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DNA ÄR INTE BARA EN VACKER MOLEKYL - det är även det 

kemiska ämne som bygger upp vår arvsmassa, vars 

information i slutändan faktiskt bestämmer det mesta om hur 

vi är konstruerade och fungerar. För att få en detaljerad bild 

av hur cellens maskineri läser av instruktionerna som lagras i 

DNA, eller lära oss hur sjukdomsalstrande gener selektivt kan 

blockeras, är det vikigt att studera mekanismerna bakom 

samspelet mellan DNA och andra molekyler. 

De ruteniumkomplex jag undersökt skiljer sig från de flesta andra DNA-bindande substanser 

genom att de binder mycket långsamt men samtidigt mycket starkt till DNA. Det intressanta 

med studierna som presenteras i avhandlingen är att inbindningshastigheten, kinetiken, 

dessutom visat sig vara extremt känslig för små skillnader i strukturen hos både DNA och 

ruteniumkomplex. Exempelvis är hastigheten över tusen gånger högre med DNA som bara 

innehåller A- och T-baser, jämfört med DNA som även innehåller G och C. Vi ser också stora 

effekter på inbindningsförloppet till DNA som inte är perfekt basparat, och till supercoilat 

DNA. Man kan tala om en kinetisk igenkänning av särskilda DNA-strukturer. Resultaten 

öppnar dörrar för nya vägar att uppnå selektiv bindning till DNA, något som man eftersträvar 

inom utvecklingen av såväl diagnostiska som terapeutiska substanser. Även om vägen dit ännu 

är lång, kan AT-igenkännande ruteniumkomplex vara intressanta som prototyper för 

läkemedel mot sjukdomar orsakade av organismer med hög andel A och T i sitt DNA, till 

exempel de parasiter som ger upphov till malaria och sömnsjuka. 
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Kinetic Recognition of Nucleic Acids – Studies on the DNA Binding 
Selectivity of Threading Ruthenium Complexes 

PÄR NORDELL 

Department of Chemical and Biological Engineering 
Chalmers University of Technology 

ABSTRACT. Despite the great progress in our understanding of DNA during the past 
half-century, there are many important aspects of its chemical and biological role yet to 
be explored. The principles by which it selectively interacts with other molecules have 
attracted much interest due to the relevance for fundamental cellular processes, as well 
as for the development of diagnostic probes and effective pharmaceutical agents. This 
Thesis describes the study of the process in which a planar aromatic moiety, hindered by 
bulky substituents on both ends, is threaded through the DNA double helix. Dumb-bell 
shaped binuclear ruthenium complexes of the type [μ-(bidppz)(L)4Ru2]

4+, L = 
phenanthroline (P) or bipyridine (B) bind upon mixing with DNA rapidly on the outside 
of the double-helix, after which they rearrange to an intercalated binding mode. Passing 
one large metal centre between the strands requires large transient distortions of the 
duplex, leading to extremely slow binding kinetics that is sensitive to DNA sequence as 
well as ruthenium complex structure. This work has (1) addressed the mechanisms 
behind this “kinetic recognition” and (2) identified potential DNA structural targets.  

Both enantiomers of chiral analogues P and B require several hours at 50°C to rearrange 
to the threaded binding mode in mixed sequence DNA. Alternating AT polymers, on 
the other hand, are intercalated within a few minutes at room temperature. The ratio 
between the forward rates is estimated to vary between 65 (ΛΛ‐P) and 2500 (ΛΛ‐B). 
Studies with AT-tract oligonucleotides show that more than one complete helix turn of 
AT-DNA is required for efficient threading, a stretch considerably larger than the 
complexes themselves. Long AT-stretches are however not the only kinetically favored 
targets; subjecting mixed sequence DNA to negative supercoiling can increase the 
threading rate by as much as two orders of magnitude. Accelerated intercalation is also 
observed with partially unpaired DNA. Dissociation from mixed sequence DNA 
displays half-lives of up to 38 h at physiological temperature, the slowest release 
reported for a reversibly bound agent. The selectivity demonstrated by the binuclear 
ruthenium complexes in vitro make them interesting in the development of new agents 
against parasitic protozoa with AT-rich DNA. 

KEYWORDS. DNA, ruthenium complexes, intercalation, kinetics, sequence selectivity, 
supercoiling, spectroscopy, fluorescence, circular dicroism 
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1. INTRODUCTION 
ife on earth is amazingly diverse. Yet all biological systems, from small bacteria to 

large plants and animals, are based on the same self-replicating unit, the cell, 

composed of the same types of molecules organized according to the same fundamental 

principles. By serving as repository of the genetic information and providing the 

mechanisms of heredity, deoxyribonucleic acid (DNA) is perhaps the most central 

constituent of the living cell. The elucidation of the correct double-helical structure by 

James Watson and Francis Crick in 19531 and the presentation of the complete sequence 

of the human genome in 20012 are two of the milestones that during the past half-century 

not only have revolutionized the understanding of DNA, but also our ability to modify 

and utilize this information-rich molecule. The implications are seen today in fields of 

evolutionary biology, genetic engineering, forensic sciences and nanotechnology. 

L

The DNA polymer has an astonishingly simple chemical structure, being a long 

chain composed of only four types of links, often represented by the letters A, T, C and 

G. When two complementary DNA molecules hybridize to form the double-helix, an A 

on one strand is always found opposite a T on the other strand. Likewise, G always pairs 

up with C. DNA can undergo two major cellular conversions. Before each cell division, 

the DNA is duplicated through replication, allowing the two new cells to receive a 

complete set of genetic material. The other main process allows the sequence of the 

DNA letters to dictate the structure of proteins, the functional components of the cell. 

Specific segments, the genes, of the DNA are first transcribed into an intermediate, 

transitory form called ribonucleic acid, RNA. The RNA is subsequently translated into 

an amino acid sequence, which after folding into the correct three-dimensional structure 

becomes a functional protein. Despite the advance in our comprehension of replication, 

transcription and other cellular processes in recent years, there are aspects of which we 

still have limited understanding, aspects that may be of importance for instance for the 

identification of new targets for future drugs.  

In particular, the chemical and physical factors that direct proteins and small 

molecules to interact sequence specifically with DNA are important in the development 

of novel nucleic acid probes and therapeutics against genetic and parasitic diseases. 

Ruthenium polypyridyl chemistry is attractive in this context since it allows for 

systematic modification of shape, size and function of candidate molecules. A group of 

dumb-bell shaped binuclear ruthenium complexes of the type given in Figure 1.1 

(centre) have been shown to thread one of its bulky ends through a loophole in the 

DNA helix to end up in a mechanically “locked” threaded geometry. Threading and 

unthreading are sterically demanding processes that require large transient openings of 

the DNA duplex, giving rise to extremely slow binding kinetics, sensitive to DNA target 

sequence as well as ruthenium centre structure. By conducting detailed in vitro 
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spectroscopic investigations, summarized in this Thesis, we have addressed mechanisms 

behind this “kinetic recognition” and investigated its usefulness for attaining selective 

DNA binding. 

Figure 1.1 gives an overview of the most important findings. With DNA that 

contains an even mix of A, T, C and G residues, as for the genomes of most organisms, 

threading proceeds at a virtually negligible pace at physiological temperature. However, 

with a synthetic DNA polymer built up by alternating As and Ts only, equilibrium, 

strongly favoring the threaded state, is established within a few minutes. By studying the 

increase in luminescence, which accompanies the intercalation process, we have 

estimated the difference in the forward rate of rearrangement to vary between 65 and 

2500 times for four structurally related dimeric ruthenium complexes, showing that even 

though the AT preference is a general property, it exhibits a great sensitivity towards 

structural details of the compounds (Paper II).  

Studies of the interaction with short stretches of DNA with defined sequences 

further showed that lengthening of an alternating AT-tract from 10 to 14 residues can 

account for much of the rate leap between mixed sequence and the long alternating AT-

DNA (Paper V). This is interesting since this is a piece of DNA considerably larger than 

the dimensions of the complexes themselves, indicating that for this kinetic recognition, 

the selection mechanisms can extend beyond those of the short-range classical lock-and-

key recognition model. AT-rich DNA is found in human pathogens such as the malaria 

parasite, Plasmodium falciparum, and Trypanosoma brucei, the parasite causing African 

sleeping sickness. The targeting of long AT-stretches may provide means to selectively 

interfere with biochemical pathways of such parasites. Other examples of the sensitivity 

by which these sterically very challenging ruthenium complexes approach their DNA 

targets include the accelerated threading at sites where the DNA duplex is unpaired and 

the way in which the torsional strain of DNA supercoiling can function as a control of 

threading efficiency (Paper VI). 

Combination of fluorescence and polarized spectroscopies has revealed that 

threading into polymeric AT-DNA in general can be described as a uni-molecular 

rearrangement, giving a direct structure–activity relation for seven different dimeric 

complexes (Paper I & IV). A central and interesting observation is that the rate does not 

necessarily correlate with the steric bulk of the threading moiety. One may speculate 

that specific attractive interactions, like hydrophobic contacts, can catalyze the passage 

of a larger molecular structure through the duplex. The forward threading step 

constitutes however only one of the two processes that define the interaction. To assess 

equilibrium parameters kinetics of the reversed unthreading step is also required. The 

slow release of threaded ruthenium complexes can unfortunately not be accurately 

probed by conventional surfactant sequestering, which earlier has prevented a full 

thermodynamic characterization. 
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Figure 1.1 Overview of Thesis papers I to VI. Centre: Cartoon depicting a binuclear 
ruthenium complex threaded into a DNA duplex. 
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In Paper III we report an alternative method, which utilizes the AT-DNA preference, to 

study the intrinsic dissociation from mixed sequence DNA. The observations again 

reminded us of the extraordinary properties of the system: unthreading displays a half-

life of up to 1.5 days at 37°C - to our knowledge the slowest dissociation reported for a 

non-covalently bound DNA interacting agent. With access to the dissociation kinetics we 

obtained a complete thermodynamic profile. It shows that the threading event is an 

entropically driven process, suggesting that release of water, ordered around the 

unthreaded complexes, may be a factor that favors the intercalated state. 

Before summarizing the results in a more comprehensive manner, this Thesis 

will give a background to nucleic acids and ruthenium complexes, followed by a brief 

review of some fundamental concepts. 
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2. NUCLEIC ACIDS 

2.1 The Duplex Structure 
The backbone of DNA consists of alternating phosphate and deoxyribose sugar 

groups, connected via the 5′ and 3′ carbon of the sugar residue. The 1′ carbon is linked to 

one of four different nucleic acid bases, which together with the phosphate and the sugar 

forms the repeating units, the nucleotides, in a DNA strand (Figure 2.1a). The bases are 

adenine (A), guanine (G), cytosine (C) and thymine (T), which are derivatives of purine 

(A and G) or pyrimidine (C and T).  

N

NN

N
NH2

NH

NN

N
O

NH2

N

N

NH2

O

NH

N

O

O

H3C

RR

RR

A G

C T

Purines

Pyrimidines

O

XOH

OP-O
O-

O
R =

Base

NH

N

O

O
R

U

X = H (DNA)
OH (RNA)

O

O
P

O
-O O

O

O
P

O
-O O

N

NN

N
N

HH

N

NN

N
O

N

O

O
P

O
O-O

O

O
P

O
O-O

N
N

N

O

H

H

H

H
H

N
N

O

OH
A

G

C

T
Major groove

Minor groove

5'

3'

3'

5'

a)

b)

 

Figure 2.1 (a) The DNA bases adenine (A), guanine (G), cytosine (C) and thymine (T), 
which together with the phosphate group and deoxyribose sugar form the repeating 
units in DNA. Uracil (U) replaces thymine in RNA, and deoxyribose is replaced by 
ribose. (b) The Watson-Crick base-paring scheme. Two hydrogen bonds are formed 
between A and T, whereas three are formed between G and C. 
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Two single strands can hybridize to form the characteristic DNA double-

stranded helix: two anti-parallel sugar-phosphate backbones wound around each other, 

with the stacked bases projecting into the interior. According to the Watson-Crick base 

pairing scheme, a consequence of size and hydrogen bonding pattern of the bases, A 

pairs up with T and G with C, creating the complementary base pairs (Figure 2.1b). 

Three hydrogen bonds link G and C, while two are formed between A and T. The 

stacked neighboring aromatic bases provide a hydrophobic inner environment while the 

negatively charged phosphate groups, positioned along the outside of the helix, favor 

interactions with polar surroundings, such as water. Two helical grooves, which expose 

the edges of the bases, are formed between the intertwined backbones. 

 

Figure 2.2 Side- and top-view representations of the A and B forms of double-helical 
DNA, each containing 16 base pairs.  

The duplex is polymorphic and adopts the conformation that is most favorable 

with respect to the character of its surrounding environment, local sequence of bases and 

interactions with other molecules. In the cell the most abundant conformation is B-DNA 

(Figure 2.2) where the 3.4 Å thick bases are positioned almost perpendicular to the helix 

axis. The DNA strands have on average a right-handed twist of 36° per base pair, which 
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means that the helix will make a complete turn in approximately 10 base pairs. The 

grooves are distinct; one wide and one narrow, referred to as the major and the minor 

groove, respectively. At low water activity the DNA helix can adopt the wider and more 

compact conformation, the A-form. In the A-duplex the stacked bases are strongly tilted 

and positioned farther from the helix axis, forming a central hollow core. The base pair 

rise is 2.9 Å and the helix makes a complete turn in 11 base pairs. Double-stranded RNA 

adopts the A-form, a consequence of the steric restrictions imposed by the presence of a 

hydroxyl group at the 2′-position of the backbone sugar residue in RNA, ribose. The 

other structural feature that distinguishes RNA from DNA is that the pyrimidine base 

thymine is replaced by uracil (U, Figure 2.1a). 

