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Abstract

The major theme of this thesis is nonlinear programming with an em-
phasis on applications and robust models. The thesis has two parts. The
first three papers comprise the first part. Here, we discuss robustness prop-
erties of optimal solutions to a variety of models. The first two papers
concern optimization models known as Stochastic Mathematical Programs
with Equilibrium Constraints (SMPEC). These are stochastic optimization
problems that have two levels of “decisions”: a lower-level one and an upper-
level one. The lower-level problem is in the form of a variational inequality,
and the upper-level objective function is either the expected value of an ob-
jective or the Conditional Value-at-Risk (CVaR). We also consider multiple
objective extensions of the SMPEC framework. The stability of optimal
solutions due to changes in the underlying probability distribution is ana-
lyzed. We also present two applications together with numerical examples:
Intensity Modulated Radiation Therapy (IMRT) and traffic network design.

In the third paper, we consider a nonlinear program with multiple objec-
tives which are subjected to uncertainty in the variables and in the param-
eters. Here we do not use a stochastic programming approach, but instead
we wish to analyze robustness as a post-process. Given a particular decision
maker, we use his or her preferences to assess the robustness of optimal so-
lutions. This is accomplished through the construction of a utility function
which reduces the multi-objective problem into a single-objective problem.

The second part of the thesis, corresponding to the fourth paper, con-
cerns the problem of numerically folding an airbag. We approximate the
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airbag geometry by a quasi-cylindrical polyhedron, and we show how Origami
mathematics can be used to derive a folding pattern that will collapse the
polyhedron. The actual folding problem is solved through the formulation of
a nonlinear program whose optimal solution corresponds to the coordinates
of the vertices of the flattened polyhedron. The method is demonstrated on

a computer model of a passenger airbag.

Keywords: optimization, robustness, multi-objective optimization,
stochastic mathematical programs with equilibrium constraints, conditional
value-at-risk, IMRT, traffic network design, airbag folding, Origami
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1 Introduction

The purpose of the following sections is to introduce the topics of the papers
of the thesis. The material is highly condensed, and we only consider those
topics that arise in the papers. That is to say, the following sections are not
a complete introduction to nonlinear optimization.

The introduction is organized in the following way. The first section
of continuous nonlinear programming provides some theory and algorithms.
After that, we summarize and comment each of the appended papers. These
sections also serve as introductions to the papers with some background
information.

2 Nonlinear programming: An introduction

Already in the 17th and 18th century, some aspects of mathematical pro-
gramming were considered with the works of Bernoulli, Leibnitz, Euler and
Lagrange, among others. In particular, during this time, Euler and La-
grange developed the theory of calculus of variations. Earlier, Johann and
Jacob Bernoulli posed the Brachistochrone problem, which can be solved by
calculus of variations. It can be formulated as follows: A bead slides from
point A to point B in a vertical plane; find the optimal shape of the curve
for the bead such that it reaches point B in minimum time assuming that
it starts from rest and is accelerated only by gravity.

In general, a mathematical program posed in a finite dimensional space
can often be formulated with a vector of decision variables x € R® whose
numerical values are constrained to some set S C R", and with a function
f : R* —» R which takes the value of z as input and which should be
minimized, i.e.,

minimize f(z).
TES
The problem should be interpreted in the following way: we seek a feasi-
ble vector z € S such that f attains its minimum (optimal) value over its
domain. Such a vector is denoted the optimal solution. It is common to de-
scribe S by the set { x| gi(z) <0, i =1,...,mg, hj(z) =0, j=1,...,my },
where g; and h; are constraint functions of the same type as f. In this case
the optimization program reads

minimize f(z),
T

(NLP) 4 subject to gi(z) <0, i=1,...,my,,
hj(z) =0, j



If the objective function f or any of the constraint functions g;, h;, are
nonlinear, the optimization problem is a nonlinear program.

The formulation (NLP) is not as general that it includes all nonlinear
programs. For example, mathematical programs with complementarity con-
straints (MPCC), that are special cases of the problems studied in Paper I,
are formulated as

minimize f(z),
(MPCCQC) < subject to g(z) < 0™,
07 < r(z) L s(z) > 0P,

where a L b < aTb = 0, for vectors a and b of the same dimensions.

Since the goal of optimization is to find the optimal solution, the notion
and theory of optimality is essential. We distinguish between two types of
optimality: local and global optimality. A feasible solution z* is a globally
optimal solution if

f(z*) < flz), Vzes.

A feasible solution z* is a locally optimal solution if there exists an ¢ > 0
such that

f(z*) < f(z), VzeSnNB.(z"),
where B.(z*) = {z | ||z — z*|| < €}.

The theory of Karush, Kuhn and Tucker (KKT) provides a convenient
way of characterizing optimality for continuously differentiable nonlinear
programs. We use a non-smooth version of the KKT conditions in Paper 1
to derive robustness for optimal solutions. To use the KKT as optimality
conditions, it is required that the constraint set S has a certain regularity.
A constraint qualifications (CQ) is used to verify this regularity. There
are several constraint qualifications, and depending on the formulation of
the problem, one may be easier to check than the other. For example, the
requirement of linear independence of the constraint gradients is perhaps
the most immediate CQ. Consider (NLP) and let A(z) = {7 | ¢i(z) = 0}
denote the active set of the inequality constraints at some feasible solution
z. The linear independence constraint qualification (LICQ) holds at z if the
vectors

{Vygi(z") |i€ A(z*) } U{Vhj(z") | j=1,...,mp },

are linearly independent. Another C(Q is the Mangasarian—Fromovitz con-
straint qualification, which is used in Paper 1. It holds at z if the vectors

are linearly independent, and there exists a vector d € R" such that

Vhi(@)Td=0,5=1,...,mp,  Vg(z)'d<0,ic A).



Naturally, if LICQ holds for a solution Z, then MFCQ also holds for that
solution Z. The most general constraint qualification is the Abadie CQ. (All
other CQs imply that the Abadie CQ holds.) Bazaraa et al [BSS06] provide
a detailed list of constraint qualifications and their relations.

A feasible solution Z to (NLP) is referred to as a KKT-point if there exist
multipliers p € R} and A € R™ such that p;g;(Z) =0 for i = 1,...,my
and

Vi(z)+ i wiVgi(Z) + Z )\thj(:i) =0". (1)

If a constraint qualification such as LICQ or MFCQ holds, then each local
optimal solution is a KKT-point ([BSS06, Theorem 4.37]). If the functions
fand g;, i =1,...,mgy, are convex and h;, j = 1,...,my, are affine, then a
KKT-point is a global optimal solution ([BSS06, Theorem 4.38]).

If we introduce the Lagrangian L : R* x R™s x R™» — R with

L)) = F@) + 3 pigi(a) + 3 Ajhs (@),
i—1 j=1

we see that the KKT-condition (1) is equivalent to stationarity of the La-
grangian in terms of . With this in mind, we often use the term stationary
point for a KKT-point.

We would like to point out that optimality conditions are not only used
for checking optimality. Many optimization algorithms, such as the sequen-
tial quadratic programming algorithm in Section 2.2, are in fact based di-
rectly on these conditions.

Due to the nature of optimization problems, most problems need to be
solved numerically with an iterative scheme. We will concentrate on two nu-
merical methods that are used in the articles in this thesis: the augmented
Lagrangian method and sequential quadratic programming. They are both
applicable to nonlinear programs with continuously differentiable objective
and constraint functions. There are of course many other popular numeri-
cal methods. For example, interior-point methods ([FGW02]) for nonlinear
programs have gained substantial interest over the last years.

2.1 Augmented Lagrangian method

The augmented Lagrangian method is an exterior penalty method which
means that we penalize infeasibility. If all constraints are penalized, the
nonlinear program reduces to an unconstrained problem; however, in some
cases it may be advantageous to only penalize some of the constraints. The
penalty is controlled by a penalty parameter and at each major iteration,



a subproblem is solved. By increasing the penalty successively between
the major iterations, the iterates are forced towards feasibility in the end.
We consider the problem (NLP) without inequality constraints and with a
general closed constraint set X C R" that is not penalized:

mil;ér)r(lize f(z), o)
subject to hj(z) =0, j=1,...,my.

(Note that any inequality constraints can be included in (NLP) with slack
variables and with simple bounds added to X.) Let

h(z) := (h1(z),-.- ,hmh(x))T),
Vh(z) := (Vhi(z),..., Vhpy, (z)).

We define the augmented Lagrangian function L. : R* x R — R by
Le(z,X) = f(z) + XTh(z) + §[h(2)]?,

where ¢ > 0 is a penalty parameter and X is the multiplier vector. The
augmented Lagrangian is identical to the Lagrangian for the problem

« . . 2 h 2
minimize  f(z) + 5[|h(z)|,
subject to hj(z) =0, j=1,...,my.

This problem has the same (global) optimal solution as problem (2), but
the objective function has been augmented with a penalty term. Inciden-
tally, this form reveals that there is a connection between the augmented
Lagrangian method and the dual method known as the proximal minimiza-
tion algorithm ([BT89]). The idea of the augmented Lagrangian method is
to solve a sequence of problems of the form

minimize L. (z, \F), )
subject to z € X,
where {)\*} is a bounded sequence and {c*} is a positive increasing sequence
of penalty parameters with ¢¥ — oco. The optimal solution z* to (3) is used
as a starting point for the next problem with \¥*! and ¢#*!. It can be
shown that globally optimal solutions to the subproblems (3) converge to a
global optimal solution to (2) ([Ber82, Prop 2.1]) under weak assumptions.
Convergence can also be proven for local optimal solutions as well as near-
stationary solutions ([Ber82, Prop 2.2, 2.3]).
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If we choose A = 0%, the augmented Lagrangian method reduces to the
standard exterior quadratic penalty method. This method may suffer from
ill-conditioning, which the partial Hessian reveals:

V2, L.(z,0™) = V2f(z) 4+ ¢Vh(z)Vh(z)T +¢c i hi(x)V?h;(z).

If the value of ¢ is large and x is almost feasible, the middle term dominates,
and the ill-conditioning arises since it is a rank mj; matrix (at best).

By properly choosing A¥, this ill-conditioning can be avoided. From the
expression of the partial gradient of the augmented Lagrangian,

ViLek (2, \F) = V£(x) + Vh(z)(AF + ch(z)),
and the KKT-conditions with Lagrange multipliers \*, we see that \¥ should
be chosen as
N =\ + Fh(h).
It can be shown ([Ber82]) that if A is updated with
AL = XE 4 Fh(ah),

then there is a threshold value of c¢¥ which gives local convergence, and also
that the convergence is accelerated from linear to superlinear speed if also
& — 0.

The augmented Lagrangian method is the basis of the optimization soft-
ware LANCELOT [GOTO04]. It uses a gradient projection algorithm (see e.g.
[NWO06]) for solving the possibly bound-constrained subproblems (3). The
software LANCELQT is used in Paper II to solve the problems in intensity
modulated radiation therapy. LANCELOT was chosen mainly because it is
written in Fortran 90, as is the subroutines for the application, and because
it can solve large-scale problems in a reasonable time.

2.2 Sequential Quadratic Programming

Sequential quadratic program (SQP) is a popular method for small and
medium-scale nonlinear programs (NLP). The method proceeds by solving
a sequence of quadratic problems that are designed to compute search di-
rections. SQP can be seen as applying Newton’s method to solve the KKT-
conditions (1) as a system of equations. Let z* be the current iterate, and
d* the next search direction. The quadratic subproblems are of the following
form

minimize @) TBEd" + (d¥)TV £ (2),

subject to Vg(zF)Td + g(z*) < 0™, (4)

Vh(z*¥)Td + h(zF) = 0™,



where B is the Hessian of the Lagrangian or an approximation of it. Con-
sider the KKT-conditions for the problem (NLP) without the inequality
constraints as a system of equations

F(z,)\) = (Vf(‘f)h_(xyh(w)A) — ot

If we were to apply Newton’s method at the current iterate (z*, \¥), we get

ngL(a:k, NE)  Vh(zh) dk —Vf(zF)

( Vh(zk)T 0 ) ()\’““) - ( —h(z*) ) ’ 5)
where zFt! = % 4 d*. If we assume that the constraint Jacobian Vh(z*)
has full row rank, and that the Hessian of the Lagrangian is positive definite
on the nullspace of the linearized constraints, then the solution d* and \*+1
to equation (5) is equal to the optimal solution and the optimal Lagrange
multipliers respectively, to problem (4) provided B* is chosen as the Hessian
of the Lagrangian.

Local convergence of the SQP method can be established by assuming
that LICQ and strict complementarity hold as well as a second-order re-
quirement on the Hessian of the Lagrangian (see [BT95] for details).

To expand the radius of converges and to stabilize the algorithm, there is
an enhancement called globalization strategy that can be used. One such is
to use a merit function. The merit function measures progress in each itera-
tion by incorporating both the objective value and the level of infeasibility.
One popular choice is the non-differentiable function

Mg mp
$p(z) = f(2) +p | Y llmax{0, gi(@)}l1 + D Ihjlls | , (6)
i=1 j=1
where || - ||; denote the /1-norm and p is a penalty parameter. This function

is exact in the sense that, under a second-order requirement on the Hessian,
there is a threshold value for p for which a local minimum to (NLP) is a local
minimizer of ¢, ([BSS06, Theorem 9.3.1]). Instead of taking a step with unit
step length 57! = zF + d¥, we perform a line search using backtracking.
Let ol = 1/2!, for iterations [ = 1,2,..., and let ¢ < 1 be a small number.
Typically, the step length o is accepted, i.e., z¥t! = zF + oldF, if

¢p(z* + ald*) < ¢,(a*) + o0/ Dy (a"; d"),

where D¢, (z*; d*) denotes the the directional derivative of ¢, along d*.
Another strategy is to use a “filter” ([FLT02]). The objective value and
the level of infeasibility is stored for all iterates in a filter, and in a line



search, the step length is accepted if the iterate passes the filter. The filter
is based on multi-objective optimization. (see Section 2.3). The iterate is
said to dominate if both the objective value and the level of infeasibility is
less than the other iterates in the filter. A new iterate is accepted if it is not
dominated by any other stored iterate.

The optimization software SNOPT [GMS05] implements an SQP method
and it is used in Paper II to solve the problem in traffic network design.
SNOPT was chosen because it is able to solve large-scale problems in rea-
sonable time and because it is reported to be successful at solving mathe-
matical programs with equilibrium constraints (MPCC) ([FL04, FLRS06]),
which is the problem that the modeling of the traffic network design problem
results in. The MPCC need to be converted into standard form in order to
be solved by SNOPT, and we used the formulation:

minimize f(z),

E
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In Paper IV, we use an in-house implemented (in Fortran 90) SQP
method. We use the function (6) as a merit function and solve the quadratic
programs with a primal-dual interior-point method. The main computa-
tional cost, at each iteration, is to solve a large linear system of equations
that have a symmetric indefinite matrix. We use the software package PAR-
DISO [SG04, SGO06] to solve these equations.

2.3 Multi-objective problems

There are often several objectives that are considered for minimization for
a practical optimization problem. The application of radiation therapy in
Paper II is an example of this. When faced with several objectives, we may
consider a multi-objective optimization problem (MOP), which we present
in the following form

min%cmize (fi(z),..., fu(z)),

subject to g(z) < 0™9,

(MOP) {

where f; : R* - Rfori =1,...,k and g : R* — R"™. To make sense of
the minimization of the vector of objective functions, we have to introduce
specific notions of “optimality”. A feasible solution Z is called a Pareto
optimal solution if there are no feasible solutions z such that f;(z) < fi(z)



for i =1,...k with f;(Z) < fj(z) for at least one j. The set of all Pareto
optimal solutions is called the Pareto optimal set P. The corresponding
objective values form a “front” which is called the Pareto optimal front f(P).
Furthermore, a feasible solution Z is called a weakly Pareto optimal solution
if there are no feasible solutions z such that f;(z) < f;(Z) fori =1,...k.

Example 2.1 Consider the problem to minimize (12, (z—1)2) forz € [-1,2].
The Pareto optimal set is P = [0,1], and the Pareto optimal front is shown
in Figure 1.

25

f£(X)
— (P

15F

f2

0.5

i I
0 0.5 1 15 2 25

fi

Figure 1: The objective values f(X) and the Pareto front f(P) for Exam-
ple 2.1.

Solution methods for multi-objective problems are designed to find the
Pareto optimal set, or at least a representation of it. We can distinguish
between two categories of methods: one targets the multi-objective problem
directly and iteratively finds presumed Pareto points. In the other category,
the multi-objective problems are reformulated as single-objective problems.

The genetic algorithm NSGA-IT [DAPMO0O0] is an example of the first cat-
egory. Since genetic algorithms compare function values for different gener-
ations, it is natural to use dominance for several objective functions instead.
The algorithm NSGA-IT is used in Paper III. In the second category, we
consider two methods: the weighted sum method and the epsilon-constraint
method. In the weighted sum method, the single-objective problem is formed
from a linear combination of the objective functions

k
minimize Z w; fi(z),
x
=1

(7)

subject to  g(z) < 0™,



where w; > 0 for ¢ = 1,...,k. The idea is to vary the coefficients (or,
weights) w which produces a set of Pareto optimal solutions. An advantage
of this method is that its implementation is simple. The downside is that
only convex Pareto optimal fronts can be resolved ([Mie99]), and it is difficult
to find a good representation of the front since the mapping from the weights
strongly depends on the functions involved ([DD97]).

In the epsilon-constraint method, all but one objective f; are placed as
additional constraints:

minimize  f;(z),
T

subject to  fi(z) <&, i=1,...,k, i# ], (8)
g(z) <079,

where € € R¥~1. We are able to resolve the Pareto front by discretizing each
g; and solve (8) for all combinations of ¢;. The method has the advantage
that the problem of resolving the front is easier than with the weighted sum.
A downside is the added complexity with the additional constraints. We
use the epsilon-constraint method in Paper II for the problems in intensity
modulated radiation therapy.

For further information on multi-objective problems, see, e.g., the mono-
graphs [Mie99, Ehr05].

3 Summary of and comments on the papers

The presentation of each paper is subdivided into three sections: back-
ground, contributions and future work.

3.1 Paper I: On the robustness of global optima and station-
ary solutions to stochastic mathematical programs with
equilibrium constraints, part 1: Theory

3.1.1 Background

We consider a special type of nonlinear program that is called stochastic
mathematical program with equilibrium constraints (SMPEC). Its deter-
ministic version is the MPEC.

The idea of this paper comes from an article by Evgrafov and Patriks-
son [EP03], in which structural optimization problems, modeled as SMPECs,
were studied and a few basic results on robustness were obtained. We first
had the idea that we could obtain results on robustness for an application in
intensity modulated radiation therapy (see Paper II), but we later realized
we could remain in the more general setting of the SMPEC.



MPECs are hierarchical optimization problems, in which the problem
comprises two levels of “decisions”: a lower-level one and an upper-level
one. We also consider two types of variables: decision variables and response
variables. The decision variables parameterize the lower-level problem; its
solution is the value of the response variables. The lower-level problem is
formulated as a variational inequality. The problem has found its use in
many applications such as traffic network design [Ral08], structural opti-
mization [EP03, EPP03], chemical engineering [BRB0§], etc.

The MPEC is formulated as the problem to

minimize f(z,y),
(zy)

(MPEC) subject to x € X,
y€C(z), F(z,y) " (yo—y) >0, Viyo € C(x),

where f : R x R™ —» R y € R™, C(z) C R™ is a closed convex set
and F(z,-) : C(z) —» R™ is smooth. When the solution to the lower-level
problem is non-unique for a fixed z, the model should be interpreted as y
being chosen such that the objective function is minimized given .

If we let C' = R, then the variational inequality becomes a comple-
mentarity constraint, 0™ < F(z,y) L y > 0™. Mathematical programs
with complementarity constraints (MPCC) are notoriously difficult since
they lack standard constraint qualifications ([SS00]). This suggests that
also more general MPECs may be difficult to solve.

For additional general information on variational inequalities we refer to
Facchinei and Pang [FP03a, FP03b], and Dontchev and Rockafellar [DR09].
For recent work on the numerical solution of MPECs, we refer to [FLRS06,
LLCNO06].

As an example of an application of MPEC, we consider the Stackelberg
game ([VS52, LPR96]), which is a leader-follower game and an extension of
the Nash game. One of its uses is in electric transmission pricing polices
[HK92]. We assume that there are m players, called followers, and one
leader. Each follower has a strategy y; € Y; C R™ and wishes to minimize
its economic cost, given the decisions of the other players. The leader also
wishes to minimize its economic cost f by choosing a strategy z € X C R".
Let ¢;(z&ven, -,yil;’en) : Y; — R denote the economic cost for follower 7 and
let us assume it is convex and continuously differentiable. We also let Y;(x)
be a closed and convex set. Each player observes the decisions of the other
players and react optimally accordingly. A strategy y* € H;nzle(ac) is
called a Nash equilibrium if yf € argmin{q&i(xgiven,yi,yygéiiven) | vi € Yi(z)}
fori=1,...,m.

