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Abstract

The thesis deals with the development and analysis of optimization models for
computing optimal replacement schedules for systems comprising deterministic
and stochastic parts. The main application is in the maintenance activity of
aircraft engines. There is a large fixed cost associated with taking the engine to
the workshop, so if a part fails and must be replaced it is important to take the
opportunity into consideration to also replace non-failed parts.

Optimization models for systems consisting of only deterministic parts are
developed. The real structure of the aircraft engine is taken into account by
representing each module of the engine by a directed graph; these graphs are
utilized in the formulation of linear integer programming models for complete
module based aircraft engines.

The linear integer programming models are then used in order to formulate
two-stage stochastic models for systems consisting of both deterministic and
stochastic parts.

The convex hull of the set of feasible solutions to one of the linear integer
programming models is studied in detail. It is shown that the replacement
polytope is full-dimensional under general assumptions. Also, several of the
inequalities in the original formulation of the model are facet-defining. They
are, however, not sufficient to completely describe the convex hull. A new class
of facets is developed through an example.
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Chapter 1

Introduction

1.1 The value of optimization in the mainte-
nance activity

A current trend in service workshops in the aircraft industry is to offer the
complete undertaking of the maintenance of all engines belonging to the cus-
tomer. According to such a corresponding contract, by paying a fixed price
per year the customer is ensured of a working fleet of engines throughout the
contract period. When the maintenance contract has been signed the profit of
the workshop from this contract depends, of course, on the least cost at which
the necessary maintenance can be performed.

An aircraft engine consists of thousands of parts. Some of the parts are
safety-critical, which means that if they fail there will be an engine breakdown,
possibly with catastrophic consequences. Therefore, the safety-critical parts
have fixed estimated lifetimes, and must be replaced at the very latest when
these are reached. Hence we consider the safety-critical parts as deterministic.
All the other parts of the engine are considered as stochastic.

When a deterministic lifetime is reached or when a stochastic part fails
the engine must be taken out of service and sent to the workshop in order to
perform the required replacements. Due to economies of scale (for example, large
fixed costs at each maintenance occasion independent of what is replaced), this
unpleasant event is at the same time considered as an opportunity for preventive
replacements of non-failed stochastic parts and deterministic parts that have not
reached their respective lifetimes. It is, however, not at all clear which parts
to replace in order to minimize the total maintenance cost over the contract
period.

In this thesis we develop maintenance optimization models for the minimiza-
tion of the total expected cost for having a functioning aircraft engine (consisting
of deterministic and stochastic parts) during a finite time period (the contract
period). The output from these models are replacement schedules for each
maintenance occasion, that is, when the aircraft engine is taken to the service
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workshop, for whatever reason, the optimization models are used in order to
decide which parts should be replaced in order to minimize the total expected
maintenance cost during the remaining contract period.

1.2 Outline of the thesis

Chapter 2 describes the maintenance activity at Volvo Aero Corporation site in
Trollhéttan, Sweden. The discussion is mainly focused on the military mainte-
nance, since the optimization models are mainly intended to support the main-
tenance of the military RM12 engine. In order to illustrate how an optimization
model for the maintenance activity can be used, we describe the model of a
hypothetical maintenance situation.

The first application of the optimization models developed will be to the
maintenance of the RM12 engine. The structure of the RM12 engine is described
in Chapter 3. We show how to represent each module of the engine by a directed
graph, and investigate how to compute desired input to the optimization models
by computing minimum Steiner trees in these graphs.

In Chapter 4 we develop maintenance optimization models for systems con-
sisting of deterministic parts only. First, a dynamic programming model is
presented, and then several linear integer programming models are developed.

In Chapter 5 the maintenance optimization models presented in Chapter 4
are generalized to systems consisting of both deterministic and stochastic parts.

In order to be able to solve real-sized replacement problems we need to
develop specialized solution methods. One such solution method is to completely
describe the convex hull of the set of feasible solutions with linear inequalities
and then use standard linear programming software for solving the problem. In
Chapter 6 we study the convex hull of the set of feasible solutions to one of the
deterministic optimization models presented in Chapter 4. The model studied
is basic in the sense that if we can find a good solution method for solving it,
then it can potentially be used in order to construct good solution methods for
all the other linear models presented in the Chapters 4 and 5.

In Chapter 7 we present some illustrative examples with the maintenance op-
timization models from the Chapters 4 and 5. First, we illustrate how the fixed
costs to take the engine to the workshop affect the replacement schedule, and
then we compare the optimal solutions from two of the stochastic optimization
models.

The literature in the area of maintenance of multi-component systems that
can be useful when modelling the maintenance of an aircraft engine is surveyed
in Chapter 8. The main part of the literature considers systems comprising
stochastic parts exclusively, which means that it is extremely hard to compute
optimal replacement schedules for systems containing many parts; the policies
developed are used to find heuristic solutions only. However, for an aircraft en-
gine the main part (about 75%) of the components considered are deterministic.
Hence, our aircraft engine application is in fact a more structured problem than
those considered in the literature, which we utilize in the development of the
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optimization models in this thesis.

1.3 Contributions of the thesis

The thesis contains contributions to both operations research and mathematical
programming.

Operations research: The main part of the thesis deals with the develop-
ment of optimization models for the maintenance of multi-component, systems
consisting of deterministic and stochastic parts. In the main part of the related
literature one assumes that

e the systems consist of stochastic parts only;
e the time horizon is infinite; and
e a policy is used to find a replacement scheme.

Also, from the literature it turns out that it is extremely hard to find an optimal
replacement schedule when the number of parts is large, and hence different
replacement policies are developed. Such policies reduce the complexity of the
problems, but the solutions found are most often not optimal. Further, the
literature points out that the case of a finite time horizon is even harder than
the infinite time horizon case.

In our aircraft application the time horizon is finite and the number of parts
is large (about 50), so if all of the parts had been stochastic it would have
been necessary to use replacement policies. However, about 75% of the compo-
nents considered in an aircraft engine are deterministic, so our problem is more
structured than the completely stochastic systems considered in the literature.

Our idea in this thesis is to model the deterministic system with a linear
integer programming model, based on the replacement model presented in [50],
and then to use this model in order to formulate a two-stage stochastic model
for the system with both deterministic and stochastic parts. This approach has
not been found in the literature.

Further, we consider the real structure of the aircraft engine by representing
each module by a directed graph, and then utilize these graphs in the formulation
of the linear integer programming models. This means that we take into account
that in order to replace a certain part often other parts must be removed before
we can reach it, and hence these parts can be opportunistically replaced at no
effective work-cost. This kind of models has not been found in the literature.

In future research it would be interesting to develop appropriate replace-
ment policies for systems consisting of both deterministic and stochastic parts
and compare them with the two-stage model developed in this thesis.

Mathematical programming: We make a polyhedral study of the convex
hull of the set of feasible solutions to the linear integer programming model
for the replacement problem presented in [50]. We refer to this convex hull



4 CHAPTER 1. INTRODUCTION

as the replacement polytope. We show that the replacement polytope is full-
dimensional under general assumptions. Also, we show that if the variables
associated with the fixed costs in the model are fixed to integers, then the poly-
hedron arising from the continuous relaxation is integral. The inequalities in
the original formulation are studied and we show that several of them are facet-
defining. Further, we show that the inequalities in the original formulation are
not sufficient in order to completely describe the replacement polytope. By
using Chvatal-Gomory rounding we construct a new class of valid inequalities
and show that these inequalities in some cases are facet-defining.



Chapter 2

The maintenance activity at
Volvo Aero Corporation

2.1 Introduction

This chapter describes the maintenance activity at Volvo Aero Corporation
(VAC) site in Trollhdttan, Sweden. The discussion is mainly focused on the
military maintenance, since the optimization model is mainly intended to sup-
port the maintenance of the military RM12 engine. We discuss different forms
of maintenance contracts and appropriate objectives and constraints in an op-
timization model. In order to illustrate how an optimization model for the
maintenance activity can be used, we describe the model of a hypothetical
maintenance situation.

It should be noted that the description below is based on a large number
of interviews with people on different positions at VAC. Since everyone had
his/her own personal view of the company it was hard to get a clear picture of
the maintenance activity. Hence the presentation might be slightly less concise
than ideal. However, the purpose is not to give a completely accurate description
of the maintenance activity, but to give some background to the replacement
problem that arises when the maintenance is performed, which in turn motivates
the optimization models to be set up in the subsequent chapters.

2.2 Military maintenance

VAC manufacture and maintain the RM12 engine, which is the engine of the
military aircraft JAS 39 Gripen. JAS is mainly used by the Swedish Air Force
(SAF), whose fleet encompasses about 200 RM12 engines. The discussion below
is mainly restricted to the relationship between VAC and SAF. The RM12 engine
is quite new, so the maintenance activity has not yet begun in earnest. We will,
however, describe the maintenance activity as it is planned to work in the future,
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since this is what the optimization model is intended to support.

A current trend in service workshops in the aircraft industry is to offer the
complete undertaking of the maintenance of all engines belonging to the cus-
tomer. According to such a corresponding contract, by paying a fixed price per
year the customer is ensured of a working fleet of engines throughout the con-
tract period. This type of contract demands accurate estimates of all the costs
involved in order to be advantageous for both the workshop and the customer.
The maintenance agreement between VAC and SAF will be of this kind. When
the maintenance contract has been signed the profit of VAC from this contract
depends, of course, on the least cost at which the necessary maintenance can be
performed. This kind of complete undertaking contracts is the main motive for
developing maintenance optimization models.

2.2.1 Properties of the RM12 engine

The RM12 engine consists of several modules, each comprising several compo-
nents. (The structure of the RM12 engine is discussed in detail in Chapter 3.)
The modules can be removed, replaced, and shipped to and from the workshop
separately. If this fact is used in a proper manner savings can be achieved in
the maintenance activity. (The modular concept is briefly discussed in [53], and
it is pointed out that the transportation costs as well as the required number of
spare engines can be reduced if the fact that the engine is composed of modules
is used properly.) When a component is to be replaced the module that com-
prises it must be sent to the service workshop. SAF has a stock of replacement
modules according to their policy of preparedness.

Some of the parts (about 50) of the RM12 engine are safety-critical. This
means that if they fail there will be an engine breakdown, possibly with catas-
trophic consequences. The lifetimes of the safety-critical parts are estimated
by the Department of Solid Mechanics at VAC. The probability that a safety-
critical part fails before its estimated lifetime is over is lower than one per mille.
(In fact, the lifetime is computed so that this is the case.)

The lifetime is measured in terms of numbers of cycles. The accumulated
number of cycles of the engine at a certain point in time depends on the load
profile during the use of the engine. (When the engine is driven hard the number
of cycles accumulates faster than if the engine is driven carefully.) The real
lifetime (in hours) of an engine part depends, therefore, on the load profile
during use. The real lifetime can be estimated by using the average usage. This
type of information is provided by SAF, and is specified before a contract is
signed.

Each safety-critical part must be replaced before it reaches its estimated
lifetime, and the probability that it fails before this happens is extremely low.
Hence the safety-critical parts can be considered as deterministic.

Definition 2.1 (deterministic part) A deterministic part is defined as a safety-
critical one, and its lifetime is fixed. ]
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Of course, all of the parts of an aircraft engine are stochastic in the sense that
we do not know the actual lifetimes of them. However, as we have defined the
safety-critical parts as deterministic we will only refer to the non-safety-critical
parts as stochastic.

Definition 2.2 (stochastic part) The parts of the engine that are not safety-
critical are called stochastic. ]

The lifetimes of the stochastic parts are represented by failure distributions.
How to compute such failure distributions is investigated in [124]. With our
definition there exist several thousands of stochastic parts. However, only a few
of them will be of interest in the optimization models, namely the ones that are
expensive and/or require a large amount of work to replace. About 25% of the
parts considered in the RM12 engine are stochastic.

2.2.2 The maintenance activity

In each engine there are sensors at different locations that continuously measure,
for example, pressure, temperature, number of ignitions, and number of cycles
accumulated for each part. For each engine SAF keeps a record of this data. For
optimization modelling purposes the most important part of this data is the age
of the different parts of the engine. Since the lifetimes of the deterministic parts
are given in cycles, which also determines their age, it will be evident from the
record when a deterministic part has (nearly) reached its lifetime and must be
replaced. Further, a failure of a stochastic part is discovered through inspection
or by the monitoring instruments in the aircraft.

A need for maintenance (or replacement) appears when a stochastic part
fails or a deterministic part reaches its lifetime. When this happens SAF will
place a maintenance order at VAC. The module containing the component that
is to be replaced then must be removed from the engine and sent to the service
workshop.

When a module arrives at the service workshop at VAC an inspection is
performed. At this inspection advanced techniques, such as fibre optics, are
used to check the status of the components inside the module. The module is
then disassembled to the level required (which depends on the arrival inspection
and the record of the module), and the parts removed are cleaned and further
inspected.

When the module is disassembled in order to replace a failed part, often
other parts must be removed; the structure of the modules of the RM12 engine
is discussed in detail in Chapter 3. Hence we get an opportunity to replace
parts at no effective work-cost. Further, the fixed costs associated with taking
the module to the workshop can also motivate the replacement of non-failed
parts.

A report is written, which contains a discussion on the status of the engine
as well as a maintenance proposal. This report is sent to SAF and further
discussions are conducted until SAF and VAC agree on which components to
replace.
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The components are replaced by other components, some of which are stored
in a warehouse at VAC. The stock consists of both new and used components. A
used component is one that has been in service but has been replaced before it
reached its lifetime, or a failed component that has been repaired, which means
that it has some “life” left. Some of the components are not produced by VAC,
but by General Electric, Pratt & Whitney, or Rolls Royce. The delivery times
for these components are long and depend, for example, on the supply (in the
world) of several exclusive materials.

2.3 Civil maintenance

The most important civil engines for VAC are PW100 and JT8 (the engine of the
aircraft types Boeng 727, 737, and DC9). These engines are not manufactured
by VAC but by General Electric, Pratt & Whitney, and Rolls Royce. The
civil maintenance is controlled by the governmental authorities of the countries
where the aircraft operates. These authorities set up rules and regulations for
how often the engine has to be taken to the service workshop and what service
actions must be taken. The requirements are based on hours of use and the load
that the parts have been subject to during use.

The largest airlines manage their own maintenance, so the civil customers of
VAC are small and medium sized airline companies. These companies sometimes
choose different service workshops from time to time, and at each maintenance
occasion they clearly specify what the workshop shall do. In this situation an
optimization model such as the ones developed in this thesis is not very useful.

However, as the optimization models that are developed and analyzed in
the forthcoming chapters are intended to support a complete undertaking of
the maintenance activity during a specified period of time, they can potentially
be used in order to construct advantageous offers that hopefully make civil
customers to sign this kind of contracts.

2.4 An optimization model for aircraft mainte-
nance
The foundations of the aircraft engine maintenance industry are
o safety;
¢ availability; and
e cost minimization.

Obviously safety requirements give rise to constraints in the maintenance
activity, for example that regular inspections must be performed and that the
safety-critical parts must be replaced before they fail. (A moral evaluation of
safety and aircraft maintenance is found in [65].) For the RM12 engine safety
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is regarded by requiring the deterministic parts to be replaced a reasonable
amount of time before their computed lifetimes are reached.

The availability of an aircraft can have many meanings, but its most simple
definition is the number of flight hours divided by the number of hours at the
workshop. The availability can also be conditioned to different time periods.
For example, if a customer only uses a certain aircraft during certain weeks, it
is required to have an engine available only during these weeks.

An optimization model for the maintenance of an aircraft engine may focus
on maximizing availability, minimizing the total cost, or perform a tradeoff
between availability and cost. For an aircraft engine it seems more appropriate
to minimize cost rather than to maximize availability: if focus is on availability
there is a risk that we advocate extending intervals of operation (of the aircraft
engine) with weak statistical evidence, which might cause a failure of the engine;
on the other hand, if focus is on cost, we can indicate the importance of avoiding
failures by proposing that costs must include, for example, insurance premiums,
expected costs of compensating those injured and the relatives to those killed,
and even the expected loss of failure trade and goodwill.

A general maintenance optimization model can be summarized as follows:

Objectives:
Minimize cost, maximize availability, or optimize a weighted sum of the cost
and availability objectives.

Constraints:
Safety requirements, availability requirements, a maximum cost level, etc., to
ensure that the solution is a maintenance operation that makes sense.

2.5 The maintenance activity: An example

We give a description of a hypothetical maintenance situation, where we follow
the chain of actions and decision-making from the drawing up of the contract
to its realization. The purpose is to explain how an optimization model can
be useful, and in each situation we describe how an optimization model might
support the decision-maker. Observe that the discussion is focused on the engine
maintenance, which is assumed to be independent of the maintenance of the
other parts of the aircraft. Of course this is a simplification, but it is partly
motivated by the fact that often an engine can easily be removed and replaced
by another engine. Availability may then be expressed in terms of the number
of working replacement engines at each point in time.

2.5.1 Contracts and maintenance costs

Before the maintenance activity can begin a contract must be signed between
VAC and the customer. The forms of the contracts differ between customers;
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the variations are often associated with how much a customer is willing to pay
to get a certain level of availability.

When the availability requirement is established, the minimization of the
total cost for maintaining this availability level during the specified time period
is of primary interest. The customer presents his availability requirements to
several service workshops and the one that offers the lowest price will get the
contract. (In order to be allowed to perform aircraft maintenance the workshop
must have a certificate from the government authorities; partly for this reason,
the quality of the work does not differ very much between different workshops.)
In order to be both competitive and ensure a sufficient profit, it is of obvi-
ous main interest for the workshop to make a good estimate of the cost for
maintaining a fleet of engines at a certain availability level during the contract
period.

The cost for the maintenance depends on the type of engine. Each engine
consists of several thousands of parts which fail at different times with different
probabilities. The parts of the engine are partitioned into deterministic and
stochastic ones according to the Definitions 2.1 and 2.2. The need for mainte-
nance (and its cost) is triggered by events that depend, for example, on the

e running profile (civil airplanes require less maintenance than military air-
planes, since they are more carefully flown);

e location (a desert climate, or low flight over sea, exposes an engine to
stronger wear than, for example, the Swedish inland climate);

e safety requirements (which are due to laws in countries where the airline
operates); and

e unplanned occurrences and accidents (for example, birds going through
the engine and causing heavy damages).

To determine the maintenance cost is therefore a complex problem. The
Utopia is to have an optimization model whose input consists of

e the number of engines in the fleet;

e the costs of all the activities involved when the maintenance is performed,
including all the logistics (stock, transportation, etc.);

e the availability requirements;

e all the parameters given above (running profile, location, safety require-
ments, etc.);

o the lifetimes of the deterministic parts; and

e probability distributions for the lifetimes of the stochastic parts.
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The output from such a model would be a replacement scheme that minimizes
the expected cost for having a working fleet of engines during the specified time
period. A replacement scheme consists of the points in time when the engine is
taken to the workshop, and what parts to replace at each such occasion. Unfor-
tunately, to take all of these aspects into consideration is, practically speaking,
impossible, not only from a modelling point of view, but also since some of the
data that would be required does not exist (for example, the probability distri-
butions for time to failure for some stochastic parts). However, there is data
available describing the lifetimes of the deterministic parts, the failure distri-
butions for some of the stochastic parts, the material cost for new parts, and
the amount of time required to replace the parts. An optimization model that
utilizes this data gives an approximate cost for maintaining an engine during a
specific time period.

2.5.2 Performing maintenance

We assume that a contract has been signed which requires the complete under-
taking of the maintenance of a fleet of engines at a fixed cost per month. For
simplicity we also assume that the service workshop is free to decide when to
take a certain engine to the workshop and what to replace when having it there.
Of course, this can be done in several ways: The most simple way is to run
every engine until a part fails, then take the broken engine to the workshop and
replace the failed part. This policy is, however, not allowed according to the
safety requirements; each deterministic part has to be replaced, at the latest,
when its computed lifetime is reached even if it has not failed. Note, however,
that in current practice, an engine will not be taken to the workshop unless at
least one stochastic part is failed or a deterministic lifetime has been reached.

When the engine is taken to the workshop in order to replace a failed stochas-
tic part or a deterministic part that has reached its lifetime, it is possible to
also replace stochastic parts that have not yet failed and deterministic parts
that have not yet reached their computed lifetimes. This is called opportunistic
maintenance [45] and is mainly motivated by the fact that there is a large fixed
cost associated with taking the engine to the workshop which is independent of
which parts that are replaced (such a fixed cost is often referred to as “economies
of scale”).

When the engine is at the workshop the stochastic parts are inspected and
their respective conditions are estimated. Based on this estimation and his-
torical data the failure distributions for the stochastic parts can be computed.
The failure distributions and the remaining lifetimes of the deterministic parts
are main inputs to the optimization model; other inputs are material costs of
new parts, work-cost to replace parts, computed lifetimes of new determinis-
tic parts, and failure distributions for new stochastic parts. The optimization
model then computes what to replace at the specific maintenance occasion in
order to minimize the total expected maintenance cost during the remaining
contract period.

Every time a stochastic part fails or a deterministic part reaches its life-
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time we perform a reoptimization to compute what to replace at this and later
maintenance occasions depending on future scenarios. The longer the engine
has been in service the more we know about the stochastic parts (that is, we
know if they have failed or not) and thus the failure distributions will change
and must be recomputed.

2.5.3 The end of the contract period

When the time period for the contract runs out it is to the advantage of the
workshop if the remaining lifetimes of the parts of the engine are as short as
possible (at least if a sequel contract has not been signed). It is, for example,
unfavourable to replace parts in the engine with new ones just before the con-
tract runs out, since the workshop cannot get any benefits from such a service if
the customer chooses another workshop for the next contract period. Of course,
the earlier a customer signs a new contract, the better the maintenance activity
can be planned. A reasonable policy for the workshop is to give the customer a
discount if a new contract is signed with them well before the current contract
runs out.

An optimization model for the aircraft maintenance aims to minimize the
total expected cost during a given time period, so if it is set to the contract
time the model will tend to make use of the parts as well as is possible (that is,
so that the total expected cost during the contract period is minimized). This,
however, does not necessarily mean that the lifetimes of the parts are as small
as possible when the time period runs out.

So far we have not mentioned that the real value of the engine at the end
of the contract period actually depends on the remaining lifetimes of the parts.
The required status of the engine at the end of the contract period can be given
in the contract, and then the status must be considered as a constraint in the
optimization model (in fact, this is a type of availability constraint). It is also
possible to give the engine a value (for the workshop) at the end of the contract
period that depends on the remaining lifetimes of the parts. How this value
shall be computed must be given in the contract, so that the workshop can take
this into consideration when the maintenance activity is planned.

2.6 Conclusions

We have presented the maintenance activity at Volvo Aero Corporation. The
presentation is based on studies and interviews that were performed at VAC
during late 2001 and early 2002. By now, two years later, things might have
been changed. For example, when the interviews were performed the current
maintenance contract with the Swedish Air Force did not have the form of a
complete undertaking of the maintenance of their aircraft engines. However,
such a contract will be signed during 2005 and hence new information will
become available regarding the form of contracts.



2.6. CONCLUSIONS 13

Therefore, part of the description of the maintenance activity in this chapter
will soon be obsolete, and future research should begin with a new interview
study at VAC. Such a study should focus on contract forms, since they are crucial
for the development of appropriate optimization models for the maintenance.
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Chapter 3

The structure of an aircraft
engine

3.1 Introduction

Consider the system consisting of four parts which is illustrated in Figure 3.1.

OO
® @

Figure 3.1: A system consisting of four parts.

Assume that we want to remove a specific part of this system. The simplest
case is that every part can be removed independently of the others. A part of the
system can, however, be dependent on other parts in the sense that other parts
must be removed before we can reach it. Figure 3.1 tells nothing about possible
dependencies between the parts. We can, however, indicate dependences by
adding arcs in the figure. For example, to indicate that in order to remove part
2 part 1 must be removed, we can add an arc from part 1 to part 2, as done in
Figure 3.2.

In the same manner we add more arcs to indicate further dependencies be-
tween the parts. Consider, for example, the system in Figure 3.3. Here, we
can interpret the dependencies in two fundamentally different ways. The first
interpretation is that in order to remove part 2 at least one of the parts 1, 3,

15
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Figure 3.2: A system consisting of four parts, where part 1 must be removed in
order to remove part 2.

Figure 3.3: A system consisting of four parts dependent of each other.

and 4 must be removed, and the second interpretation is that in order to remove
part 2 all of the parts 1, 3, and 4 must be removed.

This ambiguity can be eliminated by introducing variables and constraints.
To illustrate how to do this we introduce a binary variable for each part, namely,

1, if part ¢ is removed,
T =
’ 0, otherwise.

Now, if the correct interpretation of Figure 3.3 is that in order to remove part 2
all of the parts 1, 3, and 4 must be removed, then we introduce the constraints

z2 < 1, (3.1a)
T2 S xs3, (31b)
To < 4. (3.1¢)

On the other hand, if the correct interpretation is that in order to remove part
2 at least one of the parts 1, 3, and 4 must be removed, then we introduce the
constraint

To < x1 + 23 + 24- (3.2)
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We have shown how to model and illustrate systems that consist of parts
that are dependent of each other. Many real world problems have this structure.
We give some examples next.

Example 3.1 (pit mine production [36]) In order to mine ore from a pit at a
certain level, in certain cases first one must mine ore according to a 45 degree
slope rule. This means that the ore above the ore that are to be mined first
must be removed so that there is a free 45 degree slope in each direction (see
Figure 3.4).

45° 45°

Ore

Figure 3.4: Illustration of the 45 degree slope rule.

