We discuss the Andreev bound state associated to the spin-
mixing effect and show that it may be observable in experi-
ment. Furthermore we show that for highly polarized FMs,
spin-flip scattering can influence the spectra considerably,
proving that such processes must be precluded if one wishes
to extract the FM spin polarization from such spectra.

The paper is organized as follows. In Sec. II, we discuss
the quasiclassical theory to describe transport through a point
contact. In Sec. III we turn to interface models and discuss
the spin-mixing effect and the scattering matrix. In Sec. IV
we present results for Andreev conductance spectra of
SC/FM point contacts. We discuss analytical results, focus-
ing on the Andreev bound-state spectrum, as well as numeri-
cal results. In Sec. IV C we establish the connection to ear-
lier transport theories for such systems which are based on
the BTK approach. We prove analytically that they are con-
tained as limiting cases in our formalism. Eventually, in Sec.
V, we conclude on our results.

II. QUASICLASSICAL THEORY

We make wuse of the quasiclassical theory of
superconductivity®'=%8 to calculate electronic transport across
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the SC/FM interface. This method is based on the observa-
tion that, in most situations, the superconducting state varies
on the length scale of the superconducting coherence length
& =h|0g|/2mkgT,, with the normal-state Fermi velocity 0.
The appropriate many-body Green’s function for describing
the superconducting state has been introduced by Gor’kov,*
and the Gor’kov Green’s function can then be decomposed
in a fast oscillating component, varying on the scale of the
Fermi wavelength 27/kg, and an envelope function varying
on the scale of &). The quasiclassical approximation consists
of integrating out the fast oscillating component,

> 1 v -
g(PpR,&,1) = _*f d&,7G(p,R,e,1), (1)
: a(pr) P

where a(pg) is the inverse quasiparticle renormalization fac-
tor (due to self-energy effects from high-energy processes),%
a “check” denotes a matrix in Keldysh-Nambu-Gor’kov
space,’” a “hat” denotes a matrix in Nambu-Gor’kov
particle-hole space (with 73 the third Pauli matrix), pg is the
Fermi momentum, R the spatial coordinate, & the quasiparti-
cle energy, ¢ the time, and &,=0- (5 - pp). The quasiclassical
Green’s function obeys the transport equation®!-%?

ifivg- Vg +[ed—A—h,§], =0. (2)

Here, A is the superconducting order parameter, h contains
external fields and self-energies due to impurities, etc., and
[*,*]s denotes the commutator with respect to a time-
convolution product (for details see Ref. 63). Equation (2)
must be supplemented by a normalization condition®!7!

§®§=—fﬂ2. The current density is related to the Keldysh
component of the Green’s function via

22 de e m R 2
.](R’t) = ENFJ %Tr<vF(pF)T3gk(stR787[)>7 (3)

where N is the density of states at the Fermi level in the
normal state and () denotes a Fermi-surface average which
is defined as follows:

1 dzPF
o) = — —————(*), 4
() NJFS PESEENERA @

dZPF
N, =f 3l A
; FS (Zﬂ'ﬁ)3|vF(PF)|

The direct inclusion of an exchange energy Jgy on order of
0.1Eg or larger in the quasiclassical scheme violates the un-
derlying assumptions of quasiclassical theory. As we aim to
describe a strongly spin-polarized FM, which means that its
exchange field Jgy will be on the order of the Fermi energy,
we cannot include it as a source term —%jFM' o (with & the
vector of Pauli spin matrices) in the quasiclassical equation
of motion. Such an approach would neglect terms on order of
Jiy/ Ep compared to A. The resulting condition Jpy < VERA,
assuming, e.g., a gap of I meV and Eg~1 eV, would imply
Jemv<<30 meV. In general, the condition for the possibility to
include Jgy in the quasiclassical low-energy scale is violated
for most SCs if Jpy>0.1FF.

)
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FIG. 1. (Color online) SC/sFM interface, showing the Fermi
surfaces on either side (thick lines). Assuming momentum conser-
vation parallel to the interface (12“), a quasiparticle incident from the
SC can either scatter into two (a) or into only one (b) spin band of
the FM.

To deal with the strong exchange splitting, we make use
of the fact that it results in a rapid suppression of supercon-
ducting correlations between quasiparticle states with oppo-
site spin, i.e., singlet (|[T[)=[[1)) or S,=0 triplet (|T])
+[L 1)) correlations. They decay on the short length scale
Xy=h!(ppa—pr3) <hvpy 3/ A= &), Here pp, and ppy are the
Fermi momenta of the two spin bands (2 and 3) in the SFM
and &, with n=2,3 the coherence lengths in the respective
bands. Consequently, only equal-spin triplet correlations can
penetrate the FM bulk. Hence we pursue the following ap-
proach to model a strongly polarized FM in the frame of QC
theory. We define independent QC Green’s functions
(QCGF) for each spin band which are scalar in spin space,
i.e., describe correlations with |17), respectively, || |) spin-
wave function. The boundary conditions must now match
three QC propagators at the SC/FM interface, which we label
g, with »=1=8C, »=2=1 band and »=3= band (see
Fig. 1). These three QCGFs are formally obtained from

g(ﬁF”’E,S,t) = f dgpn%SGv(ﬁ’E’S’t) (6)

1
a(pry)
with &,,=0g, (F—Pr,), Pr, and Up, being the respective
Fermi momenta/velocities of the bands. Consequently, the
current must then be evaluated for each band separately

> = d8 R N A N >
J(R.1) =€NF”f QTr(vF,’(pFn)7'3g1,§(pF,],R,s,t)>n. (7)

Here, Ng,, is the partial density of states at the Fermi level in
band 7, and (¢), denotes the corresponding Fermi-surface
average
1 d*p
- L 4 i/
(+)y= 3o (e), (8)
NFr] FS7 (27h) |UF1](pF77)|

d’pr
Ng,= f Py et ©)
o FS» (277%)3|an([71:7])|

In addition, the system’s properties vary on the atomic
length scale in the interface region between the two materi-
als. Thus the QC theory is also not applicable in the imme-
diate proximity to the interface (on the scale of the Fermi
wavelength). This is a general problem in the quasiclassical
description of heterostructures, which can be circumvented
by deriving appropriate boundary conditions for matching
the QC propagators on both sides of the interface.”> The full
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boundary conditions for the present problem have been de-
veloped only recently.'® Earlier works on Andreev spectra
using QC theory were restraint to either SC/normal-metal
contacts with spin-active interfaces,*>3*73 or contacts with
weak ferromagnets. We refer to Ref. 16 and references
therein for a detailed discussion of this problem. In the fol-
lowing section we discuss a parameterization of the QC
propagator and return to the problem of boundary conditions
at the interface in Sec. II B.

A. Riccatti parameterization

For our calculations we choose a representation of the
QCGF that has proven very useful in the past and is standard
by now. In this representation, the Keldysh QCGF is deter-
mined by six parameters in particle-hole space, YA, FRA,
XX, and ¥ of which yR’A(ﬁF,E,s,t) and VR’A(ﬁF,E,s,t) are
the retarded (R) and advanced (A) coherence functions, de-
scribing the coherence between particlelike and holelike
states, whereas xX(5g, R, &,1) and ¥(5z,R, &,1) are distribu-
tion functions, describing the occupation of quasiparticle
states.”7® The coherence functions are a generalization of
the so-called Riccatti amplitudes’”-’® to nonequilibrium situ-
ations. All six parameters are 2 X 2 spin-matrix functions of
Fermi momentum, position, energy, and time. The param-
eterization is simplified by the fact that, due to symmetry
relations, only two functions of the six are independent. The

particle-hole symmetry is expressed by the operation (),
which is defined for any function of the phase space vari-
ables by

é(ﬁF’ﬁ’Z’I) = Q(_ﬁFsR)’_Z*’Z)*’ (10)

where z=¢€ is real for the Keldysh components and z is situ-
ated in the upper (lower) complex energy half plane for re-
tarded (advanced) quantities. Furthermore, the symmetry re-
lations

V=N =00 F=6H (11)
hold. As a consequence, it suffices to determine fully the
parameters YR and xX.