The leader can anticipate the decisions of the other players (the fol-

10



lowers) when choosing optimal strategy x. Let f(z,y) denote the leader’s
economic cost, and let F; = V, ¢;(z,y). The Stackelberg game problem can
be formulated as the following MPEC

minimize f(z,y),
$1y
subject to z € X,

ye[[¥i@), Fly)"@w-y) >0, Vye]]Yilx)
i— i=1

It is natural to consider the variational inequality and the objective func-
tion to be subjected to uncertainty. In the Stackelberg game for example,
both the leader’s and the follower’s economic costs may depend on uncertain
external parameters. If we wish to find an optimal solution that is best in
an average sense, we may consider the SMPEC which was formulated by
Patriksson and Wynter [PW99]:

)
minimize E,[f(z,y(w / flz,y(w P(dw),
(=:y())

(SMPECy,) { subject to z € X,
y € C(IE,LU), F(‘Z‘ayaw)T(yO - y) Z O,
Vyo € C(z,w), P-a.s.

\

where y : Q@ — R™ is a random element of the probability space (2,0, P).
In view of stochastic programming with recourse ([BL97]), SMPEC is con-
sidered as a here-and-now type of problem, where decisions = should be
taken before any realizations of uncertain data. When the solution to the
lower-level problem is non-unique for a fixed z and w, the model should be
interpreted as y being chosen such that the objective function is minimized
given = and w.
Consider the two-stage linear program with fixed recourse ([BL97]):

minimize ¢’z + E[min ¢(w)Ty(w)],

subject to T'(w)z + Wy(w) = h(w),
Az =b,
z >0,
y(w) >0,

where A € R™*" p € R™, and ¢, T and h are random elements of corre-
sponding sizes. A decision z is made in the first stage, and associated with
this are vectors b and ¢ and the matrix A. In the second stage, a random
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event w € Q occurs, and the data ¢(w), h(w) and T'(w) become known. The
two-stage linear program is used in several applications, see, e.g., [BL97]
and references therein. If we let C(z,w) = {y € R? | Wy = h(w) — T(w)z},
F(z,y(w),w) = q(w), f(z,y(w),w) = 'z + ¢(w)"y(w) and X = {z € R} |
Az = b}, then the two-stage linear program can med modeled as an SMPEC.

If the probability distribution is discrete, we may clone the response vari-
ables, one for each scenario, and replace the integral in the objective function
with a sum. For a continuous probability distribution, we (probably) have
to discretize. We consider sample average approximation (SAA), where the
idea is to draw N independently and identically-distributed samples w* and
solve, for increasing N, the deterministic MPEC problem to

r N

minimmize fN = %;f(l“,ykawk)a

(SMPEC)" ¢ subject to z € X,

y* € Cz,w*),  Fla,y", ) (g5 —y*) >0,

L vyt € C(z,w*), k=1,...,N.

3.1.2 Contributions

Although the formulation of the SMPEC implies that we consider the un-
certainty explicitly, we are interested in which effect perturbations in the
probability distribution has on the solution. In particular, we are interested
in if an optimal solution to the SMPEC changes continuously due to a con-
tinuous change in the probability distribution. We show that global optima
and stationary solutions to (SMPECq), where we consider C to be fixed, are
robust in this sense. We also analyze two extensions of the SMPEC model:
one in which we replace the expected value in the objective function with
the risk measure known as Conditional Value-at-Risk (CVaR); in the other
we consider the multi-objective SMPEC model. For CVaR we establish ro-
bustness for global optima and stationary solutions. For the multi-objective
version, we establish robustness of weakly Pareto optimal and weakly Pareto
stationary solutions.

We also study the discretization scheme sample average approximation,
which is convergent for both global optima and stationary solutions. To-
gether with the results on robustness, we can hence, to some degree, moti-
vate the use of SMPECs in practice.

3.1.3 Future work

The collected research on SMPEC is rather recent, and there are obviously
many opportunities for future research. One particular important subject is
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numerical algorithms. The successful application of the SMPEC in practice
will depend much on the availability and robustness of numerical software.
The problem is twofold: the need to discretize for continuous probability dis-
tributions and deterministic algorithms for large-scale problems with com-
plementarity constraints (or bilevel optimization).

3.2 Paper II: On the robustness of global optima and sta-
tionary solutions to stochastic mathematical programs
with equilibrium constraints, part 2: Applications

3.2.1 Background

Our first idea was to add numerical examples to the first paper on SMPEC.
The intention was to demonstrate the general use of the SMPEC and also
to exemplify the requirements that we state for the problem in order to
prove robustness and convergence of the discretization scheme. Due to the
subsequent length of the paper and upon recommendations by the associate
editor of JOTA, we decided to write a second paper and give more details
on the applications in question.

Intensity modulated radiation therapy is a topic which we have worked on
since 2007. It has been one of the main motivators for the research in terms
of theory and focus. It is an interesting application of nonlinear optimization
theory which has received a lot of research interest over the years (see e.g.
[Bor06]), but it is also a very important application because results may
in the future improve the quality of life for patients. Intensity modulated
radiation therapy is an interdisciplinary subject. Radiation therapy involves
oncology and radiation physics, and since the technique intensity modulated
results in an inverse problem, the topic also involves mathematics. As such,
it requires a lot of knowledge and cooperations, both between researchers,
but also with clinicians.

Although there have been a lot of theoretical advances on how to im-
prove the treatment, it is important to note that these advances require an
accurate delivery of the radiation. The effect of various uncertainties may,
unless considered, prevent a successful treatment. For example, with recent
equipment and methodology, clinicians are able to shape the doses more ac-
curately in theory. This would reduce the risk of complications in principle,
but with a positional uncertainty of the patient, the accuracy may be useless
or even worsen the plan, since the doses are expected to change rapidly over
the regions.

There has also been a lot of research in using what is known as biological
objective functions (see e.g. [Bra9s, WMNSU02, CD02, OJWO05]) to derive
good treatment plans. These objectives are based on radiobiological models
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whose parameters are extracted from previous clinical studies. Since the
parameters are uncertain, it should be advisable to include this uncertainty
into the optimization problem.

3.2.2 Traffic network design

Traffic network design and the traffic assignment problem is a research topic
which has been very active since the 1950s. Traffic network design is an
interesting application of nonlinear programming; partly because the results
are very concrete and partly because almost everyone can relate to some of
the areas such as the impact of congestion.

The objective of traffic network design is to change or construct a net-
work, for example the traffic network in an urban environment, such that
some travel times decrease or to make travel times more fair for different
groups of travelers. The design can be changed by increasing or decreasing
the capacity of roads or by setting tolls.

The amount of travel is a result of many individual decisions. Each
traveler has several options on which route to use to get from A to B. The
choice depends on the amount of traffic and on the distance. The traveler
may also wish to change destination depending on traffic conditions.

The problem of computing the amount of travel given the conditions of
the network is called the traffic assignment problem. It is assumed that
the amount of travel is static and has reached an equilibrium. This is a fair
assumption if we consider longer time durations. The network is represented
by a graph and the traffic is represented as flows. Wardrop’s user equilibrium
condition ([Warb2]) states that for each Origin—Destination pair (OD), the
travel cost! for all routes utilized must be equal and minimal. This amounts
to an equilibrium problem which can be specified with complementarity
constraints. Let C denote the set of OD pairs, and for each OD pair %, let
h; € R™ denote the vector of route flows. Let also ¢; denote the vector of
route travel costs, and h denote the vector of route flows over all OD pairs.
The equilibrium condition then reads

0™ < hy L ck(h) —mpl™F > 0™k, kecC.

This complementarity constraint implies that there will only be a positive
flow if the cost is minimal.

In traffic network design, we assume that we can alter the path travel
costs with design parameters z, i.e., we let ¢y = cx(x,h). We increase the
cost if we set a toll or decrease capacity, and likewise, decrease the cost if we
increase the capacity. The traffic network design problem can be modeled as

!Travel cost can be a combination of travel time and any tolls.
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an MPEC, where the lower-level problem is the traffic assignment problem,
parameterized by x.

It is quite natural to consider the travel times to be uncertain. Although
they are static, they may depend on unforeseen external events such as
weather changes or road conditions. To predict the amount of travel, it
may be useful to include various scenarios. This can be achieved for traffic
network design with the SMPEC model. In that case, we consider various
scenarios and find, for example, a design which decreases the amount of
travel in an average sense using an expected value as the objective function.
This problem has been studied in Patriksson [Pat08a, Pat08b]. We may also
focus on reducing the travel times for some more extreme scenarios by using
a risk measure as the objective.

For further references on traffic equilibrium models, see the monographs
[She85, Pat94] and [MPO07].

3.2.3 Intensity modulated radiation therapy

In radiation therapy, cancerous tumors are subjected to ionizing radiation.
The objective is to eradicate the tumor while sparing the surrounding tissue
and organs at risk. There are two types of radiation treatment: external and
internal. In external treatment, the radiation is delivered using a linear ac-
celerator and thereafter directed toward the patient. In internal treatment,
a radioactive source is placed inside the patient.

External radiation therapy treatment involves several types of equip-
ment, where the linear accelerator is central. Inside the linear accelerator,
electrons are accelerated and hit a metal target which creates high-energy
photons. The high-energy photons interact with the cells through elastic
and inelastic collisions. This creates electrons, which in turn, may collide
with the DNA molecules and thus damage the cells. Some of the damage
is repairable, and some is unrepairable. Since cancerous cells are reproduc-
ing fast, they are more sensitive to radiation than healthy cells. This is
the reason why radiation therapy is given in fractions. A patient undergoes
treatment typically one session each weekday for six to eight weeks. This
gives the healthy cells sufficient time to repair between the sessions.

Besides the linear accelerator, imaging techniques such as Computer To-
mography (CT) are used in the treatment to ordinate the doses. Special re-
gions of interest (ROI) are marked by an oncologist. The tumor and closely
located lymph sites are denoted target volume. The Planned Target Volume
(PTV) encompass the target volume with an additional margin. Sensitive
organs that surrounds the target are denoted Organs At Risk (OAR).

The treatment is organized using a computer software which is called
the treatment planning system. The software can visualize the CT scans
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and the regions of interest along with the doses. It can also generate dose-
volume histograms and other plots to help determining which treatment is
best suited. We have used the freely available software CERR [DBC03], see
Figure 2.
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Figure 2: CERR: A computational environment for radiotherapy research.
The main window shows a transverse CT scan and isodoses for a treatment
plan in the head and neck region.

Intensity Modulated Radiation Therapy (IMRT) is a technique to mod-
ulate the intensity such that conformal radiation can be delivered. The
modulation is accomplished by using what is known as jaws and Multi-Leaf
Collimators (MLC). The modulation is indirect: the linear accelerator de-
livers radiation continuously, and the jaws and MLCs move on trajectories
in order to block certain regions of the beam cross-section. Finding a good
treatment plan in IMRT is an inverse problem: we know the doses we want
in the ROI, and the problem is to determine which intensities or trajectories
can make this happen. The ideal doses are often not attainable. It is often
assumed that the doses scale linearly with the intensities in the beam and
that the doses are additive. We assume that the beam is discretized with
rectangular cells, known as beamlets, and that the ROI are discretized with
volume elements, known as voxels. Let £ € R” denote the intensities of
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Figure 3: A snapshot of the motion of the multi-leaf collimators (left figure)
for the fluence (intensity) profile shown in the right figure for a cross-section
of the beam.

the beamlets and let d € R™ denote the dose in the voxels. We have the
following relation between the intensities and the dose:

d= Kz, (9a)
z € X, (9b)

where K is called the influence matrix and the set X is described by simple
bounds. This formulation assumes that we can manipulate the intensities
independently.

Another approach is to consider a parameterization of the Multi-Leaf
Collimators. There are two types of methods of the motion for the colli-
mators: static and dynamic motion. The idea with the static method is
to generate a few segments (shapes) with the collimators, and let each seg-
ment be open for a certain time. With the dynamic method, the idea is
to compute leaf trajectories and let the beam be open until the collimators
stop. To realize either of the methods require that we solve an optimization
problem.

Regardless if equations (9) are used or if we use a direct parameteriza-
tion of the MLCs, we can utilize the MPEC framework to derive a suitable
(optimal) treatment plan.

Objective functions in IMRT are categorized as either being physical
or biological. The main difference is that a biological objective function
uses a biological model to predict the outcome, whereas a physical objective
function is a function of the dose alone.

Several objective functions are used in combination to construct an op-
timization program for a treatment plan. The target and each organ at risk
may require an individual objective, and in the end, the oncologist deter-
mines if the result is good. Which objective function that should be used
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and selecting the parameter values are often determined in an iterative pro-
cess by examining the end result. This is a time-consuming, but important,
process.

Uncertainties arise in various aspects of IMRT: patient motion uncer-
tainty during treatment, patient setup error between sessions, biological
uncertainties in the objective functions, machine uncertainty etc. Any in-
formation on the uncertainties are natural to include in the optimization
problem. The PTV, for example, is used to make certain that the tumor re-
ceives a sufficient dose despite of any (modest) motion or position changes.
The downside with the approach is that tissue and organs that are close
to the tumor and thus overlaps the PTV receive a high dose. If only the
extreme positions of the organs are known during movement, then the PTV
is the only choice of plan.

If MPEC is used as the modeling framework, it is natural to consider
the SMPEC whenever uncertainties are considered. This obviously requires
that probability distributions for the parameters are known. If the dis-
tributions are unknown or if a conservative plan is required, then Robust
optimization [BTN(02, CBT06] may be an option.

For more information on IMRT, see e.g. the monograph [Web01] and
[L0O0, Car08].

3.2.4 Contributions

The main contribution of the article is to exemplify the use of SMPEC using
numerical examples. In particular, for the traffic network design example,
we introduced the CVaR objective as a viable approach.

For IMRT, we considered two examples with uncertainty in the posi-
tion and uncertainty in the delivery of radiation. Uncertainty in position
has been studied by several authors [CBT06, OW06, CZHS05] in various
settings, although none using SMPEC. Incorporating uncertainty in the de-
livery appears to be new and may be interesting to consider in a further,
more detailed, study.

3.2.5 Future work

The traffic example presented in the paper is very basic in its deterministic
version and so it is natural to consider more realistic networks and more
advanced models such as considering elastic demands for which the theory
also applies. It would also be interesting to study multiclass models and
equity measures in a realistic setting.

For the application of IMRT, it would be interesting to consider biolog-
ical uncertainty. However, this requires good statistical information on the
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response of organs due to inhomogeneous radiation. The information that
we have used for position and machine uncertainty have not been based on
real statistical data, but in comparison to biological uncertainty, it is easy
to consider artificial probabilities and still be able to draw some conclusions.
With biological uncertainty on the other hand, it is much harder to draw
any conclusions using invalid probabilities.

Finally, we have only used local optimization algorithms, and it would
definitely be interesting to consider global ones since not all models we
consider are convex.

3.3 Paper I11: Robust multi-objective optimization based on
a user perspective

3.3.1 Background

The work on Robust multi-objective optimization based on a user perspective
began with a conversation between the authors on robust multi-objective op-
timization. The discussion concerned how robustness for multiple objectives
should be characterized from a user’s perspective. The discussion continued
with a collaboration, with the goal to write an article.

The theory of robustness for multi-objective problems in Paper I deals
only with sequences of Pareto optimal points. It may be of importance to
investigate where on the Pareto surface the solutions in the sequence are
located. For example, consider a bicriterion problem with a convex Pareto
front and a specific Pareto optimal solution on this front. We consider that a
decision maker has chosen this solution for a specific reason. It could be that
he or she has considered that the local trade-offs are perfect at this point.
This means that the price to pay for improving one objective is too high
with respect to the change in the other objective. Consider now that there
are uncertainties in the underlying problem and that these may contribute
to a change in the objective values. Certainly, it is important how much the
objectives changes, but the decision maker would argue that it is also im-
portant if the solution changes character, i.e., if the local trade-offs change.
This example highlights the main background for this paper. We consider
robustness from a decision maker’s perspective by introducing a single ob-
jective function, called the utility function, which is designed such that the
solution that a decision maker chooses (perhaps on the Pareto surface) is
optimal. With this single objective function and traditional measures of
robustness for single-objective problems, we quantify robustness properties
for multi-objective problems.
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3.3.2 Contributions

The main contribution is the introduction of the single objective, the utility
function, into the measure of robustness for multi-objective problems. This
is a novel approach. As a biproduct, we also introduce an alternative char-
acterization of proper Pareto fronts that is more strict than the definition
by Geoffrion [Geo68].

3.3.3 Future work

Since the paper is an introductory work, there are lots of possibilities for
enhancements and further work. In particular, other definitions of robust-
ness for single-objective problems could be elaborated. We may consider
just measuring the expected value of the utility function as a measure, or
consider a worst-case scenario which could lead to a minimax formulation.

It would also be interesting to see if it is possible to search for robust
solutions simultaneously as the Pareto surface is obtained. For example, if
the problem is convex and the weighted sum method is used, then the utility
function is already defined for the optimal solution.

3.4 Paper IV: Airbag folding based on origami mathematics
3.4.1 Background

This work was initiated by Bengt Pipkorn at Autoliv Research and began
as a master’s thesis project. Autoliv Research then financially supported a
continuation as a licentiate project.

The problem, in short, was that the methods and software available for
numerically folding passenger airbags were not satisfactory, and there was
an idea that the mathematical theory of Origami could be used to solve the
problem.

Autoliv Research frequently use numerical software to evaluate the per-
formance of airbags. Although real tests are essential, computer simulations
have the advantage that many scenarios can be modeled in a short time
and at a low cost. Evaluating the performance of airbags requires accurate
computer models of the airbag and its surroundings together with accurate
numerical methods for simulating elasticity and gas dynamics. Passenger
airbags are often tested in an out-of-position situation, which means that in
a crash, the passenger hits an expanding, non-inflated, airbag. A computer
simulation of this scenario requires a computer model of the folded airbag
and here arises the problem of airbag folding: computer models of passenger
airbags are only available in its inflated (design) state and passenger airbags
have a rather complex three-dimensional geometry, see Figure 4.
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Figure 4: CAD model of a passenger airbag.

Transforming the airbag from its design state to its flat folded state is
the subject of numerical airbag folding. Figure 5 shows a real passenger
airbag and its folded flat state.

Origami is the ancient art of paperfolding, and besides being an art form,
it has found its use in several applications such as the design of a stent
in medicine [KTY"06] and for folding large telescopes for transportation
[Mye69].

Origami instructions can either be a sequence of figures describing, step
by step, how to fold a piece of paper or it can be a crease pattern which
consists of lines at the positions of the creases in the final folded model.
The situation with folding an airbag is slightly different, since we start with
a three-dimensional object, and wish to flatten it. This is accomplished
by approximating the airbag by a polyhedron?, designing a crease pattern
on each face, and finally folding the polyhedron according to the crease
patterns. This means that we consider each face as a piece of paper; using
Origami, we wish to fold it into an object that is still flat (in another,
orthogonal, direction) and whose creases coincides with the creases from the
crease patterns to adjacent faces.

As an example, Figure 6 shows a model of a paper bag that is often
found at supermarkets. It is a rectangular box minus one face, and its crease
pattern consists of 21 lines, including the edges of the bag. At each vertex,
four lines meet, except at the open top. The creases are either mountain
folds or valley folds, and the difference between the number of mountain folds

2That is, a not necessarily convex, but always a closed solid in R®, bounded by plane
faces.
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Figure 5: “Inflated” and flat folded passenger airbag.

and valley folds are always 2 for an interior vertex ([Lan03]). For example,
consider vertex vy in Figure 6. Either there are three mountain folds and
one valley fold or one mountain fold and three valley folds, depending on in
which direction we fold the bag.

3.4.2 Contributions

We represent the airbag by a polyhedron and show how to design a crease
pattern for certain types of polyhedra. We provide proofs that there is a
folded flat state using the generated creases.

We also describe a procedure to actually fold the polyhedron along the
creases. This is achieved by solving an optimization problem whose optimal
solution corresponds to the folded flat state.

To illustrate the idea of the optimization problem, we consider folding
an object consisting of two triangular sheets and one crease, see Figure 7.
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Figure 6: To the left: a paper bag with a corresponding crease pattern. To
the right: the corresponding fold of the front face with three mountain folds
and one valley fold.

We assume that the vertices ¢' = (0,0,0), ¢> = (1,0,0), ¢ = (0,1,0) are
fixed and we denote the fourth vertex by z. Let n! and n? denote normals to
the triangles {q¢',¢? ¢} and {q', ¢>, =} respectively. Consider the following

optimization problem

minimize n'-n?,
T

subject to lz —¢'|? =1,
lz - ¢*|1* = 2,
2 (¢ —q") x (¢ —¢') > 0.

This optimization problem is similar to the optimization problem that is
formulated in the article, except that the equality constraints are penalized
in the article and the non-penetrating constraint is here left out. The ob-
jective function is minimized if the normals point in parallel but in opposite
directions which corresponds to a complete fold. The equality constraints
are used to maintain the correct shape of the sheets, and the inequality con-
straint, which is the triple product, corresponds to the signed volume of the
tetrahedron spanned by the four vertices. The inequality constraint forces
the fold to go in one direction, instead of two. In the article the inequality
constraint is used to avoid "twists”.
If we insert the data, the problem transforms into

minimize — xo,
T
subject to |z||? =1,
|z — (1,0,0)|* = 2,
I3 Z 0.