The pit can be represented by quadratic blocks, as in Figure 3.5.

Figure 3.5: Illustration of a pit partitioned into quadratic blocks.

For example, in order to mine ore from block 4 in Figure 3.5 one must first
mine the ore in the blocks 1, 2, and 3 according to the 45 degree slope rule. The
dependencies are of the type described by the constraints (3.1). [ |

Example 3.2 (house building) In order to build the walls of a house, the foun-
dation of the house must first be built, and in order to install windows or to
build the roof, the walls must be constructed, etc. This is a classic case of a
project planning problem [133]. [ |

Example 3.3 (facility location [139]) Given a set of potential depots and a set
of clients, if we want to deliver to a client from a certain depot, then that depot
first must be opened. ]

Example 3.4 (road maintenance) In order to repair a water leakage, perhaps
asphalt and gravel must be removed. ]
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Example 3.5 (engine maintenance) In order to remove a specific part of an
engine, often other parts have to be removed. This is often the case for aircraft
engines. The dependencies are here described by the constraint type (3.2). H

We get a slightly generalized system if we assume that the system is com-
posed of modules and that each module consists of several parts. This is illus-
trated in Figure 3.6.

Figure 3.6: Nlustration of a system that is composed of modules each consisting
of several parts.

In order to remove a part, first the module that contains it must be removed.
The dependencies between the modules are different from them between the
parts. The system in Figure 3.6 can be divided between the modules according
to the dashed lines, that is, between the modules 1 and 2, 2 and 3, and 1 and
3. In order to remove a module one must divide the system so that the module
is released. For example, in order to remove module 1 in Figure 3.6 the engine
must be divided between the modules 1 and 2, and 1 and 3. Observe that this is
generally not the case for the parts. For example, part 2 in module 2 in Figure
3.6 can not be removed by just removing the parts 3 and 4; part 1 must also be
removed even if there is no immediate connection between the parts 1 and 2.

Modern aircraft engines, such as the RM12 engine, can be represented by
this kind of modular structure.
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3.2 The structure of the RM12 engine

In the subsequent chapters we develop optimization models that are intended
to support the maintenance of aircraft engines. The first application of these
models will be the RM12 engine, and hence we describe the structure of this
engine now. In the same manner as in the previous section the RM12 engine
can be represented by modules containing parts, and the dependencies between
the parts and between the modules can be indicated as was described above.

We note that each module is in fact possible to represent by a directed
graph; we will refer to the structure of each module in terms of such a graph.
The graph shows how the different parts are related to each other. As was
mentioned above, however, it is not always clear how we should interpret the
graph. The interpretation for the RM12 engine should be that in order to
remove a specific part at least one of the parts with arcs pointing towards it
must be removed. For example, in the case of Figure 3.3 at least one of the
parts 1, 3, and 4 must be removed in order to remove part 2.

Section 3.2.1 presents the modules of the RM12 engine and the deterministic
parts in each module. Then a graphical representation of the structure of the
deterministic parts of the RM12 engine is given in Section 3.2.2. The data that
is included in the graphical model stems from discussions with people at VAC
that work with the maintenance of the RM12 engine and from M.Sc. studies by
Theander [128] at VAC. The stochastic parts are omitted, since for the moment
we do not have reliable data for any stochastic part. In the future, however,
failure distributions for some of the stochastic parts will be available. These
parts should then be included in the graph.

The dynamic programming model and one of the integer linear programming
models (Model III) to be set up in Chapter 4 need as input data the cost for man-
hours required to replace each specific group of parts inside each module. For
the RM12 engine we know the cost for man-hours required to remove a specific
part given that we have reached the part, so we can compute the (minimal)
man-hour cost required to remove a specific group of parts by solving a Steiner
tree problem. How to do this is discussed in detail in Section 3.3.

3.2.1 The components of the RM12 engine

The RM12 engine consists of seven modules: gear box, compressor, fan, after
burner, low pressure turbine, high pressure turbine, and burner. The modules
are represented by numbered boxes in Figure 3.7 below. The fact that the engine
is composed of modules brings availability advantages. Namely, if a specific part
fails and must be replaced, we only have to send the module containing it, and
not the whole engine, to the workshop. This module can then be replaced by
another module (of the same sort), and the engine can be directly put into the
aircraft again. For this reason SAF keeps a stock of replacement modules.

We denote each module by a number according to Table 3.1. To remove a
module requires a certain amount of time, measured in man-hours. In the last
column of Table 3.1 the removal time for each module is given. These removal
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Table 3.1: Numbering and removal times of the modules.

No. | Module Removal time (h)
Gear box

Compressor

Fan

After burner

Low pressure turbine (LPT)
High pressure turbine (HPT)
Burner

N O U W N =
el = N

times assume that the modules are independent of each other, so, for example, to
remove module 1 (the gear box) takes 4 man-hours and to remove the modules
1, 2, and 3 takes 11 man-hours (4+1+6). This seems to be a simplification of
the real structure of the RM12 engine (see Section 3.4), but corresponds to the
characteristics of the data received from VAC. The removal times are based on
estimations given by the maintenance workers at VAC.

Each module may contain several deterministic parts, as shown in Table 3.2.
Here, each part is given a specific number. (Number 4 in the compressor module
is not a part but an operation required to take apart the roller. Note that the
roller must be taken apart in order to reach the two spools, the disk, and the
shaft.) In Figure 3.7 each part is represented by a circle and the dependencies
between them are indicated by arcs which should be interpreted according to
(3.2).

Estimations of the amount of time required to remove the different parts are
given in the right-most column of Table 3.2. These times should be interpreted
as the time required to remove a specific part given that we have already reached
it according to the graphical representation; see Example 3.6 for a discussion
on how to reach a part. It should be noted that this time is independent of
the path used to reach the part; again, this seems to be a simplification of the
real structure of the RM12 engine (see Section 3.4), but it corresponds to the
characteristics of the data received from VAC.

3.2.2 A graphical representation of the RM12 engine

In order to remove a specific part from a module it is most often necessary to
remove other parts as well. Based on the real structure of the RM12 engine,
Figure 3.7 gives a graphical illustration of the structure of the deterministic
parts.

Each arc is associated with a working cost, measured in man-hours. (This
cost arises from the removal times according to Table 3.2.) Observe that a
characteristic of the data is that every arc that points towards a certain node
has the same cost.
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Table 3.2: Deterministic parts and their removal times.

21

No. | Module No. | Deterministic part | Time (h)
1 Gear box 1 Aggregate 4
2 Compressor 1 Case, fan 4

2 Case, combustion 4
3 Roller 6
4 Roller-split 4
5 Spool 4
6 Disk 0
7 Spool 0
8 Shaft, front 0
3 Fan 1 Bearing, roller 0
2 Inlet 0.5
3 Roller 5.5
4 Blade, stage 1 0.5
5 Blade, stage 2 0.5
6 Blade, stage 3 0.5
7 Disk, stage 1 0.5
8 Disk, stage 2 1
9 Disk, stage 3 0.5
10 | Shaft, after 1
4 After burner 1 Holder 4
2 Liner 1
5 Low pressure turbine 1 Stator 0.5
2 Exhaust frame 0
3 Roller 0.5
4 Seal segment, HPT 1
) Case 1.5
6 Nozzle segment 1
7 Shaft, conical 2
8 Seal, air 1
9 Disk 0
10 | Blade 0.5
6 High pressure turbine 1 Roller 1.5
2 Shaft, LPT 1.5
3 Shaft, HPT 1.5
4 Plate, cooling, rear 2
5 Bearing, roller 4 2
6 Seal, rotating, air 0.5
7 Blade 0.5
8 Shaft 1
9 Plate, cooling, front 2
10 | Disk 0
7 Burner 1 Liner combustion 1
2 Nozzle segment HPT 1
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Figure 3.7: The graphical representation of the deterministic parts of the RM12
engine.

Example 3.6 (interpretation of the graph representation) Often there are sev-
eral ways to reach a specific part. Figure 3.7 shows that to reach part 9 in
module 3 one has to first remove part 5 or part 6. Hence there are two possible
ways to remove part 9 in module 3. One is to remove the parts 1, 2, 3, and 5 (in
this order), and finally part 9; the other is to remove the parts 1, 2, 3, and 6 (in
this order), and finally part 9. From Table 3.2 we see that the costs associated
with the two paths are the same, namely 7 man-hours. [ ]

3.3 On the computation of the desired input
data by using Steiner trees

Some of the mathematical optimization models to be set up in Chapter 4 require
man-hour data for every possible combination of parts in each module as input.
To compute these data we treat the modules separately. As can be seen in
Figure 3.7 each module can be represented as a directed graph. Each arc is
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associated with a cost (representing man-hours), and we denote the cost of an
arc (u,v) from node u to node v by cyy-

Let D = (V, A) be a directed graph where V is the set of nodes (the circles
in Figure 3.7) and A is the set of directed arcs (the arcs in Figure 3.7). For
each combination of parts inside a module the minimal amount of man-hours
required to replace these parts needs to be computed.

Example 3.7 (man-hours required to replace a group of parts) Consider a mod-

ule for which the structure of its parts is represented by the directed graph in
Figure 3.8.

1 €12 2

13 C32

c1s C24

C34
C53

5 €54 ~ 4

Figure 3.8: The directed graph used in Example 3.7.

Assume that we want to calculate the minimum amount of man-hours re-
quired to replace the parts 2 and 4. From the figure we see that in order to
remove any part, part 1 must be removed. We call such a part/node an en-
trance node. A feasible solution to this problem is a set of arcs that contains
directed paths from the entrance node (i.e., node 1) to each of the nodes 2 and
4. (A feasible solution then indicates paths to removing the parts 2 and 4.)
Three examples of feasible solutions are: {(1,2),(1,3),(3,4)}, {(1,2),(2,4)},
and {(1,5),(5,3),(3,2),(5,4)}.

As in this example, often several feasible solutions exist and an optimal
feasible solution is one that minimizes the sum of the corresponding arc-costs.
The sum of arc-costs for an optimal feasible solution then equals the minimum
amount of man-hours required to replace the parts 2 and 4. ]

Remark 3.8 (entrance nodes for aircraft engines) In Example 3.7 we mentioned
the term entrance node. For the graph representing an aircraft engine there may
exist several entrance nodes, but we can always add a fictitious node and arcs
from this node to all of the possible entrance nodes. Hence we can assume that
there exists only one entrance node. In the mathematical description of the
Steiner tree problem we will call the entrance node the root. [ |

The problem described in Example 3.7 is an instance of a Steiner tree
problem, which is an NP-hard problem [73]. Different solution methods for
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the Steiner tree problem have been developed, for example, dynamic program-
ming ([52] and [81]), Lagrangian relaxation ([13] and [14]), dual-ascent methods
([140]), and branch-and-cut methods ([33] and [76]). Surveys on the Steiner tree
problem are found in [138], [87], [66], and [67]. Since we only consider small
instances such that |V| < 10, we consider them to be practically solvable by
standard linear integer programming software. The linear integer programming
model we employ originates from Koch and Martin [76].

In mathematical notation, the Steiner tree problem is given by the following:
Let D = (V, A) be a directed graph with arc costs ¢ € ]R|+A|. Consider a node
set T CV, aroot r € T (according to Remark 3.8 we can always assume that
there exists only one root) and let the set V(S) consist of all the nodes of V
that are tail or head of any arc in S. The Steiner tree problem is to find a set
S C A of arcs such that the subgraph (V(5),S) contains a directed path from
rtotfor all t € T\ {r} (such a subgraph (V(S), S) is called a Steiner tree) and
such that the sum of the arc-costs for the arcs in the set S is minimized.

To obtain an integer programming formulation we introduce, for each arc
a € A, a variable z, indicating whether arc a is in the solution set (z, = 1) or
not (x, = 0). The vector = € {0,1}/4l collects these values into a characteristic
vector of the solution. Further, given a set C' C A of arcs and a characteristic
vector z € {0,1}4l, z(C) is defined as

z(C) = z Zg.

aeC

Now, for a given node set ' C V and a root r € V consider the linear integer
program

minimize ¢z STP(T,r)
subject to z(6(W)) >1, W € F(T,r),
z e {0,1}41
where F(T,r) = {W CV | W3 r, WNT # T} is the sets of nodes which

contain r but not all nodes in T', and §(W) = { (u,v) € A|lu e W,v e V\ W}
is the set of arcs with tail in W and head in the complement of W.

Example 3.9 (linear integer programming formulation of the STP) Consider an
instance of STP(T,r) with (see Figure 3.9)

V ={1,2,3,4},

A= {(172)a (1:3)7 (2a3)5 (2:4)u (3a4)}u
T ={1,4},

r=1.

The integer linear programming problem STP(T,r) contains one constraint
for each W € F(T,r). In this example, F(T,r) = {{1}, {1,2}, {1,3}, {1,2,3}},
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1 T (4
-3

Figure 3.9: Graph for Example 3.9.

so STP(T,r) can be formulated as the problem to

minimize  ¢12T12+C13%13+C23T23+C24T24+C34T34

subject to T12 +T13 >1,
T13  +T23 T2 > 1,
Z12 +34 > 1,

Tog  +T34 > 1,
zi; €{0,1}, (i,5) € A.
||

Next, we show that a solution to STP(T,r) solves the Steiner tree problem
and vice versa.

Proposition 3.10 The characteristic vector x of a Steiner tree is a feasible
solution to STP(T,r). Conversely, a feasible solution of STP(T,r) describes a
Steiner tree.

Proof. Assume that z is a characteristic vector of a Steiner tree and consider
aset W CV such that r € W and WNT # T. Then, (§(W)) > 1 must hold
since otherwise there is no path from W to any of the nodes in (V \ W)NT,
which contradicts that x is a characteristic vector of a Steiner tree.

On the other hand, suppose that x is a feasible solution to STP(T,r) and
te T\ {r}. Let W =V \ {¢t}. We have that z(6(W)) > 1, so there is at
least one arc from W to t, say (u,t). Similarly we have that there exists at
least one arc from V' \ {¢,u} to some of the nodes ¢t and w, which means that
there is a path from V' \ {¢,u} to ¢. This argument can then be repeated until
a path from r to ¢ is found. Hence x is a characteristic vector of a Steiner tree. B

We can find the minimal amount of man-hours required to replace the specific
groups of parts by solving the integer program STP(T, r) for each subset of nodes
T C V. It should be noted, however, that if the total number of nodes is n,
then the number of combinations consisting of m < n nodes is

() = s =
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Therefore, the total number of combinations becomes

n

>(;)

=1 N

Clearly, the number of combinations grows rapidly with the number of nodes.

This “combinatorial explosion” is illustrated in Table 3.3.

Table 3.3: The number of nodes versus the number of combinations.

# nodes | # combinations
3 7

5 31

10 1,023

15 32,767

20 1,048,575

For us this combinatorial explosion is not a serious problem, since we only
have to compute the costs of the Steiner trees once. These costs are then
introduced as constants in the optimization models.

3.4 Conclusions

In this chapter we have discussed the structure of an aircraft engine in general
and the RM12 engine in particular. The presentation is based on interviews
and studies that were made during 2002. The main resource was unpublished
material from an internal study of the structure of the RM12 engine that was
performed at VAC during 1997. However, it was not at all clear how this
material should be interpreted. Even though several interviews were performed,
many questions regarding the structure of the RM12 engine and the amount of
man-hours required to remove parts and modules are still open. For example:

e Is it reasonable to assume that the amount of man-hours required to re-
move a certain part is independent of the path used to reach it?

e Is it reasonable to assume that the amount of man-hours required to re-
move a collection of modules equals the sum of the amount of man-hours
required for removing each module of the collection separately?

e The graphical representation of the structure of the engine shows that
there is always at most one arc (u,v) from one node u to another node v
indicating that it is possible to go from node u to node v, but is it never
possible to go in the reverse direction, that is, to go from node v to node
u?
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By now, seven years after the internal study was performed, much may
have changed. For example, it is reasonable to think that the construction of
the engine has been improved, leading to new structures within the modules.
Therefore, before the data presented in this chapter can be used in practice a
new study should be performed that updates or validates the graphical repre-
sentation of the structure of the RM12 engine and the amount of man-hours
required to remove parts and modules. Also, the structure presented in this
chapter only considers the deterministic parts of the engine, but should also
incorporate the stochastic parts in order to enable the use of the stochastic
optimization models developed in this thesis.
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Chapter 4

Deterministic optimization
models

4.1 Introduction

In this chapter we develop maintenance optimization models for systems of the
type described in Chapter 3, where all parts have deterministic lifetimes. Hence
a part must be replaced before or at the time at which its lifetime is reached.
By replacement problem we refer to the problem of finding an optimal feasible
replacement schedule for the system in question. (Accordingly, in Chapter 6
we use the term replacement polytope to denote the convex hull of the set of
feasible solutions to the replacement problem).

In all the optimization models we present it is assumed that the time horizon
is finite, that is, the system we consider will be discarded when it has been in
service for a certain amount of time. In optimization models for the maintenance
of aircraft engines this is natural, since the contract period is finite. Of course,
most often the aircraft engines will not be discarded when the contract period
runs out, but for the maintenance workshop the engines can be regarded as
such. However, as was discussed at the end of Section 2.5.3, the conditions
of the engine-parts at the end of the contract period can be specified in the
maintenance contract. This situation can be represented by constraints in the
optimization models and is discussed in Section 4.8.

Assume that the finite time horizon is given by 7. Then it is possible to
discretize the time into T equal intervals just by dividing 7 by T and then
consider the points in time:

T 21 Tt
0, T, ?, ceey T-
“Time” is then given by ¢t = 0,1,...,T; the corresponding time axis is given

in Figure 4.1. The models in the forthcoming sections will all make use of a
discretization of time. From now on, when we talk about time we will actually

29
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real time = 27/T

real time = A\7/T, A€ (2,3)

Figure 4.1: Illustration of the discretization of the time.

mean the number of time steps, that is, if we say that a part has lifetime T} we
will actually mean that it has lifetime T77/T.

Now, consider a system consisting of two deterministic parts, where part 1
has the lifetime 2 and part 2 has the lifetime 3. Further, assume that the time
horizon is 5. We illustrate some feasible solutions to the replacement problem
in Figure 4.2.

Part 2 ©
Feasible solution 1
Part 1 o o
Part 2 © ©
Feasible solution 2
Part 1 © © ©
Part 2 o
Feasible solution 3
Part 1 © ©
| | | | | | -
[ T T T T T
t
0 1 2 3 4 5

Figure 4.2: Tllustration of three feasible solutions for a system with two parts,
where the lifetimes are 2 and 3, respectively. (The replacements are illustrated
by circles.)

We see that the first and third feasible solutions require three replacements
in total, so they are probably to prefer to the second feasible solution which
requires five replacements. Further, observe that the first feasible solution only
requires two replacement occasions (at the points in time 2 and 4) while the third
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feasible solution requires three replacement occasions (at the points in time 2,
3, and 4). Typically, there is a large fixed cost associated with each replacement
occasion independent of what is actually replaced, and hence the first feasible
solution is a good candidate for an optimal solution to the replacement problem.

The replacement problem is a typical example of a sequential decision process
and hence a natural approach to solve it is to use dynamic programming, which
is discussed in detail in Section 4.2. The drawback of dynamic programming
is that the size of the dynamic programming formulation grows exponentially
with the number of parts. Therefore, in order to be able to handle more than
about six parts it is necessary to develop other types of models. The dynamic
programming formulation, however, has major advantages in modelling of the
stochastic replacement problem (that is, when some of the parts of the system
do not have deterministic lifetimes, but failure distributions), which will be
discussed in Chapter 5. In the Sections 4.3, 4.4, and 4.5 we present linear
integer programming formulations for systems consisting of one module. One
advantage of linear integer programming formulations is that a lot of research
has been performed in order to find optimal or near-optimal solutions to large-
scale linear integer programming problems. In the Sections 4.6 and 4.7 we
develop replacement models for systems composed of several modules, which
can be used in order to compute replacement schedules for the RM12 engine.
Finally, in Section 4.8 we discuss how to incorporate varying conditions at the
start and requirements on the condition of the engine at the end of the contract
period into the optimization models.

4.2 A dynamic programming model

Dynamic programming provides a framework for decomposing certain optimiza-
tion problems into a family of nested subproblems, such that the original prob-
lem can be solved by recursion. It was originally developed for optimizing
sequential decision processes (to be defined below). The term dynamic pro-
gramming was first used by Richard Bellman who wrote the first book on the
subject [16]. Other general texts on dynamic programming are [17], [93], [136],

[51], and [47].
In a discrete sequential decision process we have a finite time horizon 7" and
consider the points in time ¢ = 0,1,...,7. At the time ¢, the process is in state

$¢, which is assumed to depend on

e the initial state given by s¢; and

e the decision variables xg,x1,...,%;_1 at the times 0,1,...,¢ — 1.
The following properties hold for discrete sequential decision processes:

1. the contribution to the objective function between the times t and ¢ + 1
depends only on the state s; and the decision x;; and

2. the state s;11 at the time ¢ + 1 depends only on the state s; and the
decision z;.
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The discrete sequential decision process is illustrated in Figure 4.3. The figure
should be interpreted as follows. At time ¢ the process is in state s; and we make
the decision z;. Depending on the decision z; the system transforms during the
time between ¢t and t + 1 to the state s;11 at time ¢ + 1 according to a given
transformation function ¢;.

T ¢t
- S
st t+1
| | | -
| I I o
t t+1

Figure 4.3: Illustration of the discrete sequential decision process.

If we denote by g¢(s¢, z¢) the contribution to the cost function during the
time between t and t+1 given the state s; and the decision x;, then the sequential
decision process can formally be described by the optimization problem

T
z = minimum th(st, xt) (4.1)
T0,T1s BT 4
subject to  spr1 = de(se,2¢), t=0,1,...,T—1,
Sp is given.

The domains of the states and the decision variables depend on the particular
problem we consider.

To develop a recursive optimization scheme, for K =7,7 —1,...,1,0, let
T
2k (8k) = minimum th(st,mt) (4.2)
Thse-yTT —

subject to  sipr1 = (st xt), t=k,...,T —1.
Hence z = zp(sg) for the given value of the initial state sg.

Proposition 4.1 (recursion in dynamic programming) If zj(sg) is defined as in
(4.2), then

Zk(Sk) = miniwrknum gk(Sk,.’Ek) + Zp41 (Sk+1) (43)
subject to  Sk41 = Pk (Sk, Tk)-

Proof. See [93]. |

The recursion given in Proposition 4.1 transforms the original optimization
problem (4.1) into a sequence of T subproblems. The kth subproblem (4.3) has
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only one decision variable and one state constraint, but there is a catch: It must
be solved for all possible values of si,. Therefore, the efficiency of solving (4.3)
depends on the number of possible states si. For the replacement problem the
number of values of s grows rapidly with the number of parts in a module, so
in practice we are not able to handle more than about six parts using dynamic
programming.

In the following subsections we develop a dynamic programming model for
the replacement problem.

4.2.1 Assumptions and notation for the replacement prob-
lem

We consider a system that consists of N deterministic parts. The time horizon
is T' and the time is discretized so that we only consider the points in time
t=0,...,T. Part ¢ has the deterministic lifetime T; so it can not be in service
for more than Tj; time steps. If a part is replaced it is always replaced by a new
specimen (that is, we do not consider a stock of repaired parts).

There is a cost associated with the replacement of each group of parts. In the
case of aircraft engines this cost includes, for example, purchase costs, inspection
costs, fixed costs such as administration costs and transportation costs, and so
on (see Section 2.2). The group costs also include the work-cost for replacing
the group. This cost can be computed by solving Steiner tree problems in the
graphical representation of the engine as was described in Section 3.3.

At the beginning of the planning process, that is t = 0, the age of each part
of the system is known (that is, the parts do not necessarily have to be new at
t = 0). At the time horizon T the system has a remaining value depending on the
condition of the system, which is given in terms of the age of each part. (In the
case of maintenance of aircraft engines, the maintenance contract usually states
such values for the end of the contract period. Observe that if the maintenance
contract instead of giving values of the conditions of the engine gives a certain
“threshold condition”, that is, each part must have certain “life” left, then we
can set the values of the conditions that do not fulfill the threshold values to
—00, and the values of the other conditions to 0.) The objective is to determine
a feasible replacement scheme such that the total cost is minimized.

4.2.2 The states in the replacement problem

The state s; of the system at the time ¢, is an N-vector given by the age of each
specific part, that is,

St = (va"'aTItV)a

where 7} is the age (in number of time steps) of part i. The initial state so of
the system is assumed to be given. If a part is new at time ¢ = 0 the age is
0. However, for ¢t > 1 the age of a specific part is always greater than or equal
to 1 and less than or equal to the lifetime of the part. Hence, since we have
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N parts with lifetimes T7,...,Ty, the number of states at each point in time
t =1,...,T becomes [[, T;. From this it follows that the number of states
dramatically grows with the number of parts.

4.2.3 The decision variables for the replacement problem

The decision variable z; is an N-vector describing what to replace at time ¢,
that is,

Tt = (Tia"'arg\f)a

where

'r,i:

¢ 1, if part ¢ is replaced at time ¢,
0, otherwise.

The domain of x; depends on the state s;. For example, if part ¢ has been in
service for T; time steps (i-e., it has reached its lifetime) at time ¢, then every
feasible decision z; involves the replacement of part i.