The QCGEF is related to these amplitudes in the following

way [here the upper (lower) sign corresponds to retarded
(advanced)]:'

g F R.A
RA_ — A
g =F2m| . _ * 7T (12)
(—f —g) ’

with the abbreviations G=(1-v%)"! and F=Gy, and

Ky .(g f)( o)(g f)A
=— 41Tl _ _ _ _ .
¢ -7 -g) \o *)\-F -g

(13)

Note that all multiplication and inversion operations include
2 X 2 matrix algebra (and, more general, for time-dependent
cases also a time convolution).

From the transport equation for the quasiclassical Green’s
functions one obtains a set of 2 X2 matrix equations of mo-
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tion for the six parameters above.”>”? For the coherence am-
plitudes this leads to Riccatti differential equations,’® hence
the name Riccatti parameterization. As we are interested in
this paper only in the interface problem in relation to a point
contact, the transport equations are not relevant for the prob-
lem at hand. For a point contact, the superconductivity is
modified only in a very small spatial region and this modifi-
cation can be neglected consistent with quasiclassical ap-
proximation. We assume that the half-space problem is
solved and calculate the conductance across the point con-
tact. For this, we turn now to the problem of solving the
boundary conditions for the point contact.

B. Boundary conditions
1. General case

The QCGF mixes particlelike and holelike amplitudes,
and as a result the transport equations are numerically stiff,
with exponentially growing solutions in both positive and
negative directions along each trajectory, which must be pro-
jected out. A particular advantage of the coherence and dis-
tribution functions is that, in contrast to the QCGF, they have
a stable integration direction for each trajectory. This direc-
tion coincides with their propagation direction, and is oppo-
site for holelike and particlelike amplitudes as well as ad-
vanced and retarded ones. This allows to distinguish between
incoming and outgoing amplitudes at the interface. We adopt
the notation’® that incoming amplitudes are denoted by small
case letters and outgoing ones by capital case letters. Bound-
ary conditions express outgoing amplitudes as functions of
incoming ones and as functions of the parameters of the
normal-state scattering matrix. They are formulated in terms
of the solution of the equation'®

R ’ ~ ’ R
(Fi i N = Y + > T ¥ Yi it (14)
1 1 1
ky#k
for [Ty, IR, where the trajectory indices k, k', and k; run
over outgoing trajectories involved in the interface scattering
process, and the scattering matrix parameters enter only via
the “elementary scattering event”

[)’,I(kr]R= E Sfp’y[l}g}jk' (15)
p

(the trajectory index p runs over all incoming trajectories). It
is useful to split the quantity [T,/ ]R into its forward-
scattering contribution, which determines the quasiclassical
coherence amplitude

rf=ry ., (16)

and the remaining part

[ R =T = Tidur IR (17)

which is relevant only for the Keldysh components. Analo-
gous equations'® hold for the advanced and particle-hole
conjugated components, [l:[,Hp,]R, [l"p,ﬂ[,]A, and [l:k,ﬁk]A.
The boundary conditions for the distribution functions read'®

PHYSICAL REVIEW B 81, 094508 (2010)

X; = > [5kk1 + fkekl'ykl]R[xlilkz]K[ékzk + Ysz kzﬂk]A
ky.ky

= 2 [Ty RFEIT, a0 (18)
ky

which depend on the scattering matrix parameters only via
the elementary scattering event

Lo I8 = 20 SRS, (19)
p

Analogous relations hold for }?;(

2. Special case: SC/FM point contact

In the case under consideration the trajectory labels k and
p run from 1 to 3, with 1 denoting (spin-degenerate) trajec-
tories on the superconducting side, and 2 and 3 trajectories
for the two spin directions on the ferromagnetic side. We use
the following notation for the (unitary) scattering matrix:

Ry [T | Ty
S= T21 ry ryz |. (20)

T | rn| 13

The current across the interface is conserved (this is ensured
by our boundary conditions) so that it suffices to calculate
the current density at the FM side of the interface. We pro-
ceed with expressing the outgoing amplitudes for bands 2
and 3 in terms of the incoming amplitudes and the scattering
matrix.

For a point contact with semi-infinite SC and FM regions
(assuming that the Thouless energy related to the geometry
of the system is negligibly small), there are no incoming
correlation functions from the FM side, y2R”3A= ?2{”3A=0,
whereas on the SC side we can use the bulk solutions. For a
singlet order parameter the bulk solutions of the coherence
functions read

fA____J&BL__ ga_ Aoy
! e i\'|As|2_ 82’ ! e+ i\r|A3.|2— 82

(21)

with the singlet superconducting order parameter A,. Taking
into account these facts, we obtain from Eq. (14)

1_‘ZRﬁ—l :[7£1]R+F12{<—17}12[7;1]R’ (22)
Iy= [')’éz]R + I‘lzi_l 7)12[ ')’;2]Ra (23)
FzRH3 = [')’£3]R + FzRHl 7?[713]R (24)

with [y[i]R=SilylfSTj for i,j=1,2,3. The first equation, Eq.
(22), can be solved

IS =T ¥ Ri(1 - %R VR) ™. (25)

It appears useful to introduce the notation
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A=T5 9 (26)

From Egs. (23) and (24) we obtain
I3 = (T + AR) AT, (27)
IS 3= (Ty +AR) YT (28)

Note that the identity T+AR,=T5,(1-XR{%R,)™" holds.
The corresponding solutions for band 3 are simply obtained
by replacing 2+« 3. Amplitudes FR and ers are obtained
using Eq. (10) with S,»J»—Sij. The required advanced ampli-
tudes can be obtained from the fundamental symmetry rela-

tions of this formalism, which imply T'>=(I'})" and F3 )
= (5"

For the distribution functions, we use a gauge in terms of
anomalous components.'® Taking the electrochemical poten-
tial equal to zero in the SC and equal to —eV in the ferro-
magnet, these are x;=X;=0 and

e+eV e
X, 3 =tanh — tanh ,
’ 2kgT 2kgT

_ e—eV €
Xp3=— tanh( ) + tanh( ) . (29)
' 2kpT 2kgT

Note that in our notation e=—|e|. From Eq. (18) we arrive at
the following expressions for the outgoing Keldysh ampli-
tudes for band 2:

Xy = [xh I8+ Th P I8+ [, TE 9 T,
+ F2<_1 7){[)51 1]K¢F1—>2 2<_3X3F3—>2 (30)

with [x/]8=S,x,87,+83x38%; for i,j=1,2,3. Introducing
what has been obtained before, we arrive at

Xy =(ry + AT )Xy (ry + AT 1)) + (ry3 + AT 3)x3(rp3 + AT13)"
— (T + AR (AT (AT (T + AR (31)

Again, the corresponding solution for band 3 is obtained by
replacing 2 < 3.

II1. INTERFACE MODEL

We consider a point contact with a diameter much smaller
than the superconducting coherence length but still larger
than the Fermi wavelength as shown in Fig. 2(a). A larger
contact would result in a perturbation of the SC state, a
smaller one would invoke conductance quantization.®° This
also allows for the decisive assumption of translational in-
variance on the scale of the Fermi wavelength Ar. The region
in the immediate vicinity of the interface cannot be described
within QC theory. Instead, the normal-state scattering matrix
of the interface must be obtained from microscopic calcula-
tions and then enters the QC theory through boundary con-
ditions as outlined above.