The problem is obviously not convex, but the constraint qualification MFCQ
holds, and thus the global optimal solution (there are no other local optima)
z* =(0,1,0) is a KKT point.
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The reason that the equality constraints above are penalized in the for-
mulation in the article is that, with a general triangulation of the faces, there
is a risk that the edges give rise to linear dependent constraints (failure of
LICQ and algorithms).

g3

q1 q2

Figure 7: Fold of two triangular faces.

3.4.3 Future work

A few months after the Licentiate report was written, we developed an
alternative numerical algorithm for folding airbags. The algorithm is more
direct and faster than the one presented in the paper. The end result is also
not identical, which in fact may be an advantage. The folded state from the
previous method consisted of several non-planar connected patches. Once
the folded state is found, usually other algorithms are used to fold or roll the
airbag yet again to fit it into its compartment. These algorithms may fail
depending on the orientation of the patches. The new algorithm generates
patches that either lie in the xy-plane or are orthogonal to it. All patches
will be perfectly flat. The downside is that the area of the full airbag is not
equal to the flattened airbag.

The method is organized in a series of steps. The polyhedron is cut
(and separated) along each crease. Each patch is rotated and placed at a
specific height that has previously been determined. In the final step, the
polyhedron is connected with additional patches, which gives a reasonable
approximation if the thickness of the airbag is small.

The crease pattern splits the faces of the polyhedron into smaller patches.
We let each patch be represented by a node in a directed graph. We put an
arc between two nodes in the graph if the two patches on the polyhedron
share a crease. The arc is directed to the node (patch) that will be above
the other in the folded flat state of the polyhedron. To each arc j € J :=
{1,...,n} in the graph, we assign a weight z; € R;. The weights will
determine the height of the folded polyhedron in each position.
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Figure 8: A polyhedron with crease pattern. The crease subdivide the faces
into patches.

Each vertex (intersection of creases) in the polyhedron results in a cycle
in the graph. We assign an equation to each vertex: the sum of the weights
in the cycle, traveled in one direction, should be zero (traveling along an
arc which points in the opposite direction yields a negative weight). Each
weight is constrained to be larger than or equal to the artificial thickness 7
of the polyhedron.

We assume that there are m vertices (intersection of creases) in the
polyhedron and we let I := {1,...,m}. We formulate the folding problem
as a linear program, where we wish to minimize the total height:

minimize E 2j
Z

j€J
subject to sz—szZO, 1 €1
jeJi jEJS

Z; > T, jEJ,

whereJ? and J denote the arcs that point in positive and negative direction
corresponding to vertex 4, respectively. The optimal solution z* is used to
place each patch at the correct height. The idea is that once a patch is fixed
to a certain height, adjacent patches are positioned (in height) according to
the weight of the edge joining the two patches.

Once the height of each patch is determined, we rotate each patch in
sequence. First we consider the patch at the bottom of the polyhedron and
place it in the zy-plane with z = 0. Next we put all adjacent patches in
a stack for subsequent rotation. In each iteration we pop the stack for a
patch (called parent) and rotate it. We also place all its adjacent patches
(children) onto the stack (if not previously imported onto the stack). The z
and y coordinates for patch j is determined by the orientation of the parent
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and the crease. The z coordinate is the sum of the z coordinate for the
parent and the optimal solution zj. Figure 9 shows the rotated patches of
the polyhedron in Figure 8.

Figure 9: Rotated patches of the polyhedron in Figure 8. The “bottom”
patch is the closest patch. The size of the separation of the patches (artificial
thickness) is exaggerated.

At this stage, all patches will lie parallel to the zy-plane but with different
z coordinates. We then connect the patches with additional patches that will
be orthogonal to the rotated patches. Figure 10 shows the connections for
the fold in Figure 9. Figure 11 shows a polyhedron with a crease pattern

Figure 10: Connections (dark color) for the folded polyhedron from Figure 9.
The size of the separation is exaggerated.

that has been generated according to Paper IV. The folded model is shown
in Figure 12. The algorithm and a graphical user interface (see Figure 13)
have been implemented in MATLAB.
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Figure 11: Model of a passenger airbag with a crease pattern.

Figure 12: Folded model of passenger airbag. The thickness is exaggerated.
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1 Introduction

A physical system is often subjected to uncertainties, such as uncertain
material parameters in a structural problem and stochastic market in an
application to economics. Although it may be sufficient to consider a repre-
sentative (e.g. mean) value of the uncertain parameters in order to produce
a simulation of the system, the solution to an optimization problem that is
based on its response can be very sensitive; using mean values of uncertain
parameters can then give suboptimal solutions.

There are two main approaches to incorporating uncertainty into opti-
mization models. In stochastic programming (see e.g. [1,2]), the objective
function is an expected value, sometimes in combination with a risk measure.
In such models, either all the decisions are made before any realization of the
uncertain data, or the model contains a recourse opportunity so that some
decisions can be made at a second stage. In robust optimization, an optimal
solution is required to be feasible for all realizations of the uncertain data.
The probability distributions utilized in stochastic programming are here
replaced by the requirements that parameter values are confined to special
bounded sets. Robust optimization provides a guarantee that an optimal
solution is safe, but it is a pessimistic approach, since it considers the worst-
case scenario. It is tractable for certain convex problems (see [3]); however,
it has also been utilized for nonconvex problems through a linearization of
the constraints ( [4]).

We are interested in several applications which all can be modeled as a
mathematical program with equilibrium constraints (MPEC). The stochas-
tic extension of MPEC is a stochastic mathematical program with equilib-
rium constraints (SMPEC) ( [5]); the focus of this paper is to analyze the
stability of optimal and stationary solutions to SMPEC when the underlying
probability distribution is itself uncertain. This is motivated by practical
applications such as the optimization of treatment plans in radiation ther-
apy, where the biological response to radiation depends on parameters of
which the probability distribution is uncertain; see our further discussions
on this topic in [6].

We show that the SMPEC model is robust under certain conditions; we
also show how to discretize a continuous distribution using sample average
approximation (SAA) and that such an approximation will converge. Not



surprisingly, similar conditions are required for robustness as for convergence
of SAA.

The quantitative stability of solutions to stochastic programs due to
changes in the probability distribution has been studied previously in [7] for
general stochastic programs, for convex programs in [8], and for multistage
programs in [9]; their focus is on the Lipschitz continuity of global optimal
objective values. In contrast, our approach is qualitative in nature and
provides stability results on optimal as well as stationary solutions. The
subjects of optimality conditions and numerical methods for SMPECs have
been studied previously, for example, in [10-12].

The remainder of this paper is organized as follows. In Section 2, we in-
troduce the SMPEC model. In Section 3, we derive conditions under which
global optima and stationary solutions are stable with respect to perturba-
tions in the probability distribution. In Section 4, we present an extension
of the SMPEC to include the risk measure CVaR, and establish the robust-
ness of its global optima and stationary solutions. In Section 5, we present
a discretization scheme, and show that it converges when the discretiza-
tion is refined. Combining stability with a convergent discretization scheme
provides a motivation for the use of SMPEC in practice. In Section 6, we
extend the stability result to SMPECs with multiple objectives. Finally, in
Section 7, we provide a summary and future research opportunities.

2 Stochastic Mathematical Programs with Equi-
librium Constraints

2.1 Mathematical Programs with Equilibrium Constraints

Consider a mathematical program with an equilibrium constraint in the form
of a variational inequality,

(MPEC) l(fmg f(z,y),
z,y
st. x€ X,

- F(l‘,y) € NC(y)7
where f: R" xR™ - R, y € R™, C C R™ is a polyhedron, F(z,-) : C — R™
is smooth, and N¢ : R™ = R™ is the standard normal cone mapping
{zE]Rm|zT(w—y)§O,wEC’}, ifyeC,
0, otherwise.

Nel(y) = {

The vector z € R" represents the design (or primary) variables and y € R™
is the response (or secondary) variables. The nonempty, closed and convex



set X C R" specifies the set of feasible designs. Note that there are no joint
upper-level constraints in this setting, which is natural when considering the
stability of optimal solutions (cf. [13-15]).

The variational inequality, —F(z,y) € N¢(y), can represent an equi-
librium in a general form. For example, with C = R™, the variational
inequality is equivalent to the system of equations

F(z,y) =0™,

and with C = R, the variational inequality is equivalent to the comple-
mentarity constraint

0" <yl F(z,y) > 0™,

where ¢ L b means that aTb = 0. Since complementarity constraints are
examples of equilibrium constraints, it indicates that MPECs are usually
very nonlinear and irregular. In fact, MPECs lack standard constraint qual-
ifications ( [16]), which can highly influence the performance of nonlinear
optimization algorithms for solving MPECs. For recent work on the numer-
ical solution of MPECs, we refer to [17,18].

If F(z,y) = Vyé(z,y) for a C' function ¢(z,-), then the variational
inequality

Vé(z,y)T(y—y) >0, VyeC,

represents the optimality conditions for the parametric optimization problem

min é(z,y),

and the MPEC becomes what is traditionally known as a bilevel optimization
problem ( [19]).

The generality of the variational inequality suggests that a number of
optimization problems can be put into the form of (MPEC) (see [20-22]).
For example, the Stackelberg game [23], which is a leader-follower game
and an extension of the Nash game [24], can be formulated as an MPEC.
The accompanying paper [6] numerically analyzes applications to the de-
sign of traffic networks and optimal treatment plans in intensity-modulated
radiation therapy (IMRT).



2.2 Stochastic Mathematical Program with Equilibrium Con-
straints

Next, we consider the stochastic extension of (MPEC). Let (Q2,0, P) be a
complete probability space and consider the problem

(SMPECq) (;n,yi(l_l)) Ey[f(z,y(w), w)] ::/Qf(;c,y(w),w) P(dw),

s.t. z € X,
- F(x’yaw) € NC(y)a P—a.s.,

where y : Q@ — R™ is a random element of the probability space (2,0, P).
We also introduce S : R* x Q@ =3 R™, which defines the set of solutions to
the lower-level parametric variational inequality problem,

S(z,w) = {y € R" [ -F(2,y,w) € Nc(y) }-

In view of stochastic programming with recourse, SMPEC is considered as
a here-and-now type of problem, where decision z should be taken before
any realizations of uncertain data.

When the solution to the lower-level problem is nonunique for a fixed
z and w, the model should be interpreted as y being chosen such that the
objective function is minimized given = and w.

This formulation of SMPEC follows the original one of Patriksson and
Wynter [5] and of Evgrafov and Patriksson [25]. Alternative formulations
are found in [10,11,26].

2.3 Existence of Optimal Solutions

The following assumption will be in force throughout this paper:

Assumption A
(A1) The mapping S(z,-) is measurable for every z.

(A2) The set X is closed and the mapping z — S(z,w) is closed for almost
every w € (.

(A3) The function f is continuous in (z,y), measurable in w, uniformly
weakly coercive with respect to x over the set X, and bounded from
below by a (O, P)-integrable function.

(A4) The set S(zp,w) is nonempty for some zy € X and almost every w € Q.

The following result on the existence of optimal solutions is due to Ev-
grafov and Patriksson [25].



Theorem 2.1 (Existence of Optimal Solutions) Let Assumption (A) hold.
Then, problem (SMPECq) has at least one optimal solution.

3 Solution Stability

We are interested in the stability of optimal solutions to (SMPECq) with
respect to changes in the probability distribution. Such results have value
both from a computational and a theoretical viewpoint. If the problem is
stable, then it can be approximated by using discrete probability measures,
resulting in a finite-dimensional problem. From a theoretical point of view,
we deduct that the problem is robust. We analyze the stability of globally
optimal solutions (Theorem 3.1) as well as of stationary solutions (Theorem
3.2).

3.1 Stability of Globally Optimal Solutions

We first analyze the stability of globally optimal solutions. This is foremost
motivated by simplicity. For global optima, we can relate the perturba-
tions of the probability distribution to changes in the objective value. For
stationary solutions, this becomes more problematic.

The result of stability of globally optimal solutions is particularly inter-
esting for convex problems, where we can find global optima in practice.

Let {P;} be a sequence of probability measures defined on B(2). Con-
sider the associated sequence of optimization problems,

k : .
(SMPEC)"  min  E.[f(a,y(w),w)] = /Q £ (2, 9(w), w) Py (dw),

s.t. T € X,
- F(x,y,w) € NC(y)a Py-as.,

The problem differs from (SMPECq) only in the choice of probability dis-
tribution. Let val(P) denote the optimal value of problem P. The following
result shows the stability of globally optimal solutions. The corresponding
result in the context of topology optimization in structural mechanics can
be found in [15] and for network design under traffic equilibrium in [27,28].
The proof presented here is similar.

Theorem 3.1 (Global Stability of Optimal Solutions to (SMPECq)) Let As-
sumption (A) hold, suppose that the mapping F(z,-,w) is strictly monotone
in y for each x € X and w € , and that the sequence {Py} of probability
measures weakly converges to P. Also, suppose that, for each k, (z*,vy*(-))
solves (SMPECq)*. Then, each limit point (there is at least one) of the
sequence {(z*,y*(-))} is an optimal solution to (SMPECq).



Proof. Consider an optimal solution (z*,y*(-)) to (SMPECq). Since F is
strictly monotone in y, y is continuous in z and w. By (A3), any sequence
of feasible designs and responses is bounded and hence has a limit point.
The optimal solution to (SMPECg) is moreover feasible in (SMPECq)* for
all k. Tt follows that val (SMPECq) > limsupy_, ., val (SMPECq)*.

Next, let {(z*,4*(:))} be a sequence of optimal solutions to (SMPECq)*.
By (A3), this sequence is bounded. Denote any limit point (z,y(-)). It is
feasible for almost every w in (SMPECq). Using the lower semicontinuity
of f and Fatou’s lemma, we get

val (SMPECq) < / £, 5(w), 0)p(w) dw
/hmlnff( y* (W), w)p(w) dw

<11m1nf/f 2% oF (W), w)pg (W) dw
= lim inf val (SMPECq)~.

k—o0

By combining the two inequalities, we get the result. d

3.2 Stability of Stationary Solutions

Due to the nonconvex nature of MPECs, it is not reasonable in general
to expect algorithms to find globally optimal solutions. This fact limits the
practical use of Theorem 3.1, and raises the question of stability of stationary
solutions. The proof of stability for globally optimal solutions was based on
analyzing the convergence of the optimal value. For stationary solutions,
we need to analyze the conditions of (local) optimality which relates to
stationarity.

Optimality conditions for (SMPEC,) are nontrivial to formulate due to
the presence of the variational inequality. Under certain conditions, the re-
sponse variable y can be treated as an implicit variable; this reduces the
complexity of formulating optimality conditions for the SMPEC. This tech-
nique is used by Outrata [21] for the MPEC, which has inspired the proof
approach below.

The following assumption will be utilized in addition to Assumption A.



Assumption B
(B1) The function f is Lipschitz continuous in (z,y).

(B2) The mapping F(-,-,w) is continuously differentiable and F(z,-, w) is
uniformly strongly monotone on C' for each z € X and w € (2, i.e.,

(F(xaylaw) - F(xay%w))T(yl - y2) > CHyl - y2||2a Vyl,yQ €,
where ¢ > 0 is independent of z and w.

(B3) X ={z € R" | gi(x) <0, i=1,...,p} and each function g; is continu-
ously differentiable;

(B4) The Mangasarian—Fromovitz constraint qualification (MFCQ) holds
for all z € X.

If Assumptions (B1) and (B2) hold, then (see [29]) there exists a locally
Lipschitz continuous, single-valued solution map (z,w) — o(z,w) with

y = o(z,w), o(z,w) € S(z,w).

With this property, we can rewrite (SMPECq) as the one-level problem,

(SNLPqg) mln Eu[f(z,0(z,w) /f z,0(zr,w),w) P(dw),

st. x € X,

and correspondingly (SNLPg)* is obtained from (SMPECq) by replacing P
with Pk.

Before stating the optimality conditions, we introduce two definitions
from nonsmooth analysis.

Definition 3.1 The Clarke directional derivative of a function f: R* - R
at © in the direction h is defined by

fo(x; h) := lintljup flz+ th;:) - f(Z)

z—x

Since f is Lipschitz continuous [Assumption (B1)], f°(-, h) is upper semi-
continuous ( [30, Proposition 2.1.1]).

Definition 3.2 The generalized gradient of f at = is defined as the set

0f (z) = {€ € R" | (&h) < fO(z; 1)}



If f is continuously differentiable at z then 0f(z) = {Vf(z)}. If As-
sumptions (B3) and (B4) hold, a vector z* € X is a Clarke stationary
solution (see [30, Theorem 6.1.1], see [31, Theorem 6.1.8]) to (SNLPgq) if,
for some vector p € R} with p;g;(z*) = 0 for all i, we have

0" € OB, [f (2", 0(2", w), w)]) + Vg(z*)n,

where p is the vector of Lagrange multipliers.

Theorem 3.2 (Stability of Stationary Solutions to (SNLPq)) Let Assump-
tion (A) and (B) hold, suppose that the sequence { Py} of probability measures
weakly converges to P and is upper bounded by a measurable function, and
that, for each k, (z¥,y*()) is a Clarke stationary solution to (SNLPq)¥.
Then, each limit point (there is at least one) of the sequence {(z*,y*(-))} is
a Clarke stationary solution to (SNLPq).

Proof. By the assumptions, F(z,-,w) is uniformly strongly monotone, and
therefore the solution map S(z,w) is single-valued and Lipschitz continu-
ous (cf. [29]). This enables us to use the one-level problems (SNLPg) and
(SNLPq)*. Since o and f are Lipschitz continuous, there exists a random
variable k(w) > 0 such that E[k(w)] < co and such that, for all z;,z5 € X,

f(z1,0(21,w),w) = (22, 0(32,w),w)| < k(w)|lz1 — 22| (1)

Let z* be a Clarke stationary solution to (SNLPq)* and consider a sequence
{z*} of such stationary solutions. Since f is inf-compact [see Assumption
(A3)], this sequence is bounded. Denote a limit point by z*. Define

BLI/@) = [ fao(aw),0) Peld).
The point z* is stationary if

0" € SE[f](a) + Vg(z*)u* (2)

and

0P < pk L g(z*) < 0P,



Fix a direction h € R". Then, we have

(BE[£))° (2 ) —lim sup Zelf1C + ) - E5[£](2)
tl0
t

=lim sup
tL0
zZ—x

 Jol(zo(zw),w) B (dw))
t

/ (f(z4+th,o(z+th,w),w)—f(z,0(z,w),w))
Q t

= lim sup
t10

Py (dw)

< / 1O, 0(5,w), w; h) Py (dw) = EE [1°(, 0w, w),w; B)] ,
Q

where the last inequality follows by Equation (1), with 1 = z and zo =
z+th, and the Lebesgue dominated convergence theorem. Furthermore, we
have that

limsup(B[1)°(a¥ ) = limsup [ £(a*, 0(a*,w), w5h) Pr(de)
Q

k—00 k—o00

< / lim sup (2%, 0 (2, w), w; h) Py (dw)
Q

k—o0

Of,.% * . W
S/Qf (2", 0(a",w), w; h) P(dw)
=E[f1(z*; ), (3)

where we use the Lebesgue dominated convergence theorem in the second
equality and the upper semicontinuity of f° in the second inequality. Hence,

lim sup 9B [f](«*) C OB, [f](=").

k—00

Next, we argue that

lim sup Vg(z*)u* = Vg(z*)u*.

k—00

Suppose that this is not true, but ||x*|| — co. We can then define \* :=
1 /||#*]|, and assume that A¥ — \* for some \* such that

X0, N = 1.

Let I(z) := {i | gi(z) = 0} be the set of active constraint indices at z. By
the definition of MFCQ, to each z¥, there exists a vector d € R" such that

Vai(z®)Td <0, i€ I(zF),
gz(xk) < 07 i ¢ I(‘Tk)a (4)

10



For i € I(z*) we must have \¥ — 0. Fix a d € R such that a condition like
(4) holds at z*. Then, by (2), we have

T k k 0(..k.
)< e (d Vot (BTG ,d)>  nsupd V(e
k—o0 Hﬂk” ||uk|| k—o0
= 3 AVale)d
t€l(z>)

From the last expression and (4), we get

i€l(x*) i€l(z*)

and since A* > 0P, this implies that A* = 0. This contradicts the assumption
IIA*]| =1, and so p* must be bounded.
To sum up, we have

0 ¢ limsup (OBL[F1(2) + V(s u*) € OBL[f)(z") + Vg(a*)u*

and we can therefore conclude that z* is a Clarke stationary solution to
(SNLPg). a

4 Risk Objective Function

In this section, we assume that the objective function f(z,y(w),w) measures
a loss. The value-at-risk (VaR) at probability level /3 is denoted by S-VaR(z);
it is the value for which the probability that f exceeds this value is 8, i.e.,

p-VaR(z) = min{y | P(f(z,y(w),w) 2 7) = B}
Furthermore, the conditional value-at-risk, denoted 5-CVaR(z), is the con-
ditional expectation of loss, given that the loss is greater than 3-VaR, i.e.,

B-CVaR(z flz,y(w), w) P(dw).