2.2 Structure and Recognition of AT-DNA 
When Dickerson and colleagues succeeded to crystallize and determine the 

structure of the first B-DNA dodecamer in the early 1980s,3,4 it became clear that the 

DNA is not a completely regular and rigid helix. This and other dodecamers analyzed 

during the years that followed revealed structures that varied locally depending on the 

sequence.5 To date more than a thousand structures of naked and complexed B-DNA 

sequences have been reported,6 and even though sequence-conformation correlations 

have been thoroughly investigated and discussed, translation of the sequential code to a 

structural code is far from trivial.7 It is however agreed that AT-rich DNA exhibit 

characteristic structural and functional features. Factors that are believed to contribute 

to the differences compared to mixed sequence or GC-rich DNA include (1) the 

formation of only two hydrogen bonds, which gives A-T base pairs a lower stability and 

permits a larger twist angle between the base planes of a base pair; (2) the large 

differences in base stacking of the A/T dinucleotide steps. 5′-TpA-3′ steps have a 

particularly poor stacking compared to more tightly stacked ApA (=TpT) and ApT; (3) 

the interlocking of the major groove methyl groups of two successive thymines and the 

sugar-phosphate backbone, which impose a large conformational restriction on ApA 

steps.8 

Differences at nearest-neighbor level may appear subtle, but in runs of A-T base 

pairs they add cooperatively to promote the formation of particular structural motifs 

associated with AT-rich DNA. The most general deviation from the canonical B-DNA 

model is the increased flexibility, usually seen as a narrowing, of the minor groove. In 

addition, typical structures are known to arise at runs of specific AT sequences. 

Stretches of more than 4 adenine bases, normally referred to as “A-tracts”, have 

attracted much attention not only because of their unique local structure, but also due to 

the effects on the global DNA structure: when positioned in phase with the helical 

repeat, they cause a macroscopic bending of the DNA. A-tracts are characterized by an 

unusually high propeller twist, which may permit the formation of bi-furcated hydrogen 

bonds in the major groove.9 This has, together with the sterical constraints of the ApA 
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step mentioned above, in turn been associated with the particular rigidity and 

inflexibility of A-tracts. Phased A-tracts were first discovered in the sequences of 

kinetoplast DNA of trypanosomes,10-12 whose members include pathogens that cause 

tropical diseases such as African sleeping sickness, Chagas disease and Leishmaniasis. 

The kinetoplast is a DNA containing structure within the mitochondrion of the 

parasites. The DNA is organized into a network of thousands of small (commonly 500 to 

2500 base pairs long) interlocked DNA circles. The function of the bent A regions 

remains in many aspects still unclear, but has been suggested to facilitate the compaction 

of the kinetoplast DNA or to be involved in the recognition by proteins.13 Stretches of 

alternating adenine and thymine residues are, in contrast to A-tracts, considered flexible 

and capable of adopting different conformations depending on environment. Crystal 

structures reveal an oscillating pattern of the helical descriptors, most notably in the 

twist angle.9,14 Twist could be thought of as a compromise between optimal stacking of 

neighboring bases and the constraints of the phosphate backbone. The already 

efficiently stacked ApT steps increase their overlap (decrease the twist) at the expense 

of the poorly overlapping TpA steps (with high twist), forming a repeating dimeric unit 

(Figure 2.3). This type of alternating B-DNA conformation was predicted by Steitz and 

co-workers for poly(dAdT)2 already in 1979.15 

 

Figure 2.3 Views down the helix axis of dinucleotide steps in the crystal structure a 5´-
CGCATATATGCG-3´ dodecamer (NDB ID: BDL007).9 The A(6)-T(7) step (top) has 
lower twist angle and better overlap than the T(7)-A(8) step. 

It is now understood that conformational diversity contributes, together with the 

direct contacts between amino acids and base pairs down the floors of the grooves, to the 

recognition between DNA and proteins.16,17 That the thermodynamic cost of inducing a 
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structural change in the helix also contributes to sequence recognition is a phenomenon 

that is well illustrated by the specificity of the TATA box binding protein (TBP).18-20 

Among the first steps in the formation of the transcription initiation complex in 

eukaryotes is the association of TBP with the TATA box, an AT-rich region with 

consensus sequence T-A-T-A-A/T-A-A/T/G/C upstream the transcription start within 

the promoter. TBP specifically binds the minor groove at the TATA box, unwinds and 

bends the DNA by as much as 80° towards the major groove (Figure 2.4). In prokaryotes 

the so-called Pribnow box, a highly conserved AT hexamer sequence (consensus 

sequence T-A-T-A-A-T) located around position -10 relative the transcription start, has 

a function similar to that of the TATA box. Upon recognition by the RNA polymerase a 

stretch of this promoter element is strand-separated and bent to form the transcription 

initiation-ready complex.21  

 

Figure 2.4 Crystal structure of the human TBP core domain/DNA complex, with TBP 
to the right and the bent 5′-CTGCTATAAAAGGCTG-3′ duplex to the left (NDB ID: 
PDT034).18 

AT regions also have a functional importance for the initiation of replication. The 

chromosomal DNA replication in E-coli is initiated at a unique sequence, the 

chromosomal origin of replication, oriC. OriC is an approximately 240 base pair long 

region including three 13 base pair long AT-rich domains. After binding by initiation 

enzymes, the DNA is strand separated at the AT-rich regions, forming bubbles which in 

turn are recognized by helicases that further unwind and strand separate the DNA, 

before replication proceeds to the elongation phase.21,22 The examples show how the 
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indirect readout of a DNA sequence, i.e. the conformational adaptivity and stability, 

contributes to the broad spectrum of interactions observed between DNA and proteins 

in a cell. It also illustrates how highly conserved AT sequences are recurring at 

functionally important regions in genomes. 

2.3 DNA Supercoiling 
Much of the naturally occurring DNA is circular in form. These circles may only 

be a few thousand base pairs long, as for the kinetoplast mini-circles and the genome of 

some viruses, or several million base pairs in length, as for the genome of E-coli. Most 

circular DNA is also supercoiled, a high-energy state, first discovered by Vinograd and 

co-workers,23 in which the DNA molecule either accommodates too many or too few 

helical turns per base pair compared to a completely relaxed linear helix. Supercoiling is 

a topological property that can be described by the linking number ݇ܮ, defined as the 

number of times one backbone strand crosses the surface stretched over the other 

strand. The linking number of relaxed DNA, ݇ܮ, will simply be the total number of 

base pairs ܰ  divided by the number of base pairs per turn under a given set of 

conditions, for instance ݇ܮ ≈ ܰ/10.5 for B-DNA. For ݇ܮ    supercoiling is positive݇ܮ

and for ݇ܮ ൏  is a measure of the specific ߪ  it is negative. The superhelical density݇ܮ

linking difference independent of DNA length 

ߪ ൌ
݇ܮ െ ݇ܮ

݇ܮ
 

Intracellular DNA is with few exceptions negatively supercoiled. There are two 

general forms: the toroidal, for which the DNA coils into a series of spirals about an 

imaginary ring, and the plectonemic, for which the DNA crosses over and under itself 

repeatedly (Figure 2.5).  

 

Figure 2.5 Schematic illustration of toroidal (left) and plectonemic (right) DNA 
supercoiling. 

The toroidal arrangement is characteristic for the eukaryotic DNA wrapped 

around the histone core of a nucleosome. It provides an efficient way of compacting 

large genomes in the small cell nucleus. Naked DNA, on the other hand, normally 

adopts the plectonemic form. An interesting consequence of plectonemic supercoiling is 
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that separated DNA regions are brought into close proximity, potentially forming 

protein binding sites composed of distal sequences.24 Examples of such multisite 

interactions are found in DNA replication, transcription and recombination processes.25 

The geometry can further be described in terms of the relative contributions of twist 

 reflects how each strand wraps around the helix axis ݓܶ .݇ܮ to (ݎܹ) and writhe (ݓܶ)

and ܹݎ how the helix coils about itself. As long as the sugar-phosphate backbone is 

intact, any change in conditions such that for instance ܶݓ  changes leads to a 

compensatory change in ܹݎ , so that ݇ܮ ൌ ݓܶ ܹݎ . For example, intercalation of a 

molecule (see below) between two base pairs which leads to unwinding (decreased ܶݓ), 

increases the ܹݎ. 

The superhelical free energy of circular DNA with ܰ > 3000 can be estimated 

from26 

ܩ∆ ൌ  ଶߪ10ܴܶܰ

which implies that supercoiled plasmids may have a significant free energy content. For 

pBR322, a commonly used 4361 base pair long E-coli cloning vector,  

 and the release of one single helical turn is associated with ,0.06- = ߪ kJ/mol at 405 = ܩ∆

a ∆∆ܩ of -32 kJ/mol. This is in the order of the ∆ܩ of ATP hydrolysis, the main source of 

free energy in the cell. Even though the accumulated superhelical energy cannot directly 

be utilized without introducing backbone scissions, it has fundamental importance in 

many biological processes. The most prominent effect of negative supercoiling is that it 

facilitates duplex unwinding, which is necessary in all processes requiring strand 

separation such as transcription, replication or recombination. At high superhelical 

density, the additional energy can also result in local transitions to alternative 

conformations that have a relaxed helicity different from that of B-DNA.26,27 As such 

structures only represent a small fraction of the whole molecule (usually < 1% in natural 

DNA) and exist only under the helical stress of its DNA context, traditional techniques 

to study DNA conformations (crystallography, NMR and circular dichroism), are 

generally not applicable. Instead detection has to rely on indirect methods such as 

mobility shift gel electrophoresis, theoretical predictions and chemical probing. The 

latter method is based on the increased accessibility to environment, and hence an 

enhanced reactivity, at the alternative structures. The existence of supercoil-stabilized 

conformations like cruciforms,28 left-handed DNA29 and multi-stranded structures30 is 

well established. The biological role in vivo is however yet to be clarified.  

2.4 Non-Duplex Structures 
Deviations from the canonical DNA duplex structures arise in regions where the 

two strands are non-complementary. Structural irregularities may be categorized as 

bulge, internal (including single mismatches) or hairpin loops depending on the 

symmetry and size of the un-paired region (examples in Figure 2.6a-d).31 In DNA, base 
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mismatching can result from spontaneous errors in replication or recombination, or be 

induced by exposure to chemical (e.g. DNA-binding agents) or physical (e.g. UV-

irradiation) mutagens that ultimately may lead to heritable alterations in the genetic 

material of a cell. The effect of a base pair substitution is dependent on its informational 

context. Mutations in non-coding regions remain silent, while those in coding regions 

may have physiological consequences, which in turn is the biological phenomenon 

driving evolution. Mutations are however unfortunately often harmful to its host 

organism as displayed by the number of associated degenerative human diseases. Sickle-

cell anemia, a blood disorder most commonly occurring in tropical regions, is caused by 

a single base mutation (A to T) in the β-globin gene, resulting in a substitution of 

glutamic acid for valine in the β-globin chains of hemoglobin.32 The cause of cystic 

fibrosis is mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) 

gene, of which the most abundant results in deletion of one phenylalanine in the CFTR 

protein.33 Mutagenic events are, when left unrepaired, also associated with the 

development of cancer.34 While deviations from the regular paired secondary structure 

in DNA normally are considered abnormalities, they are ubiquitous in RNA and closely 

associated to its specific structural, catalytic and regulatory functions in the cell. The 

typical cloverleaf secondary structure of tRNAs, the approximately 80 nucleotides long 

RNA molecules that transfer amino acids to the growing amino acid chain during 

translation, comprises, for instance, no less than four helices and three loops (Figure 

2.6e). 

 

Figure 2.6 Examples of non-duplex structures. Single base bulge (a), mismatch (b), 
internal (c) and hairpin loop (d). The tRNA structure contains three hairpin loops (e). 