The mechanism giving rise to spin-active scattering at the
interface is the ferromagnetic exchange field in both the
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FIG. 2. (Color online) (a) The Andreev point contact with spin-
active interface; (b) The spherical angles @ and ¢ characterize the
orientation of the interface exchange field fl with respect to the FM
exchange field jFM. The dashed arrow indicates the area where the
misaligned interface magnetic moment resides.

adjacent ferromagnetic material and in the interface itself.
The interface will in general carry a magnetic moment that in
the simplest case is induced by the magnetization of the bulk
ferromagnetic material; however, there might be cases where
an extra interface magnetic moment develops, either manu-
factured by using a thin magnetic layer or due to spin-orbit
coupling, and related to that, magnetic anisotropy. The inter-
face magnetic moment can be misaligned with the one of the
bulk sFM. We characterize this misalignment by two spheri-
cal angles « and ¢, as indicated in Fig. 2(b). While the spin
activity of interfaces has been discussed extensively in the
theory of superconducting heterostructures, most of the work
so far considered a set of phenomenological parameters for
characterizing the interfacial scattering. Notably, one of these
parameters, the so-called spin-mixing angle, or spin-
dependent phase shift, turned out to be of decisive impor-
tance for the creation of unconventional superconducting
correlations in proximity to the interface. The spin-mixing
angle is essentially a relative phase difference between | and
| electrons acquired upon scattering. Obviously, an exchange
field in the interface region will provide such an effect but
other mechanisms, such as, for instance, spin-orbit coupling
are also candidates.

So far, estimates of the possible magnitude of this effect
based on a physical model of the interface region are still
lacking. Here, we will provide such an analysis based on
wave-function matching techniques. In particular, we will
discuss the dependence of the spin-mixing effect on the
shape of the barrier. To this end, we consider a spin-split
potential barrier which is assumed to conserve the momen-
tum component parallel to the interface upon scattering. For
the system we deal with, this gives rise to two types of trans-
mission events (see Fig. 1). Depending on the impact angle
the parallel momentum conservation constraint either allows
for or prohibits scattering that involves the minority spin
band of the sFM. For a half metal, where the | band is
completely insulating, only the latter case occurs.

A. Interface scattering matrix

At this point we present some general considerations con-
cerning the scattering matrix of a spin-active interface. Such
a matrix is unitary and of dimensions 4 X4 in the FM and
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3 X3 in the HM case. The maximum number of free param-
eters is 16 or 9, respectively. However, not all of these pa-
rameters will be relevant for the physical problem at hand.
For instance, spin-scalar phase factors do only matter for two
or more interfaces. Furthermore, since a singlet SC is spin
isotropic, one is free to choose the spin-quantization axis in
the SC conveniently. To clearly identify these irrelevant pa-
rameters we use a special parameterization of a general uni-
tary matrix with the aforementioned dimensions as discussed
in the Appendix. The most important result of these consid-
erations is that the spin-mixing effect can be fully described
by only one parameter in the HM case, but three are required
in the FM case.

Neglecting irrelevant spin-scalar phases and using the
gauge freedom in the SC the scattering matrix reads for the
first type of scattering

rir o2 rir ) o922 £ 01932
ryl o192 £, o922 s o932
Sem = trel?2 g o122 7 ras (32)
té 032 fpmity2 Fos ry

The scattering matrix for the second, HM type, scattering is

rlTeiﬂ/Z rlTl tzell‘}/4
SHM — rlTl rlle—n‘}/Z tée—n‘)/4 . (33)
1ol t, iV | s

There is also the possibility of total reflection with no trans-
mission on either side, in which case the scattering matrix
consists of the reflection parts only. In writing the scattering
matrices in Egs. (32) and (33) we have put the ¢ phase that
appears in Fig. 2(b) to zero since the problem we consider is
invariant with respect to rotation of the interface magnetic
moment around the bulk magnetization; the scattering matrix
is symmetric in this case, S=S7. We also omitted possible
complex phases in the reflection part on the FM side, i.e., 7,
r3, and r,3, as they are irrelevant to the problem at hand. The
requirement of unitarity leads to additional relations between
the reflection and transmission parameters. The phases that
we wrote explicitly in Egs. (32) and (33) are crucial since
they account for the spin-mixing effect. In the following sec-
tion, we will discuss their magnitude as a function of various
interface parameters.

Using the set of independent parameters described in the
Appendix we have

rip=ry cos(ay/2)? + r| sin(ay/2)?,
Py =Ty sin(ay/2)? + r cos(ay/2)?,

sin(ay)
2

ry == =r) (34)
The angle ay defines a rotation in spin space to the interface
eigenstates, characterized by transmission and reflection ei-
genvalues. Its precise definition is given in the Appendix.
Most importantly, it is, in general, not identical to the inter-
face misalignment angle «, however approaches it in the
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FIG. 3. (Color online) Sketch of the box-potential model that we
consider in this section (right) and of the corresponding Fermi-
surface geometry (left). The model parameters are indicated.

limit of thick interfaces. For thin interfaces it is renormalized
by the influence of the exchange field of the adjacent FM. ry
and r| are the singular values of the reflection block R,. In
the tunneling limit, r;, r; =1, and the off-diagonal elements
vanish even for ay#0. This is easily understood from a
physical point of view since spin-flip reflections on the SC
side requires that the reflected quasiparticles “feel”” both mis-
aligned exchange fields, jl and fFM, and not just that of the
interface. It is possible to provide analogous expressions for
the remaining parameters of the scattering matrix, however
in the sFM case they are rather cumbersome and also not
needed for the following analytical discussion. For the half-
metallic case, the only relevant phase parameter is the spin-
mixing angle ¥ and for the remaining parameters we have
ri=1, and

(¢4

IQZZ‘T COS(?I/), féz—l‘T Sin(%), r2=—rT. (35)

In the following we will discuss the influence of the shape
of the scattering potential and will show that the widely used
box shaped or delta-function-shaped potentials gravely un-
derestimate the magnitude of the spin-mixing effect.

B. Box-shaped scattering potential

In this section we consider spin-dependent box potentials,
for which analytical solutions can be obtained. In particular,
we discuss here the dependence of the spin-mixing angle, ¥
on the impact angle of the incoming quasiparticle which is
parameterized by the momentum component parallel to the
interface, k. The model parameters are the misalignment
angle « [see Fig. 2(b)], the energies of the band minima in
the FM with respect to that in the SC (E,,E3), the spin-
dependent height of the potential (U, ,U_) and the width of
the potential d (see Fig. 3). All energies are given in units of
Er and d in units of N\p/27 with Ag=27/ kg the Fermi wave-
length in the superconductor.

The scattering matrix is defined with respect to the chosen
spin-quantization axes on both sides of the interface. Natu-
rally, on the FM side we use the bulk sFM magnetization
axis. On the SC side we use that of the interface magnetic
moment. To obtain an S matrix with the structure defined
above, one must subsequently calculate and apply a rotation
of the quantization axis in the SC
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FIG. 4. (Color online) The spin-mixing angle 9 as function of
the momentum component parallel to the interface, shown for vari-
ous barrier thicknesses. (a) d=0.1, 0.5, and 1.0Ng/27, (b) d=2.0,
3.0, and 5.0Ng/27. The remaining parameters are E,=0.1Eg, Ej
=0.9Eg, U,=1.1Eg, U_=1.9Eg, and a=0.57 (see text and Fig. 3).

|
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where Q is a spin rotation matrix acting on spins in the
superconductor. We describe this procedure in the Appendix.
All the quantities plotted are calculated in this rotated frame,
the point being that otherwise one does not have an unam-
biguous definition of the mixing phases. Naturally, the An-
dreev spectra are invariant under these transformations. We
obtain the scattering matrix by matching wave functions as
described in the Appendix.