4.2.4 The cost function for the replacement problem

The cost g¢(s¢,x¢) given the state s; and the decision z; is defined by the total
cost associated with replacing the group of parts given by x;. Any economic de-
pendencies between the parts (see Section 3.3) are included in this cost. The cost
9¢(s¢, z¢) can also be defined such that it indicates that a certain replacement
action z; is not feasible given s; by letting g;(s¢,x:) = +oo for each infeasible
replacement action.

4.2.5 The transformation function for the replacement prob-
lem

Given the state

se = (18,...,7%)
and the replacement decision

= (r,...,r%),

the transformation function ¢;(s¢,z¢) is given by

t+1
¢t(8t,$t) = (Tf—i_l, e ,TN+ ),
where
41 i +1, ifrf =0, ie., part i is not replaced at time ¢,
S

L {1, if r{ =1, i.e., part 7 is replaced at time ¢.
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Example 4.2 (dynamic programming model for the replacement problem) Con-
sider a system consisting of two parts (N = 2), where part 1 and 2 have the
lifetimes 2 and 3, respectively, and assume that the time horizon is T' = 5. Then,
at each time t = 1,...,T, the system states

St = (Tf:TZt) € { (lal)a (152)5 (1:3)5 (Za 1)5 (272)5 (2a3) }a

where 7} denotes the age of part 4, i € {1,2}.
At each point in time we can perform one of the following replacement
actions:

1. replace nothing [z; = (0,0)];

2. replace part 1 [z = (1,0)];

3. replace part 2 [z = (0,1)]; and
4. replace part 1 and 2 [z; = (1,1)].

However, depending on the state of the system, an action may or may not be
feasible. For example, if s; = (1,3), then part 2 has reached its lifetime and
must be replaced, and hence the only feasible replacement actions are z; = (1,1)
and z; = (0,1) (i.e., replace part 1 and 2, or replace part 2 only). Depending on
which replacement action that is chosen the system transforms from state (1,3)
at time ¢ to one of the states (1,1) and (2, 1) at time ¢+ 1. Figure 4.4 illustrates
the feasible replacement actions depending on the state of the system at time ¢.

8¢ St1
(1,1) 1,1)
(1,2) 1,2)
(1,3) 1,3)
(2,1) 2,1)
(2,2) 2,2)
(2,3) 2,3)

: r1

Figure 4.4: The feasible replacement actions in Example 4.2 given the state s;
at time .
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4.3 Model 1

In this section we give a detailed description of the linear integer programming
model for the deterministic replacement problem presented in [50]. All of the
linear integer programming models presented in the subsequent sections are
generalizations of this model.

4.3.1 Assumptions and notation

Consider a system that consists of N deterministic parts. The time horizon T
is finite, and the time is discretized into time steps t = 0,1,...,7. At time
t = 0 all of the parts of the system are new, and at time ¢ = T the system
will be discarded. The lifetime of a new part of type i is T; and it costs ¢;. In
addition to the purchase costs of the parts to be exchanged there is a fixed cost
d associated with every replacement occasion, independent of how many parts
that are replaced. The objective is to minimize the cost of having a working
system between the times t =0 and t =T

Remark 4.3 (economic dependencies) The fixed cost d associated with every
replacement, occasion is an example of what we call an economic dependence.
For the model presented in this section (Model I) this is the only economic
dependence. The models presented in the subsequent sections will have more
complex economic dependencies; namely, they consider the man-work costs as-
sociated with the replacement of each specific group of parts. ]

4.3.2 The model

In order to formulate a linear integer programming model that solves the re-
placement problem described in the previous subsection, for every i =1,..., N
and t =1,...,T, we introduce the following variables:

1, if part ¢ is to be exchanged at time ¢,
Tir =
* 0, otherwise,

1, if some of the parts i =1,..., N is to be exchanged at time ¢,
2+ =
¢ 0, otherwise.

To force the replacement of a part before its lifetime is exceeded, some
constraints are required. We need to construct constraints considering lifetimes
of the parts, and fixed costs. In order to simplify notation we introduce the set
N={1,...,N}.

Lifetimes of the parts: Each part of the system has a fixed lifetime. At
the very latest when this is reached, the part has to be exchanged. Consider
part i € A with the lifetime T;. This part must be exchanged at least once
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every T; time steps yielding the constraints

Tig + Tig + -+ T > 1,
Tiz + Tig + 0+ BT > 1,

TiT-T, + TiT-Ty41 + -+ i1 > 1,

which can be formulated as
Z Ty > 1, EZ].,...,T—TZ', ieN.

Fixed costs: Every time the replacement of some part i € N is triggered,
a fixed cost must be paid. That we incur the cost is indicated by the variable
z¢ having the value 1, leading to the constraints

Y zu <Nz, t=1,....T, (4.4)
iEN

or, mathematically tighter,
xp <z, tEN, t=1,...,T. (4.5)

Remark 4.4 (strong formulation) The model presented by Dickman et al. in
[50] uses the constraints (4.4) as fixed cost constraints. However, as will be
discussed further in Chapter 6, the constraints (4.5) are stronger in the sense
that the linear programming relaxation of the replacement problem including
these constraints has a smaller feasible set than the corresponding relaxation of
the replacement problem including the constraints (4.4) instead of (4.5). The
same type of constraints arises in the formulation of facility location problems;
there the formulation with the constraint type (4.4) is usually called the weak
formulation and the one with the constraint type (4.5) the strong formulation
[139]. [

The purchase cost of a new part of type i« € A is given by ¢;. This cost must
be paid at time ¢ if the part is replaced. Further, if some of the parts is replaced
at time ¢ then the fixed cost d must be paid. Hence the total cost between the
times 0 and T becomes

T
Z (Z CiZit + dzt) .
t=1 \icN

Using the strong formulation (4.5), we are now ready to describe a complete
model for the minimization of the total cost of having a working system between
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the times 0 and T":

T
minimize Z (Z i + dzt> (Model 1)
t=1 \icN
T;+4-1

subject to Z zp>1, £=1,....T-T;, i€eN,
t=¢

Ty <z, t=1,...,T, ieN,
.Cl?it,ZtE{O,].}, t=1,...,T, ieN.

Example 4.5 (illustration of Model ) Consider a system consisting of 2 parts,
where part 1 has lifetime 2 and part 2 lifetime 3. Further, assume that the time
horizon is 5. Then Model I becomes:

5

minimize E (crz1e + comor + d2t)

t=1
subject to  x11+2x12 >1,

T12+T13 >1,
T13+T14 >1,
To1+T22+To3 >1,
To2+T23+T2a 21,
T11 < 21,
T12 < 29,
%13 < z3,
T14 < 24,
Z15 < s,
21 < 21,
Zao < 29,
223 < zs,
Toa < 24,
Z25 < 25,
zi,2¢ € {0,1}, i=1,2, t=1,...,5.
Observe the band structure of the upper part of the constraint matrix. This will

be utilized in Chapter 6 to establish unimodularity assuming that the z-variables
are fixed. m

4.4 Model 11

We introduce more economic dependencies between the parts. Namely, assume
that in order to remove a specific part it might be necessary to remove other
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parts. These dependencies are indicated by arcs in a graphical representation
of the system as was described in Chapter 3.

4.4.1 Assumptions and notation

Assume that the system can be represented by a directed graph. Figure 4.5
illustrates such a graphical representation of a system consisting of four parts.

Figure 4.5: A system consisting of four parts dependent of each other.

The arcs tell, for example, that in order to remove part 4 we must remove
part 1 or part 2 or part 3, and further if we choose to remove part 4 via part 2 we
must also remove part 1. Node 1 is what we call the entrance node (see Chapter
3 and Remark 3.8 in particular). Since each node of the graph is a representation
of a specific part we will use the words node/part interchangeably.

As for Model I we consider a system that consists of N deterministic parts.
However, here we also assume that the parts are dependent of each other accord-
ing to the graphical representation denoted by (V, A), where V ={1,...,N} is
the node set (representing the parts) and A the set of arcs between the nodes
(representing the dependencies between the parts). Each arc is represented by
an ordered pair of nodes (7, j) denoting that the arc starts in node 4 and ends
in node j. There is a work-cost associated with a removement of part i, de-
noted by f;. The time horizon T is finite, and the time is discretized so that
t =0,1,...,T. At time t = 0 all of the parts are new and at time ¢t = T
the system will be discarded. The lifetime of a new part of type i is T; and it
costs ¢;. There is also a fixed cost d associated with every replacement occasion
independent of how many parts that are replaced. The objective is to minimize
the cost of keeping the system functioning between the times ¢t = 0 and t = T.

4.4.2 The model

Consider the ith node of the graphical representation (V, A) of the system, and
for ¢ € V define the set

6()) ={jeV|(Gi)eA}
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that is, 6(¢) is the set of nodes from which there are arcs directed towards 4.
In order to formulate a linear integer program, for every ¢ = 1,..., N and
t=1,...,T, we introduce the following variables:

o — 1, if part ¢ is to be exchanged at time ¢,
* 0, otherwise,

1, if part ¢ is to be removed at time ¢,
Yit = .
0, otherwise,

1, if some of the parts ¢ = 1,..., N is to be exchanged at time ¢,
2y =
‘ 0, otherwise.

We see that in addition to the variables xz;; and z; which were used in Model I,
we also have variables y;; specifying if a specific part is to be removed or not at
a specific point in time.

We introduce the necessary constraints.

Lifetimes of the parts: As for Model I we ensure that the parts cannot
be in service for more than their respective lifetimes by the constraints

T;+£—1
Yo owy>1, £=1,...,T-T;, i€N.
t=~{

Also, if a part is to be replaced it must first be removed yielding the constraints
mitgyita t=17"'7T7 lEN

‘Work-costs: To trigger the work-cost when replacing a specific part we
must introduce constraints that consider the graphical structure of the engine.
Indeed, in order to remove part i € A/ we must remove at least one of the parts
in the set 0(¢). This gives rise to one constraint for each node and point in time:

oy >y, t=1,...,T, i€N. (4.6)
jes(i)

Example 4.6 (illustration of the work-cost constraints in Model II) Consider the
system consisting of five parts according to the graph in Figure 4.6. The work-
cost constraints (4.6) then become

Y1t +yat > Y2, t=1,...,
Y1t >y3, t=1,...,
Yy1:+y2etyse >yat, t=1,...,

Yortyset+yae > yse, t=1,...,

NN NN

Observe that there are no work-cost constraints corresponding to the entrance
node 1. ]
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Figure 4.6: The system considered in Example 4.6

We get a stronger formulation by replacing (4.6) with

yie <maximum{y;}, €N, t=1,...,T. (4.7
J€8(4)

However, these constraints are not linear, but by observing that they are equiv-
alent to the disjunction that only one of the constraints

Yit S Yjts .7 € 5(7’)7

have to be satisfied for each i € A, and by introducing the binary variables
u;; € {0,1}, j € (@), © € N, the constraints (4.7) can be reformulated as

Yie <yje+(L—uy), je€o@), ieN, (4.8a)
Z ui; > 1, i€ N, (48b)

jeé(d)
Uij € {0, 1}, j€ (5(1), ieN. (4.8C)
Further, by introducing the variables Uft € Ry for j € 6(4),i € N, t =

1,...,T, we have the alternative formulation of (4.7) given by
vl <wyj, jENE), €N, t=1,...,T, (4.9a)
Z Uzjt:yita ieNa t:]-a"'aTa (49b)
J€s(i)

vl, >0, j€&l), ieN, t=1,...,T. (4.9¢)

Proposition 4.7 A vector y € {0,1}V*T fulfills (4.7) if and only if it fulfills
(4.9).

Proof. First suppose that y € {0,1}V*T satisfies (4.7). For every i € N and
t € {1,...,T} such that y; = 1 there exists a k € §(i) such that yz; = 1. Let

vf =1 and v}, = 0 for all j € §(i) \ {k}. For every i € N and t € {1,...,T}
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such that y;; = 0, let Uft =0 for all j € §(7). It follows that y together with v
is feasible to (4.9). '

On the other hand, suppose that y € {0, 1}V *7 together with v7, for j € §(i),
ieN,t=1,...,T, satisfies (4.9). For every i € N and t € {1,...,T} such
that y;; = 0 it obviously holds that y;; < max;es(;) {y;¢}. For every i € N and
t € {1,...,T} such that y;; = 1, according to (4.9b) it holds that v¥ > 0 for at
least one k € §(i) and thus, due to (4.9a), yr: > 0, so since yg: € {0,1} it must
hold that yx; = 1. Hence, max;es(;) {yjt} = 1 = yit- Therefore y satisfies (4.7).
We are done. ]

The number of variables and constraints in the formulation (4.9) is larger
than in the formulation (4.8), but the advantage of the formulation (4.9) is that
it contains no integer variables. Therefore, we have shown that (4.7) can be
formulated as a system of linear constraints and continuous variables, which
can be of great importance when developing algorithms for solving the problem.
More general results on disjunctive constraints can be found in [11].

Fixed costs: As in Model I we use the fixed cost constraints
yir <z, €N, t=1,...,T.

Objective function: The purchase cost of a new part of type i € N is ¢;
and the work-cost for removing a part of type i € N is f;. Also, the fixed cost
that must be paid before any replacement action can occur is d. Hence the total
cost becomes

T
Z <Z(Cz‘$z’t + fiyir) + dzt) i

t=1 \ieN

The complete model: The complete linear integer program, using the
work-cost constraints (4.6), is to

T
minimize Z (Z (cixit + fiyir) + dzt> (Model 1I)
t=1 \ieN
Ti+£4-1
subject to Z zpx>1, £=1,..., T-T;, i€N,
t=0

Ty <y, tEN, t=1,...,T,
Zyjtzyit, ieN, t=1,...,T,
J€6(4)

yie <z, i1eN, t=1,...,T,

Tit, 2t Yt € {0,1}, e N, t=1,...,T.
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4.5 Model 111

In Model I we only considered one economic dependence, namely the fixed cost
associated with each replacement occasion. In Model II we introduced more
economic dependencies, namely, we assumed that the system is possible to be
represented by a graph specifying which parts that must be removed in order
to remove a specific part. Further, there is a work-cost associated with the
removement of each part.

In this section we generalize Model I and Model II further by enabling the in-
troduction of more economic dependencies, namely, we introduce a removement-
cost for each specific group of parts. These removement-costs can, for example,
equal the work-costs from Model II, but they can also indicate other economic
dependencies. Actually, since we consider each specific group separately the
model presented below enables a great flexibility in the modelling of economic
dependencies. The drawback, however, is that the number of variables grows
exponentially with the number of parts. Hence, the model presented in this
section is useful only when the number of parts is relatively small.

4.5.1 Assumptions and notation

Consider a system that consists of N deterministic parts. The time horizon T
is finite, and the time is discretized so that t = 0,1,...,7. At time ¢ = 0 all of
the parts are new and at time ¢ = T the system will be discarded. The lifetime
of a new part of type i is T; and it costs ¢;. Except for the purchase costs of the
parts to be exchanged there is a fixed cost d associated with every replacement
occasion independent of how many parts that are replaced.

Further, there are costs associated with the replacement of each group of
parts. These costs can be the work-costs, but they can also include more gen-
eral costs as, for example, inspection, administration, and cleaning costs (see
Section 2.2). Observe that we can calculate the work-costs associated with the
replacement of each group of parts by computing Steiner trees in the graphical
representation of the system (see Section 3.3), so the model we develop here is
at least as general as Model II. Let K be the family of all possible combina-
tions (i.e., sets) of parts. For example, if the system consists of 3 parts, that is,
N ={1,2,3}, then

K ={{0},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3} }.

Denote by gy the cost associated with the replacement of combination k € K.
Note that k¥ = {} indicates that nothing is replaced and accordingly gg = 0.
The total number of elements (sets) in K is

%5

Obviously, the number of combinations grows rapidly with the number of parts.
This “combinatorial explosion” is illustrated in Table 4.1. Therefore, the model
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Table 4.1: The number of parts versus the number of elements in K.
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N K|
3 )
5 32

10 1,024

15 32,768

20 | 1,048,576

developed in this section is not very useful when the number of parts of the
system is large. Observe, however, that in our aircraft application the system
is partitioned into smaller subsystems (i.e., modules), and it is possible to use
the model for some of them.

The objective is to minimize the cost of having a functioning system between
the timest=0and t =T.

4.5.2 The model

We introduce a variable for each specific group k € K of parts indicating whether
the group is to be replaced at time ¢ or not:

L
Wt =
kt 0,

Further, as in Model I and Model II, for all i € N and t = 1,...,T, we have
the following variables:

if combination k € K is replaced at time ¢,
otherwise.

1, if part i € N is to be exchanged at time ¢,
otherwise,

1, if some of the parts i € N is to be exchanged at time ¢,
2+ =
’ 0, otherwise.

We are ready to construct the necessary constraints.
Lifetimes of the parts: As for Model I we indicate by the constraints

T;+£—1

> owy>1, L=1,...,T-T; i€N,
t=¢

that the parts cannot be in service for more than their respective lifetimes.
Costs associated with the replacement of each specific group of

parts: If a specific part i € NV is to be replaced at time step ¢ we must trigger

a replacement of some combination k € K that contains part i (note that this
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combination can be the set that consists of part 7 only), that is,
Tp= Y. ww, i€N, t=1..T.
ke{seK|s>i}

Further, at each time-step it is only possible to replace one of the combinations
of K, yielding

ww=1, t=1,...,T.
ke

Observe that wg; = 1 implies that nothing is replaced at time step t.
Fixed costs: We use the same fixed cost constraints as in Model I, that is,

Ty < 2, iEN, t=1,...,T.

Objective function: The purchase cost of a new part of type i € N is ¢;
and the fixed cost that must be paid before any replacement action can occur is
d. Also, the cost associated with the replacement of combination k € K is given
by gr. Hence the total cost becomes

T
> (Z CiTit + Y Grwie + dzt> ,

t=1 \ieN kEK

The complete model: We obtain the complete linear integer program:

T
minimize Z (Z CiTit + Z JrWre + dzt> (Model III)

t=1 \ieN kex
Ti+6—-1
subject to Z zg>1, £=1,...,T-T;, ieN, (4.10a)
t=¢
xitszta 7:6-/\/7 t:]-;"'aTa (410b)
Ta= Y. ww, €N, t=1...,T, (410c)
ke{seK|sdi}
Yww=1, t=1,...,T, (4.10d)
kek

Tit, 2, wge € {0,1}, €N, keK, t=1,....,T. (4.10e)

The purchase costs ¢; and the fixed cost d can be included in the costs for
each specific group of parts k € K, that is, the total cost for replacing group &
of parts is equal to

~ gk+ziekc,~+d, k‘G}C\{w},
% =1o, k= {0}.
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Hence, the objective function of Model III can be written as

T
DD Grwke

t=1 keK

Without loss of generality we may assume that gg, < Gk, + gk, for all k1, ko, ks €
K such that k3 C ko U k3, from which follows that the constraints (4.10d)
are redundant. Further, the variables z; can be set to 1 (since they are no
longer associated with any cost), implying that the constraints (4.10b) become
redundant. Then, the constraints (4.10c) are used in order to eliminate the
variables x;; in the constraints (4.10a). Hence, we can formulate Model III as
the set covering problem to

T
minimize Z Z JrWit
t=1 kek
T;+£-1
subject to Z Z w >1, £=1,...,.T-T;, i€N,
t=¢ ke{seK|sdi}

wie €{0,1}, kek, t=1,...,T

The set covering problem is an AP-complete problem, but a lot of research
has been performed that has resulted in several solution methods. Surveys on
the set covering problem can be found in [59] and [115].

4.6 A replacement model for systems composed
of modules with parts

We saw in Chapter 3 that aircraft engines are composed of several modules. So
far we have just considered systems consisting of one module. In this section we
present an optimization model for replacement operations in systems composed
of several modules, each of which comprises a number of parts. We develop such
a model by generalizing Model II. Similar modifications can be made in order
to generalize Model I and Model IIT to module based systems. We generously
allow for economic dependencies between the modules, since we consider each
specific group of modules separately.

4.6.1 Assumptions and notation

We consider a system that is composed of M modules. Let M = {1,...,M}
be the set of modules. Module m € M comprises N™ deterministic parts.
Let N = {1,...,N™} be the set of parts in module m € M (throughout
the section we will use the superscript m to indicate that constants, sets and
variables correspond to module m € M). Also, let P be the family of all possible
combinations of modules.
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Example 4.8 (illustration of a system composed of modules) The notation of the
set of modules M and the set of parts N for m € M is illustrated in Figure
4.7.

Figure 4.7: A system composed of modules.

The system consists of 3 modules, that is, M = {1,2,3}. Module 1 comprises
3 parts, module 2 comprises 4 parts and module 3 comprises 2 parts, yielding

N ={1,2,3},
N2 ={1727374}7
N ={1,2}.

The family P of combinations of modules equals

P ={{0}, {1}, {2}, {3},{1,2},{1,3},{2,3},{1,2,3} }.

The lifetime of a new part of type i € N™ is denoted by T;™ and its purchase
cost is ¢™. In order to remove a specific part i € N™ the module m € M
that comprises it must first be removed. Actually, some combination p € P
of modules such that m € p must be removed (it is of course possible to only
remove module m, since {m} € P). The cost associated with the removement
of combination p € P of modules is denoted by d,. (Note that the costs d,
represent the equivalent of the fixed cost d in the models presented above, where
we studied systems comprising one module only.)
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Further, let the assumptions and the notation introduced for Model II in
Section 4.4.1 hold for each specific module of the system, that is, each module
m € M can be represented by a directed graph (V™, A™), where the set of
nodes V™ equals the set of parts /'™ and the arcs A™ indicate how the parts in
module m € M are connected. The work-cost associated with the removement
of part ¢ € N™ is denoted by f/™.

The time horizon 7T is finite, and the time is discretized so that t = 0,1,...,T.
At time ¢t = 0 all of the parts are new and at time ¢ = T the system will be
discarded. The objective is to minimize the cost of having a working system
between the times t =0 and t =T.

4.6.2 The model

Consider the ith node of the graphical representation (V™, A™) of the module
m € M. Analogously to the derivation of Model II, for ¢ € V™ we define

§"(@) ={jeV™| (i) e A"},

that is, 6™(7) is the set of nodes in module m € M from which there are arcs
in A™ directed towards ¢ € V™.

Forallie N™, me M,t=1,...,T, and p € P we introduce the following
variables:

gmo L if part 4 € N™ is replaced at time ¢,
i 0, otherwise,

m , if part i € N™ is removed at time ¢,
Yie = .
0, otherwise,

P 1, if module combination p € P is removed at time ¢,
P 0, otherwise.

We are ready to state the necessary constraints.
Lifetimes of the parts: We indicate that the parts cannot be in service
for more than their respective lifetimes by the constraints

T 4+£-1
Sooap>1, £=1,...,T-T", ieN™, meM. (4.11)
t=¢

Also, if a part is to be replaced it must first be removed, which yields the
constraints

zy <y, 1€N”, meM, t=1,...,T. (4.12)

Fixed costs associated with the removements of the modules: In
order to remove a specific part i € N™ inside module m € M we must first
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remove some group p € P of modules that contains module m, that is, p 3 m.
We indicate this by the constraints

yir < Z 2pt, 1EN™, meM, t=1,...,T.
pe{s€P|sd>m}

Work-costs: To trigger the work-cost when replacing a specific group of
parts we must include constraints that consider the graphical structure of each
specific module of the system. Indeed, in order to remove part i € N™ we must
remove at least one of the parts in the set 6™ (). This yields one constraint for
each node inside each module and each point in time:

S oyp>uy, i€eN™, meM, t=1,...,T. (4.13)
Jjeo™ (i)

Objective function: The purchase cost of a new part of type ¢ € N™ is
¢ and the work-cost for removing a part of type ¢ € N™ is f/™. Also, the fixed
cost associated with the removement of the combination p € P of the modules
is given by dp. Hence the total cost is

T
S S @ ar) + Y dy

t=1 \meMieN™ peEP

The complete model: We obtain the complete linear integer program:

T
minimize E E E (czy + flyi) + E dpzpt
t=1 \meMieN™ peEP
T -1

subject to Z zpy>1, £=1,....T-T", ie N, meM,
t=¢

ap <y, P€EN™, meM, t=1,...,T,
ieN™, meM,
s o {t—l T
pe{sE€P|som} =4t
S oyRzyR, ieNT, meM, t=1,...,T,

ieN™, meM, peP,

332:1, Zpts y:? € {Oal}a {t -1 T

4.7 A replacement model suitable for systems
composed of large numbers of modules

If the number of modules is large the optimization model presented in the pre-
vious section is not very useful, since the family P of combinations of modules
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becomes very large. In order to find a useful optimization model for a general
module-based system (where the number of modules can be large) we cannot
consider each combination of modules separately. In this section we present an
optimization model based on some assumptions regarding the economic depen-
dencies between the modules such that the combinatorial explosion is avoided.

4.7.1 Assumptions and notation

We consider a system that is composed of M modules. Let M = {1,..., M}
be the set of modules. Module m € M comprises N™ deterministic parts. Let
N™ ={1,...,N™} be the set of parts in module m € M.

The lifetime of a new part of type ¢ € N™ is denoted by 7™ and the purchase
cost is ¢I™. In order to remove a specific part ¢ € N'™ the module m € M that
comprises it must first be removed. We assume that there is a fixed cost, denoted
by d, corresponding to the removement of any module (independent of which or
how many modules that are actually removed). Further, there is an individual
cost, denoted by €™, associated with the removement of each specific module
m € M.

Each module m € M can be represented by a directed graph (V™, A™),
where the set of nodes V™ equals the set of parts N and the arcs A™ indicate
how the parts inside module m € M are connected. The work-cost associated
with the removement of part i € N™ is denoted by f™.