The most obvious way in which genetic variation and disease at gene-level can be 

detected is direct sequencing of the DNA by standard methods. This is however time-

consuming and impractical for large-scale sequence analysis. Other methods involve 

hybridization of a single-stranded probe with the single-stranded target creating a bulge 

at imperfectly matched base pairs. Such DNA can later be detected through its reduced 

thermal stability or by retardation gel electrophoresis, in which bulge containing DNA 

typically migrates slower than fully paired duplexes.35,36 Development of oligonucleotide 

microarray technology, in which a large number of fluorescently tagged sequences can 

be tested against a library of probe sequences, has revolutionized the throughput of 

genotype variation analysis.37,38 Still, these procedures all share the problem of finding 
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stringent conditions for detection of single mismatches in duplexes of different stability, 

such as A-T and G-C rich DNAs. Methods that recognize local structural imperfections 

constitute an alternative strategy. The particular chemical or conformational properties 

(i.e. backbone perturbations, hydrogen-bonding disruption, base unstacking, base-

flipping etc.) of mismatched sites can be utilized as reviewed by Bui et al.39  

2.5 DNA - Ligand Interactions 
The residues of a DNA strand are linked into a chain by strong covalent bonds. 

The three-dimensional conformation is however maintained by much weaker forces 

including hydrogen, ionic and van der Waals bonds and hydrophobic interactions. These 

non-covalent interactions account for much of the complex organization and interplay 

observed in biological systems, like folding and function of proteins and the assembly of 

plasma membranes. The bond strengths are typically in the order of the average kinetic 

energy of molecules at physiological temperature, allowing for a continuous disruption 

and re-formation in various dynamic biological processes. In that manner, non-covalent 

interactions enable one molecule to bind specifically, yet transiently, to another 

molecule. Reversible binding of DNA by proteins or small ligands may be divided into 

three main categories: electrostatic, groove-binding and intercalation. The non-specific 

association of small positively charged ions (such as Na+ and Mg2+) to the polyanionic 

nucleic acid can be considered as purely electrostatic. Electrostatics understandably also 

plays an important role for the other two more specific types of interaction. Groove-

binding refers to the accommodation of a molecule, or a molecular moiety, in the major 

or the minor groove. Aligning along the groove allows for the formation of specific 

interactions with several consecutive base pairs, accounting for the significant sequence 

specificity often exhibited by groove binding agents. The major groove is known to play 

an important role in DNA-protein interactions, as it is wide enough to dock large 

structures like α-helices. For smaller molecules, binding in the minor groove is often 

preferred. Typical minor groove binders are cations of unfused heterocyclics, with 

inherent rotational freedom to match the helical curvature. Natural antibiotic 

distamycin40-42 and synthetic DNA stain DAPI43-45 (Figure 2.7) are examples of 

compounds known to bind in the minor groove with a strong preference for AT-rich 

regions. The specificity is thought to arise from (1) a greater electronegativity of the 

minor grove at A-T base pairs compared to G-C; (2) the narrow, but adjustable, width 

that allows a more snuggle fit in AT regions; (3) the exocyclic amino group of guanine 

protrudes into the minor groove and sterically hinders minor groove binding at G-C base 

pairs. 
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Figure 2.7 The DNA minor groove binders distamycin (a) and DAPI (4′,6-diamidino-2-
phenylindole) (b). 

Intercalation is insertion of a molecule, or part of a molecule, between two 

adjacent DNA base pairs. Fused planar aromatic ring systems, such as the classic DNA 

stain ethidium (Figure 2.8), typically bind by intercalation.46-49 In early pioneering 

studies, Lerman discovered that adding the antiviral acridine proflavine to a solution of 

DNA lead to an increased viscosity, a change he postulated to be a result of a structural 

perturbation caused by an intercalative binding mode.50 Intercalation causes indeed 

unwinding (for ethidium by 26°) around the site of binding and separates surrounding 

base pairs by approximately one additional base pair spacing.31 Because of the limited 

sequence influence on the intercalation pocket itself, simple intercalators generally show 

little sequence selectivity.47,51 Specificity can however be increased with additional 

substituents residing in one of the grooves, as exemplified by actinomycin D.52,53 

Actinomycin is a potent antibiotic known to bind DNA and effectively inhibit RNA 

synthesis, primarily by interfering with the elongation phase of transcription.54-56 

Variants of the classical intercalation model include bis-intercalation, where the binding 

agent, exemplified by antitumor drug ditercalinium,57,58 consists of two intercalating 

subunits connected by a linker. Another form is threading intercalation, for which the 

insertion is hindered by substituents on both ends of the intercalating ring system. 

Antibiotic nogalamycin produced by Streptomyces nogalater is a well known example of 

a threading agent found in nature.59-62 For its anthracycline moiety to be intercalated, 

either its polar or nonpolar sugar residue has to pass through a sterically restricted 

loophole in the DNA. For a threading agent with bulky side groups, large transient 

conformational changes of the double-helix are necessary for formation of the 

intercalation complex. However, while side groups are obstacles to the passage through 

the DNA, they potentially have a stabilizing effect on the final intercalated state.59,63 
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Figure 2.8 The DNA intercalators ethidium (a), proflavine (b), actinomycin D (c), the 
bis-intercalator ditercalinium (d),  the threading intercalator nogalamycin (e) and anti-
tumour agents daunomycin (R = H) and adriamycin (R = OH) (f). 

2.6 DNA as Therapeutic Target 
In the development of drugs that target the biochemical pathways, small 

molecules interacting non-covalently with DNA have played an important role. A large 

portion of these, in particular in the treatment of cancer and infectious diseases, have a 

natural origin.64,65 The intercalating anthracyclines daunomycin and adriamycin  

(Figure 2.8f) are fermentation products of Streptomyces bacteria that are approved by 

the U.S. Food and Drug Administration as anti-tumour agents. Their primary 

mechanism of cytotoxicity is believed to be mediated by topoisomerase II. 

Topoisomerases are critical in several DNA processes by creating and rejoining strand 

breaks. The intercalators act by stabilizing a normally transient intermediate in which 

the enzyme is covalently linked to the DNA, ultimately leading to double-stranded 

breaks and cell death. The use of current chemotherapeutics is however limited by 
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severe side-effects and acquired drug resistance, in turn a result of the inability to target 

cancer cells specifically. Screening of large combinatorial libraries of synthetic 

compounds provides one strategy for discovering new potent and selective drugs that act 

at the DNA level, detailed studies of rationally designed compounds provides another. 
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Figure 2.9 Left: AT-selective minor-groove binding agents pentamidine (a) and 
furamidine (b). Right: Example of an eight-ring polyamide that recognizes a sequence 
of four Watson-Crick base pairs by formation of a hairpin in the minor groove (c). An 
imidazole (Im) opposite a pyrrole (Py) recognizes a G-C base pair, Py opposite an Im 
target C-G base pair, whereas Py/Py paring is degenerate for targeting A-T and T-A. 
With 3-hydroxypyrrole (Hp) opposite Py, however, T-A can be exclusively targeted, 
and, vice-versa, Py/Hp targets A-T (d). 

Apart from particular base sequences being targets of interaction, natural 
variations in base content can be exploited for attaining discriminative cytotoxicity. 
Diamidines constitute a class of AT-selective minor groove binding cations with a long 
history as antiparasitic agents. Pentamidine (Figure 2.9a) was introduced more than 50 
years ago against African sleeping sickness and is, despite high toxicity and development 
of drug resistance, still used clinically.66 With furamidine (Figure 2.9b) and other 
structurally related synthetic compounds, improved antimicrobial activity has been 
attained.67-70 When administered intravenously, diamidines spontaneously enter cells and 
enrich in the mitochondrial kinetoplast, where the thousands of catenated minicircles of 
high AT content constitute favorable targets. Bound compounds have been suggested to 
interfere with the complex replication of the kinetoplast DNA, contributing to the 
observed cytotoxicity.71 Another example of DNA targeting for therapeutic purposes is 
the development of hairpin polyamides, compounds that have attracted considerable 
interest as agents for modulation of gene expression. Discrimination is attained through 
recognition of Watson-Crick base pairs by a distamycin inspired sequence of pyrrole and 
imidazole residues (Figure 2.9c).72-75 By formation of a hairpin that fits the minor groove, 
polyamides can target any stretch of DNA up to 16 base pairs by side-by-side binding of 
paired residues (Figure 2.9d).76 When conjugated to hairpin polyamides, 
chemotherapeutics of poor selectivity can be guided to a specific gene for down-
regulation of transcription for blocking of cancer cell proliferation.77,78  
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3. RUTHENIUM POLYPYRIDYL COMPLEXES 

3.1 History and development 
Ruthenium complexes first became widely researched during the years that 

followed the energy crisis in the mid 1970s. The unique photophysical properties of the 

complex in which a central ruthenium(II) ion coordinates three bipyridine ligands, 

[Ru(bpy)3]
2+, was anticipated to enable it to catalyze photochemical splitting of water 

into hydrogen and oxygen. Even though efficient hydrogen production by water splitting 

in practice turned out to be difficult, the investigations formed a basis for much of the 

use of ruthenium polypyridyl complexes we see today, recently reviewed by Vos and 

Kelly,79 in basic and applied research – solar cell applications, molecular electronics, 

optical sensing and for biomolecular recognition. 

Ruthenium polypyridyl complexes as DNA interacting agents is an area of 

research initiated with the study of [RuL3]
2+ (L = bipyridine (bpy) or phenanthroline 

(phen), Figure 3.1) by Barton and co-workers more than twenty years ago.80 Synthetic 

transition metal complexes may seem an odd choice for studying biomolecules. 

However, ruthenium polypyridyl complexes possess a number of properties that make 

them attractive candidates for such applications. Firstly, they are generally chemically 

inert in the sense that interactions with DNA normally are non-covalent and hence 

reversible. Further, the inversion-stable octrahedral coordination of the ruthenium ion 

provides a rigid scaffold around which ligands can be varied for systematic modification 

of the physical and chemical properties.  
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Figure 3.1 Left: the octrahedral coordination of the ruthenium centre gives rise to two 
stereoisomeric forms, the left-handed (Λ) and the right-handed (Δ) propeller. Right: 
commonly used bi-dentate ligands: bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline, 
dppz = dipyrido[3,2-a:2′,3′-c]phenazine. 
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The metal centres also exhibit an inherent chirality, the right-handed Δ or the left-

handed Λ propeller (Figure 3.1), giving rise to handedness discrimination with chiral 

hosts such as DNA. A final important reason that has motivated the extensive use of 

ruthenium complexes as DNA probes are their rich photophysical repertoire, in 

particular the sensitivity of the electronic absorption and emission to different micro-

environments. 

Studies following the pioneering investigations of [RuL3]
2+ type complexes came 

to concern their binding mode. For [Ru(phen)3]
2+ it resulted in a discussion spanning 

several years. Intercalation of one of the phenanthroline ligands as well as both major 

and minor groove binding was proposed.81-87 Later studies indicated however that one 

ligand in fact is partially inserted between two base pairs via the minor groove.88 Barton 

and co-workers later started the DNA interaction studies of two analogues, originally 

synthesized by Sauvage and co-workers,89 where one of the three ligands had been 

extended: [RuL2dppz]2+ (L = bpy or phen) binds strongly by distinct intercalation of its 

dipyridophenazine (dppz, Figure 3.1) ligand.90,91 Dppz-based complexes have received 

special attention as “molecular light-switch” probes. The intercalation of the extended 

planar ligand between two DNA basepairs is accompanied by a striking increase in 

luminescence quantum yield. Even though the intercalative binding mode is undisputed, 

the question whether they are inserted from the major or the minor groove has been 

open to much debate.91-95 Dppz complexes are high affinity probes (K > 106 M-1 at 50mM 

NaCl), but display moderate sequence preference (KAT/GC = 5.9).95 While the binding 

geometry and affinity of the Δ and Λ enantiomer is similar, their photophysical signature 

differ significantly.96 Another interesting aspect of the dppz complexes  is that binding, 

unlike binding of many classical intercalators,97 is entropically driven.98  

Despite, or as a result of, the controversy that followed the investigations of 

DNA binding ruthenium complexes, important fundamental knowledge has been 

acquired over the years. The application of this knowledge is seen today in the 

development of a new generation of ruthenium complexes, with improved 

discrimination and function.99-103 Attention has also been paid to the use of other metals. 

An example has been reported by Barton et al: the steric demand of a bulky, rhodium-

based, polypyridyl complex [Rh(bpy)2(chrysi)]3+ (chrysi = chrysene-5,6-quinone diimine) 

prevents it from intercalating well-matched B-DNA. However, un-pairing at single base 

mismatches, abasic sites or bulges, allows the chrysi ligand to be inserted.104,105 Detection 

is attained by promoting strand cleavage at the binding site by photoactivation and 

subsequent separation of products by gel-electrophoresis.  

3.2 Binuclear complexes 
Another development of the field came with studies of binuclear ruthenium 

complexes, for which improved affinity and chiral discrimination has been attained. In 

the bisintercalating [μ-C4(cpdppz)2(phen)4Ru2]
4+ (Figure 3.2a), two dppz moieties are 
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connected via a flexible linker.106-108 The complex interacts strongly with DNA  

(K ≈ 109 M-1 with calf thymus DNA at 100 mM NaCl), but since association and 

dissociation involve threading or unthreading of the bulky ruthenium centres through 

the base stack, the kinetics is much slower than for normal intercalators. The 

dissociation from calf thymus DNA is multiphasic and requires approximately half an 

hour to go to completion at room temperature. Of importance is also that while the 

thermodynamic enantioselectivity is negligible, the effect of chirality on the kinetics is 

substantial (kd(ΔΔ)/kd(ΛΛ) ≈ 0.1 at 100 mM NaCl). The ΔΔ enantiomer displays, in 

analogy with nogalamycin,60,109 much higher association rates with the alternating AT-

DNA poly(dAdT)2 than with the alternating GC-DNA poly(dGdC)2, but without 

effectively increasing the equilibrium binding constant. 