In Figs. 4(a) and 4(b) we show the spin-mixing angle for
different values of the interface potential width d. The band
minima in the FM are E,=0.1Eg and E3=0.9E%, which im-
plies that at k;=0.31kg; the minority band becomes insulat-
ing and the scattering matrix reduces to a 3 X 3 matrix. In the
tunneling limit (d>\p/27) the spin-mixing angle behaves
as expected: it is approximately given by the value (see Ap-

pendix)
ky ky
O =2| arctan| — | — arctan| — | |, (37)
Ky K

which approaches zero for grazing impact (k;=~0), and
2[arctanVEg/ (U, — Eg) —arctanVEp/ (U_—Ep)] (=0.297 for

Fig. 4) for normal impact. Here, k; is the component of the
wave vector perpendicular to the interface in the supercon-
ductor and . are the exponential decay factors for the spin-
up/down wave functions in the barrier. For thin (highly trans-
parent) interfaces the mixing angle © is a more complicated
function of the quasiparticle impact angle. In this regime, ¥
is predominantly controlled by the Fermi-surface geometry
indicated in Fig. 3. There is a local minimum at k; > kg3 and
for very thin interfaces U is largely enhanced for grazing
impact (d=0.1\g/27 in Fig. 4). This enhancement can be
understood from the d=0 limit, i.e., the case where the inter-
face barrier is absent. In this case

ki

O =m—2 arctan| — |, (38)
K3

where k3 corresponds to the imaginary wave vector in the

insulating band 3, which controls the exponential decay of

the spin-down wave function into the ferromagnet. In the

particular case we show here, see Fig. 3, k; takes a finite
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FIG. 5. (Color online) (a) Spin-mixing angle ¥ as a function of
impact angle for (a) d=0.5\p/ 7 and (b) d=5.0\g/ 2. In both plots,
the curves are for U_=1.2,...,2.0E, E3=U_-1.0. The correspond-
ing value of the exchange field J is indicated. The remaining pa-
rameters are E,=0.1Eg, U,=1.1Eg, and a=0.57.

value for all trajectories that contribute to the current while
K3 increases monotonously from 0 at kj=kp;=0.31kg to
some finite value at kj=kp,. This is because the effective
height of the potential for tunneling into the insulating band
increases with k;. For Fermi-surface geometries with kg
<k, (not shown here) the wave vector k; drops to zero for
grazing impact and so does the spin-mixing angle.

In the present case, the situation is complicated by the fact
that we consider both a finite interlayer and a broken spin-
rotation symmetry. This leads to a finite spin-mixing angle
even for kj=kg; and below, which leads to the nontrivial
behavior with a minimum for intermediate impact angles.
This illustrates that not only the scattering potential itself but
also the Fermi-surface geometry is highly important for spin-
active scattering beyond the tunneling limit.

As for the magnitude of the mixing effect, we stress that
for a realistic choice of parameters, it is hardly possible to
achieve mixing-phases above 0.57 in this model. In Fig. 4
we use an exchange field of J=0.8EF, which is close to the
half-metallic limit. Using smaller exchange energies natu-
rally leads to a smaller effect, as can be seen in Figs. 5(a) and
5(b), where we plot ¥ for different values of the exchange
field J=E3—E2.

In Fig. 6 we show the spin-mixing phases associated to
transmission, ¥, and U;. One can see that ¥,=19/2 for k;
>(.31kg;. This relation one would expect for a SC contacted
with a half-metallic ferromagnet; the finding in Fig. 6 is con-
sistent with this and the discussion presented above since the
trajectories under consideration effectively correspond to the
HM case. For k;<0.31kg, the mixing phase is considerably
enhanced above the value of /2. The plots also illustrate
that ¥, and 1 are different in magnitude and also vary dif-
ferently with k. As we show in the Appendix, the mixing-
phases U, and 3 are correlated with 9 but in general also
depend on a number of other free parameters. Their magni-
tude is decisive for the creation of triplet correlations in the
corresponding band as we will show below.

In Fig. 7 we present the product |r,7;| (which controls the
magnitude of long-range SAR). We plot this quantity for
both the majority (upper row) and minority (lower row) band
of the FM. Apparently there is a nonmonotonous dependence
on the interface width d, which is related to the fact that
spin-flip scattering becomes more effective as the interface
region becomes larger. For even larger d the global suppres-
sion of transmission intervenes and we approach the tunnel-
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FIG. 6. (Color online) The spin-mixing angles 9, (k) [(a) and
(b)], and 93 (k) [(c) and (d)] for thin [left column: d=0.1 (solid),
0.5 (dashed-dotted), and 1.0 (dashed) Ag/27] and thick [right col-
umn: d=2 (dashed), 3 (dashed-dotted), 5 (solid) \g/27r] interfaces.
The remaining parameters are the same as in Fig. 4.

ing limit. Again, we note that for thin interfaces the depen-
dence on trajectory impact angle is nonmonotonous, showing
maxima for nonperpendicular impact. These maxima coin-
cide exactly with the minima of the spin-mixing angle. Note
that a nonzero t;] requires a nonvanishing misalignment angle
a.

To conclude on this section, we have shown that the mag-
nitude of the spin-mixing effect is limited to rather small
values in the box potential case if one assumes J<<Ep and
d = \g. Moreover, both spin-mixing effect and spin-flip scat-
tering are very sensitive to trajectory impact, interface thick-
ness, exchange field of the interface, and the Fermi surface
geometry of the adjacent materials.

0.6 ‘ 1
| ! 0.1
__ 044 : :
= o =
0.2 3 3 = \
TN PSS
0.0 — 0.0 A
10 -05 00 05 1.0 10 05 00 05 10
(c) Ky /K, (d) K /K,

FIG. 7. (Color online) The transmission parameters |t,15| (k;)
[(a) and (b)], and |t3t3] (k) [(c) and (d)], for thin [left column: d
=0.1 (solid), 0.5 (dashed-dotted), 1.0 (dashed) \g/27] and thick
[right column: d=2 (dashed), 3 (dashed-dotted), 5 (solid) Ap/27]
interfaces. The remaining parameters are the same as in Fig. 4.
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FIG. 8. (Color online) (a) Spin-mixing angle © as a function of
V../V_ for the delta-function potential. E,=0.1Eg and E3=0.7Eg. (b)
The same as (a) for E,=—0.7Eg and E3=-0.1Ff.

C. Delta-function scattering potential

A special case of the box-shaped potential is that of the
delta-function potential that is widely used in describing in-
terfaces within the BTK paradigm. Here, we show that the
situation is in this case comparable to that of the box poten-
tial. Delta-function models introduce a weight factor V|, of
the Delta function which enters the matching condition for
wave-function derivatives

d d 2mV,
—W(z=0) - —V,(z=0) =
dz I(Z ) dz 2(2 ) ﬁz

V,y(z=0). (39)

A spin-dependent potential can simply be modeled by choos-
ing a spin-dependent weight factor V.. This weight factor
effectively corresponds to the area under the scattering po-
tential, i.e., we have V.=(U.—Eg)-d, to connect with the
notation above. In Fig. 8 we plot ¥ as a function of V,_/V_
for perpendicular impact and two different choices of the
Fermi-surface geometry. Since we do not calculate any spec-
tra for this model, we choose a=0 for simplicity. Generi-
cally, spin-mixing angles 9> 0.5 can only be reached for
V,/V_<0.1, which requires either V, to be very small or an
interface exchange field exceeding the Fermi energy.

D. Scattering potentials with arbitrary shape

The box potential actually constitutes a high degree of
idealization. The most obvious generalization is to consider a
potential that varies smoothly on the scale of a few inter-
atomic distances or on the scale of the Fermi wavelength in
metals.3! This is quite realistic taking into account that me-
tallic screening of charges takes place only on the Thomas-
Fermi wavelength scale. In addition, some magnetic ions
might penetrate the superconductor from the ferromagnet,
leading to a spin-dependent potential that decays in the bulk
of the superconductor. In the latter case a certain degree of
disorder is introduced. However, we will assume that any
such disorder is weak so that the momentum component par-
allel to the interface is still a good quantum number. A truly
realistic description would have to drop the assumption of
translational invariance and consider disorder on a micro-
scopic level. In principle, our theory can be extended to this
regime but this is beyond the scope of this paper. If one is
only interested in transmission and reflection amplitudes, the
difference between the box-shape and a smoothened poten-
tial is negligible. But when scattering phases are important,
as in our case, this is not true, as we will show in the fol-
lowing.
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FIG. 9. (Color online) Sketch of the scattering potential for the
smooth potential model (right) and the here considered Fermi-
surface geometry (left). The parameters introduced in Eq. (40) are
indicated.