The time horizon 7' is finite, and the time is discretized so that t = 0,1,...,T.
At time ¢t = 0 all of the parts are new and at time ¢ = T the system will be
discarded. The objective is to minimize the cost of having a functioning system
between the times t =0 and t =T.

4.7.2 The model
Foralli e N, me M, and t =1,...,T we introduce the following variables:

m 1, if part i € N™ is replaced at time ¢,
0, otherwise,

m 1, if part i € N is removed at time ¢,
0, otherwise,

m 1, if module m € M is removed at time ¢,
0, otherwise,

1, if any of the modules is removed at time ¢,
Wy =
¢ 0, otherwise.

Lifetimes of the parts: In order to consider the lifetimes of the parts we
employ the constraints (4.11) and (4.12) from the model in Section 4.6.

‘Work-costs: We employ the work-cost constraints (4.13) from the model
in Section 4.6.
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Constraints associated with the modules: In order to replace a part
i € N™ in a specific module m € M, this module must be removed, yielding
the constraints

o <z, P€EN™, meM, t=1,...,T.

Y

Also, if any of the modules is removed, this is indicated by the variable wy,
which yields the constraints

zit <wg, meM, t=1,...,T.

Objective function: The purchase cost of a new part of type i € N'™ is
¢ and the work-cost for removing a part of type ¢ € N™ is f™. Also, the fixed
cost associated with the removement of any module is d, and the individual
removement cost is e,, for each specific module m € M. Hence the total cost is

T
> ( > < 3 (e + ) +emz;n) +dwt> _

t=1 \meM \ieN™

The complete model: We obtain the complete linear integer program:

T
minimize Z ( Z < Z ("l + i) + emzzn) + dwt>

t=1 \meM \ieN™
T 44—1
subject to Z zp>1, £=1,....T-T", ieN™, meM,
t=¢

oy <y, ieN™, meM, t=1,...,T,
iy <z, i€N™, meM, t=1,....T,
it <wgy, meM, t=1,...,T,
SToyncyl, ieNT, meM, t=1,...T,
JES™ (4)
1eN™, meM,

mg)yg,z?,th{o’l}’ {t:l;,T

This model is well adapted to the structure of the RM12 engine (or, more
accurately, to the data that is available for the RM12 engine; see Section 3.2.2).

4.8 Conditions at the start and at end of the
contract period
The linear integer programming models presented in the Sections 4.3—4.7 assume

that the parts are new at the start, ¢ = 0, and that the system is discarded at the
end, t = T. However, as discussed in Section 2.5.3 a maintenance contract may
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include that the condition of the engine (represented by the remaining lifetimes
of the parts) at the end of the contract period must exceed some threshold value.
Also, the engine must not necessarily be new at the beginning of the contract
period.

In this section we show how to introduce constraints in the linear models to
handle varying start conditions and condition requirements at the end of the
contract period. We use the same notation as for Model 1.

4.8.1 Varying start conditions

Assume that the start conditions of the engine are given by T; for i € N/, that is,
the remaining lifetime of part i € A at time ¢t = 0 is T; < T;. In the case when
all of the parts are new at ¢ = 0 we need not consider the possibility to replace
some of the parts at time ¢ = 0, but in the case of varying start conditions it can
in fact be necessary to replace a part at time ¢t = 0 (if T; = 0 for some i € N/ )-

Now, for each part 4 € N, we must force a replacement before or at time ¢t = T;
which yields the constraints

Lowe>1, if
Tio = 1, if

>1 .
=5 GeN.
% 07

o [l

4.8.2 Varying condition requirements at the end of the
contract period

Assume that the condition requirements at the end of the contract period are
given by T; for i € N, that is, the remaining lifetime for part i € N at time
t = T is required to be greater than or equal to T; < T;. Then we must replace
part ¢ € N at or after time ¢t = T — (T; — T;) [note that if T; = T; the part must
be replaced at time ¢ = T'], yielding the constraints

T
Y. w2l Q€N

t=T— (Ti 7:1_"'1)

Observe that in the dynamic programming model we could also handle vary-
ing valuation of the states at the end of the contract period. However, how to
do this in the linear integer programming models is not straightforward and will
not be treated here.



Chapter 5

Stochastic optimization
models

5.1 Introduction

In the preceding chapter we developed replacement optimization models for sys-
tems consisting of deterministic parts. In real world applications it is often the
case that some of the parts of the system considered are not deterministic but
stochastic (see Definition 2.2). Because the lifetimes of the stochastic parts are
represented by distribution functions such parts cannot be correctly represented
in the deterministic models previously presented. Often, however, the stochas-
tic parts are crucial for the total maintenance cost. Roughly 30% of all the
maintenance occasions for the RM12 engine are due to a stochastic part having
failed. Since the fixed cost associated with each replacement occasion is large,
the stochastic parts will heavily affect the total maintenance cost. Therefore, in
order to construct an optimization model that is useful in practice it is necessary
to also take the stochastic parts into account.

In Section 5.2 we present the stochastic replacement problem from the point
of view of aircraft maintenance. Then, in Section 5.3, we discuss some sim-
ple ideas on how to modify the linear deterministic optimization models from
Chapter 4 in order to take stochastic parts into account. These methods are
heuristic in the sense that they do not necessarily minimize the total expected
cost for having a working engine during the given time period.

The most straightforward method for the computation of an optimal replace-
ment scheme (that is, one that minimizes the expected total cost) for a system
consisting of stochastic and deterministic parts is to use dynamic programming.
We present a stochastic dynamic programming formulation of the replacement
problem in Section 5.4. As we saw in Section 4.2 a main drawback of dynamic
programming is that the number of states grows rapidly with the number of
parts, which means that the dynamic programming model can only be used
when the number of parts is small.

53
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An alternative to stochastic dynamic programming is to use multi-stage
stochastic programming models. In such models the randomness is taken into
account through a finite number of scenarios, which are used in order to general-
ize the deterministic optimization problem that we get when the actual outcome
(scenario) is given. The replacement problem is, however, not well adapted for
stochastic multi-stage programming since the probability that a certain out-
come occurs from one time, ¢, to the next, ¢t + 1, depends on the replacement
decision at time ¢. Hence the multi-stage model becomes nonlinear which is not
desirable from a computational point of view. Instead, we only consider the first
stage decision (that is, what to replace at the current replacement occasion) as
stochastic, which makes it possible to formulate a linear two-stage stochastic
model. In Section 5.5 we define the scenarios used in the two-stage model. In
order to use the scenarios to formulate the two-stage model it is necessary to
formulate the deterministic optimization problem that arises when it is known
that a specific scenario will occur, and we discuss how to do this in Section 5.6.
The two-stage stochastic model is then presented in Section 5.7.

Finally, in Section 5.8 we discuss the differences between the stochastic dy-
namic programming model and the two-stage stochastic model.

5.2 The aircraft engine maintenance problem

When a stochastic part fails or a deterministic part reaches its lifetime the
engine must be taken to the service workshop. The failed stochastic parts and
the deterministic parts that have reached their lifetimes must be replaced by
new ones (or, possible, used non-failed parts). It is expensive to take the engine
to the workshop and hence, when having it there, it may be motivated to replace
also non-failed stochastic parts and deterministic parts that have not yet reached
their respective lifetimes. Further, in order to remove a specific part often one
has to remove other parts. Some parts may therefore be preventively replaced
even if they are not yet very old, provided that there is no additional work-cost.

The deterministic models developed in Chapter 4 integrate both the fixed
cost to take the engine to the workshop and the economic dependencies just
described. Based on these models, optimal replacement schedules for the total
lifetime of the engine can be computed. When stochastic parts are involved
the replacement schedule cannot span the entire engine lifetime, or contract
period, due to the uncertainty present in the model. Instead, all we can decide
is which parts (deterministic and stochastic) that should be replaced today,
when the engine is at the workshop, in order to minimize the total expected
cost over the planning period. This decision should be based on the information
we have about the different parts at the specific maintenance occasion (that is,
the failure distributions of the stochastic parts and the remaining lifetimes of
the deterministic parts).

Hence, an optimization model for the maintenance of an aircraft engine must
be iterative, that is, a reoptimization must be performed every time the engine
is taken to the service work shop for whatever reason.
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5.3 Basic modifications of the deterministic op-
timization models

The most simple way to take a stochastic part into consideration is to use a
deterministic model to compute a basic replacement scheme, and then run the
engine until either a deterministic part reaches its lifetime or a stochastic part
fails. If the engine is taken to the workshop because a stochastic part has
failed this part is replaced and a new basic replacement scheme is computed.
Otherwise the basic replacement, scheme is used to decide when to take the
engine to the workshop and what to replace when having it there. However,
since the RM12 engine often is taken to the workshop because a stochastic part
has failed, this method is not very successful for our aircraft engine application.

We can modify this method by forcing a preventive replacement of a stochas-
tic part when the engine is at the workshop if the failure rate (i.e., hazard rate)
exceeds some threshold value. The failure rate can easily be computed from the
failure distribution. It is, however, not at all clear at this time what the basis
for this threshold value should be.

Another way to modify the above method is to first compute a basic scheme
for the deterministic parts, and then for each one of the stochastic parts compute
the probability for failure until the next time the engine is taken to the workshop
(according to the basic replacement scheme). Then preventive replacements
are triggered for all stochastic parts whose probabilities for failure exceed a
threshold value. A problem with this method arises if the basic replacement
scheme suggests that there is a long time to the next maintenance occasion;
then it can happen that several of the stochastic parts are replaced even if they
are almost new. In this case, it would perhaps be better to not replace the
stochastic parts, but to run the engine until a stochastic part fails, and then,
when the stochastic part is replaced, take the opportunity to replace some of
the deterministic parts as well.

Finally, a natural way to take a stochastic part into account is to consider
it as deterministic by letting its lifetime be its expected one. (This is actually
the special case of the two-stage stochastic model presented in Section 5.7 that
arises when only one scenario is used.)

All of the modifications presented in this section are heuristic in the sense
that they do not necessarily minimize the total expected cost for having a work-
ing engine during the given time period. Therefore, we will develop other meth-
ods that hopefully perform better. The dynamic programming model presented
in Section 5.4 actually gives optimal solutions. The two-stage stochastic model
presented in Section 5.7 is, however, again heuristic, but probably better than
the heuristic methods presented here.

5.4 A dynamic programming model

In this section we develop a dynamic programming model for a system consisting
of stochastic and deterministic parts. The model is based on the dynamic pro-
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gramming model presented in Section 4.2. First we develop a general stochastic
dynamic programming model for a discrete stochastic sequential decision pro-
cess. We then illustrate the model by considering a simple example regarding a
system consisting of only one stochastic part and one deterministic part. This
example is then generalized in order to describe a dynamic programming model
for a general system.

5.4.1 The dynamic programming model

In Section 4.2 we defined a discrete sequential decision process. Here we will
generalize this concept to incorporate randomness. In a discrete stochastic se-
quential decision process we have a finite time horizon 7" and consider the points
of time ¢t =0,1,...,T. At the time ¢ the process is in state s;, which is assumed
to depend on

e the state s; 1 at time t — 1;
e the decision variable z;_; at time ¢t — 1; and
e the stochastic variable y; 1 (which in turn depends on s; 1 and x;_1).

Observe that the difference between the discrete and the stochastic discrete
sequential decision process is that in the latter the state s; depends on the
stochastic variable y; 1. Denote the transformation function at time ¢ by ¢,
that is,

St+1 = O¢(5¢, Te, Yt)-

Also, let gi(st, z¢,y:) be the contribution to the cost function during the time
between t and t + 1. Denote by E¢[f()] the expected value of the function f
over all possible values of the stochastic variable £&. We cannot solve the whole
decision problem (that is, determine all values of zg,%1,...,Zr) at time ¢t = 0
since the decisions 1, . . ., z7 will depend on the outcomes of yo,¥y1,--.,yr. The
only decision that can, and must, be made at time ¢ = 0 is zg. The decision
z7 at time ¢t = 1 is then made when the outcome of yy is known, and so on.
Therefore, the problem we want to solve is to choose ¢ at time ¢ = 0 such that
the expected cost of the complete decision process is minimized, that is,

2 = minimum  y, |go(s0, 70, yo) + min By, g1 (s1,01,51) + -+
0 1

+I;11TH Ey.lgr(sT,27,y7)] - -]

subject to St4+1 =¢t(5t;$t;yt); t=0,1,...,T—1,

Sp is given.
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In order to develop a recursive optimization scheme, for k = T,7-1,...,1,0,
let

2k(sk) = minizrilum Ey, |9k (58, Tk, yr) + gifll Ey, i [9k+1(Skt15 Thp1, Yrt1)+

B %I;H EyT [gT(STa xTayT)] o ] (51)

subject to  siy1 = de(se, Te,y), t=k,...,T —1.
(Hence z = z(sg) for the given state sg.) We arrive at the following recursion:

Proposition 5.1 (recursion in stochastic dynamic programming) For k = 0,1,
.., T — 1, if z(sg) is defined as in (5.1), then

zr(sk) = minimum By, (9% (s> k> Y) + Zkt1(Sk41)] (5:2)

subject to  Sgyr1 = Pk (Sk, Tk Yk )-
Proof. Follows immediately from the definition of z(sg). |
Hence, if we can compute
zr(sT) = minicr;lum Ey. g7 (sT,27,y7)]

for all values of s7, then we can use the recursion scheme in Proposition 5.1
to compute zo. Typically, zr(sr) is given, or is at least easy to compute. In
our aircraft engine application we can set zr(st) = 0 for all states st if the
maintenance contract does not reward any specific states of the engine (that is,
if the remaining lifetimes at the end of the contract period do not have inherent
values); otherwise, if the contract includes values c(sr) for each specific state
sT, then we can set zr(st) = —c(s7). (The minus sign is needed since zr(st)
is considered as a cost in the model.)

Just as for the deterministic dynamic programming model the main draw-
back of the stochastic dynamic programming model is that we must solve (5.2)
for each possible state s;. Hence, if the number of states is large, then the use-
fulness of a stochastic dynamic programming model is limited. Unfortunately,
as was seen in Section 4.2 the number of states in the aircraft engine applica-
tion is huge if the number of parts is large. Therefore, the stochastic dynamic
programming model can only be used if the number of parts is small (from our
experiments: about 6). The advantage of the dynamic programming model as
compared to the two-stage model is however that it takes all the randomness
in the problem into account; the two-stage model assumes that every outcome
after time ¢ = 0 is known. Differences between the dynamic programming model
and the two-stage model are discussed further in Section 5.8.
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5.4.2 A system with one stochastic and one deterministic
part

We turn to our aircraft engine application. Consider a system consisting of one
stochastic part and one deterministic part. The lifetime of the stochastic part
is represented by a failure distribution function. Now assume that at time ¢
the deterministic part has not reached its deterministic lifetime and has been
in service for 74 time steps and the stochastic part is non-failed and has been
in service for 75 time steps. Then, with the failure distribution function we can
compute the probability, denoted by p, that the stochastic part that is currently
in the system is still non-failed at time ¢t+1. (The probability that the stochastic
part fails between the times ¢t and ¢ + 1 is then 1 — p.) In order to formulate
a dynamic programming model we assume that the stochastic part only can
fail at the specific times ¢ = 1,...,T (and not in between). (The error from
this simplification decreases as the number of time steps in the discretization
increases.) This situation is illustrated in Figure 5.1.

(rs + 1,74+ 1)

(Tsa Td)

(07 Td + 1)

t t+1

Figure 5.1: The failure probability of the stochastic part.

The numbers in the parentheses indicate the ages of the stochastic and the
deterministic part, respectively. We specify by (0,74 + 1) that the stochastic
part has failed at time ¢ + 1 and hence must be replaced by a new one, so that
its age becomes 0.

Obviously, the probability that the stochastic part will still be non-failed at
time ¢ + 1 depends on its age 75 at time t. We let p(7;) be the probability that
the stochastic part is unfailed at time step ¢ + 1 given that its age at time ¢ is
Ts.

At a specific time t we can perform four replacement actions, namely,

1. replace nothing;
2. replace the stochastic part only;

3. replace the deterministic part only; and
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4. replace both the stochastic and the deterministic part.

As for the dynamic programming model presented in Section 4.2 we denote a
replacement action by

Tt = (7'257'3)7

where

T

¢ J1, if part i is replaced at time ¢,
0, otherwise.

The above replacement actions can then be denoted by (0,0), (1,0), (0,1), and
(1,1), respectively. In the dynamic programming model for deterministic parts
presented in Section 4.2 the state at time ¢ + 1 was completely determined by
the state and the replacement action at time ¢t. However, in the case where one
of the parts is stochastic, the state at time ¢ + 1 will depend on whether the
stochastic part fails or not. For example, if the replacement action is z; = (0, 0),
we end up with the state (15 + 1, 74+ 1) with probability p(7,) and with the state
(0,74 + 1) with probability 1 — p(7s). Figure 5.2 below illustrates the different
states and the probabilities to reach them given the replacement action x;.

The figure should be interpreted as follows: At time ¢ the system is in
state (75,74). Depending on the replacement action x;, we arrive at one of the
intermediate nodes. (Observe that we still are at time ¢.) Then the system is
put into service again, and depending on whether the stochastic part fails or
not we end up with one of the states at time ¢ + 1, with different probabilities.
If each of the states s;y1 at time ¢+ 1 has a given value, denoted by 2z41(s¢41),
then it is possible to compute the expected value at time ¢ of each replacement
action. For example, the expected value of the replacement action xz; = (1,0) is
given by

9t(st,2t) + p(0) - ze41(L, 74 + 1) + [1 — p(0)] - 2¢41(0, 74 + 1),

where g;(s¢, z¢) is the cost of the replacement action z; = (1,0) at the state s; =
(75,74) at time ¢t. (Observe that we define g;(s¢,z¢) = +o0o if the replacement
action x; is not allowed; for example, if the stochastic part has failed at time ¢,
then it must be replaced and accordingly every allowed replacement action
must include a replacement of the stochastic part.) Hence, if the values of all
the possible states at time ¢ + 1 are known, we can set the value of the state
(15, 7q) at time ¢ to the expected value of a replacement action that minimizes
the expected value at time ¢. This valuation of the states is crucial to the
stochastic dynamic programming model developed above in Section 5.4.1.

In order to apply the recursion optimization scheme given by Proposition
5.1 we must define the transformation function ¢; and the stochastic variables
y; for each point of time. The variables y; denote whether the stochastic part
fails or not at time ¢t + 1, that is,

1, if the stochastic part fails at time ¢ + 1,
Yt = .
0, otherwise.
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(s + 1,74+ 1)

p(7s) O

Figure 5.2: The possible states and the probabilities for reaching them.

With s, = (7%,7%) and z; = (rf,r}) we define the transformation function
Bt(st, Tt, yt) by
¢t($t>$tayt) = (T;+1a7—;+l)a

where

t+1, ifrl =0andy =0,

it =41, if £ =1 and y; = 0,

0, otherwise,

and

St h+1, ifrh =0,
d 1, otherwise.
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The recursion scheme (5.2) also requires the computation of the expected cost
associated with the stochastic variable ;. More precisely, we want to calculate
Ey,[f(y¢)] for some given function f. In our case the value of y; (that is, 0 or
1) occurs with a certain probability depending on the state s; (that is, the age
of the stochastic part) and the replacement action z¢, so we define

p(yt, 8¢, x¢) = the probability for y; to occur given s; and z;.

In the recursion formula (5.2) the state sy is given, so for a given replacement
action zj, the probability that y; occurs is known. Since the number of states
Yk, at each time k is finite (in our simplified case only two) we have that

By [f ()] =Y Wk, s, 7k) f (k)

Yr

where }° =~ denotes the summation over the finite states of y; at time k.
Hence, the recursion optimization scheme in Proposition 5.1 finally becomes

zk(s) = minimum > Pk, sk, )9k (31, k) + 211 (s541))]
Yr

subject to  Sgy1 = Pk (Sk, Tk, Yk)-

5.4.3 A general system

In the previous subsection we applied the stochastic dynamic programming
model presented in Section 5.4.1 on a system consisting of only one stochas-
tic and one deterministic part. However, the approach presented there can
easily be adapted to general systems consisting of N deterministic parts and M
stochastic parts.

We introduce the state variable s; as

8 = (7';1,...,T:M,Tél,...,TéN),
where T;. and Tjj are the ages of the stochastic part ¢ and the deterministic part
j, respectively, at time t.
Further, the decision variables x; becomes

Ty = (ril,...,rgM,rfil,...,rfiN),
where
oo {1, if the stochastic part 7 is replaced at time ¢,
5 0, otherwise,
and

1, if the deterministic part j is replaced at time ¢,
de = .
0, otherwise.
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The cost contribution g;(s¢, ;) at time ¢ is defined as

cost to replace the parts given by xz;, if x; is feasible given s,

gi(se,2t) = {

00, otherwise.

For example, if s; denotes that a stochastic part has failed at time ¢ then every
replacement action x; that do not include a replacement of that stochastic part
is infeasible.

The stochastic variable y; denotes which of the stochastic parts that will fail
at time ¢ + 1, that is,

Yt = (ff:afi/[)a
where

= 1, if the stochastic part 4 fails at time ¢ + 1,
- 0, otherwise.

The probability that y; occurs depends on the state s; and the replacement
action x;. Let

p(yt, 8¢, x¢) = the probability that y; occurs given s; and z;.

Observe that the number of possible outcomes of y; is finite (although it is large
if the number M of stochastic parts is large; in fact, the number of possible
outcomes is 2M).

Finally, the transformation function ¢, is given by

_ (ot t+1 t41 t+1
¢t(3t;$tayt)—(7'sj 5""7-3:; ale 7"';TdN )7
where
i +1, if ff=0andrt =0
83 ? 2 8 ’
=1, if ff=0andrf =1,
0, otherwise,
and
t et
S Tq, T 1, if g, = 0,
di 1, otherwise.
The recursion scheme, for k =0,...,T — 1, is then as follows:

2i(s¢) = minimum Y ° p(y, 55, 2x)[gk (58, Tk) + 241 (5141)]
Yk

subject to  Sg41 = Ok (Sks Tk, Yk)-
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5.5 Representing the lifetime distribution by sce-
narios

In the stochastic two-stage model developed below we will use scenarios in order
to discretize the failure distributions of the stochastic parts. In this section we
describe what we mean by a scenario in the case of a system consisting of
deterministic and stochastic parts.

5.5.1 Scenarios of stochastic parts

Briefly, a scenario is a possible future outcome. However, in order to make the
concept of scenario useful in real world applications we must clearly define what
we mean by future outcome. Also, each possible future outcome occurs with a
specific probability, so an outcome always comes together with the probability
that it occurs. In this subsection we define scenario for stochastic parts, and
in the next subsection we discuss how to compute scenarios and the probability
with which they occur.

Consider a system consisting of one stochastic part only. Further, assume
that the time horizon T is finite and that the time is discretized so that ¢t =
0,1,...,T. In principle, the stochastic part can fail anytime during the total
lifetime T of the system; if it fails it is replaced by a new specimen. In order
to construct scenarios that can be used in a stochastic two-stage model we
assume, however, that the stochastic part only fails at the times ¢t = 1,...,T
(and never between two times). This is the same simplification that was made in
the development of the stochastic dynamic programming model in the previous
section. The maximum number of stochastic parts that will ever be needed in
order to have a working system between the times 0 and T is 7. Hence, it
makes sense to define a scenario for the system as a sequence of T' integers,
where the first integer is the (deterministic!) lifetime (in number of time steps)
of the stochastic part that is in the engine at the start, the second integer gives
the lifetime of the stochastic part that replaces the first part when it fails (or is
preventively replaced), and so on. We make the following definition:

Definition 5.2 (scenarios of stochastic parts) A scenario, ws, of a stochastic
part, s, of a system with the time-horizon T' is a sequence of T' integers

wy = (T, T2,..., T,

s

where T! is the (deterministic) lifetime of the part of type s that is in the system
at the start, T? is the lifetime of the part of type s that replaces the first part,
and so0 on. ]

Each scenario w; is associated with its probability p(ws), so the expected value
is

Bu[fw)] = 3 plw,) f(w,).
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If we have several stochastic parts in the system, Definition 5.2 can be nat-
urally generalized. Namely, assume that we have M stochastic parts and that
part ¢ has the scenarios

ws, = (T),...,TY), s €8,
where S; is the set of scenarios for the stochastic part ¢. The set of scenarios of
the whole system then becomes the collection

W, = (w517"'7w5M)7

where s = (s1,...,8nm) and s; € S; for all 4 = 1,..., M. Observe that the
number of scenarios of the system is Hf\il |Si|, which means that the total
number of scenarios increases very fast with the number of stochastic parts. The
probability p(Ws) that a certain scenario Wy occurs is given by Hfil plws,).

Remark 5.3 (alternative scenario definition) Another, and perhaps more natu-
ral, way to define scenarios for stochastic parts is to consider each point of time
separately as was made in the stochastic dynamic programming model. Con-
sider a system consisting of one stochastic part. At each point of time we then
have two possible scenarios, namely,

e the stochastic part fails; and
e the stochastic part is non-failed.

However, the probabilities that these scenarios occur depend on the age of the
stochastic part which in turn depends on previous replacement actions. Hence,
the probabilities for the different scenarios depend on the variables of the prob-
lem. A corresponding stochastic program for the problem will therefore be non-
linear which is not desirable from a computational point of view. On the other
hand, if we use scenarios as in Definition 5.2, then it is possible to formulate a
linear stochastic program, as we will see below. [ |

5.5.2 On the computation of scenarios

In this section we present a natural and simple way to compute the scenarios
disussed above, and the probabilities with which they occur. It should be noted
that the computation of scenarios can be made in several different ways, and
typically the quality of the solution from a stochastic programming model will
depend on the the scenarios computed. Our ambition is not to discuss how
to compute the best scenarios for the problem (this is a hard and interesting
problem in itself), but just to present a possible computational procedure.