=15/

1 =B J f(wy(w)w)>p-var
The parameter 8 determines the level of risk. If 5 = 1, CVaR equals the
expected value; if § = 0, CVaR equals the maximal value of f; the CVaR
formalism therefore introduces the possibility to include interesting compro-
mises between these two extremes.

Rockafellar and Uryasev [32] provide an alternative expression for /-
CVaR which utilizes the following function:

Gole.97) = 7+ 1= [ @ y(w).w) =], Plaw)
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where, for s € R, [s]4 := max{0, s}. The conditional value-at-risk is equal
to the minimum value of Gg over v € R, i.e.,

B-CVaR(z) = min Ga(z,y, 7).
YER

The value-at-risk is a minimizer of G, and the problem of minimizing (-
CVaR over (z,y) is equivalent to minimizing G over (z,y,v) ( [32]). Note
also that G is convex in v, so CVaR preserves convexity.

Consider now the SMPEC where the expected value in the objective
function is replaced by the alternative expression for S-CVaR:

. 1
SRPECq)  min 7+ 1= [ [/(e.yw).w) =], P(d)

s.t. T € X,
- F(:c,y,w) € NC(y)a P-as.,

We will next show that the robustness results for global optima (Theorem
3.1) and for stationary solutions (Theorem 3.2) can be extended to the
SRPEC. Following the procedure in Section 3, let {P} be a sequence of
probability measures defined on B(f2) and consider the associated sequence
of optimization problems (SRPECq)* which are obtained from (SRPECq)
by replacing P with P.

Theorem 4.1 (Global Stability of Optimal Solutions to (SRPECq)) Let As-
sumption (A) hold, suppose that the mapping F(z,-,w) is strictly monotone
in y for each x € X and w € 2, and that the sequence {Py} of probability
measures weakly converges to P. Also suppose that, for each k, (z*,y*(-), v*)
solves (SRPECq)*. Then, each limit point (there is at least one) of the se-
quence {(z*,y*(:),7)} is an optimal solution to (SRPECq).

Proof. The proof follows essentially from that of Theorem 3.1. Two critical
steps need to be motivated. The first is the continuity of the objective
function. The function in the integral is continuous with respect to x and y,
since it is a decomposition of f and [];, and since F' is strictly monotone.
Also, the objective function G4 is continuous with respect to .

The second step is that the objective function is weakly coercive with
respect to (z,y,7). This holds by Assumption (A3) and the fact that, if
|v] = o0, Gg — 0. a

To establish robustness for stationary solutions, we again utilize the re-
formulation of SMPEC into one-level problems. We consider the following
problem:

(SRNLPg) %mn T+ 5/ (z,0(z,w),w) =], P(dw),
z,7) -
st. zelX.
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Correspondingly, (SRNLPq)¥ is obtained from (SRNLPg) by replacing P
with P

Theorem 4.2 (Stability of Stationary Solutions to (SRNLPq)) Let Assump-
tion (A) and (B) hold, suppose that the sequence { Py} of probability measures
weakly converges to P and is upper bounded by a measurable function and
that, for each k, (z*,y*(-),¥*) is a Clarke stationary solution to (SRNLPgq)¥.
Then, each limit point (there is at least one) of the sequence {(z*,v*(:),7)}
is a Clarke stationary solution to (SRNLPg).

Proof. The proof follows from that of Theorem 3.2, the proof of Theo-
rem 4.1, and the fact that G is Lipschitz continuous. d

5 Convergence of a Discretization Scheme

In this section, we discuss the numerical solution of (SMPECq). The ob-
jective function is a multidimensional integral which must be approximately
computed in the general case. If it is discretized, it is natural to analyze the
convergence of a discretization scheme. Having established both the stabil-
ity of optimal solutions and the convergence of a numerical scheme puts us
closer to the practical use of an SMPEC model.

One approach used extensively to numerically solve stochastic programs
is a Monte Carlo technique known as sample average approximation (SAA)
(see e.g. [33]). The idea is to draw N iid samples w',...,w” and solve a
deterministic problem for increasing values of N. We use the reformulation
of (SMPEC)q into (SNLPg) and consider the problem

N
A 1
N . L ky k
(SNLP) min fn = Nkz_:lf(x,a(:z;,w ), w"),
s.t. x€X,

To establish convergence as N — oo, the following additional conditions are
required.

Assumption C
(C1) The set X is bounded and convex.
(C2) The function f(-,0(-,w),w) is regular (i.e., f is directionally differen-

tiable and the directional derivative coincides with the Clarke direc-
tional derivative) at x for almost every w € ).

13



Condition (C2) is fulfilled if e.g. f(-,0(-,w),w) is convex or continuously
differentiable ( [30]).

The convergence proofs for both globally optimal solutions and station-
ary solutions are based on the law of large numbers. The main difference
in the assumptions needed is the requirement of a regular function for the
convergence of stationary solutions.

Theorem 5.1 (Convergence of Optimal Solutions to (SNLP(,)) Let Assump-
tions (A), (B1)-(B2), (C1) hold. For each N, let (xn,yn(-)) be an optimal
solution to (SNLP)N. Then, each limit point (there is at least one) of the
sequence {zn} is an optimal solution to (SNLPg).

Proof. The feasible set is compact by Assumptions (A2) and (C1); by As-
sumptions (B1)—(B2), for almost every w € Q the objective function f(-, -, w)
is continuous. By Assumption (B2), it is also bounded from above by a
(©, P)-integrable function and the sample is iid. Then, by [33, Proposition
7], f N converges to f w.p.1 uniformly on X. In turn, by [33, Proposition 5],
this implies that val((SNLP)") — val((SNLP),) as N — cc. a

Theorem 5.2 (Convergence of Stationary Solutions to (SNLPq)) Let As-
sumptions (A), (B), (C) hold. For each N, let (zn,yn(-)) be a stationary
solution to (SNLP)N. Then, each limit point (there is at least one) of the
sequence {xn} is a stationary solution to (SNLPq).

Proof. By Assumptions (A3) and (B2), the objective function is of Cara-
théodory type; by Assumption (C1), the set is compact and convex. By
(C2), the function is also regular. Then, by [34, Theorem 7], the sequence
of stationary solutions {z"¥} converges w.p.l to a stationary solution of
(SNLPg). 0

Since (SNLPg) is a reformulation of (SMPECq), the above theorems
state that we also have convergence to global optima and stationary solutions
for the corresponding discretized problem

N SR
(SMPEC) min fn = kz z,y, Wk
s.t. x € X,

_F(Iaykawk)eNC(yk)a k=1,...,N.

To summarize, the results from Theorems 5.1 and 5.2 show that it is a valid
approach to compute a solution to the SMPEC model through a sequence of
deterministic problems. Theorems 5.1 and 5.2 are also immediate to extend
to the CVaR model of Section 4.

Analogous discretization schemes for engineering applications are studied
in Evgrafov and Patriksson [14, 15].
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6 Stochastic Multiple Objective Mathematical Pro-
grams with Equilibrium Constraints

With ¢ objectives f; : X — R, ¢ = 1,...,q, the standard multiobjective
optimization problem is

min (f1(z),..., fq(z)).

z€X

Let f denote the g-vector of functions f;, ¢ = 1,...,q. We recall the
definitions of Pareto and weakly Pareto optimal solutions.

Definition 6.1 A vector T € X is called Pareto optimal if there isnox € X
such that f(z) < f(z) and fi(z) < fi(z) for at least one i = 1,...,q. A
feasible solution Z is called weakly Pareto optimal if there is no x € X such

that f(z) < f(%).

The study of a multiple objective SMPEC problem appears to be new;
Ye and Zhu [35], and Murdukhovich [36,37] have studied multiobjective op-
timization versions of the MPEC problem. We define the multiple objective
version of the SMPEC, the SMOPEC, for q objectives as

(SMOPECq) (mi(n)) (Eulfi(z,y(w), )], ., Bulfy(z, y(w),w)]) ,

SYL-

st. zeX,
- F('Tayaw) € NC(y)a P-as.

We analyze the stability of weakly Pareto optimal solutions (Theorem 6.1)
and of weakly Pareto stationary solutions (Theorem 6.3) below.

6.1 Stability of Weakly Pareto-Optimal Solutions to a Con-
vex Problem

Let { P} be a sequence of probability measures defined on B(2) and consider
the associated sequence of optimization problems (SMOPECq)*, which are
obtained from (SMOPECq) by replacing P with Py. If the set X is convex
and the functions f;(-,-,w) are convex for i = 1,...,q, then (SMOPEC) is
a convex problem.

Theorem 6.1 (Stability of Weakly Pareto-Optimal Solutions to (SMOPECq,))
Let Assumption (A) hold, suppose that the mapping F(z,-,w) is strictly
monotone for each x € X and w € Q, that (SMOPECq) is a convezr prob-
lem, and that the sequence {Py} of probability measures weakly converges to
P. Also, suppose that for each k, (z*,yi(-)) is a weakly Pareto-optimal so-
lution to (SMOPECq)*. Then, each limit point (there is at least one) of the
sequence {(z*,y*(-))} is a weakly Pareto optimal solution to (SMOPEC).
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Proof. Consider a weakly Pareto optimal solution (z*,y*(-)) to (SMOPECq).
By convexity, there exists a vector A € R with A; > 0 for a least one

i =1,...,q, such that the solution solves the following single-objective prob-
lem [38, Prop 3.10]:

®) min zzj /Q X i@, y(w), w) P(dw),

st. x€ X,
- F(x,y,w) € NC(y)a P-a.s.

Fix the vector A and consider a sequence of single-objective problems (S)*

which are obtained from (S) by replacing P with Pj.

Denote by (z*,4*(-)) an optimal solution to (S)¥. Since (SMOPECy) is
a convex problem, so is (SMOPECq)* for all k. By convexity, (z*,y*(-))
is a weakly Pareto optimal solution to (SMOPECq)* [38, Prop 3.9]. Now,
apply Theorem 3.1 with the objective function f replaced by

q
f@,y(w)) == Nifi(z,y(w)
i=1
to get the result. d

6.2 Stability of Weakly Pareto-Stationary Solutions

To establish stability without the assumption of convexity, we follow the de-
velopment of Section 3.2 and reformulate (SMOPECq) and (SMOPEC)*
as one-level problems by treating y as a function of z and w: y = o(z,w).
This is possible if, in addition to the assumptions in Theorem 6.1, Assump-
tions (B1) and (B2) hold. We denote the reformulations by (SMONLPg)
and (SMONLPg)¥, respectively:

(SMONLPg) mmin (Bulfi(z,o(z,w),w)],...,Ey[fq(z, o(z,w),w)]),
s.t. =z € X,

and
(SMONLPQ)k mwin (Ef,[fl(x,a(x,w),w)],...,Ef,[fq(x,a(:c,w),w)]),

s.t. z€X,

The following theorem is a KKT characterization of weak Pareto optimality
for multiobjective problems due to Minami [39] and Li [40].
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Theorem 6.2 Consider the problem

Inzin (fl(x)a"'afq(]"))a
st gi(r) <0, j=1,...,p,

where, for each i = 1,...,q, f; is locally Lipschitz continuous, and where
for each j = 1,...,p, g; € C'. Let the MFCQ constraint qualification
[Assumption (B4)] hold for all feasible solutions. Then, a feasible solution
z* is a weakly Pareto optimal solution if there exist real numbers A; > 0 for
all i, with X\; > 0 for at least one ¢, and a vector p € RP with g;(z*)pu; =0

for g =1,...,p, such that

q p
0" e Z A,Bf,(ac*) + Z ungj(x*).

i=1 j=1

A solution which fulfills these conditions is called a weakly Pareto-stationary
solution.

Next, we establish the stability of weakly Pareto-stationary solutions.

Theorem 6.3

(Stability of Weakly Pareto-Stationary Solutions to (SMONLPgq))

Let Assumptions (A) and (B) hold, suppose that the sequence {Py} of prob-
ability measures weakly converges to P, and that, for each k, (z*,y*(-)) is a
weakly Pareto stationary solution to (SMONLPq)¥. Then, each limit point
(there is at least one) of the sequence {(z*,y*(-))} is a weakly Pareto sta-
tionary solution to (SMONLPg).

Proof. Consider a weakly Pareto-stationary solution z* to (SMONLPg).
By Theorem 6.2, there exist real numbers A; > 0 for all 7, with A; > 0 for at

least one %, such that the conditions in Theorem 6.2 hold. Fix this value of

A, and consider a sequence {(z*,4*(-))} which is Clarke stationary to (S)¥,

that is,

0" eo (Z Az‘fz‘) (=) + ZNngi(xk)-

i=1

By the properties of the generalized gradient [30, Section 2.3, Corollary 2],
we have that
q q
0 (Z /\ifi) (@) € Y Xidfi(a),
i=1 i=1
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for any scalars X\;, i = 1,...,q, so (z¥,y*(-)) is also a weakly Pareto sta-
tionary solution to (SMONLPg)¥. Now, apply Theorem 3.2 to the single-
objective problem (S)* with the objective function f replaced by

fz,y(w)) = ZAif,-(z,y(w),

to get the result. d

7 Summary, Conclusions and Future Research

Our first and main contribution in this paper is that we established that
the SMPEC model is robust under the assumptions that the solution to
the lower-level equilibrium problem is unique and that we have sufficient
regularity conditions on the objective function and constraints. We showed
that global optima as well as stationary solutions are stable with respect to
changes in the probability distribution. If the SMPEC framework is used
to model the problem of finding a design which should be good on average
for various scenarios, then the optimal solution to SMPEC gives a design
which is stable to changing conditions. The result on the robustness also
gives credibility to using stochastic programming in general, since one of the
criticisms on stochastic programming is that the probability distribution is
often unknown or only partially known.

Our second contribution is that we have formulated, and established the
robustness of solutions to, two natural extensions of the SMPEC model:
first, a model where the objective is the CVaR risk measure; second, a
multiobjective SMPEC model.

We also presented a discretization scheme sample average approximation
(SAA), which is convergent and can be used to solve the SMPEC model. The
result on the convergence of the SAA scheme is not new, but was included to
demonstrate that the results on robustness can be combined with a method
for numerically solving the SMPEC model.

The accompanying paper [6] numerically analyzes applications of the
SMPEC formalism to the design of traffic networks and optimal treatment
plans in intensity-modulated radiation therapy (IMRT).
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Applications
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Abstract In a companion paper (Cromvik and Patriksson, On the Ro-
bustness of Global Optima and Stationary Solutions to Stochastic Mathe-
matical Programs with Equilibrium Constraints, part 1: Theory, Journal
of Optimization Theory and Applications, 2010, to appear) the mathemat-
ical modeling framework SMPEC was studied; in particular, global optima
and stationary solutions to SMPECs were shown to be robust with respect
to the underlying probability distribution under certain assumptions. Fur-
ther, the framework and theory were elaborated to cover extensions of the
upper-level objective: minimization of the conditional value-at-risk (CVaR)
and treatment of the multiobjective case. In this paper, we consider two
applications of these results: a classic traffic network design problem, where
travel costs are uncertain, and the optimization of a treatment plan in in-
tensity modulated radiation therapy, where the machine parameters and the
position of the organs are uncertain. Owing to the generality of SMPEC, we
can model these two very different applications within the same framework.
Our findings illustrate the large potential in utilizing the SMPEC formalism
for modeling and analysis purposes; in particular, information from scenar-
ios in the lower-level problem may provide very useful additional insights
into a particular application.
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1 Introduction

The framework known as stochastic mathematical program with equilibrium
constraints (SMPEC) was introduced in [1] as an extension of the MPEC
framework of hierarchical optimization models, in order to incorporate the
uncertainty of data that one often must face in applications. Since then,
it has found applications in many contexts, such as economics (e.g., [2,3]),
engineering sciences (e.g., [4,5]), and transportation science (e.g., [6]). The
companion paper [7] provides new results on the robustness of solutions
to this class of problems. The objective of this paper is to illustrate the
potential utilization of these results through two applications. The first is
within traffic network design, which is a classic topic (see e.g. [6,8] and
references therein). The second, however, appears to be new: we present
an SMPEC model for robust treatment planning in intensity modulated
radiation therapy (IMRT), where the machine parameters as well as the
position of the organs are uncertain. With this model, we are approaching
a robust and in fact deliverable treatment plan.

The remainder of the paper is organized as follows. In Section 2, we
summarize briefly the main results from [7]. In Section 3, we provide a
small-scale application of the robust design of a traffic network, based on
the classic network of Braess. In Section 4, we provide a numerical example
of a treatment plan, which accounts for both position uncertainty and the
uncertainties in the radiation delivery from a treatment machine.

2 Robustness of Solutions to the SMPEC

Let f: R*" xR™ - R, y € R™®, C C R™ be a polyhedron, let F(z,-) :
C — R™ be smooth, and let N¢ : R™ == R™ be the standard normal cone
mapping,

{z e R" |z (w—y) <0, we C}, ifyeC,

0, otherwise.

Ne(y) == {



Let (©2,0,P) be a complete probability space and consider the problem

(SMPECq) (;n,yi(l_l)) Ey[f(z,y(w), w)] ::/Qf(:c,y(w),w) P(dw),

s.t. z € X,
- F(x,y,w) € NC(:U)a P-as.,

where y : Q@ — R™ is a random element of the probability space (2,0, P).
We also introduce S : R* x Q = R™, which defines the set of solutions to
the lower-level parametric variational inequality problem,

S(z,w) = {y € R" [ -F(2,y,w) € Nc(y) }-

We next summarize briefly the main technical content of [7].

2.1 Stability of Global Solutions and Stationary Points

Assumption A
(A1) The mapping S(z,-) is measurable for any z.

(A2) The set X is closed and the mapping = — S(z,w) is closed for almost
any w € €.

(A3) The function f is continuous in (z,y), measurable in w, uniformly
weakly coercive with respect to x over the set X, and bounded from
below by a (O, P)-integrable function.

(A4) The set S(z,w) is nonempty for some zy € X and almost any w € Q.

The existence of optimal solutions under Assumption A is established
in [9].

Let {Py} be a sequence of probability measures defined on B(f2), and
denote by (SMPECg) the problem defined by (SMPECg) with the measure
P replaced by Pg.

Theorem 2.1 (Global Stability of Optimal Solutions) Let Assumption (A)
hold, suppose that the mapping F(x,-,w) is strictly monotone in y for each
z € X and w € Q, and that the sequence { Py} of probability measures weakly
converges to P. Also suppose that, for each k, (z*,y*(-)) solves (SMPECq)*.
Then, each limit point (there is at least one) of the sequence {(z*,y*(-))} is
an optimal solution to (SMPECq).



Assumptions B
(B1) The function f is Lipschitz continuous in (z,y).

(B2) The mapping F(-,-,w) is continuously differentiable and F(z,-, w) is
uniformly strongly monotone on C' for each z € X and w € €.

(B3) X ={z € R" | gi(z) <0, i=1,...,p} and each function g; is continu-
ously differentiable.

(B4) The Mangasarian-Fromovitz constraint qualification (MFCQ) holds
for all z € X.

If Assumptions (B1) and (B2) hold, then ( [10]) there exists a locally
Lipschitz continuous, single-valued solution map (z,w) — o(z,w) with

y =o(z,w), o(z,w) € S(z,w).

With this property, we can rewrite (SMPECq) as the one-level problem

(SNLPg) Ir;in Eu[f(z,o0(z,w),w)] ::/Qf(:z,a(:c,w),w)P(dw),
st. z€X,

and correspondingly (SNLPg)* is obtained from (SNLPg) by replacing P

Theorem 2.2 (Stability of Stationary Solutions) Let Assumptions (A) and
(B) hold, suppose that the sequence {Py} of probability measures weakly con-
verges to P and is upper bounded by a measurable function, and that for each
k, (z*,4%(-)) is a Clarke stationary solution to (SNLPq)¥. Then, each limit
point (there is at least one) of the sequence {(z*,y*(-))} is a Clarke station-
ary solution to (SNLPg).

2.2 Convergence of Sample Average Approximation Schemes

We use the reformulation of (SMPEC)q into (SNLPg), and consider the
problem

N
A 1
N . . k k
(SNLP) min fn = Nki_lf(x,a(m,w ), w),

s.t. xeX.



Assumption C
(C1) The set X is bounded and convex.

(C2) The function f(-,0(+,w),w) is regular (i.e., f is directionally differen-
tiable and the directional derivative coincides with the Clarke direc-
tional derivative) at x for almost any w € Q.

Theorem 2.3 (Convergence of Optimal Solutions) Let Assumptions (A),
(B1)-(B2), (C1) hold. For each N, let (xn,yn(-)) be an optimal solution
to (SNLP)N. Then, each limit point (there is at least one) of the sequence
{zn} is an optimal solution to (SNLPgq).