For definiteness, we consider a potential shape as shown
in Fig. 9, with Gaussian “slopes.” The “smoothness” of the
interface barrier is then controlled by the standard deviation
o of the Gaussian. Hence, we have the spin-dependent po-
tential

(Vy = Jj2)e @+ %0 2<-d

V= J2 —d<z<0 (40)
E,+ (Vi £ J2-E,)e='" z>0.

Ut:

In the limit of a very smooth potential, one may resort to the
Wentzel-Kramers-Brillouin (WKB) approximation®? to cal-
culate the scattering problem. An interface that complies to
the requirements of WKB would have to be much larger than
the Fermi wavelength however, which is unrealistic. For this
reason we resort to a numerical method for calculating the
scattering problem. We use a recursive Green’s function
technique®’ to calculate the single-particle Green’s function
of the interface Hamiltonian and obtain the scattering matrix
from it using the Fisher-Lee relations.?* To study the effect of
the potential shape on the spin-mixing angle, we plot the
angle ¥ in Fig. 10(b) for different values of ¢. To avoid a
large variation in the interface transmission when varying o,
we keep d+0=0.7\p [see Fig. 10(a)].

Furthermore, we use E,,E;<<0 here, i.e., both the FM
bands have a larger Fermi surface than the SC. As we will
see later on, this Fermi-surface geometry and the scattering
constraints it implies can have an important effect on the
shape of the spectra, and in particular, on features which are
related to the spin-mixing effect.

1.00
1.5
10] 075
e
Wos] o050
- =]
= 0.0 0.25
-0.54
0.00
10 -05 00 05 10 40 05 00 05 1.0
(a) z/ A (b) k|| / kF1

FIG. 10. (Color online) (a) Shape function of the scattering po-
tential (average between both spin directions) for o=0,...,0.7\g
and 0+d=0.7\p, and E;=-0.1Eg, and E;=—0.8Eg. (b) The spin-
mixing angle ¥ as a function of impact angle for the different po-
tentials plotted in (a). o increases from bottom to top.

PHYSICAL REVIEW B 81, 094508 (2010)

The main result of considering a variation in the potential
shape is however that it has a tremendous effect on the spin-
mixing angle, as clearly seen in Fig. 10(b). Its magnitude can
exceed for a smooth potential that for a box potential of
similar transmission easily by a factor of 3—4 or more. This
is sufficient to observe some exotic features related to this
effect in the Andreev spectra of point contacts as discussed in
the next section. The physical reason for this is that, unlike in
the box potential case, electrons with opposite spins acquire
a phase difference while they are still propagating, which
implies that a larger mixing phase is not inevitably tied to a
strongly reduced transmission. This can be best seen in the
WKB limit, where the mixing angle is exclusively given by
this dephasing

ﬁ=2{fq dz pi(z) - ! dzm(z)]. (41)

—oo —o0

Here pT,l:\s"Zm(EF— U.) and z; are the classical return
points for the respective spin bands (see Fig. 3 for the nota-
tion). In the intermediate case that we consider here both the
different wave-vector mismatches and the dephasing of
propagating modes will add to the mixing effect. Note that
only the shape on the SC side of the interface matters for
boosting the spin-mixing angle ¢.

The discussion in terms of scattering-matrix parameters
presented here is flexible enough to be extended, e.g., to
other Fermi surface geometries or adiabatic variation in the
interface magnetization. Furthermore, instead of insulating
interfaces one could consider interfaces where one or even
both channels are conducting. The latter case has been con-
sidered by Béri et al.'4

IV. ANDREEV CONDUCTANCE SPECTRA OF SC/FM
POINT CONTACTS

In the remaining part of the paper we discuss Andreev
spectra that result from our model. We use a definition for
the FM’s spin polarization given by

NFZ_NF3

P= . (42)
Npy + Np3

For parabolic bands, the density of states is proportional to
the Fermi .momentum, Ngy©Ppy® VEg—E,. We assume
equal effective masses.

The current density in terms of the distribution functions
and coherence functions is given by

7

> eN, 7 S

.]77=_ ZF fd8<vn']s,n 7o (43)
. R~ T7A
]S’”=X”—x”—l—‘ﬂxﬂl—‘ﬂ, (44)

where the expression for j, , is given by
Jeo= x|+ AT + |rys + ATy = 1}
= X{|(Tyy + AR (N T3)I” + [(Toy + AR (7, 1)}
(45)

and an analogous expression is obtained for j 5 by inter-
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FIG. 11. (Color online) Transport processes contributing to the
current through the point contact (a) Normal AR (b) Normal trans-
mission, requires e>A (c) SAR, and (d) Spin-flip transmission,
requires & >A.

changing 2 with 3. Here, (*),, means a Fermi-surface aver-
age over one half of the Fermi surface (positive momentum
directions, pointing into the FM, for the first and third term
of Eq. (44), negative directions for the second term). To de-
rive this expression, we used the universal symmetry relation
in Eq. (10). Furthermore x=x,=x; as defined in Eq. (29), A is
defined in Eq. (26) and the scattering matrix parameters in
Eq. (20). Equations (43)—(45) are the main result of this pa-
per.

The interpretation of Egs. (31) and (44) allows for iden-
tifying two types of Andreev reflection, shown in Fig. 11,
one of them giving rise to a long-range proximity effect in
the FM. The terms I'sx,T> in Eq. (44) and Fl;_3)?3f§_>2 en-
tering X, in Eq. (30) both describe current contributions from
Andreev reflected holes to the current in band 2. The first
term is proportional to the incoming distribution function in
the same band. Thus we refer to it as SAR, as it requires a
spin flip to transmit a singlet pair into the SC. The second
term corresponds to normal Andreev reflection since it re-
flects a hole in the opposite band. While SAR is related to
the outgoing (equal-spin) triplet correlation function in the
respective band, AR is described as a term renormalizing the
outgoing distribution function. Unlike SAR, AR does not
contribute to the coherence functions in the FM spin bands.

Using the scattering-matrix parameterization introduced
in Sec. III, we can obtain explicit analytical solutions for the
coherence functions

e A : R Crea R
R |: T, Nié, T, :| R |: T31NZO'yTT2:| 46)
n- D 2«3~ D )

N=y1+yHe(p+ p,) — p, + 20, sin(9/2)]),
(47)

D=1+2y¥pcos &—p,(1—cos N+ (y9)*p*, (48)

5 sin?(ary)
4 9

p=rTrl ps=(rT—rl) (49)
p= \s’;diag[q cos*(ay/2) + r, sin*(ay/2),
r| cos?(ay/2) + r sin?(ay/2)].

Here 7 €{2,3}, and we omitted the index 1 for the incoming
coherence functions. YR is related to y% in Eq. (21) by
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Wio,= y‘f The advanced component l:/; is obtained via [’ /;

Note that the I' functions differ only by the transmission
vectors 7, but since the numerator is a matrix product, this
still gives expressions that differ markedly. In any case, we
have l"lf]:O if ay=0 or if ¥ and ¥,=0. We focus on the
denominator, Eq. (48), which arises from the matrix inver-
sion in Eq. (25) and is the same for all coherence functions.
It is of particular interest since it leads to the emergence of
conductance peaks in the Andreev spectrum.