 

Figure 3.2 Structure of binuclear ruthenium complexes. Bis-intercalating [μ-
C4(cpdppz)2(phen)4Ru2]

4+ (a), and threading [μ-(bidppz)L4Ru2]
4+, where L is either 

phen or bpy (b). C4(cdppz)2Ԝ=ԜN,N′-bis(12-cyano-12,13-dihydro-11H-
cyclopenta[b]dipyrido[3,2-h:2′,3′-j]phenazine-12-carbonyl)-1,4diaminobutane. Bidppz 
= 11,11′-bis(dipyrido[3,2-a:2′,3′-c]phenazinyl. 

The less flexible analogues [μ-(bidppz)L4Ru2]
4+ (L = phen or bpy, complexes 

hereafter referred to as P and B, respectively, Figure 3.2b), in which a single bond 

connects the two monomers, were at first, based on its binding geometry and lack of 

luminescence, reported to interact with high affinity through binding in one of the 

grooves (K ≈ 1012 M-1 at 10 mM NaCl).110 However, later measurements on a sample of 

ΔΔ-P and calf thymus DNA that serendipitously had been left at room temperature for 

two weeks revealed that the complexes had rearranged to an intercalated, strongly 

luminescent, mode of binding (Figure 1.1 centre).111 Constraining the two monomers by 

shortening the linker had evidently not completely prevented intercalation, only 

dramatically decreased the rate. Increased temperature and ionic strength increased the 

rate of rearrangement. Still, at 50°C in 100 mM NaCl equilibrium with calf thymus DNA 

is not reached until several hours after mixing. It was further shown that the metastable 

groove-bound form could be rapidly sequestered by addition of surfactant, in sharp 
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contrast to the threaded form, which required hours at elevated temperature to 

dissociate. Later the alternative homo-chiral configuration (ΛΛ) and the meso 

stereoisomer (ΔΛ) of P were also shown to intercalate DNA.112 With alternating AT-

DNA poly(dAdT)2, linear dichroism could not distinguish the intermediate groove-

bound state. Instead the threaded state was formed already after short equilibration 

times. The further investigation of this “kinetic recognition” of particular DNA 

structural features by the sterically very demanding threading ruthenium dimers is the 

topic of this Thesis. 
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4. FUNDAMENTAL CONCEPTS 

4.1 Absorption and Emission of Light 
Spectroscopy, the study of absorption and emission of electromagnetic radiation, 

i.e. light, by matter, is one of the major experimental tools for studies at the molecular 

level. Electromagnetic radiation of wavelength ߣ  can be thought of as a wave 

propagating at the speed of light ܿ with an electric and a magnetic field component 

oscillating in phase at the frequency ߥ ൌ ܿ ⁄ ߣ . The following section gives an 

introduction to basic concepts of spectroscopic techniques used in this Thesis.  

Although light is described as an electromagnetic wave, it is also divided into 

discrete energy packages, photons, with energy ݄ߥ, where ݄ is Planck´s constant. When a 

molecule in an initial state ܵ is exposed to electromagnetic radiation it may absorb a 

photon and make a transition to a higher-energy final state ܵ given that the frequency, 

ܧof the light satisfies the frequency condition Δ ,ߥ ൌ  represents the energy ܧwhere Δ ,ߥ݄

difference between the two states. Transitions between electronic states correspond to 

absorption of ultraviolet and visible light, whereas absorption of longer wavelengths 

corresponds to transitions between vibrational or rotational states.113 

The charge distribution in a chromophore gives rise to an electric dipole 

described by the electric dipole operator ࣆෝ 

ෝࣆ ൌ െ|݁|࢘ሬԦ 

where the summation is over the positions ࢘ሬԦ  of all electrons and ݁  is the electronic 

elementary charge. In addition to satisfying the frequency condition, in order for a 

transition to occur the electric field of the light must redistribute the charge density of 

state ܵ as to resemble that of state ܵ. If the initial and final states are described by the 

wavefunctions ߰ and ߰, respectively, a transition between the two results in a transient 

oscillation described by the transition dipole moment 

ሬሬԦࣆ ൌ න߰  ෝ߰݀߬ࣆ

The transition dipole moment is a vector with a fixed orientation with respect to 

the molecular framework of the chromophore. The probability for a transition as a result 

of absorption depends on the magnitude of the transition dipole moment as well as on its 

orientation relative to the incident light 

ܲ ן หࣆሬሬԦห
ଶ ·  ߠଶݏܿ
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where ߠ is the angle between ࣆሬሬԦ and the electric field vector. It is practical to talk about 

the strength of a transition in terms of absorbance, which through the Beer-Lambert law 

is related to concentration ܿ, the molar extinction coefficient ߝఒ, and the optical path 

length ݈ of a sample 

ఒ ൌ ఒߝ · ܿ · ݈ 

The Jablonski diagram in Figure 4.1 illustrates processes that may follow 

electronic excitation. The ground, first and second excited states are represented by ܵ, 

ଵܵ and ܵଶ, respectively. Each state is divided into several vibrational states. A photon of 

energy ݄ߥ is absorbed by a molecule, which is excited from ܵ to a higher electronic 

singlet state. The molecule is relaxed to the lowest vibrational level of ଵܵ  through 

vibrational relaxation and internal conversion. The molecule can then return to the 

ground state ܵ via radiative or non-radiative processes. Radiative relaxation is either 

accomplished by emitting fluorescence (݄ߥி), i.e. relaxation directly from the singlet 

state, or by undergoing intersystem crossing to the first triplet excited state ଵܶ, which can 

convert to the ground state by emission of phosphorescence (݄ߥ).114 

 

Figure 4.1 Jablonski diagram illustrating the fundamental photophysical processes that 
follow electronic excitation. Solid arrows indicate radiative processes, dotted 
vibrational relaxation and internal conversion and dashed intersystem crossing.  

 Emission of light takes place on a time scale much slower than absorption which 

allows a wider range of interactions and perturbations to influence the spectrum. As 

indicated above, different processes compete to depopulate the excited state. The 

fraction of excited molecules that relax via fluorescence is given by the fluorescence 

quantum yield 

ΦF ൌ
݇ி

݇ி  ݇  ݇௦  ݇ሺܳሻ
 

where ݇ி , ݇ , ݇௦  are rate constants for fluorescence, internal conversion and 

intersystem crossing, respectively, and ݇ሺܳሻ describes relaxation through quenching. 
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4.1.1 Photophysics of Ruthenium Polypyridyl Chromophores 
Electronic transitions of ruthenium polypyridyl complex, typified by 

[Ru(phen)2dppz]2+, can be categorized as being metal-centred (MC), ligand-centred 

(LC), or to be of metal-to-ligand-charge-transfer (MLCT) character. The absorption 

spectrum is dominated by the two latter types. כߨ→ߨ LC transitions localized on the 

ligands occur in the UV region, whereas the characteristic orange colour of ruthenium 

complexes is due to the MLCT transitions at longer wavelengths. A metal d-electron is 

transferred to a ligand antibonding כߨ orbital, creating a charge-separated state of triplet 

character. The formally forbidden singlet-triplet intersystem crossing is attributed to 

spin-orbit coupling due to the heavy ruthenium ion. Even though the electron initially 

can be transferred to any of the coordinated ligands, it is rapidly localized on the dppz 

ligand which has the lowest lying כߨ-orbital. It is believed that the efficient quenching of 

the luminescence in water and other protic solvents is due to fast hydrogen bonding to 

the un-coordinated aza nitrogens of the dppz ligand in the excited state.115,116 Shielding 

from water in the intercalation pocket of DNA thereby lengthens the excited state 

lifetime. The accessibility to water has a sensitive dependence on the detailed binding 

geometry, giving lifetimes and quantum yields that vary strongly with complex structure 

and DNA sequence.94,96 

4.2 Polarized Spectroscopy 
In the standard absorption measurement isotropic, or non-polarized light is used. 

Valuable information about the orientation, conformation, size and molecular 

interactions in a system can, however, be extracted by use of polarized light. Linear and 

circular dichroism are two techniques based on the differential absorption of polarized 

light. They constitute two low-resolution complements to the main methods used to 

obtain structural information, NMR and X-ray diffraction. A full background to theory 

and applications with emphasis on bio-molecular systems has been given by Nordén and 

co-workers.117,118 

4.2.1 Linear Dichroism 
The basis for linear dichroism (LD) spectroscopy is the dependence of 

absorption intensity on orientation of the electric field vector relative to that of the 

transition dipole moment of a chromophore. It can be used to study systems that are 

either intrinsically oriented or systems that can be oriented by an external force. The LD 

of a sample is given by 

ܦܮ ൌ צܣ െ  ୄܣ

where צܣ  and ୄܣ  are the absorption of light plane-polarized parallel to and 

perpendicular to a macroscopic orientation axis, respectively. In a randomly oriented 

sample LD is zero. Non-zero LD is obtained if the transition dipole moment for a 
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particular transition is anisotropically oriented, such that the probabilities of absorption 

of light polarized in the two directions are different. Thus, depending on the magnitude 

of צܣ and ୄܣ, the polarization of a given transition can be obtained, and, conversely, if 

the transition polarization within a molecule is known, information about molecular 

orientation can be obtained. The reduced linear dichroism ܦܮ  is a dimensionless 

quantity that only depends on the geometric arrangement of the transition moments 

relative the orientation axis. It is obtained by dividing the linear dichroism for a given 

sample and pathlength by the corresponding isotropic absorption 

ܦܮ ൌ
ܦܮ
௦ܣ

ൌ 3 · ܵ · ܱ 

As indicated in the equation above, the ܦܮ  can be interpreted in terms of a 

product of an orientation factor ܵ  and an optical factor ܱ . The orientation factor 

contains information about the macroscopic level of alignment. ܵ ൌ 1 corresponds to 

perfect parallel orientation of molecules, whereas for a completely randomly oriented 

sample  ܵ ൌ 0. For uniaxially oriented “rod-like” molecules, the optical factor may be 

written 

ܱሺߙሻ ൌ
ߙଶݏ3ܿ െ 1

2
 

where ߙ is the average angle between the molecular orientation axis and the particular 

transition dipole moment of interest. The equation illustrates how the optical 

information always must be interpreted in terms of a cosine squared expression. 

 

Figure 4.2 Left: In a couette cell the DNA polymers are aligned along the direction of 
the flow created between an inner fixed and an outer rotating cylinder. Right: Example 
of a flow LD spectrum of actinomycin D bound to DNA. The DNA bases are oriented 
perpendicular to the helix axis giving rise to a negative peak in the UV region. In the 
visible region the phenoxazone chromophore of actinomycin D also gives rise to a 
negative peak, characteristic for a base co-planar, intercalated binding mode. 

Orientation can be attained in stretched polymer films or by aligning molecules 

along the direction of a field (electric or magnetic) or a flow. Long polymers, such as 
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DNA, can be efficiently oriented in the flow of a cylindrical Couette cell. The shear 

gradient between an outer rotating and an inner fixed quartz cylinder orients the DNA 

helix perpendicular to the rotational axis (Figure 4.2). The in-plane transitions of the 

DNA bases, oriented almost perpendicular to the helix axis for B-DNA (α = 90°), will 

accordingly give rise to a negative peak in the LD spectrum. Small molecules are not 

oriented by the flow of the Couette cell. They may however be indirectly oriented if they 

interact with the aligned DNA host. The LD of a DNA binding drug can further reveal 

important information about mode of interaction, as exemplified by the sequence 

dependent binding of the extensively used DNA stain DAPI. The LD of the long-axis 

transition in DAPI is positive with poly(dAdT)2 and negative with poly(dGdC)2, 

suggesting a groove bound and intercalated mode of interaction, respectively.117 

4.2.2 Circular Dichroism 
Circular dichroism (CD) is also based on the differential absorption of 

polarized light. It is defined as 

ܦܥ ൌ ܣ െ  ோܣ

where ܣ and ܣோ is the absorption of left and right circularly polarized light, respectively. 

To measure CD, samples do not have to be oriented, which makes it a more accessible 

and accordingly more routinely used technique than LD. Instead of orientation, CD is 

sensitive to the dissymmetry of a system. For circularly polarized light, the field vectors 

have a constant length, but rotate about their axis of propagation. The electric and 

magnetic field vectors thus form “chiral” (left or right handed) helices propagating 

through space. It may then intuitively be realized that left and right handed helices 

interact differently with chiral samples. More precisely, depending on the handedness of 

the polarization, the light can couple with interacting electric and magnetic transition 

dipole moments within a chiral molecule to produce a helical rearrangement of charge. 

As a consequence, one enantiomer of a chiral molecule will give rise to the mirror image 

of the CD spectrum of the other enantiomer. 

The isolated DNA bases are achiral, as are often DNA binding drugs. Nucleic 

acids still possess a strong CD signal, which arise predominantly from coupling of the 

transitions of the helically (chirally) stacked bases in the duplex. The different DNA 

conformations each have a typical CD signature. Achiral drugs can acquire an induced 

CD signal (ICD) upon interacting with the DNA by adopting a chiral conformation or 

from chiral perturbations of its electronic transitions. Observation of ICD is thereby a 

direct indicator of binding. Structural information can be extracted from the magnitude 

and shape of the signal. An ICD typical for groove binding is normally an order of 

magnitude greater than that of intercalation. The formation of dimer, or higher order, 

complexes in the DNA groove give rise to a strong exciton CD, with a typical bisignate 

shape. 