Theorem 2.4 (Convergence of Stationary Solutions) Let Assumptions (A),
(B), (C) hold. For each N, let (xn,yn(:)) be a stationary solution to
(SNLP)N. Then, each limit point (there is at least one) of the sequence
{zN} is a stationary solution to (SNLPg).

Since (SNLPg) is a reformulation of (SMPECq), the above theorems
state that we also have convergence to global optima and stationary solutions
for the corresponding discretized problem

N
. A 1
(SMPEC)Y min fn = NZf(z,yk,wk),
k=1

st. x € X,
_F(xaykawk)ENC(yk)a kzlaaN

2.3 Extensions to a Risk Objective Function and to Multiple
Objectives

We consider next the SMPEC where the expected value in the objective
function is replaced by an expression for conditional value-at-risk (CVaR)
at level 8

. 1
SRPEC))  min 7+ 1= [ [f(.y(@)w) =11, Plda),

s.t. T € X,
- F(xay’w) € NC(y)7 P-a.s.,

and analogously for the problem (SRPECq)*. In line with Theorem 2.1,
we can establish robustness of global optima; by reformulating SMPEC into



one-level problems,

(SRNLPg) %mn T ﬂ/ (z,0(z,w),w) =], P(dw),
z,7) -

st. x€ X,

we can also establish robustness of stationary solutions as in Theorem 2.2,
and the convergence of the SAA scheme as in Theorems 2.3 and 2.4; see [7]
for details.
We define the multiple objective version of the SMPEC, the SMOPEC,
for g objectives as that to
(SMOPECQ) (S?;}(D)) (Ew[fl(l‘,y(W),W)], s aEw[fq(xay(w)’w)]) ’
st. zxeX,

_F(:an’w) € NC(y)7 P-a.s.,
and correspondingly (SMOPECq)¥ is obtained by replacing P with P.

Theorem 2.5 (Stability of Weakly Pareto-Optimal Solutions to (SMOPECy,))
Let Assumption (A) hold, suppose that the mapping F(z,-,w) is strictly
monotone for each © € X and w € Q, that (SMOPECq,) is a convezx prob-
lem, and that the sequence {Py} of probability measures weakly converges to
P. Also, suppose that, for each k, (z*,yx(-)) is a weakly Pareto-optimal so-
lution to (SMOPECq)*. Then, each limit point (there is at least one) of the
sequence {(z*,y*(-))} is a weakly Pareto-optimal solution to (SMOPEC).

To establish stability without a convexity assumption, we reformulate
(SMOPECq) and (SMOPECq)* as one-level problems by treating y as a
function of z and w, y = o(z,w). This is possible if, in addition to the
assumptions in Theorem 2.5, Assumptions (B1) and (B2) hold. We denote
the reformulations by (SMONLPg) and (SMONLPg)¥, respectively, where
the first problem has the following appearance:

(SMONLPg) mxin (Eu[fi(z,0(z,w),w)], ... ,Ey[fq(z,0(z,w),w)]),
st. ze€X.

Theorem 2.6

(Stability of Weakly Pareto-Stationary Solutions to (SMONLPgq))

Let Assumptions (A) and (B) hold, suppose that the sequence {Py} of prob-
ability measures weakly converges to P, and that, for each k, (zF, y*(-))
is a weakly Pareto-stationary solution to (SMONLPq)¥. Then, each limit
point (there is at least one) of the sequence {(z*,y*(:))} is a weakly Pareto-
stationary solution to (SMONLPQ).



3 First Application: Traffic Network Design

We consider a road traffic model. The network is represented by a strongly
connected graph G = (V,&), where V is the set of nodes and £ is the set
of directed links. For each origin-destination (OD) pair (p,q) € C with
C C V xV, there is a transportation demand. Each route r € R, joining
the OD pair (p, ¢) has an associated flow h, and a travel cost c;.

We assume that the design parameter z € R" influences the travel cost
and the demand. The travel cost function has the form ¢(z,-) : ]R'f' — R,
where |R| is the total number of routes. The demand for each OD pair
depends on the travel cost and the demand function has the form d(z,-) :
RC — R

Wardrop’s user equilibrium condition [11] states that, for each OD pair,
the travel cost for all routes utilized must be equal and minimal. Since the
flow is nonnegative, this condition can be formulated as a complementarity
condition. Let 7, be the minimum travel cost for the OD pair (p,q). The
equilibrium condition is that

0<hy Lce(x,h)— Tpg = 0, T € Rpgs (p,q) €C, (1)

where a L b denotes the condition a™b = 0. Utilizing a route-OD pair
incidence matrix I' € RRI*XICl we can express demand feasibility as follows:

I''h = d(z,n). (2)

Combining (1) and (2), we characterize the user equilibrium flows as a mixed
complementarity problem (MCP),

0% <h Lz h)—Tr >0, (3a)
I'T'h =d(z,n). (3b)

If we assume that the travel cost is positive, then (3) can instead be formu-
lated as the following nonlinear complementarity problem (NCP) ( [12,13]):

0Rl < h L c(z,h) —T'w > 0/RI

0€l <7 L TTh — d(z,x) > 0/°l.
We can also provide a link flow representation of the user equilibrium condi-
tion. Let v € RI€l be a vector of link flows and let #;(z,v) be the link travel
cost for [ € £. If we assume that the travel costs are additive and introduce
a route-link incidence matrix A € {0, 1}€1*IRI_ the link travel cost is related

to the route travel cost through the relation c(z,h) = ATt(z,v). Also, to
have flow conservation, we require that

v = Ah. (4)



The main objective in a network design problem is to influence the travel
costs and the demands such that some criterion is optimized. The design
problem can be formulated as an MPEC, where the traffic equilibrium is
described by the system (3) of mixed complementarity constraints. An ex-
ample of a network design problem is given by setting link tolls through
the design parameter z € R", with n < |£], such that the total travel cost
f(z,v) := ) ce ti(z,v)v; is minimized, and where, for a given design z, v is
given by (3) and (4).

The traffic equilibrium model is a static model. All quantities are as-
sumed to be an average over a time period, and as such they are subjected
to uncertainties. The travel costs t(z,v,w) and demands d(z,m,w) are to
some extent uncertain and can change depending on external factors, such
as the weather. Therefore, we can and should formulate the network design
problem as an SMPEC, which gives us a design which is the best possible
on average. This problem has been studied in Patriksson [6, 8]. Birbil et
al. [14] consider a similar model in which, however, the response variables
are not stochastic, but are solutions to a stochastic equilibrium problem.

For further references on traffic equilibrium models, see [13, 15, 16].

We present a small numerical example in the application of network de-
sign under user equilibrium. The deterministic example is known as Braess’
paradox (see e.g. [15, page 75]). It demonstrates that adding an extra link
to a network can cause an increase in the total travel cost. In short, this is
due to the fact that user equilibrium is a selfish optimum and not a system
optimum. Figures 1(a) and 1(b) show the network graph with four and five
links, which we will refer to as graph I and graph II, respectively.

(a) Original network. (b) Network with the
addition of a new link.

Figure 1: Networks I and II.

We have one OD-pair (4, B) with a fixed demand of d = 6 units. The
original network has two paths, using the links (1,4) and (3, 2), respectively;



network II has three paths, using the links (1,4), (3,2) and (3,5, 4), respec-
tively. The link travel costs are t; = 50+wv; for 1 = 1,2, t; = 10v; for i = 3,4,
and t5 = 10+v5. Given theses costs, the user equilibrium flows for network I
are v = (3,3,3,3)T, h = (3,3)T. These flows give the equilibrium travel cost
7 = 83. For network II, the user equilibrium flows are v = (2,2,2,2,2)T,
h = (2,2,2)T. These flows give the equilibrium travel cost 7 = 92. Note
that adding a link to network I yields an increase in the equilibrium travel
cost.

The idea is to set tolls on network II such that we minimize the total
travel cost T'(z,v) = Y2°_, t;v;. For the example above, we consider adding
a toll z on the new link, thus altering the travel cost to t5 = 10 + v5 + z,
and consider the problem

min  T(z,v) + 727,
(z,v,m,h)
s.t. T € X,
(v, m, h) solves (3) and (4),

where X = {z € R |0 < z < 14} and 7 > 0 is a penalty parameter against
setting a too high toll value. For a sufficiently small value of 7, the optimal
solution is z* = 13 and the optimal total travel cost is T'(z*,v*) = 498. The
optimal solution z* = 13 is the threshold value for which there will be no
flow on link 5, which in turn will give a lower total travel cost.

Now, consider the case when the travel costs are stochastic. In particular,
let us assume that the travel costs on links 3 and 4 are

t; = 10v; + w;—2, ©=3,4, (5)

and that each component in w is independent and drawn from a normal
distribution with mean 0 and variance 1, i.e., w ~ N(0,diag(1,1)). We
consider the following SMPEC model:

. B ,
(wvv(')lgfl(r-l),h(-)) Ey[f(z,v(w)] == Eu[T (2, v(w))] + 727,

s.t. T € X,
0 < h(w) L ATt(z,v(w)) — Ir(w) > 0, P-as.,
I'h(w) =d, P-as.,
v(w) = Ah(w), P-as.,

where A and I' are the route-link incidence matrix and the route-OD pair
incidence maftrix, respectively, for network II. The SMPEC is solved using
the discretization scheme SAA. Since the travel costs t(z,-) are strongly
monotone, the SMPEC satisfies Assumptions A—C, and this implies that



the optimal solution is stable in the sense of Theorems 2.1 and 2.2 (see
also [8]) and that SAA converges by Theorems 2.3 and 2.4.

Note that the number of variables and constraints scale linearly with the
number of scenarios, since we use a general nonlinear optimization solver.
This means that, for 100 scenarios, the problem has 900 variables. So, even
though the deterministic problem is of small scale, the stochastic version is of
large scale. By switching to an implicit function v(z,w) and using sensitivity
analysis ( [17]), we may be able to solve larger problems. The traffic model
was implemented in MATLAB and solved using the solver SNOPT [18].

For a run with N = 400, the solver converged to the stationary solution
z* = 14. In Figure 2, we plot histograms of the objective values for station-
ary solutions to three models: one with the expected value in the objective
(z* = 14.0), one with CVaR at 8 = 0.8 (z* = 11.6) and one with CVaR at
B =0.95 (z* = 10.6).

100 T T T T 100 T T T T

[ JExp [ JExp
IICVaR 0.8 IICVaR 0.95

80 80

60 60

Freq
Freq

40 40

20 20

0 0
480 490 500 510 520 530 480 490 500 510 520 530
f(x .l f(x, )

Figure 2: Histograms (N = 400) for the objective values: one with expected
value in the objective, one with CVaR at 8 = 0.8, and one with CVaR at
8 = 0.95.

In order to illustrate the influence of the variance of the uncertain pa-
rameter on the solution, we show in Figure 3 histograms of the equilibrium
path travel cost for stationary solutions corresponding to four values of the
variance of the stochastic variable. The results are not surprising: a larger
variance implies a larger spread in the response. (We note in passing that
Gwinner and Raciti [19] consider the stochastic traffic network equilibrium
model, i.e., the lower-level problem in the SMPEC model, and have devel-
oped a procedure for the analytical computation of the mean equilibrium
flows and their variance for the case when the travel costs are affine in the
flow variables.) Having access to histograms for responses, i.e., equilibrium
solutions, is a feature of SMPEC which may be valuable for getting specific
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insights into an application.
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Figure 3: Equilibrium path travel costs for runs with N = 100 and with
variance O'JQ- = 0.01, 0]2- = 0.025, 0]2- =1, and 0]2- =4, 7 = 1,2, for the link
costs in (5). Each subfigure corresponds to one stationary solution.

Regarding the solution of the discretized model, we have made the natu-
ral observation that the solution time increases with the number of scenarios
and that it also increases with the variance of the stochastic variable. Ob-
viously, these observations are based on a single test case and should not be
considered as general conclusions.

The design and implementation of a pricing scheme must be simple and
transparent; it must also address social welfare issues such as the welfare
effect of tolls across population groups. In [20-22], several equity measures
are presented and evaluated in the context of optimal network design. In
the first two papers, these design models are built upon stochastic (in fact,
probit) traffic equilibrium models; such equilibrium solutions are still de-
terministic functions of the data of the traffic network. The results of our
accompanying paper [7], as outlined in the previous section, are immediately
transferable to such a setting; see also the discussion sections in [6, 8].
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Regardless of whether the traffic model is a deterministic or a stochastic
equilibrium one, the theoretical results of our accompanying paper [7] may
provide ideas for several interesting developments. First, we may theoret-
ically validate and numerically study SMPEC versions of network design
problems where equity is included as an objective. In the previous pa-
pers [20-22] equity measures are treated through upper-level constraints,
which however in general result in unstable optimal and stationary solu-
tions. Our proposal is to instead study a bicriterion version of the problem
(see the early reference [23] on multiobjective traffic network design), where
the original toll efficiency objective is complemented by an equity objective.
Moreover, as network user responses in the SMPEC model are stochastic,
the equity objective is natural to include as a risk measure.

While link tolling is a decentralized pricing mechanism, signal timings
are centralized mechanisms for controlling traffic flows; optimizing signal
controls subject to traffic equilibrium constraints is nearly as old a scien-
tific subject as is toll optimization; see e.g. the reviews in [24,25]. It is
frequently recognized that the performance of signal timings is unstable due
to fluctuating traffic conditions, such as fluctuating demands (see e.g. [26]).
The above example serves to illustrate the potential in utilizing the SMPEC
formalism in this field.

4 Second Application: Optimization of a Treat-
ment Plan for Radiation Therapy

In radiation therapy, cancerous tumors are subjected to ionizing radiation.
The objective is to eradicate the tumor while sparing the surrounding tissue
and organs at risk. We will show that MPEC models can be utilized to find
optimal radiation plans.

Radiation is delivered by a linear accelerator and, by using what is called
multileaf collimators, the radiation beam can be shaped such that different
parts in the treatment region receive different doses. This technique of
shaping the beam is called intensity modulated radiation therapy (IMRT).
Since there are millions of ways of modulating the intensity, the most suitable
radiation dose is found by optimization. The ideal dose is still often not
attainable, so the objective is to find the best compromise achievable.

The linear accelerator can deliver radiation to the target from several
angles by the use of a gantry arm. For some cases, up to nine gantry angles
are used to give a good target coverage. The angles are usually considered
fixed in the optimization problem.

We will describe two methods for parameterizing the multileaf collimator
system. Both methods may act as the lower-level problem in an (S)MPEC
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setting. The beam cross-section is subdivided into small rectangular cells,
known as beamlets, and the decision variables are the intensities through
each cell. In the first method, we assume that any bounded, nonnegative,
intensity profile is attainable by multileaf collimators as a total over a treat-
ment time. We also assume that the doses scale linearly with the intensities
and are additive.

In the other method, the leaf trajectories are parameterized; given a de-
sired intensity, the trajectories are found through an optimization problem.

Objective functions in IMRT are either physically or biologically based.
In short, a physically based function is a function of the dose alone. Tt
can, for example, be the quadratic deviation from a dose level sought or the
maximum dose in a domain. A biologically based function is associated with
a specific organ and measures the biological effect of a dose. The function
is constructed using a set of biological parameters which can depend on the
organ type, its size, shape etc.

An example of a biologically based function is the normal tissue compli-
cation probability (NTCP) (see e.g. [27]):

u
_ 1 —t2/2
NTCP = m/_oo exp dt,

where

,_ GEUD(d) - Dso
B mDsg ’

and Dsq is the homogeneous dose corresponding to 50% risk of complication,
m determines the slope of the risk, d is the dose, and GEUD ( [28]) is the
generalized equivalent uniform dose,

1/a

GEUD(d) = ﬁng‘ ,
jeJ

where J is the set of voxels (discretized cells) in the organ. The parameter
a influences the volume effect of the dose: if @ = 1, then the function
measures the mean dose; for higher values, the function value approaches
the maximum dose. For example, the spinal cord is sensitive to a maximum
dose and the volume effect is low. On the other hand, the parotid glands
are organs that are sensitive to how much volume receives a certain dose.
Suitable values for a are typically fit from clinical data. The GEUD function
may be used as an objective function by itself. The function is attractive
from several points of view, not the least the fact that it is convex if a > 1,
which is the case for organs.
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Radiation therapy is delivered in fractions over several weeks; although
the patient is fixated, there will be variations in position over the sessions.
(This is called setup errors.) Another uncertainty that affects how good a
treatment plan is in practice is the patient and organ motion which will vary
during a treatment session. Combining the two, we get a position uncer-
tainty. Olafsson and Wright [29] and Chu et al. [30] assume that the doses
are stochastic and use probabilistic constraints to control the dose levels in
the target and in the organs at risk. Chan et al. [31] use a motion probability
mass function and assumes that the probability itself is uncertain. Using
linear programming duality, they can formulate the optimization problem
as a large linear program. Baum et al. [32] use coverage probabilities for the
target and tumor as penalties in the objective functions to derive a robust
treatment. Unkelbach and Oelfke [33] discuss, from a mathematical and a
physics perspective, the difference between using coverage probabilities and
stochastic programming in IMRT optimization.

Biological uncertainty can also be incorporated in an SMPEC model
through the objective function. An optimal solution then is the best from a
population perspective. Functions based on the biological effect have certain
advantages over physically based ones, but they rely on the accuracy of bio-
logical parameters which are fit from data in medical studies. For example,
the dose—volume effect for the bladder is uncertain (see e.g. [34,35]), which
has an impact on the parameter a in the GEUD function.

In Kaver et al. [36] and Lian and Xing [37], stochastic programming is
used for the optimization of a treatment plan when there are uncertainties
in the biological parameters. In both papers, the expected value of the
objective functions is minimized. Kaver et al. use the objective Py ( [38]),
which is a nonconvex objective function; Lian and Xing use an objective
function based on GEUD. Lian and Xing report that the result strongly
depends on the underlying probability distribution.

For more general information on IMRT, see e.g. [39-41].

4.1 Linear Lower-Level Problem

Let y € R™ denote the dose in the voxels and let £ € X denote the inten-
sities (beamlets) in the beam. If the dose scales linearly and is additive, an
attainable dose is given by the equation

y= Kz, (6)

where the influence matrix K € R™*" is computed beforehand. To put this
parameterization into the (S)MPEC framework, let z denote the decision
variables and let y denote the response variables. The equation (6) then
represents the lower-level problem.
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In connection with this setting, we consider a prostate case where the
PTV (Planned Target Volume) overlaps two critical structures: the rectum
and the bladder (see Figure 4). We have four objectives, which are listed
in Table 1. The PTV should receive a uniform dose of d¥’ = 70 Gy (J/kg).
The rectum is considered as an organ with a serial architecture, which means
that it is sensitive to the maximum dose. The volume effect parameter for
this organ is set to a, = 8.3 according to Emami et al. [42]. The architecture
of the bladder is more uncertain, but it is set to ap = 2 [42].

Bl adder

Figure 4: Transverse CT scan.

In Table 1, the structure 'Unspecified’ refers to the normal tissue sur-
rounding the other structures. We enforce a maximum dose limit d = 50
Gy on this structure. This is quite common in clinical practice in order to
avoid hot spots which can induce secondary cancers.

Structure Prescription

PTV Uniform dose of d¥’ = 70 Gy (£5%)
Bladder gEUD (a = 2) below 32 Gy
Rectum gEUD (a = 8.3) below 58 Gy

Unspecified Maximum dose of d¥ = 50 Gy

Table 1: Treatment parameters.

The upper limits for the GEUD for the rectum g, and for the bladder
gy were computed from the treatment plan which was used in the clinic for
this patient.

Since the structures overlap, the four objectives will be in conflict with
each other; it is our goal to find a good compromise. This is a multiple
objective problem for which Theorem 2.5 and 2.6 represent the stability
results obtainable. We use a simple scalarization of the objective functions.
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Target coverage is enforced by minimizing a quadratic measure of the
deviation. We assume that the location of the tumor is uncertain and con-
sider it to move like a rigid object with a radial offset. We choose to ignore
any fractionation effect and consider the treatment to be given at a single
session. This means that we assume that the total dose D for the target
after N fractions is D(w) = Zf\i L d(w?); it is assumed to have its center nor-
mally distributed with standard deviation 0.6 cm. Furthermore, let 7 (w),
B, R, N denote the voxels in the PTV, the bladder, the rectum and the
normal tissue, respectively. For a vector v € R" and a set I = {i1,...,ix}
with |I| < n, we use the notation

vr = (Viy,---,v;,)T and vy = (max{0,v1},...,max{0,v,})T.
Also, we let e = (1,...,1)T.

Consider the following multiobjective problem, which is of the form

(SMOPECq):

(SIMRTq) l(fmr)l (Ew[Q1(d, w)], Q2(d)),
Z,
st. z;€X;, j=1,...,n,
d= Kz,

where X; = [0,u;] are lower and upper bounds on the intensities and the
objective functions are defined as

Q1(d,w) = 57 (A7) — 50) " Sy (dr(w) — 50),

l/ar l/ab
1 1 r 1 1
Qd) = | m D4 +o | B9
JER jEB
+ gy (da — o) TRy (dyr — 70)+,

where
so = dPe, Sy = diag(sg), ro = dVe, Ry = diag(rg).