A. Andreev bound-state spectrum

The appearance of the Andreev conductance peaks can be
seen most clearly in the tunneling limit. Here p,=0 and p
=1 which simplifies the expressions above considerably. The
full solutions read

in 9, sin(9-9,)yy |°
FR={2it,,t' ysm 1 zsm( ”)YZ} , (50)
K "1+ (y9)* + 2 cos(9) yy

~ R
T+Ti‘)7y
.= 51
> {71+(77)2+2005(ﬁ)77} 5D

with
TR = t2t3ei'923 — f23t32€_i1923,

i(Vp3—0) —i(9y3-9)

Tg = hse — Ixslxe )

1923 = (192 + 193)/2

For e <A we have ®=—9R and |y®|=1 and we can easily
show that Eqgs. (50) and (51) both have a pole at>*

Epole = + A cos(D72). (52)

This pole corresponds to an Andreev bound state induced by
the spin-mixing effect at the superconducting side of the
sample. Following Fogelstrom,’* one can show that these
bound states appear in the DOS of the superconductor close
to the interface and are actually associated to different spins.
For m= 9=0, the bound state for € >0 appears in the DOS
of T quasiparticles and that for £ <0 in that of | quasiparti-
cles. The appearance of the subgap peak is only tied to the
spin-mixing angle . It does not depend on spin-flip scatter-
ing or the mixing phases associated to transmission. How-
ever, we shall see that a high mixing angle of =0.57 is
required to make this bound state appear in a finite-
temperature spectrum. If we consider the full expression of
the denominator, Eq. (48), we find that the pole is lifted, yet
two local maxima remain (see Fig. 12) which decrease in
magnitude with increasing transparency of the interface, as
the bound state acquires a finite lifetime. Obviously, a tun-
neling barrier in addition to an appreciable mixing effect is
required to observe a subgap peak in the Andreev spectrum.

In the half-metallic case, the full solution for the outgoing
coherence function reads
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FIG. 12. (Color online) The denominator of Eq. (46) as a func-
tion of the quasiparticle energy &. r1=0.9, r|=0.95, and ay=0.5.
Plots for 9=0.17r,...,1.07 in steps of 0.1r. The maximum moves
closer to zero energy with increasing J.
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with 7,=sin(9/2)sin(ay)/(1+r). This solution is already
discussed in Ref. 16 but we state it here again to comment on
a recent result obtained by Béri et al.'* Using a different
approach to calculate the conductance of a SC/HM point
contact, they find that generically G(eV=0)=0, at zero tem-
perature. This agrees perfectly with our results. One can
show that below the gap

(53)

G(eV) x |F§(8)|2r7vx(s,eV). (54)

For T=0, dyx=2ed(e+eV) holds and since (1-y3**)=0 for
£=0 we also find G(eV=0)=0. Note that Eq. (53) holds for
arbitrary scattering matrices. Thus, this property is universal
with the exception of 9=, ay=0.57 where the denominator
is zero for £=0.

B. Andreev conductance spectra

As we have pointed out above, two competing Andreev
processes participate in the presence of spin-flip scattering,
shown in Fig. 11. Normal AR is suppressed as the polariza-
tion of the FM increases since it requires one quasiparticle
from each spin band. SAR on the other hand takes two qua-
siparticles from the same band and thus dominates the spec-
trum for high polarization. We can define the corresponding
contributions to the differential conductance for each spin
band by

Garp eNgy s
T = av 2 d8<F12(&3X3F?*}2>+,

G N, -
Gome o B2 [ gerted, o)

&

and correspondingly (2« 3) for band 3. The factor 1/2 ap-
pears because the expressions in the integrand describe only
one of the two charges which are transferred by the process.
The other charge is contained in X, —x, in Eq. (44) and can-
not be disentangled from the one-quasiparticle transmission
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FIG. 13. (Color online) The conductance G of an S/F point
contact as function of contact voltage V (first row), and the corre-
sponding SAR (second row) and AR (third row) contributions to it,
for d=0.1, 0.5, and 1.0Ng/27 (left column) and d=2.0, 3.0, and
5.0Ng/27r (right column). The remaining parameters are E,=0.1EF,
E3=0.9Eg, U,=1.1Eg, U_=1.9Eg, and a=0.51.

processes. The total contribution to the conductance is given
by the sum over both bands: Gy\r=Gar+Gar 3 and Ggar
=Gsar 2+ Usar 3

In Fig. 13 we discuss the results for the box potential
using exactly the same parameters as in Fig. 4. This corre-
sponds to a spin polarization of the FM of P=0.5. In Figs.
13(a) and 13(b) we plot the total differential conductance.
For thin interfaces we obtain spectra with a rather conven-
tional shape. The solid line in Fig. 13(a) corresponds to a
highly transparent interface but still the conductance does
not rise to a value close to twice the normal-state conduc-
tance as in the conventional BTK picture. This is a direct
result of the FM spin polarization. Looking at the same line
in Figs. 13(c) and 13(e), we see that the shape of Gy actu-
ally follows the usual trend, albeit with reduced magnitude,
while Ggar gives almost no contribution in this case. The
reduction of the Andreev conductance compared to the nor-
mal state conductance is in this case due to the spin polar-
ization of the FM. Only a fraction of the quasiparticles im-
pinging the interface can undergo AR due to the reduced
density of states in the minority band.

As the thickness of the interface increases the conduc-
tance contribution of SAR is enhanced and even dominates
the subgap conductance for tunneling interfaces [Figs. 13(d)
and 13(f)]. This is because the magnitude of SAR is insen-
sitive to the spin polarization, as it takes two quasiparticles
with the same spin from the FM. On the other hand it is very
sensitive to spin-active scattering, which is why it is reduced
for thin interfaces. We also see that as the transparency of the
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FIG. 14. (Color online) The conductance G of an SC/FM point
contact as function of contact voltage V, for (a) 7=0 and (b) T
=0.1 T.. In both cases, the values of £3=0.2,...,0.9 and U_=E_
+Ef are increasing in steps of 0.1Eg from top to bottom. The re-
maining parameters are E,=0.1FEp, U,=1.1Eg, a=0.57, and d
=5.0Ng/ 2.

interface decreases, a subgap peak develops, as discussed in
the previous section [Fig. 13(b)]. However, the Andreev
bound state stays close to the gap edge in this scenario and
smears out even for very small temperatures.

In Figs. 14(a) and 14(b) we plot the spectrum around the
gap energy for different polarizations, i.e., exchange fields,
of the FM and a tunneling interface d=5.0Ng/27. Appar-
ently, the subgap peak moves to lower energies as the ex-
change field increases but also decreases in magnitude. In
any case, the peak is too small and too close to the gap edge
to be observable at finite temperatures [Fig. 14(b)]. This situ-
ation cannot be circumvented in the frame of the box-
potential model, the reason being that one cannot obtain high
mixing angles for reasonable parameter ranges. Moreover,
this situation is aggravated by the Fermi-surface average. As
the mixing angle varies with the trajectory impact angle, the
peak is broadened even at 7=0. This points again to the
crucial importance of the Fermi-surface geometry. If the
Fermi vector in the SC is considerably smaller than those of
the FM bands, the scattering states which contribute to the
current will be confined to a small range around perpendicu-
lar impact and hence a sharper peak structure can be ex-
pected.

Finally, we show that even if this exotic feature in the
conductance spectrum is not observable at finite tempera-
tures, the impact of spin-active scattering can still be impor-
tant. This holds, in particular, for FMs with high polarization,
where SAR will naturally dominate the spectrum, if it is
present. This can be seen in Fig. 15, where we plot the con-
ductance for a highly polarized (P=0.8) FM for a=0.57 and
a=0, respectively. In the latter case, SAR cannot occur. If

2.0
34 a=0
-=-a=05n :l 1.5
<S5 \ <
0?2 AN 9 4o
= (O]
© 1 , 05
/
%o 05 10 15 095 05 1.0 15
(@ Tevia T b)) “eVi/a’ '

FIG. 15. (Color online) The conductance G of a point contact as
function of contact voltage V, for (a) T=0 and (b) T7=0.1 T,, shown
for two values of @. The remaining parameters in all plots are E,
=0.1Eg, E3=0.99Eg, U,=1.1Eg, U_=1.99E, and d=1.0\g/ 2.
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FIG. 16. (Color online) The differential conductance for the
smooth potential model. The parameters are the same as in Fig. 10.
The interface smoothness parameter o increases from back to front
by steps of 0.1Ag. Temperatures are 7=0 (top) and T=0.1T,
(bottom).

a=0.57, the spectrum is largely enhanced around the gap
energy. This is not surprising since SAR is mainly contribut-
ing in this energy range. Even at finite temperatures an ap-
preciable difference between the curves remains.