Consider a stochastic part whose failure distribution is given by the distri-
bution function F'. Also, let f be the frequency function defined by

sy = 0.



5.5. LIFETIME DISTRIBUTIONS BY SCENARIOS 65

In order to create scenarios for the stochastic part we must choose some lifetimes
and associate them with probabilities. Assume that we want to represent the
failure distribution by n lifetimes. First we partition the time interval [0, 0c]

into n intervals [t;—1,%;], 4 = 1,...,n, such that
t.
i 1
f(t) dt = )
ti—a n
for alli =0,...,n, or, equivalently,
ti=F(i/n), i=0,...,n. (5.3)

(Note that tg = 0 and ¢, = 00.) Then we must choose a lifetime, I; € [t;—1,%;],
to represent the time interval [¢;_1,t;]. We do this by taking /; as the expected
lifetime in [ti—I; ti], that is,

ti
li=n / LE(E) dt. (5.4)
ti—1
We have now created n equally probable scenarios, Ii,...,l,. In order to

construct scenarios as in Definition 5.2 we then take all vectors of the form
(T,..., T, (5.5)

where T* varies over I, ...,l, for each k = 1,...,T. The probability of each
scenario becomes 1/nT.

Remark 5.4 (used stochastic parts) When the engine arrives at the workshop
the stochastic parts are not new. The failure distributions for the parts that are
currently in the engine therefore differ from the failure distributions for the new
parts (that will replace the stochastic parts in the future). Hence, the lifetimes
l; for a part that is currently in the engine differs from the other and accordingly,
in the scenarios of the form (5.5), the first lifetime 7" will vary over a different
set of lifetimes than T* for k = 2,...,T. [

Example 5.5 (computing scenarios) Consider a stochastic part whose lifetime
is represented by the (Weibull) failure distribution function

F(t) =1 —exp l— (ﬁﬂ ,

where exp(xz) = e”. Let n = 4. Then from the equations (5.3) and (5.4) we get
the lifetimes Iy = 104, I, = 206, I3 = 299, and I4 = 452, and the probability
for each of the lifetimes is 1/4. The failure distribution and the scenarios are
illustrated in Figure 5.3. ]
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Figure 5.3: Illustration of the failure distribution and the scenarios.

5.6 Modelling varying lifetimes

Each scenario gives a sequence of lifetimes for the stochastic parts (see Definition
5.2). If we just consider one stochastic part, the first value of such a sequence
is the lifetime of the part that is currently in the engine. The second value of
the sequence is the lifetime of the part that will replace the stochastic part at
the first replacement, the third value of the sequence is the lifetime of the part
that will replace the stochastic part at the second replacement, and so on.

Therefore, in order to formulate a stochastic two stage model, we must be
able to model this kind of varying lifetimes for each specific part. The simplest
replacement problem presented in Chapter 4 had only one economic dependence,
namely a fixed cost associated with taking the engine to the workshop, and the
replacement problem (without varying lifetimes) was modelled by Model I in
Section 4.3, that is, to

T
minimize E (E CiZit —}—dzt)
t=1 \ieN
Ti+£€—1

subject to Z zg>1, £=1,...,T=T;, i1€N,
t=t

HTitSZt; t:17"'7T7 ieNa
xit,ztE{O,l}, t=1,...,T, ieN.
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In this model we assumed that all parts were new at time ¢ = 0 and hence we
did not consider the possibility to replace some of the parts at time ¢ = 0. Note,
however, that when we allow varying lifetimes it might be necessary to replace
parts already at time ¢ = 0.

In this section we will show how to modify this model to include a part with
varying lifetimes. Similarly, the other models presented in Chapter 4 can be
modified to include parts with varying lifetimes. In Section 4.8 we have already
discussed the case where the first lifetime is shorter than the others.

First we show how to include a part whose first lifetime differs from the
other lifetimes, which are assumed to be equal. Then, we consider the more
complicated case where all the lifetimes of a specific part are allowed to vary.

5.6.1 Variations only in the first lifetime

Consider a system that comprises one part whose first lifetime differs from the
other lifetimes. (The other lifetimes are, however, assumed to be equal among
each other.) Assume that the first lifetime is T and that the other lifetimes are
T, (s for “stochastic”). Introduce, for t = 0,1,...,T, the binary variables for
the first replacement

. 1, if the part with the first lifetime is replaced at time ¢,
Lot =
ot 0, otherwise.

The part with the first lifetime can only be replaced once during its lifetime,
which gives

Zs0 + ZTs1 +“‘+.§33’TS <1 (5.6)

Further, before a specimen with the lifetime 75 can be put into the engine, the
specimen with the lifetime 7}, first must be replaced, which yields (the binary
variables z,; specifies, as in Model I (see Section 4.3), whether part s is replaced
or not at time t)

Z50 =07
t—1

on <Y, t=1,.. 0
k=0

When the specimen with the lifetime T, has been replaced, the other parts (all
of which have the lifetime T) can not be in service for more than T time steps.
We get

Ts+0—1 T,
$3t+zi'st21; KZO; , T,

t=¢ t=¢

T+e-1
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Also, in order to replace part s, the fixed charge variable z; must be active,
which gives

T <z, t=0,...,T;,
ZL'stSZt, tZO,...,T.

The modified version of Model I, where one part has varying first lifetime,
becomes

T T,
minimize Z (Z CiTit + CsTst + dzt> + Z CsTst (5.7)

t=0 \ieN t=0
subject to Z zg>1, £=0,....T-T;, i€N,

T <z, t=0,....,7, ieN,

To40—1 T,

Z xst‘*'z-istz]-; 6207"'7TS7
t=¢{ t=¢
T4+0—-1

Y aw>1, £=T,+1,...,T-T,
t=¢
Zs0 =0,
t—1
T <Y Ewy, t=1,...,T,
k=0

jstszta t=07"'7Tsa
mstgzta t=07"'7T7
Tit, Tst, Tst, 2t € {0,1}, t=0,...,T, ieN.

Here, the constraint (5.6) has been excluded since it will never be optimal to
replace the part with the first lifetime twice.

5.6.2 Variations in all the lifetimes

If we allow all the lifetimes of a specific part to vary the situation becomes more
complex. We introduce the binary variables

0, if the part with the rth lifetime has not been put into the
Ty = engine at time ¢ or before,

1, otherwise.

The upper index r takes integer values between 1 and the number of lifetimes
for the stochastic part. This number of lifetimes is given by the scenarios, and
must be large enough to not be a restriction in the optimization model. This
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can always be achieved by letting the number of lifetimes be equal to the total
number of time steps T (since we cannot replace the part more often than at
every time step). We denote the total number of lifetimes by R.

Suppose that the rth lifetime is given by 77. Then we must have that

T
Z('r:t_m;jl)STSTJ T:17"'JR_17
t=0

T

Y afi<Tf

t=0

If a part with the rth lifetime is put into the engine at, say, time ¢* then we
must have that 27 = 0 for all ¢ < ¢t* and z] = 1 for all ¢ > ¢*. This is enforced
by the use of the constraints

Tipp 2Ty, t=0,...,T-1, r=1,....R

The part with the second lifetime can replace the part with the first lifetime
(that is currently in the engine) at time ¢t = 0. However, the part with the
(r + 1)th lifetime, for r = 2,..., R, cannot be put into the engine before the
part with the rth lifetime has been in the engine for at least one time step. This
yields the constraints

' <ab,,, t=1,...,T, r=2,...,R—1

At time ¢ = 0 we have z!, = 1.
If the part with the second lifetime is put into the engine at time ¢t = 0 we
will have

2 _
Too = 1,

and otherwise z%, = 0. Further, if the part with the rth lifetime is put into the

S
engine at time ¢t = 1,...,T, we will have

r T —
Top —Tgy—1 = 17

otherwise, zi; — z7, ; = 0. Hence the objective function becomes that to
minimize
T R
cstly + Z ciTio +dzo + Z (cs Z(a:;t —Tg.1) + Z CiTit + dzt) ,
ieN t=1 r=2 ieN

where ¢, is the cost of the part with variable lifetime.
To connect the part with variable lifetime with the fixed cost, we must have

2
Ts0 S 20
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and
T T — p—
Ty —Tgyp 1 <2z, t=1,....,T, r=2,...,R.

The modified version of Model I with one part with variable lifetimes and the
other parts with fixed lifetimes becomes

minimize  c¢,x%, + Z c;Tio + dzg (5.8)
1EN
T R
+ Z (Cs Z(x;t —Tgy 1)+ Z CiTit + d2t>
t=1 r=2 iEN
Ti+0—1
subject to Z zg>1, £=0,....T-T; i€N,
t=0

zi <z, t=0,....,7, i€N,

Z(x:t_m;jl)STsr7 T:17"'7R_17

R R
szt S Ts ’

m:,t+12$:t, t=07"'7T_17 T=17___7R,

et <al, .y, t=1,...,T, r=2,...,R—1,

1 _
Tgo =1,

2
Tgo S 20,

T T — —_
Ty —Typq <2z, t=1,...,T, r=1,...,R,

T, ooy, 2e € {0,1}, t=0,...,7, r=1,...,R, i€N.

Remark 5.6 (numerical tests with varying lifetimes) Simple numerical tests have
been made with the models (5.7) and (5.8). Both of the models were imple-
mented in AMPL and then solved by the Branch & Bound solver in CPLEX. Tt
took about 20 times longer to solve (5.8) than to solve (5.7) for small instances
(one part with variable lifetime, 3 parts with constant lifetime and T = 60) even
if the number of scenarios were the same. The differences were even larger when
the number of parts was increased. Hence we will use the stochastic two-stage
model based on (5.7) (presented in the next section) in the numerical tests in
Chapter 7. [ ]

5.7 A stochastic two-stage model

Now we turn to the stochastic two-stage model. First we discuss a general
two-stage model, and then we show how it can be adapted to the stochastic re-
placement problem. It should be noted that the stochastic replacement problem
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is in fact not a two-stage problem, but a multi-stage problem (since each point of
time is a stage). However, every attempt to formulate a stochastic multi-stage
model resulted in a non-linear model, so in order to formulate a linear stochastic
model we consider the replacement problem as a two-stage problem. In Section
5.8 we will investigate the differences between the stochastic dynamic program-
ming model (which actually solves the complete multi-stage problem with all
possible scenarios) and the stochastic two-stage model.

5.7.1 A general stochastic two-stage model

Suppose that we must make decisions in a random environment. Further, sup-
pose that the decisions can be made in two stages, that is, some decisions must
be made prior to the random events, and the rest of the decisions can be made
based on what actually happened. A lot of practical situations have this char-
acteristic. A basic such problem is the news vendor problem, in which a news
vendor goes to the publisher every morning and buys newspapers at a certain
price. The vendor then walks along the streets to sell as many newspapers as
possible at the selling price. The demand for newspapers varies over days ac-
cording to some random variable. Any unsold newspaper can be returned to
the publisher at a return price. The problem is then to decide how many news-
papers to buy every morning in order to maximize the total expected income.
General text books that describe stochastic two-stage models are [27], [72], [37],
and [38].

Denote the first stage decision variables by z and the second stage decision
variables by y. Suppose that the random events that might occur is a discrete
set Q. The probability that an event w € §) occurs is given by p(w).

Now assume that given w € ) we want to solve the deterministic linear
programming problem

minimize ¢’z + dpy.,
subject to Az =b,
Byz + DyYuw = e,

where ¢,dy,, A, b, By, D,,, and e,, are vectors and matrices of appropriate sizes.
Observe that By, D,,,d,, and e,, might depend on w.

Since we do not know which event in Q that will occur, the best we can do
is to minimize the expected cost. This yields the stochastic two-stage problem
to

minimize ¢'z + Z p(w)dLy,
we
subject to Az = b,

By + Dyyy = €y, w € Q.

Observe that if the scenarios w € Q are not dependent of x, this problem is a
linear program.
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5.7.2 A stochastic two-stage model for the replacement
problem

In the maintenance situation with one stochastic part, the first stage decision is
to decide what to replace when the stochastic part has failed or a deterministic
part has reached its lifetime. We will assume that this occurs at time ¢t = 0,
that is, the engine is taken to the workshop at time ¢ = 0 independently of what
is actually replaced. The second stage decision is what to replace at time ¢t =1
based on the actual outcome during the time between ¢ = 0 and ¢ = 1, the third
stage decision is what to replace at time ¢ = 2 based on the actual outcomes
during the time between ¢t = 0 and ¢ = 2, and so on. However, in order to
formulate a linear stochastic two-stage model we consider all the decisions at
the times t = 1,...,T as two-stage decisions.

Even if this assumption is a serious simplification of reality, the two-stage
model based on it makes use of the fact that the engine is at the workshop at
time ¢ = 0, which means that the model considers the opportunity to replace
parts at time ¢ = 0 at no fixed cost. This is important if the fixed costs are
high, which is the case for aircraft engine maintenance. Hence the stochastic
two-stage model developed in this section is particularly useful for our aircraft
engine application.

We use scenarios as in Definition 5.2. Assume that the set Q consists of all of
the scenarios we consider; the scenarios can be computed according to Section
5.5.2. Given a scenario w € () we then have the lifetimes of the stochastic part,
that is,

w=(Ty,...,Ti).

Also, the deterministic parts are not necessarily new at time ¢t = 0. We assume
that the remaining lifetimes of the deterministic parts that are in the engine
at time t = 0 are given by Ti,...,Ty. We will handle this fact by adding
constraints as in Section 4.8.

The first-stage variables for the deterministic parts are all of the replacement
variables at time ¢ = 0, that is,

Zi0, iEeN.

The first-stage variable for the stochastic part describes the decision whether or
not to replace the stochastic part at time ¢ = 0. Since the only possible part
for the first replacement is the specimen with the second lifetime, we get that
x2, is the first-stage variable for the stochastic part. Note that the fixed cost
variable 2y = 1 since the engine is at the workshop at time ¢ = 0 independent
of what is replaced. Hence, zg can be eliminated from the model.

The second-stage variables are all of the variables at the time t = 1,...,T,
and these variables are dependent of which scenario w € 2 that actually occurs.
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We get the two-stage variables:

z¥, 1eN, t=1,....,T, weqQ,
! t=1,....,7, r=2,...,T, weN,

Swit?

z', t=1,...,T, we

Here z7 _, is the variable for the rth item of the stochastic part at time ¢ given
the scenario w € Q.

Now, given a scenario w € (2, an optimal first stage replacement decision at
time ¢ = 0 can be computed by solving (5.8). Hence, the complete two-stage
model becomes (here R =T, and zp = 1 has been eliminated)

minimize cs:cio-i-é CiTi0

ieN
T T
+ Z p(w) Z (CS Z(‘”:wt — Ty, 1) Z Ty + dzi”)
wed t=1 r=2 iEN
T
subject to xio—i—zu’c}‘;zl, ieN, weqQ,
t=1
T;+£—1
Yo oap>1, £=1,...,T-T; ieN, weq,
t=¢

ol <z, t=1,....T, ieN, weqQ,

t=0
T
T T
doal  <TE, weq,
t=1
2 2
Ty, 12 Tso, w € (,
t=1,...,T-1, r=1,...,T,
m;w,t+1>x;wt7 {weQ
7
:L,r+1< t=1, aTa r=1, JT_17
Swt = V8u,t—1 U)GQ
)
zl o=1, wen

, r=1,....,T, weQ,

{t:O,...,T, i€ N,

2 w T w
Ti0, L0, Tits T 2z €40,1
s ity ¢ {0.1} r=1,...,T, we.

Swit?
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By allowing only the first lifetime of the stochastic part to vary, we get a
computationally more tractable model. The scenarios w € 2 then have the form
w = T¥, where T is the lifetime of the specimen of the stochastic part that
is currently in the engine. Further, assume that the lifetime of the specimens
that will be put into the engine in the future is fixed to Ts. (Typically T} is set
to the expected value of the lifetime of a new specimen of the stochastic part.)
Now, given a scenario w € 2 the problem we want to solve is given by (5.7).
The first-stage variables are then %, and xz;9, ¢ € N'. We obtain the stochastic
two-stage problem to

minimize CsTs0 + Z Ci%i0 (5.9)
ieN
T Ty
+ Z p(w) Z (Z cizy + cszhy + dzf”) + cha":f,fjg
wER t=1 \ieN t=1
T;
subject to xi0+2x§‘,§ >1, ieN, weqQ,
t=1
nE (=1,....T-T; €N,
> oay>1,
Py w € (,

T, Ty
§:so+2x;‘;+25:g; >1, weqQ,
t=1 t=1

To£—1 Ty
Yooah 4> as>1, £=1,...,T" weQ
t=¢ t=¢

Tt (=Tv+1,....,T —T,,
E z% >1
st=" w e N
t=4 ’

t—1 =~
B N t=1,...,T,
$$S$SO+Z$’;Uk7 {
Pt w € (,

P <2r, t=1,...,T% weQ,

<z’ t=1,....,T, we,

5 N t=0,....,T, ieN
wi07$30’x%’x;%’xz’ziv E {0’1}’ {'r = 177 -.-77T77 w E (2’.

The assumption that only the first lifetime of the stochastic part is allowed
to vary is motivated by the fact that the lifetime characteristics of the stochastic
part in the future is more uncertain since in the future the stochastic part may be
produced by other methods and perhaps with different materials, which means
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that the characteristics of the lifetimes change.

In Chapter 7 we will investigate how the number of scenarios in the model
(5.9) affects the solution. We will compare the solution with the dynamic pro-
gramming solution, which gives a lower bound on the expected total cost.

5.8 Dynamic programming versus stochastic two-
stage models

The stochastic dynamic programming model finds a replacement decision xy at
time ¢ = 0 that minimizes

Ey, |90(80, z0) + min By [91(s1,21) +--- + min By lgr(sT,27)] -]

The solution is based on the fact that between the times t = 0 and ¢t = 1 some
of the stochastic parts can fail according to the stochastic variable yo. When
the outcome of yq is known the replacement decision x; at time ¢t = 1 is made,
and so on.

Given the discretization of time, the stochastic dynamic programming model
gives the best possible solution in the sense that the expected total cost is
minimized. The drawback is that dynamic programming only can be used when
the number of parts is small, so in order to handle systems with a large number
of parts we must do something else. Hence we developed a linear two-stage
model. This two-stage model finds a replacement decision xy that minimizes

T

E, chg —i—minimumg cht ,
Z1,--2TT =1

where ¢ is the cost vector. The solution is based on the fact that after time
t = 0 the actual outcome w € 2 is known, that is, the lifetimes of all of the
parts given in w € Q are known.

Therefore, the two-stage model assumes more about the future than the
dynamic programming model, and hence the expected total cost when the two-
stage model is used will always be at least as large as when the dynamic pro-
gramming model is used. However, with the two-stage model we are at least
able to solve aircraft maintenance problems (where the systems considered are
large), which is not the case with the dynamic programming model.

The scenarios that are used in the dynamic programming model differ from
the scenarios that are used in the two-stage model. If we use the same kind of
scenarios that are used in the dynamic programming model, it is still possible
to formulate a multi-stage stochastic model; such a model has the same optimal
solutions as the dynamic programming model. Unfortunately, the scenarios
depend on the replacement actions, which means that the multi-stage model
becomes non-linear and hence hard to solve.

It is still an open question how the stochastic replacement problem should be
modelled. The only practically useful model we have presented is the two-stage
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model, but further investigation should be made in order to properly model the
stochastic replacement problem. It would be theoretically satisfactory to find
a model that approximates the dynamic programming model (for example, by
only considering a few of the total number of scenarios), but gives the same
solution as the dynamic programming model when some parameter value (for
example, the number of scenarios) becomes sufficiently large. Further, the model
should be easy to solve when the parameter value (the number of scenarios) is
small.



Chapter 6

On the facial structure of
the replacement polytope

6.1 Introduction

In this chapter we study the structure of the set of feasible solutions to Model
I presented in Section 4.3, that is, the set

T;+£—1

S:{(x,z)EIBNTx]BT Z zg>1, £=1,....T-T;, i€N;
t=t

T < 2, ’iEN, t=1,...,T}.

Throughout the whole chapter this set will be denoted by S. The convex hull
of S will be called the replacement polytope.

The main goal of studying the facial structure is to be able to completely
describe the convex hull of S by a finite set of linear inequalities. As will
be discussed below it is then possible to solve the problem by using linear
programming. Our ambition here is to take the first steps towards such a
complete linear description of the replacement polytope.

In Section 6.2 we present some basic results on polyhedral combinatorics.
Then in Section 6.3 we compute the dimension of the replacement polytope
and investigate whether the inequalities in the original formulation in Model
I define facets of the replacement polytope or not. It turns out that several
of these inequalities do define facets. However, with an example we show that
these “basic” inequalities do not completely define the convex hull. In Section
6.4 we derive a new facet for the example problem by using Chvétal-Gomory
rounding. The chapter concludes in Section 6.5 with suggestions on further
studies on the facial structure of the replacement polytope.

7
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6.2 Polyhedral combinatorics

In this section we present some basic results on polyhedral combinatorics that
will be used in the subsequent sections. General text books on polyhedral
combinatorics are [92], [60], [98], [114], [115], [134], and [34].

First we will define dimension of a general set in R”. In order to do so
we introduce the notation of affine set, affine combination, affine hull, affinely
dependent set, and affinely independent set.

Definition 6.1 (affine sets and dimension) Let X be a subset of R™.

(a) (affine set) The set X is an affine set if Az + py € X whenever z,y € X
and A\, p € R are such that A+ p = 1.

(b) (affine combination) A point € R™ is an affine combination of the points
zl,...,z™ € R" if there exist scalars A\1,...,A\pm With Ay +---+ A\ = 1
such that x = Mzt + -+ + A z™.

(c) (affine hull) The affine hull of X, denoted by aff X, is the set of all (finite)
affine combinations of points of X .

(d) (affinely dependent set) The set X is affinely dependent if there exists an
x € X such that z € aff (4 \ {z}).

(d) (affinely independent set) If the set X is not affinely dependent it is affinely
independent.

(e) (dimension) The dimension of the set X, denoted by dim X, is one less
than the maximum cardinality of an affinely independent set K C X. H

A polyhedron in R” is a set of the form
P={zeR"| Az <b}, (6.1)

where A € R™*™ and b € R™. The equality subsystem (A=, b~) of P is defined
by the rows of the system Az < b that are fulfilled with equality for all z € P.
The matrix A= will be referred to as the matrix corresponding to the equality
subsystem of P.

Proposition 6.2 (dimension of a polyhedron) If P C R" is a polyhedron, then
dim (P) + rank (A=,b7) =n.

Proof. See [92, p. 87]. [ |
If dim P = n we say that P is full-dimensional.

We are mainly interested in the convex hull of the set S of feasible solu-
tions to the replacement problem. We define the notion of convex hull through
the notation of convex combination, and then we define the geometrical object
polytope.
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Definition 6.3 (convex sets and polytopes) Let X be a subset of R™.

(a) (convex set) The set X is a convex set if Az + puy € X whenever z,y € X
and A\, u > 0 are such that A+ p = 1.

(b) (convex combination) A point x € R" is a convex combination of the points
zb, ..., 2™ € R™ if there exist scalars A1, ..., Am > 0 with A+ -4+ A, = 1
such that x = Azl + -+ - + Apz™.

(c¢) (convex hull) The convex hull of the set X, denoted by conv X, is the set
of all (finite) convex combinations of points in X .

(d) (polytope) A polytope is the convex hull of a finite set of points in R™. W

In view of the definition of a polytope it is natural to call conv S the replace-
ment polytope (or the polytope of the replacement problem).
Every polytope can be characterized as the convex hull of its extreme points.

Definition 6.4 (extreme point) A point z in a convex set X C R” is an extreme
point of X if whenever x = Az + (1 — \)z?, where z',2% € X and X € (0,1),

then z' = 22 = x. [ |

Proposition 6.5 Let V' be a finite set in R and let X = convV. Then each
extreme point of X liesin V.

Proof. See [134, p. 81]. [

Proposition 6.6 Every polytope is equal to the convex hull of its extreme
points.

Proof. See [34, p. 206]. [ |

Another useful result is that every polytope is a polyhedron.
Proposition 6.7 A set is a polytope if and only if it is a bounded polyhedron.

Proof. See [134, p. 114] |

There is an obvious relation between the dimension of a set X C R™ and
that of conv X.

Proposition 6.8 Let X C R", then dim X = dim (conv X). |

If all of the extreme points of a polyhedron are integral the polyhedron is
called integral. We turn to a sufficient condition for a polyhedron to be integral.

Definition 6.9 (totally unimodular matrix) A matrix is called totally unimod-
ular, in short TU, if all of its square submatrices have determinant 0, 1, or —1.
| |
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Proposition 6.10 Let A € R™*"™ be a totally unimodular matrix and let b €

R™ be integral. Then the polyhedron defined by Ax < b is integral.

Proof. See [34, p. 221]. [ |

We will use the following characterization of total unimodularity.

Proposition 6.11 (characterization of the TU property) Let A € R™*"™. The
following statements are equivalent:

(i) Ais TU;

(ii) For every J C {1,...,n} there exists a partition Jy, Jo of J such that

Zaij—ZaU S]., i=1,...,m.

jE€J1 JEJ2
Proof. See [92, p. 543]. [ |

We introduce the important concept of face and facet of a polyhedron.
Definition 6.12 (faces and facets of a polyhedron) Let P be given by (6.1).