25 
 



4.3 Kinetics of chemical reactions 
If the conditions for a reaction are suitable for thermodynamic equilibrium to be 

established fairly rapidly between reactants and products, their free energy relation will 

determine their relative yield. The decrease in free energy when a product ܥ is formed 

from the two reactants ܣ and ܤ is given by ∆ܩ in Figure 4.3a. All reactions must however 

pass one or more transition-states with free energy content higher than that of both 

reactants and products (illustrated in the figure by the activated complex כܤܣ). In the 

late nineteenth century Svante Arrhenius made the empirical observation that the rate 

constant of many reactions had a temperature dependence of the type ݇ ൌ ܣ · ݁ିாೌ ோ்⁄ .119 

The activation energy ܧ represents the critical energy which reactants must possess for 

a reaction to occur, and for a given value of the pre-exponential factor ܣ, the reaction 

rate decreases with increasing ܧ . In transition-state theory, where the normal 

thermodynamic principles are applied to the activated complex כܤܣ, the two Arrhenius 

constants are interpreted in terms of activation enthalpy ∆ܪ‡ and entropy ∆ܵ‡, which in 

turn can give clues to the molecular factors that control the reaction rate. The activation 

energy ܧ corresponds closely to ∆ܪ‡. Activation parameters are commonly calculated 

as 

‡ܪ∆ ൌ ܧ െ   ܴܶ

∆ܵ‡ ൌ ܴ ln ሺ
݄ܣ
݇ܶ݁

ሻ 

where ݇  and ݄ are the Boltzmann and the Planck constants, respectively.120 The free 

energy of activation then follows from ∆ܩ‡ ൌ ‡ܪ∆ െ ܶ∆ܵ‡. Often, in organic-chemical 

reactions as well as biological processes, this barrier is so high that equilibrium only 

establishes very slowly and the products in practice attained are those that derive from 

the lowest activation energy pathway, regardless if this results in the greatest decrease in 

free energy or not. These reactions are said to be kinetically controlled. 
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Figure 4.3 (a) Free energy profile for the equilibrium ܣ  ܤ ֎  Left: schematic (b) .ܥ
illustration of a mechanically interlocked rotaxane with a cyclic rotor wrapped around a 
dumb-bell shaped axis. Right: in the kinetically controlled threading of an asymmetric 
axle through an asymmetric rotor one of the two possible complex face-directions is 
kinetically favored. (Based on figure in reference121) 

The rearrangement from groove binding to intercalation of the bidppz-bridged 

ruthenium complexes of the current work is a process strongly dictated by kinetics 

around room temperature. An example that nicely illustrates kinetic control is found for 

a completely different, yet principally related molecular system. Rotaxanes constitute a 

group of mechanically interlocked molecules, often discussed as potential building-

blocks in “molecular motors”. The name originates from the architecture of its two 

molecular components: a cyclic rotor wrapped around a dumb-bell shaped axis. The 

diameter of the rotor is typically smaller than the ends of the dumb-bell, which prevents 

fast un-threading. Three routes for constructing rotaxanes are often mentioned. Apart 

from “capping”, for which the bulky stoppers are covalently capped on to the threaded 

axis, and “clipping”, where the rotor is ring-closed around the axis, threading is a 

possible strategy. Energy barriers for complexation and decomplexation of such a system 

are understandably very high. Oshikiri et al. have made interesting observations in 

studies of an asymmetric cyclodextrin rotor with an alkyl chain bearing methyl 

substituted pyridyl end caps as an axle (Figure 4.3b).121 Firstly, formation of rotaxane 

complexes is very sensitive to the substitution pattern. Secondly, with asymmetrically 

substituted pyridyl stoppers two isomers are formed with respect to the face-direction of 

the axle. However, the rate of formation differs radically. Even 70 days after mixing at 

30°C, one of the isomers dominates. To reach equilibrium, at which the yield of both 

isomers is almost the same, incubation at 70°C for as much as ten days is required. 
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Accordingly, selectivity, in this case face selectivity, is high at low temperature when the 

system is kinetically controlled and low at high temperature when the system is 

thermodynamically controlled. It provides an example of kinetic discrimination and the 

extremely long times that can be required to reach equilibrium, even for relatively 

simple, but sterically demanding non-covalent reactions.  

4.4 Kinetic Modelling of DNA Interactions 
An elegant probabilistic method for modelling non-specific DNA interactions 

was developed by McGhee and von Hippel in 1974.122 Traditional representation of 

ligand binding in the form of Scatchard plots for estimation of binding constants and 

neighbour exclusion site size fail to adequately describe systems where potential sites for 

binding can overlap, as the concentration of binding sites then will depend on the 

distribution of bound ligands. The use of the framework provided by McGhee and von 

Hippel for analysis of kinetics of interactions is demonstrated in Paper I. A brief 

introduction to the method is given below. 

The DNA is considered as an infinite one-dimensional lattice of identical 

repeating residues, normally DNA base pairs. The relative amount of bound ligand is 

given by the binding density ߠ defined as the concentration of bound ligand divided by 

the concentration of total lattice residue. When a ligand binds to the array, ݊ consecutive 

residues are covered, that is, made inaccessible for other ligands. Saturation of the lattice 

is consequently attained at ߠ ൌ 1 ݊⁄ . 

The fraction of covered residues on the lattice at a given binding density ߠ is ݊ߠ. 

Hence, the fraction of free residues is ሺ1 െ ሻߠ݊ . The conditional probability that a 

randomly selected free residue is followed by another free residue is denoted ሺ݂݂ሻ. 

Equivalently, the conditional probability that a randomly chosen right end of a bound 

ligand (with the probability ݊ߠ ݊⁄ ൌ  is followed by a free residue is ሺܾ݂ሻ. A free ,(ߠ

residue must have either a free residue or the right end of a ligand to its left hand side, 

hence 

1 െ ߠ݊ ൌ ሺ1 െ ሻሺ݂݂ሻߠ݊   ሺܾ݂ሻߠ

As ሺܾ݂ሻ ൌ ሺ݂݂ሻ for non-cooperative binding and all possible conditional probabilities 

must sum up to unity 

ሺ݂݂ሻ ൌ ሺܾ݂ሻ ൌ
1 െ ߠ݊

1 െ ሺ݊ െ 1ሻߠ
 

ሺ݂ܾଵሻ ൌ 1 െ ሺ݂݂ሻ ൌ
ߠ

1 െ ሺ݊ െ 1ሻߠ
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Now consider a reaction where a ligand in a state ܣ can rearrange to state ܤ (for 

example groove binding to intercalation). The two states occupy ܽ and ܾ consecutive 

base pairs, respectively. Then122 

ሺ݂݂ሻ ൌ
1 െ ߠܽ െ ߠܾ

1 െ ሺܽ െ 1ሻߠ െ ሺܾ െ 1ሻߠ
 

If the rearrangement between the two states is accomplished uni-molecularly with 

respect to ligand, but depend on the number ݔ  of extra consecutive free residues 

required in the transition state, the differential rate law below could describe the system: 

െ
ߠ݀
ݐ݀

ൌ
ߠ݀
ݐ݀

ൌ  ሺ݂݂ሻ௫ߠ݇

where ߠ and ߠ  are the binding densities of states ܣ and ܤ, respectively, and ݇ is the 

rate constant of the forward step of rearrangement. Given the unknown variables of the 

rate law (ܽ, ܾ, ݇ and ݔ), the binding density of each specie as a function of time can 

readily be obtained by numerical integration. If the fraction of ligand in each state can 

be experimentally determined, for instance by time-resolved absorbance, luminescence 

or circular dichroism, the neighbour-exclusion site sizes, rate constant and transition-

state size can be estimated by fitting the simulated traces to experimental data. 

Furthermore, if ܽ ൌ ܾ , then ሺ݂݂ሻ  will be time-independent and the rate law will be 

pseudo first-order, but still depend on the mixing ratio ߠ ൌ ߠ   .ߠ

  

29 
 



  

30 
 



5. RESULTS  
The obvious way to follow up the discovery of the slow rearrangement of ΔΔ-P 

was to identify threading structural discriminators of bidppz-bridged dimers. As already 

mentioned, Wilhelmsson et al. reported, soon after the initial finding, that also the meso 

(ΛΔ) and ΛΛ complexes end up in an intercalated binding mode, in mixed sequence calf 

thymus DNA as well as in poly(dAdT)2.
112 The dichroism and photophysical studies 

focused on characterizing the final binding state, but could still reveal large differences 

in the rate of its formation. An intercalated final binding mode could later also be 

confirmed for dimers with bipyridine ancillary ligands (B). DNA sequence, as well as 

chiral sense and structure of ancillary ligands, thus appeared to have a larger effect 

during the actual passage between two DNA base pairs, than on the final mode of 

interaction, where the bidppz bridge is sandwiched in the base stack and the two metal 

centers are protruding out from the grooves. At the time when I entered the project, 

there was anticipation that detailed kinetic information of the threading event with 

respect to complex structure and base pair context would help to widen our 

understanding of the mechanism of the discrimination. Below I give a summary of the 

studies, primarily reported in Papers I, III and IV, on that topic. Related to this 

characterization of threading is the identification of potential DNA structural targets, 

which are reported in Papers II, V and VI and described in the section after.  

5.1 Kinetic Characterization of Threading Intercalation 

5.1.1 The Uni-Molecular Threading into Alternating AT-DNA 
Following the initial strategy, we started to catalogue threading kinetics by 

monitoring the increase in luminescence after mixing of four structural analogues (ΔΔ 

and ΛΛ stereoisomers of P and B) with mixed sequence DNA and poly(dAdT)2 at 

different mixing ratios.123 High-resolution, reproducible kinetic data could be obtained, 

but although large variations were observed, detailed analysis and interpretation proved 

not to be straight-forward. Often as many as three exponentials were needed to fit data 

within acceptable error limits, even with the homogeneous poly(dAdT)2. We were 

understandably enthusiastic when we eventually found a system where threading 

appeared to be very simple. At relatively high ionic strength (≥150 mM NaCl), the 

kinetic trace of ΛΛ-B with poly(dAdT)2 could be fitted with a single exponential (Figure 

5.1). In addition, data could be fitted with the same rate constant in a wide interval of 

mixing ratios ([complex]/[base pair] = 1/8 – 1/64). With ΛΛ-P, for which the bipyridine 

ligands have been replaced for phenanthroline, the luminescence evolution could also be 

described by a 1st-order rate law at the low mixing ratio 1/64. However, with increasing 

mixing ratios, binding became slower and made a transition to perfect 2nd-order behavior 
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at [complex]/[base pair] = 1/8. The observations are reported in Paper I. The report also 

includes the global fitting of a kinetic model, based on McGhee and von Hippel 

conditional probabilities,122 for the more intriguing behavior of ΛΛ-P. A rate law 

comprising two parallel paths to the intercalated state was constructed. The spatial 

requirement (free DNA base pairs) of the transition states dictated accessibility of each 

path, leading to approximate 1st-order behavior at low binding density and 2nd-order 

kinetics at high binding density. As we later came to understand (see below), the 

luminescence of the bidppz-bridged dimers is, to varying extent, sensitive to processes 

that follow the initial threading step, leading us in Paper I to propose a more complex 

mechanism of binding for ΛΛ-P than was necessary. Still, the study was important in the 

sense that we found conditions at which threading could be described as a uni-molecular 

rearrangement. It also displayed the sensitivity, to be reported in more detail in later 

papers, of the interaction; in particular the different dependence on mixing ratio and the 

counter-intuitive property that ΛΛ-P threads faster than ΛΛ-B, despite the larger steric 

bulk of its ancillary ligands. The requirement of a surprisingly long stretch of free DNA 

(more than one complete helix turn of AT base pairs) obtained in the fitted model for 

ΛΛ-P would reappear in later studies with AT-tract oligonucleotides. 

 

Figure 5.1 Dependency on binding ratio with AT-DNA. (a) Normalized luminescence 
intensity after mixing poly(dAdT)2 with ΛΛ-B (black) or ΛΛ-P (grey) at [complex]/[base 
pair] = 1/8 ( ), 1/16 ( ), 1/32 ( ) and 1/64 ( ) at 25°C. (b) The logarithmic (ΛΛ-B) 
and inverse (ΛΛ-P) scale give rise to linear plots at ratio 1/8, showing that the intensity 
increase follows first- and second-order rate laws, respectively. Note the different  
x-axis scales. Experiments performed in 150 mM NaCl, 1 mM sodium cacodylate 
buffer, pH 7.0. 
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New insights to the interaction with poly(dAdT)2 came with the study of an 

achiral analogue complex [μ-bidppz([12]aneS4)2Ru2]
4+ (S, Figure 5.2a) with comparably 

small non-aromatic, sulfur containing ancillary ligands. Intercalation in poly(dAdT)2 

could be confirmed by linear dichroism and SDS sequestering measurements  

(no detectable dissociation 30 min after addition at room temperature). S does not 

exhibit the “light-switch” properties that enable direct probing of interaction from the 

luminescence. We observed however, as reported in Paper IV, that the CD spectrum 

changed slowly after mixing, on a time-scale comparable to that of the luminescence 
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evolution of earlier studied dimers. The spectral evolution could further be analyzed by 

singular value decomposition (SVD), revealing two components well-defined in both the 

spectral and the time domain. The fastest component required a bi-exponential rate 

expression to be well described (τ1 ≈ 10 min and τ2 ≈ 70 min at [S]/[base pair] = 1/16). For 

comparison we also monitored the CD evolution of the four previously investigated 

analogues. SVD analysis showed that one component was enough to describe the 

spectral changes for these complexes. For ΛΛ-B the evolution could as expected be 

fitted with a single exponential, with a rate constant virtually identical to that obtained 

from fitting the luminescence trace at the same temperature. To our surprise, however, 

the spectral evolution of the three other complexes could also be fitted with a single 

exponential. Global analysis showed that CD and luminescence experimental data could 

be fitted well with one common and one (ΛΛ-P and ΔΔ-B) or two (ΔΔ-P) additional 

exponentials covering the slower phases of the luminescence trace. The interpretation 

we made is that threading of all four analogues in fact can be seen as a uni-molecular 

rearrangement, described by the CD evolution and the main, fast phase (τ ≈ 2.3 – 4.4 min 

at 25°C, [complex]/[base pair] = 1/16) of the luminescence evolution. The additional 

complexity of the luminescence data is attributed to a sensitivity of the quantum yield to 

slowly equilibrating redistributions (τ ≈ 0.5 - 10 h) of bound compounds along the DNA. 