Turning to the smooth scattering potential, we see that the
situation changes fundamentally. We calculate the spectrum
for the same set of parameters as in Fig. 10. These results are
shown in Fig. 16. As we find a considerably enhanced mix-
ing angle in this case, it is not surprising that the subgap peak
is located far from the gap edge if the potential is sufficiently
smooth and may even be observed at finite temperatures. The
width of this peak is directly related to the Fermi-surface
average. The calculations in Fig. 16 are for a tunneling limit
situation (#2<<0.01) and formula (52) holds approximately.
As one can see from Fig. 10(b), ¥ sweeps through the whole
range from 0O to its maximum value as a function of the
trajectory impact angle. This results in broadening and also
implies that the Fermi-surface geometry may have an impor-
tant impact on the shape of this bound-state peak. For the
particular geometry we consider here, with the Fermi sur-
faces of the FM bands being both smaller than that of the SC,
the mixing angle reaches 0 for grazing impact. If however,
the SC band is smaller than at least one of the FM bands, this
is no longer true as it can be seen in Fig. 4. Doing WKB
calculations for different geometries, we found that this may
result in a kink at the tail of the peak, if O, is large enough.
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C. Connection to the extended BTK model

The extension of the BTK model to ferromagnetic point
contacts proposed in Ref. 36 and further elaborated in Ref.
37, was first used in Refs. 38 and 39 to extract the FM spin
polarization from the spectra of such contacts. Here, we
show how this model can be obtained from our theory. The
extended BTK model characterizes interfacial scattering by a
single parameter Z, which controls the transparency of the
interface. Z is assumed to be independent of the transport
channel. The spin polarization of the FM is then taken into
account by noting that if P is finite, the transport channels
can be divided into “nonmagnetic” and ‘“half-metallic”
channels,*”3° which is illustrated in Fig. 1 in this paper. This
amounts to writing the conductance of the contact as a sum
of the nonmagnetic and half-metallic contribution according
t03?

G=(1_PC)GN+PCGH' (56)

Here, the transport spin polarization P was introduced

_ NpaUpy — Np3Ups

Pc (57)

NpaUp; + Np3Ups

Gy is zero below the gap since spin-flip scattering cannot
occur in this model. This means that for [eV| <A one simply
has the standard BTK formula reduced by a factor (1-P).
The connection to our model is now established by making
corresponding assumptions for the normal-state scattering
matrix of the interface. Since there is no spin-flip scattering,
the matrix is necessarily diagonal, spin-mixing effects are
obviously also disregarded. Moreover, the fact that wave
vector mismatches, let alone a spin-dependent interface po-
tential, will introduce a spin-filtering effect is also not taken
into account. Consequently, the whole scattering matrix is
described by a single-transmission parameter TN=t§=t§.
Evaluating the corresponding expressions for I %’A is straight
forward and yields

jg(g’vaﬁn) = X7] Xy~ Fl}lxnf/; =
_ 2T3%,(8,eV)O (prs — |py)

2R ’
1+R% - A—;’(za2 - A?)

e<A

(58)

with Ry=1-Ty, and O(pp;—|p;|) is the kinematics constraint
for trajectories to be nonmagnetic. The total current density
is

jv)=-3 <k f 455 ] (59)
n e

where we sum over the contributions of both bands for
which an FS average is calculated independently.
Writing the FS average explicitly, we get
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. gfd
j==3] 4

dzpl,:Z 17F2fa(ﬁF2)
(27Tﬁ)3 |15)F2@];2)|

d2/ > . >
+f PF33UE3J£(P’F3)]. (60)
(2wh): |UF3(pF3)|
Note that
’ ﬁF N
| digee o
VF >0 VEy\PEy

is exactly the area of the projection of the Fermi surface onto
the contact plane. Due to the kinematics constraint we have
J(Pr2)=j(Pr3)=Jj(p), if the parallel momentum components
of pp, and pg; are identical, and j(p;)=0 for p,> pg;, which
follows from Eq. (58). This together implies that both inte-
grals give the same contribution to the current which is not
surprising since Andreev reflection induces the same current
contribution in both bands. In the extended BTK-model case
the current density j is not a function of py, as Ty is not
trajectory dependent. Assuming spherical Fermi surfaces, we
can hence calculate the FS average explicitly

_ €UpsNEs

j=jé.= 9

f dej (e,V)e.. (62)

The conductance is then given by
GqNuaSi/GN’O = Aavj/GN’O = TN’ (63)

where A is the contact area. Calculating 7y
=[.dedyj.(e,V)/2e at T=0 yields the BTK formula’!' with
Ty=1/[1+Z%] (note that we used dyx=2ed(s+eV) at T=0 at
this point). Gy o=(2e?Avg3Ng3)/8 is the contribution to the
normal-state conductance of the nonmagnetic trajectories.
The corresponding term in Eq. (56) reads

203N,
(1-PIGy= 2B G, (64)
NpoUps + Np3Ups

To obtain the correct contribution to the normal-state con-
ductance, Gy must be related to the BTK formula by Gy
=[€*A(Ngyvpy+ Np3vps)/8]7y. Hence we have exactly Gy
=(1-Pc)Gy. Analogously we can derive Gy for [eV|>A
and recover the BTK result as well. We also obtain an ex-
pression for Gy for |eV|> A from our model by assuming a

scattering matrix with ry;=re’”?, r =¢7"2 which implies
T3=0 and T,=13="Tye' ">
GH/GH,O = TH

) 4T,B

2B+ 1) = (B=1)2Ty—2cos N1 -Ty(B-1)

(65)

with B=eV/\eV*— A% Comparison of this formula with that
of Ref. 37 then shows that agreement requires
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oy [ 1 [1 2(K/Z—1)} 0
OBVEENTLZ| T (k—227+1 (66)

with Ty=1/[1+Z7?] and K is a parameter introduced in Ref.
37 that we discuss in the following. For the sake of com-
pleteness, the corresponding contribution to the normal-state
conductance is Gy o=e*A(Npyvp,—Np3vgs)/8. Apparently, a
spin-mixing phase is mandatory to reproduce the formula of
Mazin et al. This result is not surprising since the model used
in Ref. 37 to calculate Gy necessarily introduces a spin-
mixing effect, which is not true for the standard BTK model.
The reason for this is that BTK assumes the same wave
vectors in all channels and a nonspin-active interface. On the
other hand Mazin et al. introduce different wave vectors by
assuming an evanescent mode in the minority band. This
leads to the appearance of the quantity K=«/k in their for-
mula, where k controls the attenuation of the evanescent
mode (e”*%) and k is the component normal to the interface
of the wave vector in the propagating channel. From our
point of view this is nothing but a manifestation of a spin-
mixing phase, which is why we can only reach agreement by
taking that into account. To make this point more convinc-
ing, we derived Eq. (66) from an explicit calculation of the
normal state S matrix using the same model as Ref. 37. We
match plane waves with wave vector k in all propagating
channels and the same « as above for the evanescent mode of
the minority band in the FM. The interface is modeled by a
spin-independent delta function with a weight factor. This
yields the reflection eigenvalues of the S matrix on the SC
side ryy, ). By definition we have d=arg[ry;r; ] and find
exactly Eq. (66). In conclusion, we have shown here that
earlier models for Andreev reflection in clean ferromagnetic
heterostructures are contained as limiting cases in our theory.
As already noted in Ref. 37, the formula for Gy used by
Soulen et al.?® was not obtained from a rigorous calculation
and is discontinuous at the gap energy.