(a) (valid inequality) The inequality mx < mq is called a valid inequality for P
if it is satisfied by all points in P.

(b) (face) If mx < g is a valid inequality for P, and
F={zeP|nzx=mg},

then F' is called a face of P, and we say that mx < my defines F. A face is
said to be proper if F # () and F # P.

(¢) (facet) A face F of P is called a facet of P if dim F = dim P — 1. [

Proposition 6.13 If F is a facet of P, then there exists some inequality defin-
ing F.

Proof. See [92, p. 89]. [ |

We now arrive at the crucial result that every full-dimensional polyhedron
can be uniquely represented by its facets.

Proposition 6.14 A full-dimensional polyhedron P has a unique (to within
scalar multiplication) minimal representation by a finite set of linear inequalities.
In particular, for each facet F; of P there is an inequality a'z < b; (unique
within scalar multiplication) representing F; and P = {z € R" | a’z < b;, i =
1,...,k}.
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Proof. See [92, p. 91]. |

Proposition 6.7 implies that if X C R" is a finite set, then the polytope
conv X is a polyhedron. Hence, if conv X is full-dimensional, from Proposition
6.14 we see that if we can find all of the facet-defining inequalities of conv X,
then we have a linear description of it. Therefore, it is of interest to find facets
of a given polytope. Sometimes the following characterization, which is based
on the uniqueness in Proposition 6.14, is useful when proving that a certain
valid inequality is a facet.

Proposition 6.15 Let P be a full-dimensional polyhedron and let F = {z €
P | 7z = mo } be a proper face of P. Then the following two statements are
equivalent:

(i) F is a facet of P;
(il) If \x = Ao for all x € F, then (A, \o) = a(w, 7o) holds for some a € R.

Proof. See [92, pp. 91-92] [ |

We close this section by remarking that if we can find a polyhedral descrip-
tion of conv S, then the replacement problem can be solved by using standard
linear programming algorithms. Indeed, if the Simplex method is used to find
an optimal solution to the linear program min{c'z | € conv X} an optimal
extreme point of conv X will be found. From Proposition 6.5 it follows that
all of the extreme points of conv X belong to X, so in fact we have found an
optimal solution to min{c'z | z € X}.

6.3 The dimension and the basic facets

In this section we derive the dimension of the replacement polytope conv .S and
investigate the inequalities from the definition of S. Under natural assump-
tions we show that the replacement polytope is full-dimensional. Further, we
show that all inequalities that are necessary in the original formulation of the
replacement problem are facets of the replacement polytope.

Lemma 6.16 The polyhedron defined by

T;+£—1
> owy>1, L=1,...,T-T; i€N, (6.2a)

t=¢
—zy>-1, ieN, t=1,...,T (6.2b)

is integral.

Proof. We derive the result by showing that the constraint matrix is totally
unimodular.
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First we observe that all of the elements in the constraint matrix belong to
{-1,0,1}. Each row of the upper part of the constraint matrix defined by (6.2a)
consists of ones that appear consecutively, that is, if a;; = a;x =1 and k > j+1,
then a;p = 1 for all £ with j < £ < k (see Example 4.5). Further, each row of
the lower part of the constraint matrix defined by (6.2b) consists of a single —1.
These properties of the complete constraint matrix are closed under column
deletions. Therefore it is enough to show that the assumptions in Proposition
6.11 are satisfied for the complete constraint matrix. Let J = {1,...,NT},
J1={j€J|jodd},and Jo = J\ Ji. Consider the constraint of (6.2a) defined
by

T+ T2+ -+ 21y, > 1.

Let a € RYT be the entries in the constraint matrix corresponding to this
constraint, that is, a;j =1for j =1,...,7y and a;j =0 for j =11 +1,...,NT.
If T is odd we get that

E aj—E aj=a1—az+az—as+---+ap =1,
J€S JET>

and if 7} is even we get that

E aJ'_E aj=a1—ax+a3—as+---+ap 1 —ar, =0.
VIO jEJ2

Hence

daj—> e <1 (6.3)

VISP JEJ2

Similarly, (6.3) holds for all the rows of the constraint matrix corresponding
to the constraints defined by (6.2a). Since the rows of the constraint matrix
corresponding to (6.2b) only consists of a single —1, these rows obviously satisfy
(6.3). Therefore we have shown that the assumptions in Proposition 6.11 are
satisfied and it follows that the constraint matrix is TU.

Now, since the constraint matrix is TU and the right-hand side consists of
integers it follows from Proposition 6.10 that the polyhedron it defines is inte-
gral. We are done. [ ]

Proposition 6.17 (dimension of the replacement polytope) If T; > 2 for all i €
N, then the dimension of conv S is NT + T, that is, conv S is full-dimensional.

Proof. First note that since S C RVT+T it holds that

dim (convS) < NT + T. (6.4)
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Then consider the set @) consisting of all z € RV such that

Y zu>1, £=1,...,T-T, ‘€N,

Ty <1, ’iEN, t=1,...,T.

Ifzy=1forallie N andt=1,...,T, it holds that z € @, and since T; > 2
for all i € N we have that

T;+£—1
Z Ty > 1, EZ].,...,T—TZ', iEeN.
t=¢

Further, given i € A and ¢t € {1,...,T}, since T; > 2 for all i € N we can
always find a vector z € @ such that z;; = 0. Hence the rank of the matrix
corresponding to the equality subsystem of @ is zero and Proposition 6.2 gives
that

dim @Q = NT.

From Lemma 6.16 we have that @ is integral, and Proposition 6.6 gives
that @ equals the convex hull of its extreme points. Hence from Proposition
6.8 it follows that there exists NT + 1 affinely independent integral vectors
y',...,yNT+! € . But this implies that the vectors

1 NT+1
1_ (Y NT+1 _ (Y
2= () = (77,

where 1 € R” is a vector of 1’s (corresponding to the z-variables), are affinely
independent vectors in S. Now, since T; > 2, for K = 1,...,T there exist vectors
in S of the form

NT+1+k
qNT+1+k _ (Z/ T )
- )

1 —ey

where e = (0,...,0,1,0,...,0)T € RT is the kth unit vector. Further it holds
that ¢VT 1tk & aff {¢,... ¢V TFF}, for k = 1,...,T, s0 ¢*,...,¢"TH+T are
affinely independent. Hence, dim (conv S) > NT +T holds. Together with (6.4)
this implies that dim (convS) = NT + T. [

Remark 6.18 The replacement polytope is not full-dimensional if T; < 1 for
some ¢ € M. For example, if T} = 1, then it holds that z1; = 1 for all (z,2) €
conv S. This means that the rank of the matrix corresponding to the equality
subsystem of conv S is greater than or equal to one. Hence, from Proposition
6.2 it follows that dim (conv S) < NT'+T —1. However, the case that T; = 1 for
some 4 € N is not very interesting in practice since it means that part ¢ must
be replaced every point of time. [ ]
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Proposition 6.19 If T; > 2 for all i € N, then for each i € N and ¢ €
{1,...,T — T;} the inequality

defines a facet of conv S.

Proof. Since T; > 2 it follows from Proposition 6.17 that conv S is full-
dimensional. Hence we can use the uniqueness characterization in Proposition
6.15 to show the assertion. Frequently the fact that T; > 2 for all i € A/ will be
used implicitly to motivate the existence of the points constructed.

We show that the inequality (corresponding to ¢ =£=1)

T
Y my>1 (6.5)
t=1

defines a facet of conv.S. The corresponding proofs for the other inequalities in
the proposition are analogous. Let

F = { (x,2) € conv S

T
Zmlt:]-}a

t=1
where = (211,..., %17, -»TN1,---,ZNT)L and z = (21,...,27)T. Assume

that the equality Az + puz = p for some AT € RN, 4T € R, and p € R, holds
for all (z,2) € F. This equality can be component-wise expressed as

T T
Z Z AitTit + Zﬂtzt =p. (6.6)
=1

iEN t=1

Construct a point in F' according to

Tr11 = ].; T = 0, 2 S t S Tl; T = ]., T1 +1 S t S T, (67&)
zp=1, ieN\{1}, t=1,...,T, (6.7b)
Zt:]., t:].,,T (67(3)

Then construct another point in F' according to

zn=1 x;=0, 2<t<T; x=1, T1+1<t<T, )
To1=0; zp=1, t=2,...,T, )
sp=1, ieN\{L,2}, t=1,...,T, (6.8¢)
w=1, t=1,...,T. (6.84)
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Now, if the points given by (6.7) and (6.8) are inserted in (6.6) we get that

T T
A1+ Z A1 + Z Z Ait + e | = p, (6.9)

t=T1+1 t=1 \ieN\{1}
T T T
A1+ Z Aie + Z Aot + Z Z Ait + e | = p. (6.10)
=T +1 t=2 t=1 \ieAn{1,2}

By subtracting (6.10) from (6.9) it follows that Ao; = 0. Similarly, for each
ke N\ {1} and £ € {1,...,T} the point in F defined by

z11=1; 214 =0, 2<t<Ty; =z =1 Ti1+1<t<T,

e =0; zpe=1, te{l,...,T}\{{},

=1, ieN\{Lk}, t=1,...,T,

zz=1, t=1,...,T,

together with the point given by (6.7) can be utilized to show that Az, = 0.
Hence we have that

Aie=0, ieN\{1}, t=1,...,T. (6.11)
In the same fashion the points in F' given by

211 =0; x12=1; 214 =0, 3<t<Ty; x3;,=1, T1 +1<t<T,
zp=1 ieN\{l}, t=1,...,T,
=1 t=1,...,T,

and

r11=0; zi2=1 2,=0, 3<t<T,
Ty =0; =z =1, tE{Tl‘Fl;---:T}\{g}’
zi=1, ieN\{1}, t=1,...,T,
=1, t=1,...,T,

where £ € {T1 + 1,...,T}, imply that Ay = 0. Therefore, we have that
A =0, t=T1+1,...,T. (612)
Further, the points in F' given by

zn=1 3, =0, 2<t<T; we=1 T1+1<t<T,
zin=1; xpp=0; zp=1, ’LGN\{l}, t=3,...,7T,
thl, t:].,...,T,
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and

=1 z4=0, 2<t<T; zu=1 T1+1<t<T,
.’L'z'1=].; .’L'z'2=0; Z‘it:l, ZEN\{l}, t=3,...,T,
z71=1 22=0 z=1, t=3,...,T,

yield that p = 0. Similarly, for £ € {1,...,T} \ {2} the points

z11=0; m2=1; =x;=0, 3<t<Th,

210=0; z1p=1, te{T1+1,...,T}\ {¢},

zie=0; zpx=1, e N\{1}, te{l,...,T}\{{},
=1, t=1,...,T,

and

z11=0; x2=1 =x,;,=0, 3<¢t<Th,

210=0; zy4=1, te{T1+1,...,T}\{¢},

zi=0; zp=1, e N\{1}, te{1,....,T}\ {4},
2e=0; z=1, te{l,...,T}\{{},

yield that p, = 0. Hence, it follows that
w =0, t=1,...,T. (6.13)
Finally, for £ € {1,...,T1} the point in F given by

z1e=1; =0, tE{l,,Tl}\{é}, 1 =1, T1+1<t<T,
zy=1, ieN\{1}, t=1,...,T,
thl, t:].,...,T.

together with (6.11), (6.12) and (6.13) give that A;¢ = p, so
)\lt:pa t:].,...,Tl.

Hence we have shown that the equality Az + puz = p has the form

T
Py 1 =p,
t=1

and it follows from Proposition 6.15 (with a = p) that (6.5) defines a facet of
conv S. [ |

Proposition 6.20 If T; > 2 for all i € N, then foreachi € N andt=1,...,T
the inequality

Tig < 2

defines a facet of conv S.
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Proof. We show that
<z (6.14)

defines a facet of conv.S. The corresponding proofs for the other inequalities in
the proposition are analogous. Let

F={(z,2) €convS |z1; =2 }.

We use the same notation and method as in the proof of Proposition 6.19. As
in the proof of this result, we assume that Az + uz = p for all (z,z2) € F.
The points in F' given by

=1 4deN, t=1,...,T, (6.152)
w=1 t=1,...,T, (6.15b)

and

re=0; zu=1 te{l,...,T}\{¢},
zy=1, ieN\{1}, t=1,...,T,
th]., t=].,...,T’7

where £ € {2,...,T}, imply that A\;, = 0. Similarly, for £ € A\ {1} and
£e{1,...,T} the point

The=0; me=1, te{l,....T}\{¢},
cu=1 ieN\{k}, t=1,...,T,
Zt:]., t:].,...,T,

together with the point given by (6.15) yield that Age = 0. Hence, we have
shown that

)\115 = 0, t= 2, . .,T, (6163,)
Xie =0, ieN\{1}, t=1,...,T. (6.16b)

Further, the points in F' given by (6.15) and

.Z’ie:(]; witzla 7:6./\/, tE{l,,T}\{E},
20=0; z=1, tG{l,...,T}\{E},

where £ € {2,...,T}, together with (6.16) give that up = 0, so
=0, t=2,...,T. (6.17)
Finally, the points in F' given by (6.15) and

i1 =0; x5 =1, iEN, t=2,...,T,
21:0; Zt:]., t:2,...,T,
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imply that A;; = —p1, which together with (6.16) and (6.17) yield that the
equation Az + pz = p has the form

Ol(.fll‘ll — Zl) = p.

But since 11 = 21 for all (z,2) € F it follows that p = 0. Hence Proposition
6.15 gives that (6.14) defines a facet of conv S. [ |

Proposition 6.21 If T; > 2 for all i € N, then for each t = 1,...,T the
inequality

71 <1
defines a facet of conv S.
Proof. We show that
z1 <1 (6.18)

defines a facet of conv.S. The corresponding proofs for the other inequalities in
the proposition are analogous. Let

F={(z,z) €convS |z =1}

We use the same notation and method as in the proof of Proposition 6.19.
The points in F' given by (6.15) and

e =0; zpe=1, te{l,....,T}\{¢},
ziw=1 ieN\{k}, t=1,...,T,
Zt:]., t:].,...,T,

where k € N and £ =1,...,T, imply that Ay, = 0. Therefore, it follows that
\e=0, ieN, t=1,...,T. (6.19)
Further, the points in F' given by (6.15) and

iL','[ZO; -fUz't:]-, i€N7 te{l,,T}\{E},
20=0; z=1, te{l,...,T}\{{},

where £ € {2,...,T}, together with (6.19) yield that u, = 0, so
w=0, t=2,...,T. (6.20)

Now, from (6.19) and (6.20) it follows that the equality Az + pz = p has the
form

H1z1 = p,

but since z; = 1 for all (z,z) € F we have that yu; = p. Therefore, it follows
from Proposition 6.15 that (6.18) defines a facet of conv S. [ |
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Proposition 6.22 If T}, > 3 for some k € N and T; > 2 for i € N\ {k}, then
for eacht =1,...,T the inequality

Tpe > 0
defines a facet of conv S.
Proof. We consider the case where k = 1 and show that
£11 >0 (6.21)

defines a facet of conv.S. The corresponding proofs for the other inequalities in
the proposition are analogous. Let
F={(x,z) €econvS|z11 =0}. (6.22)

We show that (6.21) defines a facet by constructing NT +T affinely independent
vectors in F'.
Consider the set, denoted by Q, consisting of all z € RVT such that

z11 =0, (6.23a)
T;+£—1
Yo owu>1, £=1,....,T-Ti, ‘€N, (6.23b)
=1

<1, ieN, t=1,...,T. (6.23c)

Since Ty > 3 and T; > 2 for all ¢ € N'\ {1} the same arguments as in the proof of
Proposition 6.17 show that the rank of the matrix corresponding to the equality
subsystem of @) is one. Hence dim () = NT — 1. Then, in the same way as in
the proof of Proposition 6.17, Lemma 6.16 can be used in order to guarantee
the existence of NT + T affinely independent vectors in F. Hence, it follows
that dim F' = NT + T — 1, and we are done. [ |

Remark 6.23 The inequalities in Proposition 6.22 do not define facets if T}, <
2. For example, if T} = 2, then x1; = 0 implies that 212 = 1 which means that
the rank of the matrix corresponding to the equality system of (6.23) is greater
than or equal to 2, and it follows that dim FF < NT + N — 2, where F' is defined
as in (6.22), which means that F is not a facet of conv S. |

By noting that z;; < 1fori € Nandt=1,...,T,and 2z, > 0fort=1,...,T
are not necessary in order to describe the set S (since z;; < 2; holds for all i € N
and t =1,...,T) we have that S equals the set

T;+4—1
Y wy>1, L=1,...,T-Ti i€N, (6.24a)
t=¢
Tit < 2, iEN, t=1,...,T, (624b)
zy >0, 1N, t=1,...,T, (6.24c¢)
z <1, t=1,...,T, (6.24d)
Tit, 2t € 7, iEN, t=1,...,T. (6248)
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From the Propositions 6.19-6.22 follows that all of the inequalities necessary in
the description of S define facets of conv S. A natural question arises: Is conv .S
completely described by the continuous relaxation of (6.24)7 Unfortunately,
this is not the case, which is shown by the following example.

Example 6.24 (continuous relaxation) Consider a system with N = 2, T} = 3,
Ty =4, and T = 5. Then the problem to

minimize %11 + T12 + 2213 + T14 + 21 + 100222 + 100223 + T24
+ 1021 + 1029 + 23 + 1024
subject to  (6.24),

has the optimal solution

(%11, 12,213, 714) = (0,0,1,0), (6.25a)
(51721,5522;3723,5524) = (1,0,0;0), (6-25b)
(21722,23,2:4) = (170a170)7 (625C)

with objective function value 14. However, if we relax the integrality require-
ments, we get the optimal solution

(w11, 12,713, 214) = (0.5,0,0.5,0.5), (6.26a)
(%21, T22,T23, T24) = (0.5,0,0,0.5), (6.26b)
(21, 22,23,24) = (0.5,0,0.5,0.5), (6.26¢)

with objective function value 13.5. Hence the convex hull of feasible solutions
to (6.24) is not completely defined by the inequalities in (6.24). [ |

6.4 A new class of facets: An example

Example 6.24 shows that the inequalities in (6.24) are not sufficient to describe
conv S. However, according to the Propositions 6.19-6.22 all of the inequali-
ties in (6.24) define facets of conv S. Since by Proposition 6.17 conv S is full-
dimensional (under the reasonable assumption that T; > 2 for all 4 € N) the
minimal description of conv S is unique. Therefore, all of the inequalities in
(6.24) are necessary in the description of conv S.

To completely describe conv .S we need however also facets other than those
in (6.24). In this section we study the replacement polytope that arises in
Example 6.24, that is, the convex hull of the set of all z € {0,1}2>** and z €
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{0,1}* such that

ZT11+T12+T13 >1, (6.27a)
Z12+213+%14 >1, (6.27b)
To1+To2+Ta3+T24 > 1, (6.27¢)

T11 < 2, (6.27d)
Z12 < 29, (6.27¢)

13 <z, (6.27f)

T14 < 24, (6.27g)

Z21 <z, (6.27h)

T2 < 23, (6.271)

o3 < 23, (6.27j)

Tog < 24. (6.27k)

We denote this set by T'.
By using Chvétal-Gomory rounding (see [92, p. 210]) we construct a new
valid inequality:

Proposition 6.25 The inequality
21+ X112+ X13 + Too +Xo3 + 24 > 2 (6.28)
is a valid inequality for T'.

Proof. According to (6.27d), (6.27g), (6.27h), and (6.27k) it follows from
(6.27a), (6.27b), and (6.27c) that

21+ Z12 + 13 > 1, (6.29a)
Tio+T13+24 > 1, (6.29b)
21+ Too + T3+ 24 2> 1, (6.29(})

respectively, are valid for 7. Multiplying each of the inequalities (6.29) by 1/2
and summing them result in the valid inequality

1 1 3
21+ 12 + 213 + 51’22 + 51’23 + 24 > 5

Now, by rounding the coefficients in the left-hand side of this inequality to the
nearest higher integer we get the valid inequality

3
21 + 212 + 13 + 22 + Tag + 24 > >

and by observing that the left-hand side of this inequality is integer for all points
in T we get that the inequality

21+ 12 + T13 + T2 + Taz + 24 > 2
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is valid for T'. ]

We see that the inequality (6.28) is not satisfied by the optimal solution
(6.26) to the continuous relaxation of the replacement problem in Example 6.24.
In fact, if we add the inequality (6.28) to the continuous relaxation in Example
6.24 we get the optimal solution

(z11, 212,213, 214) = (0,0,1,0),
(T21, %22, T23,224) = (1,0,0,0),
(zla 223 %3, 24) = (17 0: ]-a 0)

This is the solution in (6.25), that is, it is an optimal solution to the original
problem! The valid inequality (6.28) in fact defines a facet of convT":

Proposition 6.26 The valid inequality (6.28) defines a facet of conv T'.

Proof. Since T; > 2 for i = 1,2, we have that convT is full-dimensional
(Proposition 6.17). Hence, as in the proof of Proposition 6.19 we can use the
uniqueness characterization of the facet description (Proposition 6.15) to show
the assertion.

Let

F={(z,z) €convT | z1 + 12 + T13 + Tao + T2z + 24 = 2 },

2t = (zi1,...,74) for i = 1,2, and 2 = (21,...,24). With the same notation
as in the proof of Proposition 6.19, assume that Az + uz = p for all (z,2) € F.
The points in F' given by

(z';2%2) = (1,1,0,0; 1,0,0,0; 1,1,0,0),

(z';2%2) = (0,1,0,0; 1,0,0,0; 1,1,0,0),
imply that A\;; = 0. Similarly, it follows that A\14 = 0. Further, the points in F'
given by

(z';2%2) = (1,0,0,1;1,0,0,1; 1,0,0,1),

(z';2%2) = (1,0,0,1;0,0,0,1; 1,0,0,1),
imply that A\s; = 0, and similarly A24 = 0. The points in F' given by

(z';2%2) = (1,0,0,1; 1,0,0,1; 1,1,0,1),

(z';2%2) = (1,0,0,1;1,0,0,1; 1,0,0,1),
show that pus = 0, and in the same fashion us = 0. We continue with the points
in F' given by

(wl;wz;z) = (07 1707 0; 07 1707 0; 07 17 170)7

(¢';2%2) = (0,0,1,050,1,0,0; 0,1,1,0),
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which imply that Ao = A13. Similarly, it can be shown that Azs = A23. The
points in F' given by

(z';2%2) = (0,1,0,0; 1,0,0,0; 1,1,1,0),
(z*;2%2) = (0,1,0,0; 0,0,0,1; 0,1,1,1),

together with Ay; = Aoq4 = 0 give that pu; = p4, and since
(z';2%2) = (1,0,0,1; 1,0,0,0; 1,0,0,1)

belongs to F' and A11 = A14 = A21 = 0 we have that pu; + pa = p, so

= pa = g_ (6.30)

The point
(z';2%;2) = (0,1,0,0; 1,0,0,0; 1,1,0,0)

belongs to F' and since A2; = po = 0 we get that A2+p1 = p. Hence, from (6.30)
we have that A2 = p/2, and above we showed that Aj2 = A3, so A3 = p/2
must hold. Finally, the point

(z';2%2) = (0,1,0,0; 0,1,0,0; 0,1,0,0)

belongs to F' and since pz = 0 we have that A2 + A2a = p. But M2 = p/2 so
A2z = p/2. Similarly, it follows that Aoz = p/2. Therefore we have shown that
the equality Az + pz = p has the form

p(z1 + T12 + T13 + Taz + Taz + 21) = 2p.

Proposition 6.15 then gives that (6.28) is facet-defining. [

6.5 Conclusions

We have made an introductory study of the facial structure of the replacement
polytope. We showed that the replacement polytope is full-dimensional (if the
lifetimes of the parts are greater than or equal to two) and found that the
necessary inequalities in the original formulation of the replacement problem
are facet-defining. Unfortunately, these are not sufficient to represent the re-
placement polytope, as was shown by an example. By using Chvatal-Gomory
rounding we showed how to find a new class of facets for the example problem.
It is straightforward to generalize this procedure to an arbitrary replacement
problem. However, it is still an open problem to investigate the strength of the
continuous relaxation when the new class of facets is added to the replacement
problem.
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Chapter 7

Illustrative examples

7.1 Introduction

In this chapter we present some illustrative examples with the maintenance
optimization models from the Chapters 4 and 5.

In Section 7.2 we illustrate how the fixed cost in Model I affects the resulting
structure of the optimal solution. If the fixed cost is zero it is never optimal to
replace any of the parts if they have not reached their respective lifetimes. The
optimal solution is then to run the engine until a part reaches its lifetime, then
replace just that part and put the engine into service again. In such a situation
an optimization model is obviously not very useful. However, when the fixed
cost is large it is important to take the opportunity to replace some of the parts
that have not reached their respective lifetimes into account when the engine
is taken to the workshop. It is not at all clear which parts to replace in order
to minimize the total maintenance cost, and hence an optimization model is a
vital tool in order to decide what to replace.

In Section 7.3 we compare the solutions from the two-stage stochastic model
with the solutions from the stochastic dynamic programming model. The stochas-
tic dynamic programming model always performs better than the two-stage
stochastic model, but the two-stage model has the advantage that it can be
used for systems consisting of a large number of parts. The stochastic dynamic
programming model can only be used for systems where the number of parts is
not greater than about 6. Hence, in our aircraft application we can not use the
stochastic dynamic programming model, and this is the reason for developing
the two-stage stochastic model.