Both @1 and @2 are convex functions; hence, (SIMRT() is a convex problem.
The function (; measures the deviation from the target dose d’; Q- is
based on the GEUD functions for the rectum and the bladder, respectively,
and a one-sided measure of the deviation from the maximum dose in the
unspecified tissue.

The uncertainty in (SIMRT(q) enters only into the objective functions.
The lower-level problem is the trivial linear equation, d = Kz, and so the
assumptions of Theorem 2.5 are fulfilled: weakly Pareto-optimal solutions
are stable.
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We use beams from 5 equidistant gantry angles to irradiate the tumor.
The number of voxels and variables in (SIMRT() depends on the number
of beams, the beamlet size and the geometry and resolution of the patient
region. For this case, we have 1,526,330 voxels and n = 336 variables. We
let u; = 30 for j = 1,...,n. The IMRT model was implemented in Fortran
90. The radiation treatment planning tool CERR [43] was used to setup the
problem, and LANCELOT B [44] was used as the optimization solver.

We compare three models: a conventional treatment where we use a
static target with a 1 cm extra margin (7 (w) in (SIMRTg) is replaced by a
static set); a treatment with (SIMRTq); and a treatment with (SIMRTq) but
with conditional value-at-risk at level § = 0.8 instead of the expected value.
We compute only one solution on the Pareto surface by setting the constraint
@1 < 0; see Figure 5. Using an extra margin is the most conservative choice
as it will “guarantee“ that the tumor gets a sufficient dose, although at the
expense of extra radiation to the risk organs. The expected value is the least
conservative choice, as it constrains the tumor in a mean sense; the CVaR
objective is a compromise. The conventional treatment gives a 2.7% risk
of rectal bleeding (m = 0.15, D5y = 80 Gy [42]), while the expected value
results in the risk being reduced to 0.9%. If CVaR at level 8 = 0.8 is used,
the risk is 1.1%.
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Figure 5: Dose-volume histograms for the organs at risk: bladder, rectum,
and normal tissue. The dashed line corresponds to the conventional treat-
ment (both figures), while the solid line corresponds to the expected value
objective (left figure) and the CVaR objective (right figure).

The results show that, if there is a willingness to be less conservative
in the choice of target coverage, then there is a benefit in using stochastic
models in terms of risk of complications.
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4.2 Deliverable Treatment

The multileaf collimators (MLC) that shape the beam are organized as pairs.
If we consider the rectangular beam cross-section as a matrix, where each
element represents a discretized cell, then each leaf pair can block a “col-
umn”; see Figure 6 (note that, in the figure, each leaf blocks one row). Let
I=A{1,....,m}, J ={1,...,n}, and let z;;, j € J, i € I, be the desired
intensity (decision variables) in beamlet (7,j). We assume that there are n
pairs of MLC leaves (A4;, B;), j € J. We assume that the leaves move from
row 1 to row m.

Figure 6: Snapshot of the motion of the multileaf collimators (left figure)
for the fluence (intensity) profile shown in the right figure for a cross-section
of the beam.

Let a;; and b;; denote the cumulative beam-on time in monitor units of
leaf A; and leaf Bj, respectively, at row 7. Assuming that each leaf totally
blocks the radiation, and that it “jumps” instantaneously from row i to row
i + 1, the delivered intensity y satisfies y;; = a;; — b;j. The objective with
leaf motion computation is to determine the beam-on time a and b such that
the desired intensity is obtained, in minimum total time (beam-on time).

The leaves are constrained to not exceed a maximum speed, which im-
plies that there is a minimum time difference between the beam-on time for
two consecutive rows. If we assume that the distance between all rows are
constant, we can set the minimum time difference to At.

We assume that each pair of leaves begin at row 1. In reality, leaf B
could be positioned at ¢ > 1 if the intensities permit it. This would reduce
the total time.

Since the beam must be on until the slowest leaf pair finishes, the leaves
A; are also constrained to end at row m at the same time. This would avoid
any extra radiation through the unclosed leaves. The optimization problem
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to deliver an intensity z, in minimum time, is formulated as:
(TLP) min ¢,
(t,a,b)
s.t. ai+1j2aij+At, 1=1,...,m—1,
bit1j Zbij-i-At, 1=1,...,m—1,

am,j:t, jGJ,

Tij = aij — by, 1€1,j€J,
aijZO, 1€l, 7€,
bij > 0, 1€l,5€d.

This model was formulated by Convery and Rosebloom [45]. Spirou and
Chui [46] present an analytic expression for the optimal solution, which is
derived from the fact that one of the leaves in each pair must move at the
maximum speed. Consider the pair j and assume that a;; and b;; are known.

If z;11; > x4, then { i+15 i + At, (7a)
Qi1 = bi+1j + Tiy1j,
ai+15 = a;j + At
If z;401; < x;;, then v ! ’ 7b
i+1j K { bi—l—lj = Qi1 — Tit+1j- ( )

In reality, there are phenomena which effect the delivered intensity y.
One such is leaf transmission, which is considered by Spirou and Chui [46].
Let 7 be the leaf transmission factor and let t* be the total beam-on time.
Then the intensity delivered is

yij = T[t" — (aij — bij)] + aij — by, (8)

where t* — (a;; — b;;) is the total time cell (4, ) is blocked and there is a
transmission. From the analytic expressions (7), the total beam-on time is
given by ( [46])

m—1
. mjz;mx (nAt + Ty + Z [.’L‘Z'_|_1j — 371']']—}-) .
i=1

We consider the linear optimization problem (TLP) as the lower-level
problem in an (S)YMPEC framework. We let = denote the decision variables.
If we let the total beam-on time ¢ denote the response variable (a and b are
eliminated in (8) by the equation z;; = a;; — b;j), we see that, since it is
Lipschitz continuous, it fulfills the requirements on the lower-level problem
for global and stationary stability, cf. Theorem 2.1 and 2.2. On the other
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hand, if we let a and b denote the response variables, we note that they
are not Lipschitz continuous with respect to = as is shown in the analytic
expressions. However, in practice, if we consider a nonoptimal heuristic
solution in the lower-level problem, we can modify the analytic expressions
with a ramp to make the responses A and B Lipschitz continuous with
respect to z, and this will give stability.

We now consider the same prostate case as in the previous subsection,
with the exception that the dose to the tumor should be +3%. We assume
that the locations are static, but the leaf trajectories A and B are stochastic.
This is manifested in that, at each position (7,7), there can be a delay
in the beam-on time, which corresponds to the fact that the leaves may
unexpectedly move more slowly than anticipated. This is to some extent
observed in reality ( [47]). Consider the following stochastic multiobjective
problem:

SDEL min Eu[G1(d(w))], Ex[Ga(d(w))]) ,
(SDELg) min  (Bu[G1(d(w))). Es[Ga(d))
s.t. € X,
y(w) =7(t - (a - b))
+ (14 ¢(w))(a —b), P-as.,
d(w) = Ky(w), P-as.,
(a, b,t) solves (TLP) given z,
where ¢ determines the speed lag and
G1(d(w)) = 577 (d7 — 50) "S5 (dr = 50),
1/ar 1/ap
Go(dw)) = & | g D45 + o oo d
JER jeB

+ gy (v —70) LRy (dyr — 7o)+

The function c is chosen such that, for each beam, 10% of the positions are
affected. Let k € K denote the affected intensities, let wy ~ N(0.1,0.1) N
Ry for k € K, let ¢ = wi for k € K, and let ¢, = 0 for k£ ¢ K. The
multiobjective problem is discretized using SAA with 20 samples and solved
using the epsilon-constrained method ( [48]). The model was implemented
in Fortran 90 and LANCELOT B [44] was used as the optimization solver.
The lower-level problem was implemented as an implicit function.

Figure 7 shows the local Pareto front for solutions to SDELp. As a
comparison, locally optimal solutions z*, corresponding to the deterministic
plan (¢ = 0), are evaluated in SDELq. The results show that there is an
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unexpected leakage of radiation due to slower moving leaves, and this in
turn implies that the organs receive an additional dose. The SMPEC model
is to some extent able to cope with this situation and delivers on average a
better treatment plan compared to a deterministic model.
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Figure 7: The figure shows three fronts: one is a local Pareto front for
solutions z% to the stochastic model SDELq (Stoch.); one is a local Pareto
front for solutions z; to the corresponding deterministic model, i.e., with
¢ =0 (Det.); and one is the deterministic solutions z); evaluated in SDELgq
(Det. with exp.).

5 Summary, Conclusions and Future Research

This paper contributes with two rather different applications of robust SM-
PEC models.

First, we consider the case of robust network design under tolled user
equilibrium flows. This is a case where the lower-level problem is a varia-
tional inequality over a polyhedral set, and where uncertainty may be present
in both the demand and travel cost functions. Our numerical example fo-
cuses on the latter, and we experiment with both the traditional average
and the CVaR objective. Robustness of stationary solutions follows, since
we assume the travel cost to be separable and affine with positive coeffi-
cients. In practice, link costs normally are modeled as nonlinear. In order
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to establish the robustness of stationary solutions and the convergence of
Monte Carlo schemes, Assumption (B) must be enforced (cf. Theorems 2.2
and 2.4), which implies a strong monotonicity assumption on the travel cost;
this may be a limiting factor in some applications. A particularly nice fea-
ture of the present application is the availability of information from the
responses generated in the Monte Carlo scheme, as revealed in Figures 2
and 3. In applications of toll optimization, where equity is an important
issue, the CVaR objective provides a very interesting performance measure,
as it allows for the optimization of the worst case situation. It would be in-
teresting to further study applications of robust toll setting problems under
uncertainty in this setting, in particular in the multiclass, elastic demand
setting.

Second, we consider the optimization of a robust treatment plan in in-
tensity modulated radiation therapy. We consider two lower-level problems,
each with its unique type of uncertainty: one with a simple linear system
of equations, where the position of the tumor is uncertain, and one with
a linear program where some of the machine parameters are uncertain. In
the first of these examples, both the expected value and the CVaR objective
are used to tackle the position uncertainty. The properties of the simple
lower-level problem imply that the problem is convex and also that globally
optimal solutions are robust. The numerical example shows that the risk of
complications can be reduced significantly if the conservative extra margin
around the tumor is reduced and tumor coverage is enforced with expected
value or CVaR minimization.

The linear program in the lower-level problem represents the problem to
find optimal leaf trajectories to block the beam such that a given intensity
profile is (almost) attained in minimum time. Compared to the other version
with a linear lower-level problem, this formulation is approaching what is
called a deliverable treatment. This means that the optimal solution can be
used with much less postprocessing, which may otherwise worsen the plan.
We assume that the speed of the leaves are uncertain, which implies that
there will be unexpected leakages of radiation. Due to the presence of a lin-
ear lower-level problem, the resulting SMPEC violates Assumption (B); to
establish robustness, we consider a heuristic solution to the lower-level prob-
lem. We consider the optimization of a treatment plan as a multiobjective
problem with two goals: tumor coverage and minimum risk of complications.
It was found that the uncertainty in general reduces the quality of a plan
due to the radiation leakage, but that the SMPEC model yields a better
treatment plan on average compared to a deterministic model.

We already utilize biological objective functions in our IMRT applica-
tion, and they are becoming increasingly important in practice. As a future
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research task, it would be interesting to consider uncertainty also in the ra-
diobiological parameters. Their inclusion into the SMPEC model should be
straightforward.

For the application of the SMPEC model to become more practical,
special algorithms need to developed.
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Robust multi-objective optimization based on a
user perspective

Christoffer Cromvik* Peter Lindrotht

Abstract

Solving practical optimization problems that are sensitive to small
changes in the variables or model parameters require special attention
regarding the robustness of solutions. We present a new definition of
robustness for multi-objective optimization problems. The definition
is based on an approximation of the underlying utility function for a
single decision maker. We further demonstrate an efficient computa-
tional procedure to evaluate robustness. This procedure is applied to
two numerical examples: one is an analytic test problem while one is
a real-world problem in antenna design. The results show that the
robustness varies over the Pareto front and that it can be improved if
the decision maker is willing to sacrifice some optimality.

Keywords: Multi-objective optimization, Robustness, Multi-criteria
decision making

1 Introduction

Many applications of optimization comprises several more or less conflicting
objectives, such as cost/quality, expected return/risk etc. These are to be
optimized simultaneously and the aim is to find the most appropriate balance
between all the objectives. Mathematically, such a problem is denoted a
multi-objective optimization problem (MOOP) and is formulated as that to

mi;liel)r(lize (f1(x)y---s fe(x)) - (1)
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Here, x € R" denotes a vector of decision variables, X C R” is the feasible
decision space, and each f; : X — R, ¢ = 1,...,k, is an objective func-
tion to be minimized. Since minimization of a vector in general is not well
defined, the notion of optimality for multi-objective problems is somewhat
different compared to single-objective problems. Optimality is here based on
dominance, and the following definition is used.

Definition 1.1 (Pareto optimality) A feasible solution x € X is called
Pareto optimal if there exists no vector x € X such that fi(x) < fi(x), i =
1,...,k, with at least one inequality holding strictly. The set of all Pareto
optimal solutions is denoted P C X.

The possibly most intuitive method for solving a MOOP, i.e., to find P
or at least a good approximation of P, is to solve a sequence of standard
optimization problems of the following type

k
migier)rgize Z; w; fi(x), (2)
1=

where the multiple objectives are transformed to different single objective
problems by varying the weight vector w € {v € RF | Zle v =1, v; >
0 Vi}. This solution strategy suffers from serious limitations, such that it is
only possible to find the subset of P which is mapped onto the convex part
of the Pareto front (Miettinen, 1998), and also that the mapping between
w and the optimal values to (2), i.e., RE 3 w + mingey Zi-c:l w; fi(x) €
RF | is non-linear and strongly depending on the properties of the actual
functions involved (Das and Dennis Jr, 1997). To avoid finding weakly Pareto
optimal solutions (where the strict inequality requirement in Definition 1.1
is dropped), the weights are required to be strictly positive. Despite of its
limitations, the weighting strategy is fundamental, and is used as a basis for
the definition of robustness presented in this paper.

1.1 Robustness in single- and multi-objective optimization

An optimal solution which is sensitive to perturbations in the data is often
not useful in a practical application. A natural approach to deal with this
situation is to incorporate the uncertainty into the model. This approach is
used in Stochastic Programming (SP) (cf. Kall and Wallace (1994); Birge
and Louveaux (1997)) and Robust Optimization (RO) (cf. Ben-Tal and Ne-
mirovski (2002)). In SP, the objective function is typically the expected
value over all uncertain parameters, which implies that an optimal solution
is good on average. In RO, feasibility is required for all outcomes of the



uncertain parameters, which produces a “conservative” optimal solution. Al-
though most RO theory is restricted to convex problems with an explicit
objective function, there are some recent development of RO methods also
for non-convex as well as simulation-based problems (cf. Bertsimas et al.,
2009)). Das (2000) views robustness as an objective in itself, and sets the
goal to generate solutions that optimize both the unperturbed objective value
and the expected objective value in a bi-objective optimization fashion.

There are, however, situations where it is not suitable or even possible to
remodel the problem, but where there is an interest in assessing the robust-
ness of an optimal solution in a post-process. This opens up the question
of how robustness is evaluated. Considering a single-objective problem, we
can use the sensitivity of the objective value at an optimal solution as a
measure of robustness, but for multi-objective problems this is less straight-
forward. For such problems we have to quantify the uncertain responses in
the objective space; see Figure 1.

Ij

(1o f2)

fi

Figure 1: Uncertainties in x (such as implementation precision) and in f =
(f1,---, fx) (e.g. in model parameters) lead to uncertain responses in the
objective space.

Among the many papers published on robust optimization, only few con-
cerns multi-objective optimization. One has to distinguish between robust
multi-objective optimization for which robustness is one objective and per-
formance is the other (cf. Jin and Sendhoff (2003); Das (2000)), and our
interpretation of robust multi-objective optimization where the wish is to
find robust solutions to a multi-objective optimization problem. For the lat-
ter, Deb and Gupta (2005b,a, 2006) have made a direct extension of SP by
using averaged values of the objective functions to define a robust Pareto
front.



1.2 Outline

In Section 2, we construct one utility function for each decision maker which
measures the objectives. We present a family of utility functions that spans
the full range of “hidden objectives”, and we also present a few properties
of these functions and define two measures of robustness based on them. In
Section 3, we discuss the computation of the robustness measures. Depend-
ing on the problem in terms of constraints and differentiability, we suggest
two approaches to compute approximations of the measures. Section 4 deals
with the search for robust solutions. Instead of just assessing the robustness
of the Pareto solutions, we state an optimization problem with the goal to
find robust, near-optimal solutions. In Section 5 we present two numerical
examples. The first uses a known multi-objective test problem and the sec-
ond considers a real-world problem instance in antenna design. Finally, in
Section 6, we summarize the article and suggest some future work.

2 Robustness based on a utility function

To quantify the change in the objective space due to uncertainties in the de-
cision space and in the objective itself, we use the notion of a hidden objective
in a multi-objective problem. The hidden objective is tailored for each de-
cision maker and captures his/her preferences. The robustness of a solution
is then measured by this objective. With this approach, the computation of
robustness must be considered as a post-process, since the preferences of the
decision maker depend on the Pareto front.

The idea is to present a set of candidate solutions that are robust and
constitute a reasonable approximation of the Pareto front. This implies that
robustness can be treated as an objective itself, which is natural in a multi-
objective setting.

2.1 Hidden objectives in multi-objective optimization

As mentioned previously, a multi-objective problem can often be viewed as a
hidden single-objective optimization problem, where hidden means that the
objective function is not explicitly known. A decision maker seeks one final
solution which is optimal to him /her in the sense of balancing the different
criteria. The reason for using a multi-objective formulation is to push forward
the decisions until more knowledge is revealed about the characteristics and
the limitations of the problem at hand. This single-objective optimization
problem can be formulated as that to

migier)rflize uw(fi(x),..., fk(x)), (3)



where v : R¥ — R is the hidden single objective. The observation of this
formulation is the core of the ideas developed in this paper. Form here on,
we refer to the hidden objective as the utility function, and use a convention
that a smaller utility value is better than a larger.

Definition 2.1 (rationality) A utility function u : R¥ — R is rational if
for x,y € R", f(x) < f(y) implies that (uof)(x) < (uof)(y). A decision
maker is rational if his/her associated utility function is rational.

Rationality means that if a point y is dominated by a point x, then x must
be appreciated as at least as good as y.

With the above definition of rationality, the following proposition shows
how rational utility functions can be characterized.

Proposition 2.2 The utility function u is rational if and only if u(f1, ..., fx)
is monotonically increasing with each f;, 1 =1,...,k.

Proof. If u is monotonically increasing in every argument it holds that
u (f(x)) < u(f(y)) whenever f(x) < f(y), i.e., u is rational. Suppose now
that u is rational, but not monotonically increasing, i.e., 3 f € RF, j €
{1,...,k} and € > Osuch that w (f1,...,fj,---, ) >u(f1,..., fi+e, .., fr)
But u is rational and hence since (f1,..., fj,.-., fx) < (fi,.--, fi+e, ..., fx)
it holds that w (f1,..., fj,..., fx) <w(f1,...,fj +¢€,..., fr). Thisis a con-
tradiction, whence v must be monotonically increasing. o

We also make the following assumption on the function values of the
Pareto solutions.

Assumption A
The objective values are scaled such that f(P) C (0,1]*.

If the range of f over X is bounded, it is always possible to scale the objec-
tives such that Assumption A holds true.

2.2 The utility function

We assume that the utility function has the following form:
k
u(f) =Y wiff, (4)
i=1

where w € R’i are weights and a > 1 is a parameter related to curvature.
We also define a family of utility functions.



Definition 2.3 A family of attainable utility functions U is defined as

k
= {sz’fia

wi>0,i:1,...,k;a€[1,oo)}. (5)
i=1

We associate a utility function to each candidate vector x € X, i.e., to any
solution that a decision maker is interested in. If X € P, then w and « are
chosen such that « is as small as possible and

x € argmin{uof(x) | |V (uof)(x)||1 =1}.

In the following, we present a few properties of the family (5) of utility
functions. The goals are to show that the family is rational and complete
with respect to certain Pareto optimal points in a sense to be defined below.
These are points that can be reached using a utility function in the family
U, and we will use the notion of proper Pareto optimality to identify them.
We first define completeness for a general family of utility functions.

Definition 2.4 (completeness) A family of utzlzty functions U is com-
plete with respect to a set PCP if for every x* € P there ezists a u € U
such that

x* € argminu(fi(x), .., fu(x)).

That is, in a complete family, for each x* € P C P there is at least one
utility function that evaluates x* as a best one. A good family of utility
functions is both rational and complete with respect to a set which is a close
approximation to P. We will show that the family (5) is a good one.

Proposition 2.5 The family of utility functions defined by (4) is rational.