One may speculate that the uni-molecular threading initially gives a stochastic 

distribution of complexes, whereas at thermodynamic equilibrium they are more 

clustered. 

 

a)

b)

S

F

 

Figure 5.2 Chemical structure of binuclear ruthenium complexes  
(a) [μ-(bidppz)([12]aneS4)2Ru2]

4+ (S) and (b) [μ-(dtpf)(phen)4Ru2]
4+ (F).  

dtpf = 4,5,9,12,16,17,21,25-octaaza-23H-ditriphenyleno[2,3:b,2,3:h]fluorene.  

The study also included the analogue [μ-dtpf(phen)4Ru2]
4+ (F, Figure 5.2b) with 

a completely rigid bridge, for which the binding could be analyzed in a way similar to 

that for B and P. Figure 5.3 summarizes globally fitted first inverse rate constants with 
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poly(dAdT)2 for all studied complexes. B and P exhibit (with the exception of ΛΛ-P at 

high mixing ratios) similar rates in comparison to S and, in particular, F (τ ≈ 17 min (ΛΛ) 

and 22 min (ΔΔ)). To conclude, the threading step of B, P and F into poly(dAdT)2 

follows 1st-order kinetics and can be described as a uni-molecular rearrangement. 

Threading of the non-luminescent S is more complex, requiring a bi-exponential rate 

expression. As illustrated by Figure 5.3, the hydrophobicity of the coordinated ion 

appears more critical to the threading through the base stack, than its size and chirality. 

Also, rotational freedom of monomers allows a more efficient threading (compare τ of P 

and F: ×3.7 (ΛΛ) and ×9.8 (ΔΔ) at [complex]/[base pair] = 1/16). 
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Figure 5.3 The rate of threading AT-DNA. The first inverse rate constant τ1 obtained 
from global fitting of CD and luminescence data of the binding of B, P, F (chiral) and S 
(achiral) to poly(dAdT)2 at [complex]/[base pair] = 1/8 (black), 1/16 (grey) or 1/32 
(white) at 25°C. For the non-luminescent S only CD data was fitted. Experiments 
performed in 150 mM NaCl, 1 mM sodium cacodylate buffer, pH 7.0. 

5.1.2 The Thermodynamics of Threading Mixed Sequence DNA 
Normally thermodynamic parameters for DNA–ligand interactions are 

estimated from experimentally determined equilibrium binding isotherms. Assessing the 

energetics of the rearrangement from groove binding to intercalation of P and B is 

however not straightforward due to the extremely long equilibration times. 

Thermodynamic parameters can alternatively be determined from kinetic data, which in 

case of the association event can readily be obtained from the luminescence increase 

after mixing. A common way to study the dissociation of cationic ligands is to add an 

excess of an anionic sequestering agent such as SDS to an equilibrated sample of DNA 

and ligand. SDS forms micelles at concentrations above the CMC, aggregates which act 

as a hydrophobic sink for ligands free in solution. Addition will accordingly shift the 
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equilibrium by reduction of the concentration of unbound ligand. As the sequestering is 

diffusion controlled, the dissociation from the DNA will be the rate limiting event. 

Electrostatic repulsion has further been assumed to prevent any interaction between 

SDS and DNA. However, Westerlund et al. showed that SDS in fact catalyzes the 

dissociation of the threading intercalators,124 making accurate estimation of the intrinsic 

rate for our system difficult. 

Part of the problem was solved when we started to look at competitive binding 

to calf thymus DNA and poly(dAdT)2, whereupon an alternative way to probe 

dissociation was discovered. The experiments showed that binding to poly(dAdT)2 was 

unaffected by the presence of the mixed sequence DNA in the sample. Subsequent SDS 

induced sequestering of the equilibrated sample resulted in dissociation characteristic for 

poly(dAdT)2, indicating that complexes were exclusively intercalated in the alternating 

polymer. The ΔΔ isomers of P and B have distinctly different luminescence properties in 

the two types of DNA. The quantum yield of ΔΔ-P is 5 times higher in poly(dAdT)2, 

whereas the emission of ΔΔ-B displays a 50 nm red-shift. By utilizing the spectral 

fingerprints we could conclude that the preference for poly(dAdT)2 not only was kinetic, 

but also thermodynamic: upon addition of poly(dAdT)2 to a pre-equilibrated sample of 

complex and calf thymus DNA, the spectrum was slowly shifted to that expected for a 

sample containing only complex and poly(dAdT)2. Since the association to the AT 

polymer is much faster (see sections below) than the dissociation from calf thymus 

DNA, the spectral evolution will furthermore effectively only reflect the non-catalysed 

rate of dissociation of complexes from intercalation sites in calf thymus DNA. The 

finding allowed us to assess a complete thermodynamic profile for ΔΔ complexes with 

calf thymus DNA. The results are reported in Paper III, which in addition address the 

mechanism of catalysis by SDS. 

Figure 5.4a shows the obtained calf thymus DNA association and dissociation 

(poly(dAdT)2 sequestering) traces at three temperatures (47, 52 and 57°C) with ΔΔ-P 

and ΔΔ-B. It illustrates the extraordinary properties of the system: ΔΔ-B displays a half 

life of dissociation of 2 h at 50°C. Extrapolated to physiological temperature 37°C  

(see below) the half life exceeds 18 h. For ΔΔ-P, corresponding half lives are around 6 

and 35 h, respectively. This is to our knowledge the slowest release reported for a non-

covalently DNA-interacting agent. For comparison the prototypical threading 

intercalator nogalamycin, known for its slow dissociation from DNA, exhibits a half life 

of about 30 min around physiological temperature.60 
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Figure 5.4 Kinetics of interaction with calf thymus DNA. (a) Association and 
dissociation of ΔΔ-P (top) and ΔΔ-B (bottom) at 47°C (black), 52°C (dark grey) and 
57°C (grey). For the dissociation, probed by scavenging with SDS (14.4 mM, traces 
to the left) or poly(dAdT)2 (equimolar amount, traces to the right), Y = 0 represent 
complete sequestering. (b) Arrhenius plots of rate constants obtained from association 
(open symbols) and dissociation (poly(dAdT)2 sequestering, filled symbols) of ΔΔ-P 
(squares) and ΔΔ-B (circles) at the three temperatures. Experiments performed at 
[complex]/[base pair] = 1/8 in 150 mM NaCl, 1 mM sodium cacodylate buffer, pH 7.0. 

Despite the multiphasic nature of the association and dissociation data in the 

AT system, with ct-DNA a single exponential proved in general to be sufficient to 

describe 90% of the spectral change well. Fitted rate constants for each event at the 

different temperatures gave a straight line in an Arrhenius plot (Figure 5.4b), allowing 

determination of activation energies ܧ  and the pre-exponential factors. Table 5.1 

summarizes acquired activation and equilibrium parameters at 50°C for ΔΔ-P and ΔΔ-B 

with calf thymus DNA. The threading process from groove-binding to intercalation is 

endothermic (by 76 and 33 kJ/mol for ΔΔ-P and ΔΔ-B, respectively), and hence 

entropically driven. This thermodynamic pattern (positive enthalpy and positive 

entropy) is also observed for intercalation of dppz monomers,98 and typical for 

hydrophobic interactions, where non-polar residues are made inaccessible to the 

aqueous environment. The favorable stacking interactions between an intercalated dppz-

moiety and the DNA bases are evidently overcome by other molecular interactions, 

giving a net positive enthalpy change. One may speculate that the disruption of groove-

binding electrostatic contacts is less well compensated for with the “non-intercalated” 

dppz-moiety in a treaded state. The resulting free energy change is similar for the two 

ΔΔ complexes, around -10 kJ/mol, implying that roughly 1 in 50 complexes remains 

groove bound at equilibrium at current conditions. The comparably small spectral 

differences unfortunately make this method less reliable for the ΛΛ complexes. Results 

indicate however that the ratio is much larger for this series. In this context it should also 
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be mentioned that both enantiomers of the rigid analogue F, which display slower 

association with poly(dAdT)2 than B and P, appear not to be able to thread mixed-

sequence DNA at all (no quantum yield increase and fast SDS sequestering). 

 ΔH‡ (kJ/mol) TΔS‡ (kJ/mol) ΔG‡ (kJ/mol) 
  ΔΔ-P ΔΔ-B ΔΔ-P ΔΔ-B ΔΔ-P ΔΔ-B 

Threading 164 133 86 60 78 73 
Unthreading 88 100 1 17 87 83 

    
  ΔH° (kJ/mol) TΔS° (kJ/mol) ΔG° (kJ/mol) 
  ΔΔ-P ΔΔ-B ΔΔ-P ΔΔ-B ΔΔ-P ΔΔ-B 

Equilibrium 76 33 85 43 -9 -10 

Table 5.1 Activation and equilibrium parameters for ΔΔ-P and ΔΔ-B threading 
rearrangement in calf thymus DNA at 50°C. Experiments performed at  
[complex]/[base pair] = 1/8 in 150 mM NaCl, 1 mM sodium cacodylate buffer, pH 7.0. 

It is further worth noticing that while the activation free energy of both 

threading and unthreading is similar for ΔΔ-P and ΔΔ-B, the enthalpic and entropic 

contributions differ considerably. For ΔΔ-P the higher forward enthalpy barrier is, 

compared to ΔΔ-B, compensated by a more favorable entropy change. The higher 

enthalpy barrier observed for the forward association could be expected for the bulkier 

phenanthroline complex, which intuitively would require a larger transient opening in 

the DNA duplex. Interestingly, however, in the reversed dissociation process, the 

smaller bipyridine complex exhibits the highest activation enthalpy barrier. A similar 

phenomenon is observed for ΛΛ-complexes with poly(dAdT)2; the association activation 

barrier is much higher for the bipyridine complex (ܧ = 132 kJ/mol) compared to the 

phenanthroline analogue (97 kJ/mol). Again it is apparent that sterical considerations 

are insufficient to explain the observations. In Paper II we suggest that the ability of a 

large phenanthroline ligand to stack with an unpaired base may be a factor that has a 

stabilizing influence on the transition state for the ΛΛ enantiomer.  

The reversed pattern for association and dissociation in the ΔΔ-series with 

mixed sequence DNA may further be interpreted in terms of the pre-equilibrium model 

proposed in Paper III, where the rearrangement from groove-binding (G) to 

intercalation (I) has to pass an intermediate externally bound state (E). The pre-

equilibrium between the two unthreaded states (E ֖ G) is formed instantaneously on 

mixing, orders of magnitude faster than the threading equilibrium (E ֖ I). In such a 

model the overall association activation parameters are dependent on the ∆לܪ of the 

groove-binding pre-equilibrium, and the parameters for dissociation will better reflect 

the actual threading/unthreading step. The larger difference between ΔΔ-P and ΔΔ-B in 

the forward process may then be attributed to the energetics of the groove bound state, 

for which the accommodation geometry of the two complexes is known to differ 

significantly. ΔΔ-P binds with an angle close to 45° to the helix axis, whereas ΔΔ-B in the 

meta-stable groove bound state is positioned almost parallel to the DNA bases.110 

Irrespective of mechanistic interpretation, it is apparent that the structure of the 

37 
 



ancillary ligands considerably can alter the relative enthalpic and entropic contribution 

to the activation and equilibrium free energy.  

5.2 Kinetic Selectivity of Interaction 
The redistribution of threaded complexes from mixed sequence DNA to 

poly(dAdT)2 shows that the complexes exhibit a strong preference for binding long 

stretches of alternating AT base pairs. This selectivity of interaction will be the focus of 

the remainder of the chapter. 

5.2.1 AT-DNA 
With the discovery that threading into poly(dAdT)2, in sharp contrast to that 

into natural DNAs, was efficient also at room temperature, came the understanding that 

the mechanisms of recognition extend beyond those of regular equilibrium binding. If 

the rearrangement was to be dictated by direct read-out through short-range contacts 

only, favorable sites would not be infrequent in mixed sequence DNA. The kinetic 

preference for polymeric AT-DNA is reported in Paper II, results which are followed up 

in Paper V with studies with AT-tract oligonucleotides. 