The numerical tests are made with small instances (formed by systems hav-
ing 4 parts) of the replacement problem, so we cannot draw any general con-
clusions from them. However, the main purpose is to illustrate some of the
properties of the optimal solutions to the models. All of the numerical tests
are made with the modelling language AMPL [56] together with the linear pro-
gramming solver CPLEX [68].
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7.2 Numerical tests with Model 1

This section presents some numerical tests with Model I from Chapter 4. The
purpose is to illustrate how the fixed cost in the model affects the structure of
the optimal solution.

7.2.1 The test problem

We consider an instance of Model I with

T=60, N =4,
T = ].3, T5 = ].9, T3 = 34, T, = ]_87
c1 =80, co =185, c3 =160, c4=125.

The data has been chosen so that the relations between the lifetimes and the
costs are similar to those for the fan module of the RM12 engine. We will solve
Model I for each of the values 0, 10, and 1000 of the fixed cost d. In the real
maintenance situation d = 10 is the most reasonable value among the three.

7.2.2 Optimal solutions for different fixed costs

First we solve Model I for d = 0. An optimal solution is shown in Figure
7.1. The total number of replacement occasions is 11. Since the fixed cost is
zero there are no advantages with replacing components before their respective
lifetimes are reached.

Figure 7.1: An optimal solution to the replacement problem with d = 0.

We next solve the problem for d = 10. An optimal solution is given in Fig-
ure 7.2. Compared to the case where d = 0 the total number of replacement
occasions has decreased from 11 to 5. It is now beneficial to replace the compo-
nents in larger groups. Also, the parts are replaced often even if their respective
lifetimes are not reached.

Finally we solve the problem for d = 1000. An optimal solution is shown in
Figure 7.3. Since the fixed cost is high compared to the costs of the components
themselves it is very important to utilize the opportunity to replace several
components at the same time. The total number of replacement occasions is 4.
Actually, since 71 = 13 and T = 60 there exists no feasible replacement scheme
for which the total number of replacement occasions is less than 4!
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Figure 7.3: An optimal solution to the replacement problem with d = 1000.

7.2.3 Interpretation of the structure of the optimal solu-
tions

Above we saw that the total number of replacement occasions decreases when
the fixed cost increases; the benefits from replacing the components in groups
are greater when the fixed cost is large. In Figure 7.6 the three optimal solutions
from the previous subsection are illustrated. When the fixed cost increases from
0 to 10 we see that the first three replacement occasions for d = 0 are grouped
into one for d = 10. The fourth replacement occasion for d = 0 is moved to
an earlier point of time, but still it is just part 1 that is replaced. Further, the
replacement occasions 5—8 for d = 0 are grouped into two replacement occasions
for d = 10. The three last replacement occasions for d = 0 are grouped into one
for d = 10. Similarly, when the fixed cost is increased from d = 10 to d = 1000,
the replacement occasions 2—4 for d = 10 are grouped into two replacement
occasions for d = 1000.

7.3 Numerical test with the stochastic two-stage
model and the stochastic dynamic program-
ming model

We numerically compare the use of the two-stage stochastic model (5.9) with the

stochastic dynamic programming model presented in Section 5.4.3. In Section

7.3.1 the test data is given. Then in Section 7.3.2 the test procedure is described,
and finally, the results are presented in Section 7.3.3.



98 CHAPTER 7. ILLUSTRATIVE EXAMPLES

U S L A
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Figure 7.4: Interpretation of the differences between the optimal solutions.

7.3.1 Test data

We consider a system consisting of three deterministic parts and one stochas-
tic part. The time horizon is T' = 60 and the fixed cost is d = 100. The
deterministic parts have the data

Ti=9 T,=13, T3=17,
(G 30, Cy = 125, C3 = 119.

The lifetime of a new stochastic part is represented by the Weibull failure dis-

tribution function
t (67
F(t):l—exp[—(5> ], t >0,

where a = 2 and 6 = 12.4. (The Weibull distribution is very well adapted to the
parts of an aircraft engine; see [124].) The expected lifetime of a new stochastic
part then is 11. The cost of the stochastic part is 80. In the numerical test
often the stochastic part is not new. If the age of the stochastic part is g, then
the failure distribution function becomes

F(t +to) — F(to)
1= Flto)

B(t) = ,  t>0.

In the stochastic two-stage model (5.9) we must create scenarios for the first
lifetime, and fix the rest of the lifetimes for the stochastic part; for details see
Section 5.7. A scenario tree with three possible lifetimes, T}, T2, and T2, for
the first specimen of the stochastic part and the lifetime T for the rest of the
specimens of the stochastic part is shown in Figure 7.5.

The scenarios for the first lifetime will be computed as was described in
Section 5.5.2. The rest of the lifetimes will be fixed to the expected lifetime of
a new stochastic part, that is, to 11.

We represent the real world by 100 scenarios randomly picked from the
failure distribution given by F, by using MATLAB [105]. The scenarios are
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Tsl Ts Ts TS
O O O-------
T? T, T, T,
O O O O-------
TS T, T, T,
O O O------
% % % %
1 2 3 4

Figure 7.5: A scenario tree for the stochastic part.

of the type presented in Definition 5.2, that is, in order to create a scenario
we first randomly pick a lifetime representing the first stochastic part, then we
randomly pick a new lifetime representing the stochastic part that will replace
the first part, and so on.

7.3.2 Description of the test

The test will be made for each of the following models:

e No scenarios: This is one of the models presented in Section 5.3. At each
replacement occasion (which depends on the stochastic part as well as
the deterministic parts) a new basic replacement scheme for the deter-
ministic parts is computed. (Hence the stochastic part is only implicitly
considered.)

e Two-stage model: This is the two-stage model given by (5.9), with 1, 2,
3,4, 5,6, 8, 12, 15, 18, and 20 scenarios, respectively. The scenarios
computed are based on the real lifetime of the stochastic part at the given
maintenance occasion, as was described above.

e Dynamic programming model: This is the stochastic dynamic programming
model presented in Section 5.4.3.

We assume that each component of the system is new at time ¢ = 0 and
for each of the 100 real world scenarios we do the following (with each of the
models given above):

(i) we compute the next replacement occasion by checking which of the deter-
ministic parts that have the least life left, and compare the result with the
life left for the stochastic part given by the real world scenario; if the next
maintenance occasion appears after the time horizon, we stop; otherwise

(ii) we compute required input data for the given model at the given mainte-
nance occasion,;
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(iii) we compute the replacement action with the given optimization model;
(iv) we go back to step (i).

With this procedure we get a cost for each of the real world scenarios for
each of the models. The real world scenarios were picked at random from the
failure distribution for the stochastic part; hence, we can estimate the expected
cost for each of the models by summing up the cost for each of the 100 real
world scenarios and then divide by 100.

7.3.3 Results

The expected costs for each of the given models are presented in Figure 7.6.

Expected cost

No scenarios
2600 +
2550 +
2500 Dynamic programming
T | |

0 10 20  Number of scenarios

Figure 7.6: Test results with the stochastic optimization models.

We see that we always perform better with the two-stage stochastic model
than with the model with no scenarios. However, the differences are not very
large. This can be motivated by the fact that the system considered only consists
of one stochastic part, which means that the total cost is dominated by the
deterministic parts.

Further, we see that the relative benefits from using more than about 10 sce-
narios are small. In order to develop a computationally tractable optimization
model it is important to keep the number of scenarios low, and hopefully future
numerical tests can answer the question of how many scenarios are required in
order to get good solutions in a realistic problem setting with many stochastic
parts.
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The figure also shows that the dynamic programming model always performs
better than the stochastic two-stage model, which is natural according to the
discussion in Section 5.8. In this test we only considered scenarios for the
stochastic part with variations in the first lifetime (see Figure 7.5). We would
probably get better solutions if deeper scenario trees were used. Such a scenario
tree with variations in both the first and the second lifetimes is illustrated in
Figure 7.7.

7—‘31 1 Ts TS
O O------
T; T,
O O-------
T, T
O O ------
T T,
O O------
T, T,
O O------
T T
O O ------
% % % %
1 2 3 4

Figure 7.7: A “deep” scenario tree for the stochastic part.

Finally, we want to stress that the numerical tests presented in this section
should be considered as illustrations only. In the future more numerical tests
are necessary to be able to draw conclusions for a system consisting of more
than just one stochastic part.
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Chapter 8

Literature review

8.1 Introduction

Maintenance is a wide subject. We can speak of the maintenance of roads,
software, the human body, the environment, engines, chemical processes, and
more—and the literature is rich; for general reviews see [12], [103], [116], [32],
[58], [8], [46], [90]. We focus here on maintenance policies for multi-component
systems that might be useful when modelling the maintenance of an aircraft
engine.

Many of the articles in the area of optimization of the maintenance of multi-
component systems deal with systems consisting of identical stochastic compo-
nents. Despite the fact that aircraft engines consist of nonidentical parts, and
that some of the parts are deterministic, these models are of interest since most
models for systems comprising nonidentical parts originate from them. Hence,
we present models both for systems with identical and nonidentical parts.

The literature surveyed has been divided into several classes. Age and block
replacement are two of the most basic maintenance policies, and much of the
maintenance theory originates from them. The pure age and block replacement
models and policies, as well as modifications of these, are presented in the
Sections 8.2 and 8.3.

In some situations it is not possible to detect a failure without inspection.
Policies incorporating inspection are investigated in Section 8.4.

In Section 8.5 condition based maintenance is discussed; condition based
maintenance means that the state of the system is monitored or inspected, and
when a certain threshold value is attained maintenance is performed. Note that
in condition based maintenance the main issue is to compute this threshold
value, while in inspection policies the focus is on deciding when to perform
inspections.

In Section 8.6 we present models for “opportunistic maintenance”, which
we define as maintenance that can be performed at opportunities that arise
randomly independent or dependent of the components of the system.
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A recent theory in the maintenance literature is marginal cost analysis. This
means that the difference in cost between performing maintenance directly and
waiting an additional amount of time is used to make maintenance decisions.
Marginal cost analysis is considered in Section 8.7.

Most of the maintenance models in the literature deal with stochastic times
to failure. Nevertheless, there are situations in which data is deterministic, and
this is the subject of Section 8.8.

In many maintenance models it is assumed that a spare part is always avail-
able when needed, that is, the supply of spares is infinite, and the cost of the
inventory is not taken into account. In reality this is seldom the case, and in
Section 8.9 models with a finite supply of spares are considered.

Sometimes there are several different components that can replace a failed
component; models with choices of spares are described in Section 8.10.

When having several failed systems there is a possibility to replace failed
parts from one system with non-failed parts from other systems. This kind of
maintenance is usually referred to as “cannibalization policies” and is considered
in Section 8.11.

In Section 8.12 we briefly mention some models that we currently think are
not as important as the other models presented, but that can be potentially
useful in future research.

Obviously there exist several different maintenance policies, and when choos-
ing a maintenance policy it is interesting to see which fits best to a certain
situation. This problem is considered in Section 8.13.

The main purpose of maintenance models is of course to use them in real
world problems, and in Section 8.14 different applications are presented.

The chapter concludes in Section 8.15 with a discussion on how the literature
surveyed is related to the maintenance optimization models developed in this
thesis.

8.2 Age replacement

Under an age replacement policy a component is replaced at failure or at a spec-
ified age, whichever occurs first. The basic age replacement policy is described
in [12].

Fox [57] generalizes the age replacement policy by incorporating discounting,
that is, the loss incurred at a replacement decreases with time.

The discounting model presented by Fox [57] is further investigated by Ran
and Rosenlund [106]. They perform a sensitivity analysis, and give some nu-
merical examples.

Age replacement with minimal repair is discussed in [9]. Minimal repair
means that the system is repaired to the condition it had just before it failed
(also called “as bad as old”). Apart from optimal replacement, which min-
imizes the expected cost rate, the authors also investigate the improvement
and deterioration of the system over time. A repairable system is said to im-
prove (deteriorate) with time if the time between successive repairs increases
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(decreases).

Zheng [144] introduces an age tolerance w and an age limit T to form the
interval (T' — w,T). He considers a system which consists of n identical units.
A unit is replaced at failure or when its age exceeds T, whichever occurs first.
When a unit is replaced, all the operating units with their age in the interval
(T — w,T) are also replaced. Optimal values of T' and w are obtained so as to
minimize the mean total replacement cost rate. The method is illustrated by a
numerical example.

It is reasonable to assume that it will be more expensive to operate a system
the older it becomes. Scheaffer [113] extends the age replacement policy with
this assumption, by including in the cost function a term which increases with
the time a unit is in use. A system comprising only one component is considered
and for the case of exponential life distribution a detailed investigation is made.

Sheu [118] considers a system subject to shocks that arrive according to a
non-homogeneous Poisson process. As shocks occur the system has two types
of failures. Type I failures (minor failures) are removed by minimal repair,
whereas type II failures (catastrophic failures) are removed by an unplanned
replacement. The probability of a type II failure depends on the number of
shocks suffered since the last replacement. The author investigates both age
replacement and block replacement (see Section 8.3). A numerical example
that treats a Weibull distributed system is given.

The models investigated so far consider failure times as the only failing
mechanism. However, information obtained using condition monitoring devices
is being used more and more in industries for maintenance scheduling. Kumar
and Westberg [77] consider the problem of incorporating monitored variables
when optimizing an age replacement policy. They use a proportional hazard
model in which it is assumed that the hazard rate of a system consists of two
multiplicative factors: the baseline hazard rate, ho(t), and generally an expo-
nential function containing the effects of the monitored variables. Hence, the
hazard rate of a system can be written as

h(t; z) = ho(t)e”,

where z is a row vector consisting of monitored variables, and 8 a column vector
consisting of the corresponding regression parameters. The authors suggest a
graphical method called “total time in test plotting” to find an optimal age
replacement policy. A numerical example, where one wants to decide the level
of pressure (z) at which a machine should be operated, is given.

Cassady et al. [29] consider an age replacement policy which maximizes the
availability of an equipment. They consider a simple piece of repairable equip-
ment that has a predetermined useful life. The successive lengths of operating
periods as well as repair times are assumed to be Weibull random variables. The
problem of interest is to determine an age replacement policy (7T*) that maxi-
mizes the expected proportion of time that the equipment is operating during
its useful life. A method that finds an approximate value of T* is developed,
and the validity of this approximation is tested through numerical experiments.
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Yang and Nachlas [141] look at the construction and usage of bivariate mod-
els. This kind of models have lifetimes which depend on two quantities, namely
age and usage. Common examples are automobiles and automobile-tires for
which both model year and accumulated mileage are usually included in dis-
cussions of lifetime. The authors consider cases of both stochastic functional
relationships, and simple correlations between the age and usage variables. A
2-dimensional age replacement policy is presented, where the device is replaced
when it fails or when it attains either age T or usage w. The objective is to
maximize the availability.

Sim and Endrenyi [121] consider a device which deteriorates with the time
in service, and is also exposed to Poisson distributed failures independent of the
deterioration. The times to preventive maintenance have an Erlang distribu-
tion and may be, in a limiting case, completely deterministic (then this policy
coincides with age replacement). The objective is to find the optimal value
of the mean time (that is, the mean of the Erlang distribution) to preventive
maintenance such that the availability of the device is maximized.

Reineke et al. [107] consider the problem of determining the appropriate age
replacement policy for a complex system that has high availability requirements.
The system under study consists of five unique and independent functional
subsystems connected in the bridge structure shown in Figure 8.1.

1] 0
o— B R
B 5]

Figure 8.1: Bridge structure from [107].

Each subsystem has two failure modes which are modelled as independent
competing risks. A wear-out mode and a chance failure mode are modelled for
each subsystem. The repair time and cost of a subsystem is dependent on the
failure mode. If the system is still operating at the age replacement time 7', then
the working subsystems are preventively maintained and the failed subsystems
are repaired. The authors derive expressions for finding the optimal 7" such that
the average cost over an infinite time is minimized or the availability maximized.
An analytic methodology is presented for performing a tradeoff analysis between
the expected system cost accumulation rate and the limiting system availability.
The method is illustrated by an example where the wear-out failure modes are
modelled by Weibull distributions, and the chance to failure modes characterized
by exponential distributions.

Usually the optimal replacement rule in an age replacement policy is deter-
mined by minimizing the expected long-run cost per unit time. In this case the
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function to be minimized has the form

A(t)

C(t) = B@) (8.1)

where A, B : Ry — R. Generally it is hard to find the optimal replacement
age, so often special cases are considered (e.g., exponentially distributed life
times). However, Aven and Bergman [7] present a general solution scheme for
the general case. They minimize (8.1) by minimizing the A-function

Or(t) = A(t) — AB(t).

They show that there always exists a A = A* such that ¢ = T+ minimizes (8.1),
and give an iterative method to find it.

8.3 Block replacement

Under a block replacement policy the components of a system are replaced at
failure or at fixed times kT (k = 1,2,...), whichever occurs first. The basic
block replacement policy is described in [12].

The main drawback of the block replacement policy is that at planned re-
placement times practically new items might be replaced. Berg [23] presents a
modified block replacement method where failed items are still replaced after
failure, but items possessing age b € [0,T") or less at scheduled block replacement
points T',2T',3T, ... are not replaced by new items but are instead permitted to
remain in service. The objective is to find b and T such that the expected cost
per unit time per item taken over an infinite time horizon is minimized.

A reasonable assumption is that it costs more to run a unit the older it
becomes, and in [25] the modified block replacement policy from [23] is extended
to cover this assumption.

Archibald and Dekker [5] extend the modified block replacement policy pre-
sented in [23] in two ways. They consider (i) a discrete time framework which
allows the use of any discrete lifetime distribution, and (ii) multi-component
systems. The case when the system consists of identical components is treated
in detail, and an example with a Weibull lifetime distribution is presented. The
authors outline how to extend the model to multi-component systems with non-
identical components.

Another modification of the block replacement policy is presented by Tango
[126]. He suggests the utilization of used items in the following policy:

1. Exchange operating items for new ones at times k7 (k=1,2,...).

2. If items fail in [(k — 1)T, kT — v), they are replaced by new items, but if
they fail in [kT —v, kT), they are replaced by used items, where 0 < v < T

If v = 0 the above policy coincides with the pure block replacement policy.
A comparison with the pure block replacement policy is made for the Erlang
distribution with two stages.
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Abdel-Hameed [1] considers a block replacement model with minimal repair.
This means that, at failure, the device is either restored to its condition prior
to failure (minimal repair) or replaced (unplanned replacement).

Under a periodic maintenance policy a system undergoes repair and pre-
ventive maintenance at fixed times kT (k = 1,2,...). This policy can be seen
as a variation of block replacement. Chan and Shaw [30] consider a periodic
maintenance policy for a system whose failure rate depends on the age and on
the number of preventive maintenance occasions until that age. It is assumed
that the failure times are Weibull distributed. The availability is modelled as a
random variable, and the objective is to find 7" such that the probability of a
specified availability is maximized. A numerical example is given to illustrate
the design criteria.

In many of the existing maintenance models it is assumed that the time to
failure distributions are exponential. This means that the renewal process be-
comes stationary and analytical results can be derived. However, often the times
to failure are not stationary and in this case special methods can be useful. In
[95] a block replacement policy is studied for a multi-unit system with its com-
ponents’ failure pattern modelled as non-stationary stochastic point processes
under economic and availability dependency criteria. A numerical example is
given where the times to failure follow Gamma distributions. By simulation
the optimal time to replacement of the system is derived as a compromise of
availability and cost.

Bahrami-G. et al. [10] consider the problem of finding the optimal block
replacement policy where the objective is to minimize the total down-time per
unit time. The function to be minimized becomes hard to evaluate for the
general case. A common approach is to assume a “nice” failure time distribution
and then solve the problem. Here the authors derive a simplified equation and
then use the Newton-Rhapson algorithm to solve it. Numerical examples with
normal distributed times to failure are presented.

Ait-Kadi and Cléroux [2] introduce a block replacement policy where at
failure the item is either replaced by a new or a used item or remains inactive
until the next planned replacement. The policy is defined in the following way:

1. Preventive replacements by new items are made at times kT, k = 1,2, ...,
independently of the item’s failure history.

2. If a failure occurs in the time interval [(k — 1)T,kT — 1), k = 1,2,...,
0 <41 <T < o0, then the item is replaced by a new one.

3. If a failure occurs in one time interval [kT — 61,kT — d3), k = 1,2,..,
0 <9y <é; <T < oo, then the item is replaced by a used one.

4. If a failure occurs in the time interval [kT — 62,kT'), the item remains
inactive or works less efficiently until the next planned replacement at
time kT.

Each item which has been removed in a planned replacement after attaining
age T and which is still working will be considered as a used item. It is also



8.4. INSPECTION POLICIES 109

assumed that a used item costs less than a new one, and an item cannot be
installed more than twice. The optimal policy (T*,07,03) is the one which
minimizes the average cost per time unit over an infinite time span. The problem
is a nonlinear optimization problem with linear constraints and is solved by
using a generalized reduced gradient algorithm. Numerical results for Gamma
distributed and Weibull distributed times to failure are given.

8.4 Inspection policies

Sometimes failed components can be detected and replaced only by inspection.
There is a cost related to the time a component is not operative. Under an
inspection policy the objective is to find the inspection schedule that minimizes
the expected average cost.

An inspection policy for a system of n units working in parallel and with
identical failure distributions is considered in [4]. It is assumed that the life-
time distributions are known to be exponential, but with unknown expected
lifetimes. The suggested inspection policy is sequentially adaptive in the sense
that the first inspection epoch is determined arbitrarily. At the time of the first
inspection, the parameter of the lifetime distribution is estimated based on the
occurred number of failures. On the basis of that estimate, the next inspection
epoch is determined, and so on. It is assumed that failures can be discovered
only through inspection, and when inspection takes place all units are inspected
and failing units are replaced by new ones. The optimal inspection policy is de-
fined to be the policy which is determined by the time interval that minimizes
the average cost per unit of time between inspections.

The inspection problem also arises in [6]. Assaf and Shanthikumar consider
N machines which are subject to random failures. The times to failure are
independent and have the same exponential distribution. The repair cost is
assumed to have both a constant term reflecting the overhead cost of repair and
a cost of repair per machine. Another cost is the cost incurred due to failing
machines. This cost is the same for all machines and proportional to the elapsed
time between the failure of a machine and its time of repair. The main results
are (1) a necessary and sufficient condition for it to be optimal to never inspect
or repair, and (2) a characterization of the optimal control threshold.

Vaurio [131] considers a preventive maintenance policy with periodic in-
spections. This kind of policy is of interest, for example, in non-monitored
production lines. Inspections are performed at intervals T, and failures are only
detected by inspection. It is assumed that the unit is repaired immediately when
a failure is detected, and that a repair makes the unit as good as new. The unit
is preventively renewed after M inspection intervals, or at failure, whichever
occurs first. The objective is to find T and M such that the total expected cost
rate is minimized. A numerical example is given to illustrate the method.

Sometimes when a system fails it may not be obvious which components are
at fault. Butler and Lieberman [28] investigate different inspection policies for
fault location. It turns out that determining the optimal inspection sequence is
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impractical, so heuristic procedures must be used.

8.5 Condition based maintenance

Maintenance policies such as age and block replacement are examples of sched-
uled maintenance policies. These policies are easy to implement since they have
a clear structure. Nevertheless, often condition based maintenance can be a
better and more cost effective type of maintenance. Under a condition based
maintenance policy a technical state of the system is monitored or inspected,
and when a specific threshold value is reached the system is replaced or preven-
tive maintenance is performed.

Park [99] derives the optimal wear-limit for preventive replacement for an
item with wear-dependent failure rate, by minimizing the long-run total mean
cost rate. The optimal strategy has the same form as the age replacement policy.

In [100] the optimal wear-limit of [99] is extended to regard several risk
factors that are monitored continuously or periodically.

Legat et al. [83] consider condition based maintenance with both infinite and
finite-time horizons. For the case of a finite-time horizon a simple correction
to the infinite-time solution is given that provides a good approximation to the
exact solution.

Abdel-Hameed [1] looks at a device that is subject to deterioration, and
the deterioration level is only monitored periodically at fixed times. Further
he assumes that a failure is detected only by inspection and that the device
can be replaced before or at failure. The decision to replace the device before
failure is detected depends on the deterioration level at the inspection time.
The objective is to find the optimal replacement time that yields the smallest
possible long run average cost per a unit of time.

Ozekici [150] considers systems that consist of stochastically and economi-
cally dependent components. The states of the components are inspected peri-
odically, and the inspector decides which components must be replaced based
on observation. The effect of the dependencies on periodic replacement policies
is discussed, and theorems that characterize optimal replacement policies are
given.

Berenguer et al. [19] consider a system which deteriorates stochastically. The
state of the system is a continuous random variable and can be observed only
by inspection. The problem is modelled by a semi-Markov decision process,
and the objective is to determine at each inspection epoch whether a preven-
tive maintenance is necessary and when the next inspection should be done.
The continuous feature of the model allows a more theoretical analysis than in
the case of discrete models. A numerical method that arises from analytical
properties is proposed and numerical experiments are carried out.

To successfully implement condition based maintenance one must be capable
of detecting incipient failures prior to their occurrence. This problem is con-
sidered by Yang and Lin [142]. They employ the Petri net modelling method
coupled with parameter trend and fault tree analysis to perform early failure
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detection and isolation for preventive maintenance. An example is given that
illustrates the approach.

The principles of condition-based preventive maintenance and when it can
successfully be implemented are discussed by Mann et al. [71]. A comparison
between the age replacement policy and the condition-based policy is made.