Proof. Since w > 0¥ and o > 1, all u € U are monotonically increasing in
all their arguments; the result follows then immediately from Prop. 2.2. 0O

Geoffrion (1968) introduced the notion of proper Pareto optimality to
exclude some Pareto optimal solutions that are insensible to reasonable de-
cision makers.



Definition 2.6 (proper Pareto optimality) A feasible solution x € X
to (1) is called proper Pareto optimal in the sense of Geoffrion if it is Pareto
optimal in (1) and if there exists a number M > 0 such that for each i €
{1,...,k} and each x € X satisfying fi(x) < fi(X), there exists a j €
{1,...,k}\{3} such that f;(X) < f;(x) and

fi(%) = fi(x)
fi(x) — f(x)

We denote the set of all proper Pareto vectors in the sense of Geoffrion by
P.

<M. (6)

A vector x is properly Pareto optimal in the sense of Geoffrion if it has finite
trade-offs between the objectives. We make a somewhat different definition
of proper Pareto optimality based on the family (5) of utility functions.

Definition 2.7 (firmly proper Pareto optimality) A feasible solution to
(1) is called firmly proper Pareto optimal if it is the minimizer of (3) for
some wutility function u in the family U defined in (5). We denote the set of
all firmly proper Pareto vectors by P'.

Figure 2 illustrates some firmly proper, proper and non-proper Pareto opti-
mal solutions. The definition of firmly proper Pareto optimal points implies
that the family of utility functions is complete with respect to these points.
The question now is which points are firmly proper.

The two following propositions show that firmly proper Pareto optimal
solutions are indeed Pareto optimal, and that these solutions are also proper
in the sense of Geoffrion.

Proposition 2.8 Under Assumption A, each firmly proper Pareto optimal
solution is a Pareto optimal solution, i.e., P' C P.

Proof. Suppose that x € X\P. Then, Jy € X such that f;(y) < fi(x), i =
1,...,k, with f;(y) < fj(x) for some index j. It follows that u (f(y)) =

Sh o wifi(y)® < Y wifi(x)® = u(f(x)) since w; > 0, f5(y) < fi(x)
a> 1, and f(y) > 0%, Thus x ¢ P’ and the proposition follows.

Proposition 2.9 Under Assumption A, each firmly proper Pareto optimal
solution to (1) is a proper Pareto optimal solution, i.e., P' CP.

Proof. Let x* € P'. Prop. 2.8 implies that x* € P. Suppose that x* does
not fulfill (6). Then for every M > 0, there exists an ¢ and an x € X with

fi(x) < fi(x*) such that % > M for all j € {1,...,k}\ {i} with
fi(x*) < fi(x).



Let us first consider a problem with two objectives, f; and f;. Let (w;, w;)
and « be the parameters for a utility function with minimum at x*, and let
fi(x*) > fi(x) — W, for every M > 0. Then we have that

w (Fi(0), f(67)) = wifi(x7)® + w; f(x7)°
> lim w;fi(x")* +w; ( Fi(x) - _fi<x*>ﬂzfi<x>)“
= w; fi(x*)* 4+ w; f;(x)*

wi fi (%) + w; f;(x)*

= u (fi(x), fj(x)) -

\%

Hence x* is not optimal in (3), i.e., x* ¢ P’. This leads to a contradiction.
Let us consider k£ objectives. For all x, we can partition the objectives
into three sets, I1(z) = {1 | fi(x) < fi(x")}, La(z) = {7 | fi(x) > f;(x")}
and I3(z) = {e | fe(x) = fe(x*)}. In the inequality chain above, only the
indices in I, are potentially harmful. But each j € Iy is above shown to
result in a non-strict inequality, and also corresponding to an index resulting
in a strict inequality. Therefore, altogether we get u(fi(x*),..., fx(x*)) >
u(f1(x), ..., fe(x)), which is the contradiction sought. a

f2 1

\4
fi

Figure 2: An illustration of the Pareto optimal set for a problem with two
objectives. All points except the four marked are proper Pareto optimal
points. Points 1 and 2 are not proper, and point 3 is not even Pareto opti-
mal. Point 4 is proper but not firmly proper. Note that point 4 has points
arbitrary close on both sides with different values of the trade-offs; this point
can therefore be seen as insensible.

We will next identify which points on the Pareto front that are firmly
proper. It turns out that for convex multi-objective problems, i.e., with all
fi convex and X convex, it is sufficient with & = 1 and w € RE in (4) to
make the family (2.3) complete with respect to P’. Since we require that
the weights are strictly positive, there may be a few non-proper solutions;



however, almost all Pareto optimal points to convex problems are firmly
proper.

In the following proposition and corollary we show that also certain non-
convex multi-objective problems have Pareto fronts consisting of only firmly
proper Pareto points. The proposition is similar to what is shown in (Li,
1996) however, we assume that the objectives are scaled such that f(P) C
(0,1]%. This enables another line of arguments, leading to a significantly
shorter proof.

Proposition 2.10 (convexification) Consider the problem (1) under As-
sumption A. Let the Pareto front be parameterized by fr = ¢(f1,---, fu—1),
and let x* € P. Assume that the local trade-offs on the Pareto front be-
tween the pairs of objectives are continuous at £f(x*), and assume that ¢ is
twice continuously differentiable. Then, for a sufficiently large p € [0,00),
the Pareto front of the problem mingex (f1(x)?, ..., fx(x)P) is convezr at x*.

Proof. Let f = {f1,..., fr_1} and h(f) = ¢(f)?. We will show that V(fp) h
is positive semi-definite at f(x*).

From the chain rule, we have that
Oh _ Oh 1
o(ff) ~ 0fjps~?

and that
0%h 0%h 1 p—1 0h
3(f§~’) 3f2 2(f7 H2 - p2flofy’
?h  9h 1

ofiof;  0f;0f; p?f;-’_lfi”_1

We denote the exponent of a vector to be component wise, and introduce
D = diag(f? 1) ! and E = DP~!. With these, we have that

Vih = %DV;h, (7a)
1
V(er)2h = pZDV§2hD - TD diag(Vzh)DE. (7b)
Now, since
oh 100 0%h 8¢ _10%¢
and — =p(p—1 oy
we get

Vih =p(p — 1)¢P 2Veh(Veh)™ + pg? ™' VZ, ¢,



Finally, by inserting the above expression into (7) we get

-1 1
YV iry2h = I’qup—wqus(vw)w + ¢ DVpgD

—1)2 )
- (ppT)qu—lD diag(V$) DE.
The first term is positive semidefinite, and since V§¢ < 0, the last term is
also positive semidefinite. When p — oo, the second term goes to zero faster
than the first term, wherefore the result is proved. d

Corollary 2.11 Let the Pareto front be parameterized by fr=¢(f1,- -, fr—1),
and let x* € P. Assume that the local trade-offs on the Pareto front between
all pairs of objectives are continuous at £(x*), and assume that ¢ is twice
continuously differentiable. Then each proper Pareto optimal point is a firmly
proper Pareto optimal point, and therefore P = P'.

Proof. It is well known (cf. Ehrgott (2005), Thm. 3.11) that all proper
Pareto optimal points to convex multi-objective optimization problems can
be found using the standard weighting method with non-negative weights.
The result follows from Proposition 2.9. d

The corollary implies that all points on sufficiently smooth Pareto fronts
are firmly proper, i.e., for problems with such Pareto fronts, our family of
utility functions is complete with respect to the whole of P.

To conclude this section, we have shown that the family U of utility
functions is rational and complete with respect to almost all Pareto solutions
arising from convex problems and all Pareto fronts that are smooth enough.

2.3 The robustness index

We present two definitions of robustness for a given decision vector: absolute
robustness and relative robustness. Both measures are based on the utility
function (4), and for both of them, a smaller value means a more robust
point.

Definition 2.12 (absolute robustness index) Let x € R" be the point
whose robustness is to be measured, and let n € Q C R™ be a stochastic
variable with mean my. Suppose that u(-) is the utility function associated
with X. The absolute robustness index of X is defined as

Ra(x) = E[(uo £)(x,m) — (u o £)(x,m)]-
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Definition 2.13 (relative robustness index) Let x € R" be the point
whose robustness is to be measured, and let n € Q C R™ be a stochastic
variable with mean 7y. Suppose that u(-) is the utility function associated
with X and that x*(n) € X Nargmin(u o f)(x,n). The relative robustness
indez of x is defined as

R(x) = E[(uof)(x,n) — (uof)(x"(n),n)].

Remark 2.14 Due to Jensen’s inequality (cf. Fristedt and Gray (1997),
Prop. 12), if (uo f)(x,-) is convez, the absolute robustness is non-negative,

RA(X) 2 (uof)(X, E[n]) — (uof)(X,m,) = 0.

In contrast to absolute robustness, relative robustness is not necessarily
affected by large changes in the objective space due to different outcomes of
7, since it measures the relative loss to an optimal solution for each n; see
Figure 3.

Which robustness index should be used may be a matter of choice for a
decision maker, but practice may motivate the use of one before the other.
For example, using relative robustness requires a minimization for each n
which limits its practical use on some problems. In Section 3, we present
procedures for computing approximations of the robustness indices.

fo

Figure 3: Two Pareto fronts for two realizations of the uncertainty parameter
1. There is a quality loss since the chosen candidate x is not optimal for the
outcome 7);. This quality loss is measured in the relative robustness index.

3 Computation of the utility function and the ro-
bustness index

In this section we present practical approaches for computing the utility

function and the robustness indices. We start by noting that the computation

of robustness is a post-process since it requires a sufficient resolution of the
Pareto front. We state this as an assumption:

11



Assumption B
The Pareto front is computed to a sufficient accuracy and resolution.

The computation of the robustness indices for a specific solution, which
we call the candidate, is organized in a series of steps, where the main points
are stated in Algorithm 1.

Algorithm 1 Calculate robustness index

Input: Candidate X, Pareto front f(P).
1. Approximate the Pareto front by a quadratic implicit curve around x.
2. Compute the utility function u for the candidate such that equations
(8) and (9) are fulfilled.
3. Compute R or R4 according to the descriptions in subsections 3.1 and
3.2.

We assume that the Pareto front f(P) is described by a level set of an
implicit function z(f(P)) = 0. By the definition of the utility function wu, it
is minimized by the candidate x. This implies the following two conditions
which are also illustrated in Figure 4:

Viu=7V;z, (8)
K(u) > K(2), 9)
where v € Ry, and x(+) is a measure of curvature. We make a quadratic fit @

of the Pareto front based on the Pareto points within a ball of radius 7 > 0.
In particular, given a candidate x and the Pareto points in the vicinity, x?

for 5 =1,...,p, we solve the following linear least-squares problem
Pk 9
. 2 j
minimize Y0 (efilx)? + bifi) ~ 1)°,
7j=11=1
subject to Zcifi(i)Z +bifi(x) =1,
i=1
and set

Q(f) = 1" diag(c) f + b"f — 1.

This yields an estimate of the normal and curvature of the front. Since
|0Q/0fi] > 0 and @Q is twice continuously differentiable, by the implicit
function theorem, there exists a twice continuously differentiable ¢ such that
ft = ¢(f1,---, fre—1). This means that all points on @ are firmly proper
according to Proposition 2.10. So even though the Pareto front may not be
sufficiently smooth, we are always able to reach all points on the approximate

12



front, and there always exists an « such that equations (8) and (9) hold. We
use normal curvature in equation (9) and we define it, along a vector d, to

be
_ d'Hd

S (10)

where H is the Jacobian of the normal N € R* to the surface,

ON; ON1
or1 " oxy
H=1 : L (11)
ONg ONg
ox1 et Ory

We note that in three dimensions, the principal curvatures are the two
nonzero eigenvalues to the matrix H (Araujo and Jorge, 2004). Equations
(9) and (10) should hold for all directions d € R¥, although in practice, we
only consider a finite set of directions. For the quadratic implicit surface
Q(f), equation (11) reduces to (cf. Hughes (2003); Araujo and Jorge (2004))

L VRO (V,QV,QV3Q
IV £Q| IIVQI?

(12)

A utility function which fulfills equations (8) and (9) can be found by iter-
atively setting the curvature parameter o > 1 with corresponding weights
w > 0 such that equation (8) is satisfied. Equation (9) will then be satisfied
for a sufficiently high value of a.

1, 2(£(P)) =0

fi

Figure 4: An illustration of the requirements (8) and (9) on the utility func-
tion wu.
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Given a candidate with a corresponding utility function, the next step
is to compute R or R4. This is described in the following subsections. For
unconstrained problems with analytic objective functions, we present an ap-
proximate closed-form expression for relative robustness. For constrained
problems, we show how a Monte-Carlo method can be used. Both methods
are used in the numerical experiments in Section 5.

3.1 Unconstrained problem

In addition to assumptions A and B, which we assume holds for f(x,n,), we
assume the following:

Assumption C

(C1) The functions f;(-,-) > 0,4 =1,...,k, are twice continuously differen-
tiable.

(C2) The feasible set is X = R™.

Under these assumptions, we can formulate a closed-form expression for an
approximation of relative robustness. The approximation is based on the
second-order Taylor expansion U of the utility function u. With 4(x,n) :=
u(f(x,n)), we have

U(x,n) = (X, m0) + Vi(X,m9)" (x — X) + Vyiu(X,m0)" (1 — 10)
(x —%)"V2,0(X, 1) (n — np) + 5(x — %) "V, 0(X, 1) (x — X)
5(m — )"V a(x,m0) (n — M),

Since the candidate x is defined to minimize the utility function, the Hessian
of u is positive semi-definite. If it is positive definite, and thus non-singular,
we get an expression for the optimal solution x*(n) € arg mingec x U(x,n) as
a (linear) function of the uncertainty parameter n:

x*(n) = X = Vi, (%, 1m9) ™" [Voi(X,m0) + Vi,a(X,m0)" (0 — n0)] -

Inserting this into the definition of robustness (2.13) leads to a closed-form
expression for the approximate relative robustness index:

RY(x) :=E[i(x,m) — a(x"(n),n)] = (13)
E [$V, 0 V2,47 Vot + Vo' V2,4 V2,4 (n — no)
+ %("7 - I’IO)TV%;C"?’V:%:U&_IV?):E&T(" - "70)] -
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Introducing A as the covariance matrix of , and noting that Vza(x,n,) = 0
since X is the minimizer, the expression (13) reduces to

RY(x) = 3tr (AV},aVa,a ' V2,a"). (14)

This expression only requires the solution of one linear equation with n
unknowns and a few matrix-matrix multiplications, and is thus relatively
fast to compute.

3.2 Constrained problem

If any of the functions f; are non-differentiable, if the problem includes con-
straints or if analytic expressions of the functions f; are not available, the
closed-form expression (14) does not apply. The robustness indices can how-
ever be computed using a Monte-Carlo method with randomized sampling.
The idea is to draw N i.i.d. samples#,;, i = 1,..., N, of n§ and replace the ex-
pected value by the sample mean. We only consider the absolute robustness
index, since the relative index would require one minimization computation
for each sample. The Monte-Carlo estimate is given by

N

RA(i) = N Z [’u,(f(fc,'r,i)) - u(f(i’ "70))] .

=1
4 Search for robust solutions

In Section 3, we assume (Assumption B) that the Pareto front is pre-computed,
and the practical computational procedures presented refer to candidates on
the front. In reality, however, we may forsake optimality of a solution if
robustness can be gained. The idea is to move away from a Pareto optimal
solution x on the front and search for robust solutions in its neighborhood.
Let 7 > 0 be the radius of the ball around f(x) used for the quadratic approx-
imation @) of the front, and let ¢ > 0. We use the utility function u to define
the neighborhood. For absolute robustness we formulate the optimization
problem to

minimize R4 (x),
X

subject to u (f(x)) —u (f(x)) < ¢,
[£(x)) —f)[ <,
x € X.

(15)

The solution to (15) is the most robust point with at most a decrease of ¢
in utility compared to x and which is sufficiently close to x in the objective
space such that the local approximation of the Pareto front remains valid.
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For relative robustness, we have to take into account that inner (non-
Pareto) solutions will have a lower utility value for each realization than the
optimal solution. Letting Au(x) = u(x,ny) — u(X,7,) denote the loss in
utility at the unperturbed state, we formulate the optimization problem to

minimize R(x) + Au(x),

subject to u (f(x)) —u (f(X)) < ¢,

5 Numerical Experiments

The ideas developed in this article have been applied to both the analyt-
ical test functions used in the article by Deb and Gupta (2005b) and on
functions derived from real-world numerical data used for antenna optimiza-
tion (Jakobsson et al., 2008a; Stjernman et al., 2009).

The reader should note that the test functions in the first numerical
example are designed to illustrate different principal cases when introduc-
ing uncertainty in multi-objective problems, and not designed to imitate
practical applications. Our intention with this example is to show how our
definition of robustness compares to published results.

The theory developed in this article places no theoretical restriction on
the number of objectives. However—for illustrational reasons—in the nu-
merical examples we only consider bi-objective problems.

5.1 Analytical functions

Deb and Gupta (2005b) considers uncertainty in the decision space and for-
mulates a program where each objective function is replaced by its respective
average computed over a ball around the intended decision variable, i.e.,

1

)= L
%)= B Jyenies)

fiy)dy.

The radius of the ball is given by the parameter § > 0 which is var-
ied in the numerical tests. A larger value of § smoothens out the functions
and makes sharp global optima less attractive. By using this framework,
a “robust” Pareto optimal front is always found, but there is no distinction
between the points on this front with respect to robustness. Furthermore,
there is no continuous grading of robustness of the points that are not in
the robust Pareto set. Deb and Gupta also present an alternative robust-
ness model where they enforce robustness of the resulting solutions using a
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constraint. The requirement is that the norm of the difference between the
(unperturbed) function value and the averaged (or, the worst case) function
value must be kept smaller than a certain threshold value. From our point
of view, this formulation also suffers from the weakness that it just classifies
solutions as robust Pareto optimal or not. It is also possible that large parts
of the objective space will not contain any robust solutions if the effect of
uncertainty is large. From now on, we will concentrate on Deb and Gupta’s
first formulation.

Since we derive robustness for the unperturbed front and Deb and Gupta
presents a robust front, possibly consisting of completely different solutions,
it is difficult to directly compare the respective results. We will, however,
show that they are in line in principle.

We present numerical results for one test problem, DEBGUP3, which is
one of 4 bi-objective problems from (Deb and Gupta, 2005b). The problem
is to

minixmize (f1(x), fa(x)) =
29—0.35) 2 25—0.85 2 5
(-’Ela (2 —0.86_( 0.25 ) — 6_( 0.03 ) ) (1-— \/:71)2501',2) ,
=3

subject to 0<z; <1, 1=1,2, (DEBGUP3)
1<a; <1, i=3,4,5.

The uncertainty appears in the decision space, such that x is replaced by
x + 1 and 7 is drawn from a uniform distribution, n € U([-1,1]?). A close
study of the functions reveals that the unperturbed problem with n = 0 has
one local and one global Pareto optimal front, where a local Pareto front
consists of points that are locally Pareto optimal. The fronts are shown in
Figure 5(a). Figure 5(b) presents the relative robustness index (Def. 2.13)
for the corresponding points. We have chosen to ignore the bounds when
computing relative robustness which enabled the use of the closed-form ex-
pression (14). The implication of ignoring the bounds may be that the value
of R is overestimated, i.e., the robustness is underestimated.

Note that the robustness varies both along each single front, and also
between the two fronts. The local front is more robust than the global
one as is expected from the results in (Deb and Gupta, 2005b). Here, we
can distinguish a difference between using the robustness index and using
averaged objectives. Depending on the size of the radius J, the robust front
will equal either the local front, the global front, or a combination of these.
It is possible to construct problems where the global front equals the robust
Pareto front, but having a local Pareto front arbitrarily close and which
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Figure 5: The global and the local Pareto fronts for the problem DEBGUP3.
The robustness indices are shown for the corresponding points, parameter-
ized by the values of the first objective.

has much better robustness indices according to our definition. The size of §
highly determines which solutions are presented to a decision maker, whereas
the idea in this paper is to partly push forward the decision of how much
robustness is desired to the decision maker, and therefore present solutions
of different robustness values. The robustness index may also show that
robustness may vary along the Pareto front. With more complex objective
functions found in real-world applications, we anticipate that there may be
more dramatic changes in robustness between close solutions on the Pareto
front. In such cases, the decision maker may prefer a solution slightly off
his/her ideal (optimal) solution if the robustness properties are better. This
situation is presented in the following subsection.