As mentioned earlier, [Ru(phen)2dppz]2+ displays a weak preference for AT-

DNA (∆∆G4.3- = ל kJ/mol) and only a slightly higher affinity for the Δ enantiomer with 

calf thymus DNA (∆∆G1.6- = ל kJ/mol).95,98 Figure 5.5 shows the dramatic increase in 

discrimination that results from connecting two dppz monomers to a bidppz complex. 

While both enantiomeric forms of P and B intercalate poly(dAdT)2 within a few minutes 

at 25°C, binding to calf thymus DNA at 50°C requires very long equilibration times and 

displays a much greater variation. In the Δ-series B intercalates faster than P (as 

estimated from half life of intensity increase: t1/2 = 11 min and 45 min, respectively). In 

the Λ-series the difference is larger, but intriguingly with opposite order (t1/2 = 132 min 

and 6 min for ΛΛ-B and ΛΛ-P, respectively). Two things are worth noting. Firstly, the 

sequence context plays the most important role, but again it is evident that specific 

contacts with intercalating complexes also influence the threading step. Secondly, with 

calf thymus DNA, for which threading is a very improbable event, the structural 

discrimination is much stronger. The activation energies for ΛΛ complexes with 

poly(dAdT)2 mentioned above could also be used to extrapolate kinetic traces for 

binding, permitting a direct comparison to calf thymus DNA binding at 50°C. For ΛΛ-B 

the t1/2 ratio for association exceeds three orders of magnitude (∼2500), whereas the ratio 

for ΛΛ-P is less extraordinary, around 65. Although the more complex kinetics of the 

ΔΔ-complexes with AT-DNA precluded a reliable extrapolation to 50°C, the activation 

parameters obtained for the ΔΔ-complexes with calf thymus DNA could be used to 

assess a rough t1/2 ratio at 25°C. The ratio for ΔΔ-P estimated from such extrapolation is 

almost as large as that for ΛΛ-B, whereas that for ΔΔ-B is similar to that for ΛΛ-P  

(t1/2 ratio of 1600 and 65, respectively, see Table 5.2). 
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Figure 5.5 Kinetic discrimination between AT and mixed sequence DNA. Intercalation 
kinetics of P (upper panel) and B (lower panel) at 50°C ( ), 37°C ( ) and 25°C ( ). 
Colour coding: ΛΛ binding to poly(dAdT)2 (red), calf thymus DNA (black); ΔΔ binding 
to poly(dAdT)2 (blue) and calf thymus DNA (green). With calf thymus DNA at 37°C the 
final intensity was determined after further 18 h at 50°C. For poly(dAdT)2 the 37°C 
and 50°C curves of the ΛΛ complexes were calculated by using obtained activation 
energies (see text). Experiments performed at [complex]/[base pair] = 1/16 in 150 mM 
NaCl, 1 mM sodium cacodylate buffer, pH 7.0. 

Complex 
Threading 

Calf thymus DNA 
(50°C) 

Threading 
Poly(dAdT)2  

(25°C) 
Ratio 

ΛΛ-B 132 3.4 2500a 
65a ΛΛ-P 6.1 1.8 

ΔΔ-B 11 3.9 1600b 
ΔΔ-P 45 2.8 65b 

Table 5.2 Approximate half life (min) of ruthenium complex threading determined from 
luminescence intensity increase after mixing with calf thymus DNA at 50°C or 
poly(dAdT)2 at 25°C. aHalf life ratio determined from extrapolation of poly(dAdT)2 
kinetics to 50°C. bHalf life ratio determined from extrapolation of calf thymus DNA 
kinetics to 25°C. Experiments performed at [complex]/[base pair] = 1/16 in 150 mM 
NaCl, 1 mM sodium cacodylate buffer, pH 7.0. 

The threading agent nogalamycin also intercalates at a higher rate (50 times) at 

AT-sites compared to GC-sites. However, as the dissociation rate is also higher (160 

times), the antibiotic actually exhibits a preference for GC-DNA at equilibrium.59,60 

Even though we are unable to measure intrinsic dissociation rates from poly(dAdT)2, we 

know that the dimers indeed have a strong thermodynamic preference for poly(dAdT)2 

as shown in the competition experiments described earlier. The relatively small 

differences in SDS induced dissociation kinetics between poly(dAdT)2 and ct-DNA 
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further indicate that, even if rates are severely overestimated, that this preference mainly 

reflects differences in the association rate. 

In Paper II we also included a preliminary study with AT-tract 

oligonucleotides. The results indicated that a surprisingly long stretch of AT base pairs 

was required for efficient threading. This phenomenon was studied in detail in Paper V, 

where we reported the binding to a series of HEG-linked hairpin oligonucleotides 

containing a central tract of 6 to 44 AT base pairs flanked by GC-ends  

(5´-CCGGXGGCC-HEG-GGCCXCCGG-3´, X = (TA)3 to (TA)22, where TA indicates 

T-A base pair followed by a A-T base pair and HEG = hexaethylene glycol). The HEG 

link has a stabilizing effect on the duplexes, allowing studies at elevated temperature, 

and made the melting temperature practically invariant of oligonucleotide length  

(Tm  ≈  66°C for the whole series).  

Traces obtained at 37°C for B and P in ΔΔ and ΛΛ conformations with hairpins 

having 10, 14 and 22 AT base pair tracts are given in Figure 5.6, together with the traces 

for DNA polymers poly(dAdT)2 and calf thymus DNA. For the shorter 6 base pair tract, 

we observed low and unaltered emission, indicative of inefficient threading. Increasing 

the length to 10 base pairs gave a very slow increase, with rate comparable to that with 

calf thymus DNA. It should be noted that the differences among analogues are 

conserved, with ΛΛ-P exhibiting a considerably faster equilibration time (t1/2 ≈ 20 min) 

than ΛΛ-B (t1/2 ≈ 5 h).  
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Figure 5.6 AT-tract length dependence of threading. Luminescence after mixing (a) 
ΛΛ-B, (b) ΛΛ-P, (c) ΔΔ‐B or (d) ΔΔ-P with DNA polymers or HEG-linked 
oligonucleotides at 37°C normalized to final/maximum intensity. Coding as indicated in 
figure. Concentrations: [HEG-linked duplex] = 1 μM, [Ru-complex] = 1 μM, 
[polynucleotide bases] = 36 μM. Experiments performed in 150 mM NaCl,  
1 mM sodium cacodylate buffer, pH 7.0. 
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The most spectacular effect was however observed when the tract length was increased 

by another four base pairs: with the 14 AT base pair tract, the half completion times for 

the four complexes decreased by a factor between 65 (ΔΔ-P) and 180 (ΛΛ-B), 

approaching those obtained with the AT polymer. Further increase in tract length to 22 

base pairs only moderately increased the rate. Evidently, in terms of the association 

kinetics, 10 to 14 AT base pairs is a critical interval for efficient threading. 

The dissociation process for the AT-tract oligonucleotides could also be 

successfully monitored by poly(dAdT)2 sequestering. In contrast to the almost 2 orders 

of magnitude difference in the forward threading rate for ΔΔ-P, the rate of unthreading 

was only slightly affected in the critical length interval. With t1/2 of around 1 h for both 10 

and 14 AT-tracts at 50°C, the dissociation process is around 5 times faster than with calf 

thymus DNA. By studying a hairpin duplex that had been cyclized by a copper-catalyzed 

“click” reaction, we could rule out any mechanism depending on the fraying end as a 

route to the intercalated state with GC-flanked AT-tracts. We also verified that the “rate 

leap” was insensitive to mixing ratio and temperature. An interesting observation is that 

even with a 44 AT base pairs tract, the luminescence increase does not completely mimic 

that for poly(dAdT)2. In particular, the increase is not monophasic with ΛΛ-B. SVD 

analysis of the CD spectral evolution also reveals a more complex mechanism of binding 

than for the AT polymer. The CD spectral signature is however similar whether 

threading into the oligonucleotides, poly(dAdT)2 or calf thymus DNA (Figure 5.7). 
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Figure 5.7 Induced CD signature in different DNAs. Main spectral component u1 
multiplied by its weight s1 for ΛΛ-B binding poly(dAdT)2 ( ) at 25°C, oligonucleotide 
with 22 ( ) or 6 ( ) A-T base pairs at 25°C, or calf thymus DNA ( ) at 50°C. With 6 
A-T base pairs no structured spectral component could be obtained even after the 
temperature was increased to 50°C for several hours. Concentrations:  
[Ru complex] = 2 μM, [HEG-linked duplex] = 2 μM, [polynucleotide bases] = 72 μM. 
Experiments performed in 150 mM NaCl, 1 mM sodium cacodylate buffer, pH 7.0. 

The alternating AT sequence pattern appears important for effective threading. 

With an “A-tract” oligonucleotide containing 14 successive adenine bases, a slower and 
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weaker luminescence increase is observed with ΔΔ-P, compared to that for the 

alternating tract of the same length, and after equilibration, complex is sequestered by 

SDS 10 times faster (Figure 5.8). Very quick sequestering is observed with tracts of 

alternating GC base pairs, sequences for which mixing with complex does not result in a 

luminescence increase, indicating that threading is practically completely prevented in 

such DNA (unpublished results).  
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Figure 5.8 Interaction with “A-tract” and GC-DNA. (a) Luminescence intensity after 
mixing ΔΔ-P and HEG-linked oligonucleotides at 37°C. (b) SDS (0.6 wt%) 
sequestering at 37°C after equilibration for 24h. Y = 0 represent complete 
sequestering. Coding as indicated in figure. Alternating 14 A-T base pair tract added 
for comparison (grey). Concentrations: [HEG-linked duplex] = 1 μM,  
[Ru complex] = 1 μM. Experiments performed in 150 mM NaCl, 1 mM sodium 
cacodylate buffer, pH 7.0. 

Optical tweezers stretching of DNA in the presence of ΔΔ-P has recently 

indicated that threading may not require the opening of more than a single base pair.125 

Still it is evident that a much longer stretch of base pairs influences the barrier to 

threading between the DNA strands. The thermal stability of duplexes is a cooperative 

property that could be envisaged to communicate distant sequence information, but 

melting temperatures of the alternating AT hairpins studied here are very similar. In 

Paper V we instead propose a pre-equilibrium model involving a change of the 

conformation around the site of interaction to account for the difference between 10 and 

14 AT base pairs. The model, outlined in Figure 5.9, is based on the experimental 

findings that (1) a DNA stretch considerably larger than the dimensions of the 

compound itself is involved; (2) threading occurs at alternating AT-stretches, sequences 

known to be especially deformable;126,127 (3) the similar dissociation rates. From 

computational models of the final intercalated geometry it seems likely that an intact B-

DNA conformation cannot accommodate both Ru(phen)2 moieties ideally. A wider, A-

DNA-like, conformation would presumably provide the non-intercalated moiety more 

favorable electrostatic contacts with the backbone (see figure). 
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Figure 5.9 Top: Schematic depiction of model of interaction with AT tract 
oligonucleotides. When a complex associates with the DNA it may, being rigid and 
highly charged, induce a structural change of the duplex. The energy cost of locally 
distorting the native DNA conformation will be dependent on the size of the tract. With 
a longer tract the junction tension to the unperturbed ends will be distributed over 
more easier-deformable AT base pairs. The subsequent threading step is 
predominantly affected by base pairs in close contact with the complex. As a 
consequence, the rate of formation of a threaded state is limited by both the pre-
equilibrium between two DNA conformations and the actual threading between the 
DNA strands, while the rate limiting step of dissociation is unthreading only. Assuming 
the pre-equilibrium, but not the threading step, to be dependent on the AT tract length 
increase from 10 (blue) to 14 (red) base pairs this model will lead to similar 
dissociation but different association rates. Bottom: Two models of the final 
intercalated binding geometry of ΔΔ-P in a 14 A-T base pair duplex, with the bridging 
bidppz ligand positioned deeply in the minor groove. Compared to B-form DNA (left), 
DNA in A-form DNA (right) allows more favorable accommodation of the Ru-complex. 

5.2.2 Unpaired Structures 
Threading into poly(dAdT)2 which, after thermal melting, had been rapidly re-

annealed (giving back 73% duplex as determined from the UV hypochromicity) was 

showed in Paper II only to give a slight increase the intercalation rate. This indicated 

that presence of static, imperfectly paired structures is not a dominant factor in the fast 

intercalation of the AT polymer. Nevertheless, the introduction of particular structural 

deviations in AT-tract oligonucleotides may, as reported in Paper V, exert a significant 

influence on the interaction. We modified a 14 A-T base pair tract in three different 

ways: one in which a central A-T base pair is replaced by a C-C mismatch and two other 
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in which 2 and 14 additional A/T bases are inserted in one of the strands, creating a small 

bulge and a large loop, respectively. Association and dissociation kinetics of imperfect 

duplexes with ΔΔ-P at 25°C are shown in Figure 5.10.  
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Figure 5.10 Interaction with unpaired DNA. (a) Luminescence intensity after mixing 
ΔΔ-P and HEG-linked oligonucleotides at 25°C. (b) Dissociation probed by 
poly(dAdT)2 sequestering (equimolar amount) at 50°C. Y = 0 represent complete 
sequestering. Coding as indicated in figure. Fully paired 14 A-T base pair tract added 
for comparison (grey). Concentrations: [HEG-linked duplex] = 1 μM,  
[Ru complex] = 1 μM. Experiments performed in 150 mM NaCl, 1 mM sodium 
cacodylate buffer, pH 7.0. Note the different x-axis scales.  