A general discussion about how to implement and use condition-based main-
tenance is also made in [130].

8.6 Opportunistic maintenance

Opportunistic maintenance refers to the situation in which preventive mainte-
nance is carried out at opportunities. In the literature sometimes it is assumed
that these opportunities arise independently of the failure process, and some-
times the opportunities are by definition equal to failure epochs of individual
components. In the last case, due to economies of scale (for example, fixed costs
at each maintenance occasion independent of what is replaced), the unpleasant
event of a failing component is at the same time considered as an opportunity
for the preventive maintenance of other components. This situation is typical
for the maintenance of aircraft engines.

Berg [20] considers a machine that consists of two nonidentical stochastically
failing units. He investigates first a policy under which at failure of either of the
two units, the unfailed unit is also replaced if its age exceeds a predetermined
control limit, and then he generalizes this procedure in the way that every unit
is also replaced when it reaches a predetermined critical age. The special case
of Erlang distributed times to failure is investigated in detail.

Ouali et al. [97] consider two opportunistic maintenance strategies for a sys-
tem comprising n nonidentical components. It is assumed that every component
i has its own optimal and fixed age policy T}, that is, component 4 is replaced
upon failure or when its age reaches T}, whichever occurs first. The two strate-
gies are defined as follows:

1. Opportunistic maintenance activities are allowed on a nonfailed compo-
nent j (j # 1) if the difference between the expected preventive time 77
of component j and the failure instant of component 4 is less than the

threshold 6.

2. Same as strategy 1 with the extension that opportunistic activities are
also allowed on a component j when component ¢ is preventively replaced
at T7 and T} — T < 6.

The objective is to find the threshold ¢ such that the total average cost per unit
time over an infinite operating time is minimized. The authors outline how to
use simulation to find optimal strategies.

In [61] a group preventive replacement policy problem is formulated. The
system considered consists of m identical elements working independently un-
der the same conditions. At time to = 0 every element is new; at time T the
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whole system is replaced by a new one. During the time interval [0, 7], if one
element fails it has to be replaced immediately by a new one. If this happens
the repairman can replace any number of working elements that he wants. The
only economic dependence considered is that a fixed cost is incurred whatever
the number of elements replaced. The objective is to find which components
to replace at each time-step to minimize the cost for running the system dur-
ing the given time-period. The authors give both a continuous and a discrete
time formulation, and use the theory of optimal control of jump processes to
obtain a dynamic programming equation. For the discrete time version of the
model, numerical computations of optimal and suboptimal strategies of group
preventive policies are performed.

In [82] the dynamic programming model in [61] is extended to systems con-
sisting of m components with nonidentical independent lifetime distributions
characterized by discrete nondecreasing failure rates. A numerical illustration
with a 4-component system similar to a modular jet engine is given, and a class
of suboptimal strategies is discussed.

Vergin and Scriabin [132] present dynamic programming models for deter-
mining optimal policies for equipment comprising two or three identical compo-
nents with economic dependence. The failure rates of the components increase
with age. Both opportunistic replacement (i.e., it is cheaper to exchange several
parts jointly than separately) and preventive replacement (i.e., there is a cost of
a breakdown) are considered. The authors show that the optimal policy is close
to an (n, N) policy in which a component undergoes preventive replacement if it
has operated for N periods and undergoes opportunistic joint replacement if it
has operated for n periods if either another component fails or another compo-
nent reaches it preventive replacement age. This (n, N) policy is suggested to be
used for systems consisting of more than three components since the dynamical
programming model then would become very complex.

Many maintenance models consider the grouping of maintenance activities
on a long-term basis with an infinite horizon. This makes it very difficult to
incorporate short-term circumstances such as opportunities or a varying use
of components. Wildeman, Dekker, and Smit [137] propose a rolling-horizon
approach that takes a long-term tentative plan as a basis for a subsequent
adaption according to information that becomes available in the short term.
Their approach consists of five phases and is made generally such that it can
be applied to many different preventive maintenance optimization models. In
fact, it is possible to combine, for example, activities modelled according to a
minimal-repair model with activities modelled according to a block replacement
model. The authors develop a dynamic programming algorithm and illustrate
their method with an example.

Savic et al. [110] look at a system that consists of several nonidentical parts,
which is operated until failure of one of its components. When the failed com-
ponent is replaced there is an opportunity to replace other components as well.
Group replacement assumes that when any component is replaced, other com-
ponents belonging to the same group will also be replaced. The problem of the
selection of the optimal opportunity-based maintenance policy can be formu-
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lated as a partition problem. Namely, given a finite set O of components in a
system, is it possible to divide them into n exclusive groups O; € O such that
the total maintenance cost is minimized? The authors develop two genetic al-
gorithms for finding an optimal partition of O into such groups. An example of
a 20-part system illustrates the algorithm. In [111] a further analysis of the ge-
netic algorithm is considered, and a real-size system comprising 250 components
is regarded.

When considering the age replacement policy often unrealistic assumptions
about the distributions of unit lifetimes are made (e.g., exponential lifetimes)
to be able to find an optimal policy. To solve the problem with general lifetime
distributions Zheng and Fard [145] develop a hazard rate tolerance policy, which
means that a unit is replaced at failure or when its hazard (failure) rate exceeds a
limit L, whichever occurs first. The policy is also opportunistic in the sense that
when a unit is replaced because its hazard rate reaches L, all the operating units
with their hazard rate falling in the interval (L—wu, L) are also replaced. Optimal
L and u are obtained to minimize the average total replacement cost rate. A
numerical example is given that considers a system composed of nonidentical
components.

An opportunity-based age replacement policy is presented by Dekker and
Dijkstra [42]. A component can only be replaced preventively at an opportu-
nity, contrary to a failure, at which the component is directly replaced. The
opportunities arise according to a Poisson process, independently of failures of
the component. A component is preventively replaced at an opportunity if its
age has passed a control limit, and the objective is to find the control limit that
minimizes the average cost.

An approximate method for the opportunity-based age replacement policy
in [42] is proposed by Sherwin [117].

Jhang and Sheu [70] propose an opportunity-based age replacement policy
with minimal repair. They assume that a system has two types of failures. Type
I failures are removed by minimal repairs, whereas type II failures are removed
by replacements. Type I and type II failures are age-dependent. A system is
replaced at type II failure or at the first opportunity after age T', whichever
occurs first. The cost of the minimal repair of the system at a specific age
depends on a random part and a deterministic part. The opportunities arise
according to a Poisson process, independent of failures of the component. The
optimal T which would minimize the cost rate is discussed, and an algorithm
for solving a simple special case is given.

8.7 Marginal cost analysis

In marginal cost analysis the maintenance action depends on the cost to perform
the maintenance action immediately compared to waiting an additional time;
“additional time” can be defined in several ways.

Berg [21] computes the marginal costs for age and block replacement, re-
spectively. By marginal cost he means the difference, per unit time, between
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the cost of an age (or block) replacement now and the expected costs associated
with waiting an additional short time. The marginal cost is then used to draw
conclusions about the existence and uniqueness of optimal solutions to the age
and block replacement policies, respectively. This procedure can also be adopted
to other preventive replacement policies than age and block replacement.

The marginal cost approach from [21] is generalized by Dekker and Smeitink
[44]. In their model a component is replaced upon failure and can only be
replaced preventively at maintenance opportunities. In a production system
a maintenance opportunity can occur for a variety of reasons, for example,
breakdowns of essential units. The occurrence of opportunities is described by
a renewal process. The authors first derive a model for a system comprising
only one unit, and then an extension to the multi-component case is made.
An exact optimization algorithm for the case of K»-distributed times between
opportunities is presented. This algorithm can also be used as an approximative
method in the case of other times between opportunities distributions, and its
performance is checked by simulation.

The standard approach in age and block replacement policies is to derive an
expression for the expected average cost rate and then minimize this expression.
However, with more complex models, for example, replacement models with
repair, the use of this approach results in quite laborious mathematics. Berg
[22] uses marginal cost analysis to overcome this problem for a replacement
model with minimal repair.

In many cases preventive maintenance is more economic when applied to
an entire group of components than to individual ones, and the problem then
is to decide when to maintain the entire group (this is often called a group
replacement policy). Dekker and Roelvink [43] present a group age replace-
ment criterion based on marginal cost considerations. The marginal costs are
interpreted as the extra costs caused by deferring preventive replacement for
an additional time unit. The criteria force a replacement if the marginal costs
exceed the minimum average costs. For the marginal costs, formulas in the com-
ponent ages are derived, whereas the minimum average costs are approximated
by the block replacement model. The authors investigate the performance of the
criteria by means of discrete time Markov decision chains for two components,
and by simulation for multiple identical components.

8.8 Deterministic replacement models

In the above maintenance models the times to failure are stochastic and have
known distributions. In a deterministic replacement model, however, all data
is deterministic. For an aircraft engine all of the safety-critical parts can be
considered as deterministic since they have estimated fixed lifetimes (see Section
2.2).

In [15] the replacement of one item which deteriorates and becomes obsolete
with time is considered. The time horizon is finite and all data is assumed to be
deterministic. This problem is normally solved through the use of dynamic pro-
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gramming, but the authors formulate the problem as a 0— 1 linear programming
problem. A numerical example is used to illustrate the model.

Dickman et al. [50] present a deterministic mixed integer linear programming
model for a multi-unit system with one economic dependence; a fixed cost is
incurred when the system is taken to the workshop independent of the number
of parts that are replaced. (Actually, this mixed integer linear programming
model is crucial for the development of the deterministic optimization models
in Chapter 4.)

8.9 Models with a finite supply of spares

In the maintenance models in the literature it is often assumed that the supply
of spare parts is infinite, and that there is no inventory cost. In reality this
is not the case. In this section we present some of the articles that take the
inventory into account. The research in this area is lively and more articles can
be found in, for example, [32].

Nakagawa and Osaki [91] extend the age replacement model by assuming
that the system (one-unit system) is supported by a buffer which stores only
one spare unit for replacement, and that whenever each replacement starts, one
new unit is ordered and then arrives at the buffer in a random delivery time.
The unit is replaced upon failure or at the age-limit 7', whichever occurs first,
whenever the spare is available. Otherwise one has to wait until the new unit
arrives. The objective is to minimize the long-run total average cost per unit
time, and numerical experiments are presented to illustrate how to determine
the optimal age-limits.

Liao and Yuan [84] extend the policy of [91] by considering the possibility
that the new unit after arrival may not be acceptable in quality, that is, it
should be rejected. They assume that first, whenever each replacement takes
place, a new unit is ordered, then delivered, and finally tested after its arrival
in a totally deterministic or random delivery time, and second, that the unit,
when acceptable, will enter the buffer as a spare.

Derman, Lieberman, and Ross [48] investigate a special version of the re-
placement problem. They consider a system with one vital component for which
there are n spares. Whenever the vital component fails, the system fails. The
idea is to judiciously replace the component in use with an available spare in
order to extend the life of the system. Once a component has been removed it
cannot be used again. The objective is to determine the schedule that maxi-
mizes the expected life of the system. This problem can be generalized into a
situation in which there are several components in the system, and the authors
discuss a special case when the system consists of two exponentially distributed
components.

Simpson [122] considers an inventory system with two inventories: the ser-
viceable inventory and the repairable inventory. In a spare-part repairable inven-
tory system there is complete dependence between the demand for serviceables
and the return of repairables as all failing units are immediately replaced by
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a serviceable unit. The serviceable inventory is depleted by the demand from
the maintenance model and is replenished by repairing units available in the re-
pairable inventory and/or by purchasing new items. The repairable inventory is
depleted by repairing units for serviceable and/or by junking and is replenished
by failed replaced units. The author investigates the structure of the optimal
solution to this inventory problem.

Chelbi and Ait-Kadi [31] discuss a periodic block replacement strategy tak-
ing into account the state of a spare parts inventory. In order to precise the
modelling assumptions and establish basic conditions, a system made up of only
one component is considered. The objective is to find the replacement period,
T, the replenishment cycle, R = kT for some k € {1,2,...}, and the ordering
point such that the total expected cost per time unit over an infinite span is
minimized. An algorithm for solving the problem is proposed and numerical
experiments are performed.

Zohrul-Kabir and Al-Olayan present in [147] and [148] a policy for the joint
optimization of age replacement and spare provisioning. It combines the age
replacement policy with a continuous review (s, S) type inventory policy, where
s is the stock reorder level and S is the maximum stock level. The operating
principle for this policy can be described as follows: “An order for (S — s) spare
units is placed when the inventory level falls to s. The operating unit is replaced
preventively at T provided a spare is available. Otherwise the unit is replaced
as soon as the stock is replenished. If the operating unit fails before T, the
failed unit will be replaced as soon as a spare is available.” The order lead time
is considered to be randomly distributed, and the objective is to find T', s, and
S such that the expected total cost per unit time is minimized. Because of the
complexity in formulating a mathematical model for multi-unit situations, the
authors develop a simulation model to determine a near-optimal policy. Results
from different case problems are presented and a comparison is made to the case
when age replacement and inventory policies are optimized separately.

Often it is preferable to use a general purpose simulation language when
performing simulations. In [149] the construction of such a simulation language
for the policy for joint optimization of age replacement and spare provisioning
in [148] is described.

Sarker and Haque [109] investigate the same policy as in [147] and [148],
but they consider block replacement instead of age replacement. A simulation
model is developed and numerical experiments are conducted.

8.10 Models with multiple choice of spares

Often failed components are replaced by new ones, but in some cases there are
multiple choices of spares. Then the question arises which of the spares should
be chosen to replace a certain component. This is the subject of the present
section.

Some systems consist of a framework which is virtually independent of its
components, for example, a car where the components are the tires, battery, and
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ignition system, and the framework is the bodywork and chassis of the car. Such
systems are investigated by Thomas [129]. For simplicity systems with only one
component are considered, though the results apply in more general situations.
The replacement policy for such a system depends on two interrelated decisions:

1. If the component fails and there is a choice of replacement with different
costs and lifetime distributions which should be chosen?

2. Since the system can be replaced with a new one, including a new com-
ponent, is it worth replacing the whole system, when just the component
has failed?

Thomas proves the existence of optimal answers to these questions, though for
the first question exponential lifetimes are assumed. However, how to compute
the optimal answers is not investigated.

8.11 Cannibalization policies

When two or more systems are inoperative because of a different failed part
in each, a common maintenance practice is to take the required part from one
machine to restore the other. This policy is often called cannibalization.

In [55] and [74] different cannibalization policies are compared by simulation,
but no analytic method is developed for finding the optimal cannibalization
policy.

8.12 Other models

In this section we briefly mention some models other than those presented above.
We have collected them here since we think that they are not as important as
the models presented above, but believe that they may be potentially useful in
future research.

In most of the maintenance models it is assumed that the components of the
system are statistically independent. Models considering statistically dependent
parts are found in [3], [127], [96].

In a k-out-of-n system failures of components are allowed. However, in order
to have a working system at least k components (of the total number, n) have to
be operative. Models for k-out-of-n systems are discussed in [102], [123], [119].

The above maintenance models always assume that the costs of, for example,
new items or repairs in the future are known, as well as the distributions of times
to failures, time horizons, and other data. In reality we only know this data
with some uncertainty, and models that take this into account are treated in
(8], [120], [101], [104], [L51], [94], [143], [49], [135], [75].

Traditional maintenance models assume that the system after maintenance
is either “as good as new” (replacement) or “as bad as old” (minimal repair). A
more realistic assumption is that the system after maintenance lies somewhere
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in between “as good as new” and “as bad as old”. This kind of maintenance is

usually called imperfect repair, and is discussed in [85], [89], [18], [86], [108].

8.13 Finding the best maintenance policy

As we have seen above there are several maintenance policies that can be used,
and a policy that is the best under certain circumstances might not be the best
in another situation. In this section we consider the problem of finding the best
policy.

In [24] a comparison of age, block, and failure replacement policies is made.
Let a and b be the planned replacement costs for age and block replacement,
respectively. It can be shown that if a = b, then age replacement is preferable to
block replacement, and if a and b are sufficiently large then failure replacement
is the best policy. However, if b < a then the question arises which policy should
be chosen. The authors suggest a method for making this choice and show how
it varies with a and b.

Dekker [39] presents a framework which covers several optimization models,
and develops a uniform analysis for these models. From this analysis penalty
functions are derived which can act as priority criterion functions, and also
serve as basic elements in a method for determining optimal combinations of
activities, and in maintenance planning.

When choosing a maintenance strategy of a complex system one is often
interested in finding an optimal combination of several maintenance alternatives
(i.e., use different maintenance policies on different parts). Bevilacqua and
Braglia [26] investigate this problem and use an application of the analytic
hierarchy process (AHP) for selecting the best maintenance strategy for an
Italian oil refinery. Five possible alternatives are defined: preventive, predictive,
condition-based, corrective, and opportunistic maintenance. With the AHP
technique several aspects which characterize each of the mentioned strategies
are arranged in a hierarchic structure and evaluated using a series of pairwise
judgments. It turns out that the maintenance management of the oil refinery is
satisfied with the AHP methodology, and the authors draw the conclusion that
AHP can enhance and improve the understanding of the dynamics of a similar
complex problem and represents an effective approach to arrive at decisions.

Lam and Yeh [80] consider continuous time Markov deteriorating systems,
where the degree of deterioration (except failure) of the system is known only
through inspection. Iterative algorithms are developed to derive the optimal
maintenance policy and the corresponding cost value for each of the following
five strategies:

1. Failure replacement. No inspection is performed. The system is replaced
only when it is in the failed state.

2. Age replacement. The system is replaced at age t or when it fails, whichever
occurs first.
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3. Sequential inspection. If the system state is 4, then (a) the system is
replaced immediately, or (b) the system is scheduled for inspection at t;
later. The set {t;}§ and the criteria for decision (replacement or continuing
operation) must be specified initially.

4. Periodic inspection. This is a special case of sequential inspection wherein
t; is the same for all 7.

5. Continuous inspection. The system is inspected continuously. When the
system enters state 4, then (a) the system is replaced immediately, or (b)
the system is allowed to continue operating. The criteria for the decision
must be specified initially.

The optimal policy minimizes the mean long run cost rate, and when the optimal
policy has been computed for each strategy of the above five strategies, then
the maintenance policy can be chosen.

8.14 Applications of maintenance optimization
models

Finding optimal maintenance policies clearly is in the area of applied mathe-
matics, and in this section we present some real world applications as well as
problems that arise when implementing maintenance policies.

Hopp and Kuo [63] look at the maintenance of an aircraft engine. They di-
vide the parts into non-safety-critical and safety-critical parts. The non-safety-
critical parts will not fail, but their performance loss cost will increase with age.
The safety-critical parts have lifetime distributions, and when a safety-critical
part fails it destroys the whole system. However, there are no performance loss
costs associated with the safety-critical parts. The authors draw the conclusion
that optimal policies are likely to be extremely difficult to compute and, because
their form is complex, very difficult to communicate and use in practice. There-
fore, heuristics are suggested for the case of a system with non-safety-critical
components only, and for the case of a system with one safety-critical compo-
nent and multiple non-safety-critical components. Lower bounds are computed
to evaluate the performance of the heuristics.

In [64] the maintenance of the compressor of an aircraft engine is considered.
It is assumed that fatigue crack is the underlying failure mechanism, and the
crack growth is due to the number of “shocks” monitored by sensors. The
true crack size is unobservable unless some maintenance task is performed on
it. The observed information about the crack growth process is the crack size
found at the most recent inspection/replacement and the number of shocks
experienced since then. At the beginning of each flight it is decided, based on
the observed state and the number of shocks to be incurred during the flight,
whether or not to schedule an inspection at the end of the current flight. After
inspection the true crack size will become known, and it must be decided whether
a blade replacement is needed or not. A dynamic programming recursion for
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the problem is developed. The authors point out that a general policy from
a complex dynamic program can be difficult to communicate, and therefore
it is useful to characterize the optimal policy as having some kind of simple
structured form. This turns out to be possible for the compressor maintenance
problem.

A deeper treatment of the theory and the applications presented above in
[63] and [64] can be found in [79].

An application to compressor units on jet engines is given by Epstein and
Wilamowsky [54]. Specifically, B is a component (disk) of a system (compressor
unit) with the following properties:

1. The system is known to fail exponentially (not due to B) at which time
it is brought to the maintenance base at a specific cost.

2. B never fails but has a life-limit of Y hours. After Y hours, the machine
must be brought to the maintenance base to exchange B.

It is shown that the optimal strategy for B is given by an (X;, X2)-rule such
that:

1. If, when the system fails, B is accessible, replace B if it has less than X,
hours of remaining life.

2. If, when the system fails, B is not accessible, replace B if it has less than
X1 hours of remaining life (X; < X5).

3. Under all conditions replace B after Y hours of usage.

X and X, are computed by minimizing the expected cost per expected life for
B. In the case of several disks this policy is not optimal, but the authors develop
a model for a system of two disks which can be extended to several disks.

Holland and McLean [62] describe a practical procedure to obtain approxi-
mate optimal replacement policies for homogeneous pieces of equipment. They
suggest a method for fitting the Weibull distribution to observed data and from
the estimated distribution parameters a replacement policy is found.

Crocker and Kumar [35] introduce the concepts of hard life and soft life.
Hard life is defined as the age of the component at which it has to be replaced.
Soft life is the age of the component after which it will be rejected the next
time the engine is recovered. The method can be considered as a modified age
replacement policy. The authors use Monte Carlo simulation to find the optimal
value of the soft life and hard life for a very simplified aircraft engine, namely
one that consists of one part only.

Kumar et al. [78] look at the concept of evolutionary maintenance, which
means that the maintenance and inspection schedule is adjusted after every
service activity. The procedure requires knowledge of the time to failure dis-
tribution of each module of the engine and the corresponding hard lives (i.e.,
the age at which a component will be replaced preventively) of any of its com-
ponents. After every maintenance and inspection activity, the hard life and
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preventive maintenance schedule are revised by adjusting the maintenance in-
terval without increasing the risk of failure. A simple example, which considers
a high pressure turbine whose time to failure follows a Weibull distribution, is
given which clearly shows how the hard life can be extended.

Jardine et al. [69] discuss work completed at Cardinal River Coals in Canada
to improve the existing oil analysis condition monitoring program being under-
taken for wheel motors. The proportional hazards model approach is used to
identify the key condition variables relating to failure. Those key variables are
then incorporated into a decision model that provides an optimal recommenda-
tion on whether to continue operating a wheel motor or remove it for overhaul
on the basis of data obtained from an oil sample. It turns out that the overhaul
costs were reduced by 20-30 percent.

Because of the very high lost production cost in chemical plants, maintenance
and reliability play a crucial role. In [125] a general framework for preventive
maintenance optimization in chemical process operations is developed. How to
apply policies, like age and block replacement, is discussed. The authors suggest
a combination of a genetic algorithm and Monte Carlo simulation to optimize
different objective functions.

Zohrul-Kabir [146] evaluates the overhaul/replacement policy for a fleet of
buses. The study is focused on evaluating the effectiveness of the existing over-
haul routine and determining the overhaul cost limit. A model for the optimal
cost limit is derived, and the existing data is analyzed to get input to the model.
Numerical results and a small sensitivity analysis are presented.

Dekker discusses in [40] and [41] the practical role of optimization models.
The focus is on applications yielding advice to management concerning the
maintenance on existing systems. One main problem is that there is quite a
diversity in maintenance problems and most of them are not repetitive, which
means that standard models most often can not be used. Furthermore, in many
areas one complains about the gap between theory and practice, for example:

e Maintenance optimization models are difficult to understand and to inter-
pret.

e Many papers have been written for mathematical purposes only.

o Although many good ideas have been developed in industry, only a small
amount has appeared in scientific literature.

o Despite the multitude of models there is little knowledge of which models
are suited for which practical problems.

e The existing models often focus on planned maintenance, but in practice
one is more often interested in condition-based maintenance.

Scarf [112] thinks that the connection between the mathematical mainte-
nance models and real maintenance-related problems is too weak. He points
out that what in the literature is called applications and case studies appear to
have been motivated by the need to find an application for a particular model,
rather than by the solution of the problem of interest to engineers and managers.
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8.15 Conclusions

The foregoing survey describes the literature related to optimization mainte-
nance and replacement models for multi-unit systems that can be useful when
modelling the maintenance of an aircraft engine. The main part of the literature
assumes that

¢ the systems consist of stochastic parts only;
e the time horizon is infinite; and
e 3 policy is used to find a replacement scheme.

From the literature it turns out that it is extremely hard to find an optimal
replacement schedule when the number of parts is larger than 2, and hence
different replacement policies are developed. Such policies reduce the complexity
of the problems, but the solutions found are most often not optimal. Also, the
literature points out that the case of a finite time horizon is even harder than
the infinite time horizon case.

In our aircraft application the time horizon is finite and the number of parts
is large (about 50), so if all of the parts had been stochastic it would have been
necessary to use replacement policies. However, about 75% of the components
considered in an aircraft engine are deterministic (that is, they have estimated
fixed lifetimes), so our problem is more structured than the completely stochastic
systems considered in the literature. Therefore it might be possible to find
optimal solutions to the replacement problem and avoid the use of policies.
This is the subject of this thesis.

Our idea is to model the deterministic system with an integer linear program-
ming model based on the model presented in [50], and then to use this model
to formulate a two-stage stochastic model for the system with both determin-
istic and stochastic parts. This approach has not been found in the literature.
In future research it would be interesting to develop appropriate replacement
policies for systems consisting of both deterministic and stochastic parts and
compare them with the two-stage model developed in this thesis.
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