V. CONCLUSIONS

In summary, we have used an extension of the quasiclas-
sical theory of superconductivity to strongly spin-polarized
ferromagnets to study the conductance of SC/FM point con-
tacts with a spin-active interface. We describe the interface
by a microscopic model that extends earlier models used in
the description of Andreev reflection in such structures. Our
main results are: (i) two types of Andreev reflection arise,
one of them being related to the creation of equal-spin triplet
correlation. These processes depend differently on various
properties of the interface and bulk materials involved. (ii)
the shape of the scattering potential has a pivotal impact in
the magnitude of the spin-mixing effect. The usually as-
sumed boxlike or delta-functionlike potential generically im-
plies small mixing angles. (iii) we find spin-polarized An-
dreev bound state peaks in the conductance of a point contact
with a strong ferromagnet that are more prominent for
smooth interface potentials or a finite magnetization near the
interface in the superconductor. The latter effect could be,
e.g., caused by the inverse proximity effect. Lastly, we would
like to stress that the feature G(eV=0)=0 for T=0, which is
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universal for the spectra of half-metallic point contacts, may
point to a criterion for identifying SAR in experiment at
sufficiently low temperatures.
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APPENDIX: SCATTERING-MATRIX PARAMETERS

The general boundary conditions for the scattering prob-
lem in the quasiclassical theory of superconductivity have
been derived in Ref. 16. These boundary conditions are for-
mulated in terms of the normal-state scattering matrix of the
scattering region which has to be assumed, calculated from a
microscopic model or fitted to experiment. In the case of a
spin-active interface between a normal metal and a ferromag-
net this matrix is a unitary 4 X 4 matrix and one may ask for
a set of parameters that describes the most general matrix
uniquely and still allows for an interpretation of these param-
eters with respect to the physical problem in question.

1. Singular-value decomposition

Using a partial singular value decomposition (SVD) and
the spectral theorem one can arrive at a decomposition of §
that provides an appealing set of parameters. By partial we
mean that a SVD is calculated for each block and not for the
whole matrix, i.e., we have at the outset

(URVT wrZ' )
Wizt - ORVI)

(A1)

U, Vv, w, Z W, Z, (7 and V are unitary and independent 2
X 2 matrices while R, T, 7~", and R are diagonal and contain
the corresponding singular values. Such a decomposition is
possible for any 4 X 4 matrix, which means that we did not
exploit the unitarity of S so far. Exploiting unitarity we arrive

R

U, U, V, and V are again unitary and independent. R and T
contain the singular values of the composition and unitarity
dictates RR"+TT"=1. To obtain a decomposition which al-
lows for a clear-cut interpretation in terms of scattering
phases and spin rotations, one has to continue decomposing

(A2)

U, Z:l, V, and V and eventually arrives at

S (Q 0)((1,1/2 0 )(Y 0)(\”m vT )
\o g/\ o &n/\o v)\ wir —\i-1T

o205 )G 2
o #/lo ¢2/\o 5/

This decomposition is written in terms of 2 X 2 blocks which

(A3)
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are related to reflection and transmission, these blocks are
matrices in spin space. The central matrix contains the sin-
gular values of the partial singular-value decomposition.
These singular values relate to the transmission and reflec-
tion amplitudes of the interface but not in a simple way since
the outer matrices contain several rotations in spin space.
The outer matrices come in two flavors. The matrices Q, Q,
Y, and ¥ can be regarded as rotations of the quantization axis
on either the left (Q,Y) or right (0,Y) side of the interface.
They have the structure

cos(a/2)

—sin(a/2)e”'¢

sin(a/2)e'®

cos(a/2) |’ (A4)

rot(a, @) =

The matrices @2, &2, and W2 are diagonal and contain
complex phases [W=(W"?)?]. Their structure is

phase(7,9) = /7792, (A5)

Apparently 7 is a global phase and 9 a relative phase. The
decomposition as it is presented here has 16 free parameters
which agrees with the maximum number of free parameters a
unitary 4 X 4 matrix can have. However, we can now identify
parameters which will be irrelevant for our problem. First we
use the freedom of choosing an arbitrary quantization axis in
the SC and put Q=1. Second, we note that if the quantization
axis of the interface does not rotate in the x-y plane, we have
S=ST and none of the rotation matrices defined above rotates
in that plane. This implies Y'=Y7, ¥'=¥7, and Q'=Q” and
also that W is real. We may hence absorb W into 7' which
amounts to having transmission eigenvalues that can be
negative. The transport properties, i.e., the current in this
case, should also not depend on whether we extend the in-
terface region arbitrarily far into the asymptotic region. This
corresponds to the following transformation of the S matrix:

S"=7Sn (A6)

with

e'™ 0

= 0 elmrmtim=-n3)o)/2 | (A7)
Inspection of the boundary conditions shows in fact that both
X, and FI}I’A are invariant under this transformation. Consid-
ering this as another gauge transformation, one can eliminate
the global phase in ® and use 7,, 73 to obtain exactly the
structure of Eq. (32) in the transmission blocks. The reflec-
tion part on the SC side reads

®'2yRY D2 (A8)

from which we conclude that the relative phase U4 is what is
usually referred to as the spin-mixing angle

’ﬂ = ”L(}q) . (A9)

This is also the quantity which we plot in Figs. 4 and 10. The
necessity to have two additional mixing phases 9, and

comes about due to the additional rotations Q and Y. They
are a function of all parameters which enter the transmission
part. Thus a simple relation such as Eq. (A9) does not exist
in this case.
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The angle ay, of which we make extensive use in the
analytical discussion is associated to Y by Y=rot(ay,0). In
fact, the relations stated in Eq. (34) are given by YRY'. A
fully analogous argumentation can be developed for the half-
metallic case, however the corresponding scattering matrix is
3X3 and thus all tilde quantities are scalar, making them
irrelevant. Furthermore, one can show that the W matrix is
also just a scalar phase in this case and hence ®'? fully
accounts for the spin-mixing effect. So we have in the half-
metallic case

’I9= 1?(1) 1?2=’l9(p/2. (AIO)

This relation between ¢, and 9, is due to the fact that the
evanescent solution in the ferromagnet is completely ab-
sorbed in the scattering matrix.

2. Box potential

For the special case of a box-shaped potential we obtain
analytical solutions for the scattering matrix, assuming for
the normal metal (superconductor in its normal state) a wave
function of the form

ik s ) A )
W, = e’_,_|:( I+)ezk1z+< l+)€—1k1z:| (A11)
Vo, L\si- AL

with |k|>+k7=2mEg/#* and in the barrier region

e+ Cle™ "+ )

e+ Ce™*

P B
W, = e imig4( a)T<B (A12)
with |k|>— k% ==2m(U~—Eg)/#? and with a certain spin ro-
tation matrix U(a) that represents the misalignment of the
barrier magnetic moment with the magnetization direction in
the ferromagnet by a misalignment angle a. The indices *=
refer to spin-up and spin-down with respect to the misaligned
spin-quantization axis in the barrier. In the ferromagnet we
can have, depending on the value of E”, propagating or eva-
nescent solutions in either of the two spin bands. In the case
of two propagating solutions they are

Sy _ Az . _
—=e iky(z—a) /—_elkz(l a)
T Vv VU
V=i 2 + s 2 ,
53 _iks(z- 3 iks(z—
—=e ik3(z—a) ”__elk3(z a)
VU3 VU3

(A13)

where |k +k3=2m(Ep—E,)/h* and  |k|>+k3=2m(Eg
—E;)/#% (in a more general model the masses on the two
sides of the interface could also differ; we assumed them
identical for definiteness). In the case of one propagating and
one evanescent solution

R ie—ikz(z—a) A_ieikz(z—a)
Y= i V@ +| Vv, , (A14)
0 Dye e

where  |k|*+k3=2m(Ep—E,)/h* and  |k|*-k5=2m(ER
—E3)/ﬁ2, and in the case of two evanescent solutions
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i [ Dye )

_ iky7

W= e Dyeata | (A15)
where  |k|>—k3=2m(Ep—E,)/A> and  |k|*-«3=2m(Ex
—E3)/h?%. We then match the wave functions and their deriva-
tives at z=0 (W, and V) and at z=a (V5 and ¥;), and
eliminate the components D, and Ds. The scattering matrix
then is defined as the coefficient matrix in the relations

Ay S1+
A]_ S
=S (A16)
A, S2
Az S3

for the case of two propagating solutions in the ferromagnet,
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Al+ S1+
A |=S8]s,_ (A17)
A, $2

for the case of one propagating and one evanescent solution,
and

(A18)

for the case of two evanescent solutions in the ferromagnet.
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