Code Threading 25°C Unthreading 50°C Ratio 
X=(TA)5 n.d.a 65 0.37b 
X=(TA)7 6.0 43 7.2 
(TA)7

cc 1.6 11 7.0 
(TA)8:7 7.1 25 3.5 
(TA)14:7 <0.1 57 680 

Table 5.3 Approximate half life (min) of ΔΔ-P threading and unthreading, determined 
from luminescence intensity change after mixing with DNA at 25°C and poly(dAdT)2 
sequestering at 50°C, respectively. aThe very slow association makes estimation 
difficult. bAssociation t1/2 at 37°C. Concentrations: [HEG-linked duplex] = 1 μM,  
[Ru complex] = 1 μM. Experiments performed in 150 mM NaCl, 1 mM sodium 
cacodylate buffer, pH 7.0. 

Table 5.3 gives the estimated t1/2 for association and dissociation, which also can 

be used to crudely assess the relative affinity. Even though these preliminary results 

need to be further explored before conclusions can be drawn with certainty, the results 

indicate that (1) small static openings in the form of mismatches increase the exchange 

rates without dramatically affecting the affinity, (2) small mobile bubbles in repeat 

sequences appear not to be the major rate-determining event and (3) large flexible 

openings can not only increase the threading rate considerably, but also stabilize the 

threaded state, leading to a large increase in affinity.  
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5.2.3 Supercoiling 
As a step towards biologically more relevant DNA targets, we started to 

investigate the interaction between the threading dimers and superhelical DNA. It is a 

well-known phenomenon that negative supercoiling increases the affinity of 

intercalators.23 Upon intercalation of ligands, negative superhelical turns are removed  

ߪ)  is increased because ݇ܮ  is decreased), leading to a decrease in superhelical free 

energy that contributes to enhance binding. As more intercalator is progressively bound, 

the effect on the binding constant is decreased, eventually matching the binding constant 

for linear DNA at  0 = ߪ. Figure 5.11 shows how the relative apparent binding constants 

for a supercoiled and linear topoisomer vary with ethidium bromide binding according 

to the method derived by Wu et al.128 Even though the effect on the equilibrium constant 

is significant, it is generally too small to direct intercalators to supercoiled targets in a 

useful manner - even at low binding density. 
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Figure 5.11 Relative ethidium binding constant for supercoiled and linear DNA as 
function of superhelix density σ. Ratio ܭ௦ ⁄ܭ  determined from the binding isotherm 
ratio derived by Wu et al. for high-twist (0.083- = ߪ) supercoiled DNA with 
ethidium.128  

In the last paper (VI) we used a 4331 base pair long plasmid DNA construct 

(T7 luc, 0.09- ≈ ߪ) to study how target supercoiling influences the kinetics of binding of 

ΔΔ-P. The topological effect could easily be isolated from sequence effects by 

comparison to the plasmid DNA linearized by restriction enzymes. The construct 

contains a gene encoding luciferase under the transcriptional control of the T7 RNA 

polymerase promoter, which directly allowed us to study the effect of bound complex on 

a coupled transcription/translation system. 

When mixing the linear form of T7 luc with ΔΔ-P at [ΔΔ-P]/[base pair] = 1/16 at 

50°C, a slow increase in luminescence was observed, as expected, similar to that with calf 

thymus DNA at the same conditions. With the supercoiled form, however, the kinetic 

trace was remarkably different. The intensity increased rapidly after mixing, but arrested 

abruptly after 5 minutes at 1/3 of the final intensity, and proceeded into a phase of even 
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slower increase than for that of the linear form (Figure 5.12). At lower mixing ratio 1/64 

with supercoiled DNA we obtained a trace in which the initial phase overlapped that at 

the high ratio, after which the intensity remained constant. The results suggest that the 

topological strain results in a biphasic behavior, where approximately 1 complex in 64 

base pairs is allowed to intercalate rapidly, but that saturation above this threshold is 

kinetically hindered. 

0 10 20 30 40 50 250 500 750
0

100

200

300

400

 

 

In
te

ns
ity

 (a
.u

.)

Time / min  

Figure 5.12 Kinetics of binding supercoiled DNA. Luminescence after mixing ΔΔ-P 
with linearized (black) and supercoiled (grey) T7 luc plasmid at 50°C at [ΔΔ-P]/[base 
pair] = 1/16 ( ) or 1/64 ( ). Experiments performed in 50 mM Tris, 100 mM NaCl, 
10 mM MgCl2, pH 7.5.  

The pattern is evidently analogous to that for the equilibrium constant of 

intercalators with supercoiled DNA. The effect on the kinetics is however much larger. 

The t1/2 is almost 2 orders of magnitude lower with the supercoiled topoisomer at low 

mixing ratio, to be compared with Kobs,sc/Kobs,lin ≈ 1.5 for ethidium in the limit of low 

binding density. We further find it improbable that the threshold saturation behavior 

originates from complete relaxation of the DNA. An unwinding angle about eight times 

that of ethidium - approximately 200° - would be required to relax the DNA at ratio 

1/64. This leads us to suggest that other structural factors may be involved. Analysis of 

plasmid sequence does not indicate that extrusion of specific alternative structures such 

as those mentioned in the introduction is very probable. It is however conceivable that 

the plasmid still contains “weaker” segments where intercalation is more probable. We 

know from the studies of unmatched oligonucleotides that threading can be drastically 

facilitated at unpaired sites. It is not unrealistic that such spots on the DNA are 

saturated at relatively low binding ratios. 
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5.3 Effect on gene expression 
The plasmid construct can be utilized as a template for expression of firefly 

luciferase, an enzyme that catalyzes the ATP-dependent oxidation of a luciferin. The 

reaction produces light in proportion to the amount of luciferase, allowing estimation of 

the effectivness of the expression system. Paper VI reports the outcome of a series of 

measurements where the effect on transcription from the T7 luc plasmid by bound 

ligands was assessed by following the in vitro expression of luciferase. 

T7 luc plasmid (supercoiled or linearized) was mixed with ΔΔ-P at  

[ΔΔ-P]/[base pair] = 1/50 and, either directly or after pre-incubation, added to the 

expression reaction mixture containing the necessary nucleotides, amino acids, enzymes 

and cofactors. The relative luciferase concentration with time was estimated from the 

chemoluminescence intensity by addition of a reaction mixture aliquot to the luciferase 

substrate solution every 20 min.  
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Figure 5.13 Transcription activity determined from luciferase luminescence with time 
after adding linear (a) or supercoiled (b) T7 luc template to reaction mixture. Relative 
concentration was determined from the mean of two  measurements with 0.7 μg DNA 
alone ( ) or DNA pre-mixed with ΔΔ-P at [complex]/[base pair] = 1/50 and added 
either instantly ( ) or after incubation for 30 min at 50°C ( ) to the reaction mixture. 
Included as references are activity with 0.4 μg template DNA ( ) and (for the 
supercoiled DNA) activity with template pre-mixed with actinomycin D at  
[ligand]/[base pair] = 1/50 ( ). 

 Luciferase production is more efficient from the naked supercoiled template, 

showing the importance of supercoiling in the transcriptional control (Figure 5.13). The 

slower production observed with reduced amount of DNA further shows that the 

accessibility of the template is rate determining in this interval. Short pre-incubation 

samples which, from the kinetic characterization, are expected only to give groove-

bound ΔΔ-P, results in luciferase production that closely overlaps that of the naked 

template for the supercoiled as well as the linear plasmid. The findings indicate that the 

RNA polymerase displaces groove-bound complexes relatively easily. It also shows that 

presence of complex has small effects on the post-transcriptional steps. For samples pre-

incubated with ΔΔ-P at elevated temperature, we expect that a large fraction are 

rearranged to the threaded state with the supercoiled but not the linear DNA. This 
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correlates with the observed luciferase concentration profile; with the supercoiled 

template we see a luciferase synthesis that is significantly delayed and reduced, whereas 

for the linear form it resembles that with the naked DNA. The 

transcriptional/translational assay thus indicates that the threaded binding mode 

constitutes a larger obstacle to the total RNA synthesis process than unthreaded 

external binding.  

The inactivation at ratio 1/50 can be estimated to roughly correspond to a 30% 

reduction of the template available for transcription as judged from the production with 

reduced amount of template DNA. This effect is much smaller than that of actinomycin 

D at the same mixing ratio (see figure). ΔΔ-P may, like simpler intercalating and minor 

groove binding drugs, primarily interfere with initiation steps of transcription.55 For such 

molecules, the unwinding and subsequent strand separation that occurs as the RNA 

polymerase approaches a binding site has been suggested to induce fast dissociation 

which reduces the effect on the elongation phase. Once dissociated, a re-associated 

complex will be kinetically trapped at the external binding mode, limiting further 

interference with the transcriptional machinery. 
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 6. CONCLUDING REMARKS 
The work presented in this Thesis shows the intriguing way in which DNA interactions 

in the test-tube – and probably also in the living cell - may be controlled. It demonstrates 

how the sequence dependent conformation of the DNA gives rise to kinetically favored 

reaction paths which in a slowly equilibrating system, here exemplified by the threading 

of a bulky, charged metal centre through the DNA duplex, can result in a high degree of 

selectivity. It has however also been learnt that interactions can be multifaceted and that 

identifying and mechanistically interpreting the important factors, an ultimate aim in this 

particular work, is complex. Still, a number of important conclusions can be drawn, 

summarized below: 

 Both enantiomers of analogues P and B rearrange from groove-bound to 

threaded geometry in mixed sequences of DNA, but requires hours at elevated 

temperature to reach equilibrium. Alternating AT polymers, on the other hand, 

are intercalated within a few minutes at room temperature. The ratio of the 

forward rearrangement rates is estimated to vary between 65 (ΛΛ‐P) and 2500 

(ΛΛ‐B). 

 A systematic study with structurally well-defined hairpin oligonucleotides 

showed that the interval 10 to 14 alternating A-T base pairs is critical for efficient 

threading of P and B. This is a stretch of DNA considerably larger than the 

complexes themselves. The cooperativity of a conformational distortion around 

the site of interaction may be envisaged to communicate the distant sequence 

information. 

 The threading rate of ΔΔ-P into a negatively supercoiled plasmid at low binding 

density is approximately two orders of magnitude higher than into the cleaved 

linear form. The accelerated intercalation leads to partial inhibition of luciferase 

expression from the supercoiled plasmid construct. 

 The strong thermodynamic preference for long alternating AT-DNA can be 

utilized to probe the dissociation of ΔΔ-P and ΔΔ-B from mixed sequence DNA. 

Half-lives of dissociation are estimated to 38 and 18 h at physiological 

temperature, respectively. Access to dissociation kinetics allowed a complete 

thermodynamic characterization of the interaction with mixed sequence DNA, 

showing that the rearrangement from groove binding to intercalation is an 

entropically driven process. 

 By analysis of the evolution of the CD-spectrum, the generally multiphasic 

emission increase can be divided into the actual threading and subsequent 

rearrangement processes. It reveals that threading of flexible B and P and the 

rigid dimeric ruthenium complex F into poly(dAdT)2 follows pseudo 1st-order 

kinetics and thus can be described as a uni-molecular rearrangement. Threading 
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of the non-luminescent S, with smaller non-aromatic ancillary ligands, is more 

complex. 

 From comparison of threading kinetics of P and F with poly(dAdT)2 it is evident 

that the flexibility of the bridging ligand is an important factor. S threads 

considerably slower than B and P despite having smaller ancillary ligands, 

suggesting that hydrophobic ligands can promote the passage through the DNA. 

The AT-selectivity demonstrated by the binuclear ruthenium complexes in vitro 

theoretically make them interesting as leads for new drugs against parasitic protozoa 

with AT-rich DNA, such as the malaria parasite Plasmodium falciparum (85% A+T) or 

Trypanosoma bruncei and the other closely related kinetoplastid parasites that cause 

trypanosomiasis and leishmaniasis. Several challanges remain, however. Naturally, the 

selectivity and activity in living cells have to be properly assessed. Telling from the 

limited number of reports on the in vivo activity, relatively little is known about the 

cytotoxicity of ruthenium polypyridyl complexes in general. One major obstacle for 

binuclear complexes can however directly be identified. Due to the high permanent 

charge, membrane penetration is poor as illustrated by the micrographs in Figure 6.1.  

 

Figure 6.1 Confocal laser scanning microscopy imaging of binuclear ruthenium 
complex enriched in membrane of CHO-K1 cells, displaying the inability of the highly 
charged complexes to effectively diffuse to the nucleus.  

Improved bioavailability could possibly be attained by reducing the net charge by use of 

negatively charged ligands, or by use of alternative metals such as rhenium(I). One could 

also imagine that the knowledge acquired from studies of ruthenium complexes 

eventually will aid the development metal-free threading agents exhibiting similar DNA 

binding characteristics. On a shorter term the binuclear ruthenium complexes could be 

optimized for use as in vitro site-selective luminescent probes of nucleic acids, with 

typical diagnostic applications in sequence analysis and mutation detection. 
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