5.2 A real-world example

Designing antennas typically involves a number of conflicting requirements.
These may be based on spatial size, so called S-parameters related to electro-
magnetic properties, functions of the directivity of the antenna, band width,
input impedance, or other characteristics of the antenna. In a joint project
between the Fraunhofer-Chalmers Centre and the Antenna Research Cen-
tre at Ericsson AB a multi-objective optimization approach is taken on the
antenna design problem, as described in (Jakobsson et al., 2008a; Stjern-
man et al., 2009). We have chosen to study this problem using a subset
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of the proposed objectives. The decision variables are the positions and
geometrical dimensions of the antenna, and the objectives chosen are the
maximum return loss (]S11]|) over the frequency band [750,850] MHz and
the area of the hull of the antenna. An approximate Pareto front is shown
in Figure 6, where it is clearly shown that the two objectives are conflicting.
The objective functions are expensive to evaluate since they are outcomes of
long-running computer simulations. For this reason, a surrogate modeling
technique (Jin et al., 2001) is used, where approximate functions are con-
structed using the function values computed at a number of sample points.
Jakobsson et al. (2008a,b) have developed a new technique based on inter-
polation with rational radial basis functions to handle the sharp function
behaviors around the resonance levels.

0.8} .

0.6

area

0.4

S
LYo

S~
0.2r “\ 1
of |
0 0.2 0.4
[S11]

0.6 0.8 1

Figure 6: An approximate Pareto front (with the objectives scaled) to the
problem found using the NSGA-II algorithm (Deb et al., 2000) with 200
generations and a population size of 48.

The two objectives are interesting for a robustness study. Near reso-
nance, small variations of the decision variables yield large differences in the
function values. This is the case for many practical problems where reso-
nance phenomena are part of the problem characteristics. We have noticed
that the surrogate models are quite sensitive to the choice of sample points
(and this choice is not obvious) and have constructed our numerical study
based on this fact.

Originally, the decision space has been sampled at 2000 distinct point
chosen using an ad-hoc design—of—experiments strategy, and the surrogate
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models (or, response surfaces) have been constructed using the rational RBF
technique on the function evaluations at these points. In our experiments,
we have randomly selected 500 out of the 2000 points and constructed new
response surfaces using only these. The uncertainty characteristics depend
on which of the 2000 points that are chosen, reflecting the fact that it is
not clear from the start which sample points to choose. Obviously, a ro-
bust solution is a solution for which the randomness does not have a large
effect according to our definition of robustness. In Figure 7, the (absolute)
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Figure 7: Absolute robustness for the points on the Pareto front, parame-
terized by the first objective.

robustness index is shown for the points on the Pareto front to the original
problem, where the objective functions are the response surfaces constructed
using all 2000 data points. The index varies substantially along the front,
and for some Pareto points, there are other points on the front that are close
in the objective space but with a very different robustness index. This opens
up the possibility for a decision maker to choose a point which lies close
to his or her ideal point with respect to the function values, but which are
much more robust. Doing so will, on average, improve the utility. But since
the front is only valid for the unperturbed problem, a decision maker could
also be searching for a non-Pareto optimal solution since such a point can
be even more robust. In Figure 8, we illustrate such a search. For each (un-
perturbed) Pareto optimal point, we search for optimal points according to
the model (15) with the parameter values € = 0.01 and 7 = 0.1. We use the
global optimization algorithm DIRECT (Jones, 2009), implemented in TOMLAB.
We have also implemented a simple local search strategy to complement the
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algorithm. In the left figure, the points obtained are shown together with
the original (approximate) Pareto front. The right figure shows a histogram
of the size of the improvements in robustness when—for each unperturbed
point—picking the corresponding robust alternative. One obvious conclusion
is that for most Pareto optimal points, there are robust solutions that are
close with respect to the value of the utility but with a significantly better
robustness index. This fact can be used by a decision maker, who gets an
option to choose between robustness and “optimality” for the unperturbed
problem.
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Figure 8: In a), robust points are added to the (approximate) Pareto front.
In b), the relative improvements in the robustness index for the points found
are shown.

To further illustrate the framework, we consider the following scenario:
Suppose we have presented a Pareto front corresponding to the unperturbed
problem to a decision maker, and that he/she has located a candidate solu-
tion. Since the problem contains uncertain parameters, the decision maker is
also interested in the robustness of this solution. We now solve problem (15)
for varying values on the parameter €. This will produce solutions that are
more robust, but with lower utility values. These candidates are then pre-
sented to the decision maker, who gets the option to consider how much he
or she values robustness considering how much utility is lost. In the spirit
of multi-objective optimization, the decision of robustness versus optimality
is thus left to the decision maker. Figure 9 shows the results for a specific
candidate. In a), the robustness index is shown as a function of the utility for
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the alternative solutions. In b), the unperturbed Pareto front is shown along
with level curves of the utility function for the specific candidate. The results
show that the decision maker can substantially improve the robustness if he

or she is willing to sacrifice some utility.
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Figure 9: Figure a) shows the utility function values and robustness index
values for the alternative solutions. The robustness index is normalized by
the original candidate. Figure b) shows the unperturbed function values
for the candidates and level curves of the utility function. In both figures,
the ring (o) corresponds to the unperturbed Pareto point originally chosen
by the decision maker and the plus signs (+) correspond to the alternative
points.

6 Summary and conclusions

We have presented a new definition of robustness for multi-objective prob-
lems based on the idea that each decision maker has a hidden single objective
function defining which of the Pareto optimal points he/she desires. This
hidden objective is characterized with a family of utility functions; we present
two robustness indices measuring the relative and absolute expected loss in
the utility function due to uncertainties. We have shown that the family of
utility functions has certain nice properties such as rationality and complete-
ness. We also presented procedures for computing the robustness indices and
applied them to two numerical examples: an analytic test problem from (Deb
and Gupta, 2005b), and an in antenna optimization from (Jakobsson et al.,
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2008a; Stjernman et al., 2009).

The formulation of robustness by Deb and Gupta (2005b) for multi-
objective optimization, which consists of replacing the objectives by their
respective expected values, is very natural and direct, and is suitable for
many applications. In line with the main idea of multi-objective optimiza-
tion, our approach has the advantage that the decisions are pushed further
into the future when more information about the problem has been revealed.
Also, our method gives a continuous measure of robustness and it does that
to all points; it does not only say if a point is a robust Pareto optimal point
or not.

In future work, our methodology should be applied to more numerical
examples, and also to problem instances with more than two objectives. The
inclusion of constraints for relative robustness should be developed further.
It would also be interesting to apply other types of robustness measures
based on utility functions.
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Airbag Folding Based on Origami Mathematics

Christoffer Cromvik* Kenneth Eriksson'

Abstract

A new algorithm for folding three-dimensional airbags is presented.
The method is based on Origami mathematics combined with nonlinear
optimization.

The airbag is folded to fit into its compartment. Simulating an
inflation of the airbag requires an accurate geometric representation
of the folded airbag. However, the geometry is often specified in the
inflated three-dimensional form, and finding a computer model of the
folded airbag is a non-trivial task. The quality of a model of a flat
airbag is usually measured by the difference in area between the folded
and the inflated airbags.

The method presented here starts by approximating the geometry
of the inflated airbag by a quasi-cylindrical polyhedron. Origami math-
ematics is used to compute a crease pattern for folding the polyhedron
flat. The crease pattern is computed with the intention of being fairly
simple and to resemble the actual creases on the real airbag.

The computation of the crease pattern is followed by a computation
of the folding. This is based on solving an optimization problem in
which the optimum is a flat folded model. Finally, the flat airbag is
further folded or rolled into its final shape (without using Origami).

The method has been successfully applied to various models of pas-
senger airbags, providing more realistic geometric data for airbag in-
flation simulations.

1 Introduction

Simulating a crash where the crash test dummy hits an expanding airbag is
a challenge to the industry. This situation is called out-of-position (OOP),
reflecting that the airbag was not designed for occupants that are sitting too
close or for some other reason hit the airbag before it is fully inflated.
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The difficulty with an OOP situation compared to an in-position situ-
ation is that the inflation of the folded airbag is much more important. It
has to be realistically computed, since it affects the impact of the dummy.
Attaining a realistic simulation means starting with a correct geometry of
the folded airbag and simulating the inflation with correct gas dynamics.
Several commercial software packages exist that can simulate the inflation
process of an airbag, e.g., the explicit Finite Element (FE) code LS-DYNA
[5]-

This work aims at developing an algorithm for computing an accurate
geometry of the flat folded airbag. Different airbags are folded by different
methods and with different numbers and types of foldings. The airbags are
often folded by both machines and humans according to a folding scheme.
Still, the creases are not entirely deterministically positioned. It is very
difficult to control the placement of smaller creases. The folding schemes
all assume that the airbag lies flat and stretched in some direction. In this
position, different foldings are executed until the dimension of the folded
airbag is small enough so that it fits into the airbag compartment. The
foldings can be a combination of simple folds, but also roll folds.

Some preprocessors to LS-DYNA, e.g., EASi-FOLDER [4] and 0ASYS-PRIMER
[1] contain software for folding a (nearly) flat FE airbag mesh. They are ca-
pable of executing the type of foldings that are normally used in production
on flat airbags, e.g., roll-fold, z-fold. However, they are not as accurate when
presented with the problem of flattening a three-dimensional shape.

Some airbag models have a simple construction, e.g., the driver model
which is made of two circular layers sewn together. It is essentially two-
dimensional. Passenger airbags are often more complicated. They are made
of several layers sewn together in a three dimensional shape, with no trivial
two-dimensional representation. See Figure 1 for an example.

In the present work, the computation of the geometry of the flat folded
airbag is organized into two steps. First a crease pattern is computed on a
polyhedral approximation of the airbag. Second, a nonlinear optimization
problem is formed and solved for the purpose of finding the flat geometry.
The accuracy of the computed approximation is measured by comparing its
area to the area of the inflated model.

2 Crease Pattern

A crease pattern is first designed for a tetrahedron. We present a series of

proofs for different types of polyhedra. The proofs are constructive, and

their results can be used to design a crease pattern for our application.
Flat foldability, meaning that the polyhedron can be flattened using a



Figure 1: A CAD model of a passenger airbag.

fixed crease pattern, is achieved by cutting along the crease lines, folding
the resulting object, and then gluing the cut-up faces back according to the
correct connections.

Theorem 2.1. Any tetrahedron can be folded flat.

Proof. The proof is organized in a sequence of figures shown in Figure 7, each
visualizing the cutting and folding. Consider the tetrahedron with vertices
A, B, C, D as in the figure. Cut up the triangle BC'D of the tetrahedron,
with straight cuts from a point E on the face, to the three vertices B, C,
D, respectively, as in the figure.

Then open up the tetrahedron by rotating the triangular patches BDFE,
BCE, and CDE around the axes BD, BC, and CD, respectively, until
these triangles become parts of the three planes through ABD, ABC, and
ACD, respectively, as in the figure.

Cut the quadrilateral surface with vertices A, B, E', D along a straight
cut from E’ to A, and then rotate the resulting triangular faces ABE’ and
AE'D around the axes AB and AD toward the interior, respectively, until
these faces become parts of the two planes ABC and ACD, respectively, as
in the figure.

We choose the point E such that the edge BE' after rotation coincides
with BE"” and DE’ with DE". The condition for this is that /ABD +
/DBE = /ABC + /CBE and /ADB+ /BDE = /ADC + /CDE.

Using this, we may now (partly) restore the surface of the tetrahedron
by joining the surfaces ABE" and ABE"C along the edge BE", and the
surfaces ADE" and ADE"' C along the edge DE"".

Finally we rotate the (partly double layered) surface ADE"C around
the axis AC until it coincides with the plane through A,B and C as in



the figure. To conclude the proof of the flat foldability of the tetrahedron
we now note that the point E" after rotation coincides with E”. We may
therefore now completely restore the topology of the original tetrahedron
by joining the edges AE"” and AE™ (after rotation) and the edges CE" and
CE" (after rotation). O

Note that the proof is based on cutting and gluing. It does not reveal if
there is a continuous deformation to a flat shape.

Remark 2.1. Concerning the line AE' we remark that the angles /BAE'
and /DAE' satisfy /BAE' + /DAE' = /BAD and /BAC — /BAE' =
[CAD — /DAFE', as in the figure, and are thus independent of the plane
BCD. We further note that we may also consider rotating the triangles
BDE, BCE and CDE in the opposite direction, again until they become
parts of the planes ABD, ABC and ACD, respectively, as in figure. We
now choose the point E so that /ABD — /DBE = /ABC — /CBE and
/ADB — /BDE = /ADC — /CDE. Continuing from the figure we may
then again make a straight cut from E' to A (partly double layered). Again,
when we now rotate around the azes AB and AD as before the (rotated) point
E' will coincide with E" and E" respectively, and we can partly restore the
tetrahedron by joining along the edges. Finally, after rotation around AC
we may completely restore the topology of the surface of the tetrahedron by
joining along the edges. Concerning the crease line from A to E" we note
that again the angles /BAE' and /DAE' must satisfy the same equations
/BAE' + /DAE' = /BAD and /BAC — /BAE' = /CAD — /DAE' as
before and therefore must be the same as above. We therefore conclude that
this crease line is independent of both direction of rotation of the triangles
BCE, BDE and CDE, and of the position and orientation of the plane
BCD (as long as the angles at A are unchanged).

We now proceed by cutting the tetrahedron by a plane, see Figure 2. We
call the cut-off tetrahedron a prism type polyhedron.

Theorem 2.2. The prism type polyhedron can be folded flat.

Proof. Consider a tetrahedron ABCD with the crease pattern from the
proof of Theorem 2.1. Cut the tetrahedron with a plane, see Figure 2. In the
cut, insert two additional triangular surfaces, such that the two cutoff parts
are closed, but not separated. The “smaller” cutoff part is a tetrahedron,
and the “bigger” part is a prism type polyhedron. Let the vertices of the
smaller tetrahedron be a, b, ¢, d, where A = a, b lies on the edge AB, ¢ on
AC and d on AD.

Remark 2.1 shows that the crease line from A to E', see Figure 7, is
independent of how the inserted triangular face of the “smaller” tetrahedron
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is folded. Let it be folded to the interior of the “smaller” tetrahedron. This
means that a crease pattern can be constructed which will coincide with
the crease pattern of the original tetrahedron, i.e., the crease line which is
constructed by drawing a straight line from a to €’ will coincide with the
crease line that was created from the line segment from A to E' in the proof
of Theorem 2.1.

Now, make an identical copy of the crease pattern on the inserted trian-
gular face belonging to the prism. Folding the original tetrahedron with its
inserted triangular faces is possible by the construction of the crease pat-
tern. Let the two polyhedra be separated by moving the tetrahedron in the
plane. By the foldability of the tetrahedron, both the smaller tetrahedron
and the prism can be folded flat. O

Figure 2: A tetrahedron is cut, and in the cut two additional interior trian-
gular faces are created. Identical crease patterns are created on both interior
faces, and the tetrahedron is separated into two parts: a smaller tetrahedron
and a prism. The flat foldability of the prism follows from the foldability of
the tetrahedron.

Next, we cut the prism type polyhedron by a plane, see Figure 3. We
call the cut-off prism a box type polyhedron.

Theorem 2.3. The bozx type polyhedron can be folded flat.

Proof. Let the prism from the cut-off tetrahedron, with its crease pattern,
be cut by a plane, see Figure 3. In the cut insert one additional quadrilateral
surface which is only connected to the prism by its four vertices. Along the
inserted surface put a crease line 7. Its position is only determined by the
position of the upper and lower face of the prism. When the prism (with



its cut) and the additional inserted surface are folded, there will be a gap
along the sides of the prism, see Figure 2. Let the crease line on the side
of the original prism be called €. Also, let the point where the crease y
meets ¢ unfolded be called p;, see Figure 2. The gap can be closed by
forming two triangles: from a point p, see Figure 2, somewhere along &, to
the intersection where ¢ meets the inserted surface ps, to B respectively C.

Note that the lengths C'p; and C'ps are the same, as well as the lengths
Bpi and Bps, and the length Cp is shared by both the gap and the new
triangles. Let C; and C5 be positioned according to Figure 2. If the point
p is chosen such that /C1Cpy + /p2Cp = /C1CCo + /C5Cp, then the new
triangles are an identical match to the gap. By Theorem 2.2, the prism is
foldable, so the full construction is foldable, and since the cut does not influ-
ence its foldability, and its gap is filled, therefore the box type polyhedron
is flat foldable. O

Figure 3: The prism from Figure 2 is cut, and in the cut, an additional
interior quadrilateral surface is created. The flat foldability of the box type
polyhedron follows from the foldability of the prism and the tetrahedron.

In the proof of Theorem 2.3, a prism was cut off the polyhedron. The
process of cutting off a prism can be repeated to create other types of poly-
hedra.

Definition 2.1. A quasi-cylindrical polyhedron is a closed cut-off cylinder
with a polygonal cross-section.

Theorem 2.4. Convez quasi-cylindrical polyhedra are flat foldable.

Proof. This follows by the proof of Theorem 2.3. In each step, cut off a

prism from the polyhedron, until the result forms the given shape.
O

Airbags are usually quasi-cylindrical. There are cases, e.g. non-convex
polyhedra, for which the technique for generating a crease pattern does not



work. These situations might be avoided by slicing the polyhedron, and
computing a crease pattern for each part.

Theorem 2.4 provides an algorithm for designing a crease pattern. Given
a quasi-cylindrical polyhedron, we can extend it gradually using prisms until
it reaches the shape of a tetrahedron. In each step, we apply the theory for
flat foldability, creating a working crease pattern.

3 Folding

For airbags, there are various alternatives for simulating the folding process.
This is specially due to the fact that the problem is artificial in the sense
that the folding need not be realistic, e.g., there is no need to introduce
the concept of time. The objective is to create a flat geometry which is
physically correct, not to fold it in a realistic way.

Our algorithm for folding the polyhedron is based on solving an opti-
mization problem. A program is formulated such that the optimal solution
represents a flat geometry. The target function, to be minimized, is a sum of
rotational spring potentials, one spring over each crease. The minimal value
of a spring potential is found when a fold is completed. The constraints
are formulated in order to conserve a physically correct representation of
the polyhedron, which means conserving the area and avoiding any self-
intersections of the faces of the polyhedron.

The crease pattern over a polyhedron induces a subdivision of polygons
called patches. In addition, the patches are triangulated, and the interior
of the polyhedron is meshed with tetrahedra. Let the nodes of the mesh be
{z*}?_,, and let the indices of the surface nodes be Is. Let the tetrahedra
be {K;}7% and set Ix = {1,...,nk}. Let the four indices of the nodes
of tetrahedron k be Vi(i), ¢ = 1,...,4. The edges of the triangular faces
are denoted {E;};”, and the indices of the two nodes of edge e are W(i),
i=1,2.

Denote the creases {C;};¢;. The spring potential over each crease Cj
is computed using the scalar product of the normals, n},n?, of the two
neighboring patches. The normals point outward from the polyhedron, and
the scalar product is 1 when the two patches are parallel, and —1 when the
fold is completed.

The folding process of a polyhedron with n nodes (surface and inte-
rior mesh nodes) is formulated as the following nonlinear program with
f:R™ SR,



minimize f(z)
T

f(@) = fi(z) + fo(z) + fa(2)

2
nK
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subject to
vol(Kj;) > ey, i=1,...,ng,
dist(:vi,Kj) > g9, i€lg, j€lIx\pi,

where d;; is the original distance between node z’ and 27, I; is the original
length of edge ¢ and k,,, k, are penalty parameters. The first constraint
function is vol(K;) which is the signed volume of the tetrahedron K;. The
second constraint is dist(z?, K;), which is the distance from a surface node
z' to a tetrahedron K j» and p; are the tetrahedron indices connected to node
z'. Finally, e; and e, are small positive constants.

The target function f is composed of three parts. f; is a penalty function
which strives to keep the tetrahedral mesh uniform. fs is the virtual spring
potential which drives the folding. f3 is a penalty function which keeps the
edges of the triangles stiff. This is used to maintain the shape and surface
area of the patches.

4 Numerical Example

In section 2, a theory for computing a crease pattern was discussed. To
demonstrate its practical use, and also to demonstrate the folding algo-
rithm, a numerical experiment is presented. From a CAD-drawing, an airbag
shaped polyhedron was constructed. The surface area of the approximation
differs about 0.5% to the original area. An in-house optimization solver was
used to solve the optimization problem in section 3. It is a Fortran 90 im-
plementation of a low-storage Quasi-Newton SQP method [6, 3, 2], that can
handle a few thousand variables and constraints.

The crease pattern was generated by slicing off two upper “bumps”, see
Figure 5, from the airbag approximation. The crease pattern for these parts
were computed separately from the rest of the polyhedron, and the complete
crease pattern was formed by joining the parts.



The polyhedron approximation with its crease pattern was meshed using

TetGen [7]. The visual result (solution) from the optimization progress is
shown in Figure 6 for different iteration snapshots.

It was found that the surface area of the flat folded polyhedron was

within 0.5% of the surface area of the unfolded polyhedron.
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Figure 4: The upper figure shows the gap around the inserted additional
surface from the cut. The lower figure shows the same object from above.
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Figure 5: Polyhedral approximation of an airbag model together with a
computed crease pattern.

Figure 6: The figures show iteration snapshots from the folding of the poly-
hedron approximation from Figure 5. The upper left shows the unfolded
polyhedron, the upper right: 40 iterations, the lower left: 60 iterations, and
the lower right: 200 iterations.
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Figure 7: Supporting figure for the proof of Theorem 2.1. The proof follows
the figures from left to right beginning at the top.
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