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Abstract

In this thesis we develop a posteriori error estimation techniques and
adaptive algorithms for finite element approximations of second order prob-
lems in three different applications. The adaptive algorithms are used for
automatic tuning of critical parameters in the finite element method.

First we consider the boundary penalty method for weakly imposing
Dirichlet boundary conditions. We prove error estiamtes in the L

2 and
energy norms and use these to relate the penalty parameter to the mesh
parameter.

Second we study the Galerkin least-squares method for minimizing pol-
lution when solving the Helmholtz equation. We show how existing methods
derived for structured grids needs to be modified to work on unstructured
grids. Again the analysis is based on a posteriori error estimates.

Finally, we develop a framework for a posteriori error estimation in mul-
tiscale problems. We present a method for solving decoupled localized fine
scale problems on patches and an a posteriori error estimate that relates the
coarse scale mesh size, the fine scale mesh size, and the patch size.

Keywords: finite element method, Galerkin, duality, a posteriori er-
ror estimation, adaptivity, Poisson equation, boundary penalty method,
Helmholtz equation, pollution, variational multiscale method
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This thesis consists of the following papers:

Paper I: A Posteriori Error Analysis of the Boundary Penalty Method,

Finite Element Center Preprint 2004-09. (Submitted)
The Boundary Penalty Method enforces Dirichlet boundary conditions weakly
by a penalty parameter. We derive a posteriori error estimates in the L

2(Ω)-
norm and energy semi-norm for this method and we propose an adaptive
strategy to choose the penalty parameter ε and the mesh parameter h by
equidistributing the error between the terms in the energy semi-norm esti-
mate. Finally, we consider three numerical examples where we successfully
use the adaptive algorithm to solve the Poisson equation with both smooth
and non-smooth boundary data.

Paper II: A Posteriori Error Analysis of Stabilized Finite Element Ap-

proximations of the Helmholtz Equation on Unstructured Grids, Finite Ele-
ment Center Preprint 2004-10. (Submitted)
In this paper we study the Galerkin least-squares method for minimizing
pollution when solving Helmholtz equation. We especially consider how
stochastic perturbations on a structured mesh affects the optimal choice of
the method parameter τ . The analysis is based on an error representation
formula derived by a posteriori error estimates using duality. The primary
goal with this work is not to present a brand new method for this problem
but to show how existing methods derived for structured meshes can be
modified to work on unstructured grids. We conclude that a parameter op-
timized for a structured mesh needs to be increased by a term proportional
to the variance of the perturbation to be unbiased on a perturbated grid.
We present numerical examples in one and two dimensions to confirm our
theoretical results.

Paper III: Adaptive Variational Multiscale Method Based on A Posteri-

ori Error Estimates, Finite Element Center Preprint 2004-11. (Submitted)
The variational multiscale method (VMM) provides a general framework for
construction of multiscale finite element methods. In this paper we propose
a method for parallel solution of the fine scale problem based on localized
Dirichlet problems which are solved numerically. Next we present a posteri-
ori error estimates for VMM which relates the error in linear functionals and
the energy norm to the discretization errors, resolution and size of patches in
the localized problems, in the fine scale approximation. Based on the a pos-
teriori error estimates we propose an adaptive VMM with automatic tuning
of the critical parameters. We study elliptic second order partial differential
equations with highly oscillating coefficients or localized singularities.
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A Posteriori Error Analysis of the

Boundary Penalty Method

Kenneth Eriksson∗, Mats G. Larson†, and Axel Målqvist‡

April 7, 2004

Abstract

The Boundary Penalty Method enforces Dirichlet boundary con-
ditions weakly by a penalty parameter. We derive a posteriori error
estimates in the L2(Ω)-norm and energy semi-norm for this method
and we propose an adaptive strategy to choose the penalty parameter
ε and the mesh parameter h by equidistributing the error between the
terms in the energy semi-norm estimate. Finally, we consider three nu-
merical examples where we successfully use the adaptive algorithm to
solve the Poisson equation with both smooth and non-smooth bound-
ary data.

1 Introduction

The Boundary Penalty Method. The Boundary Penalty Method (BPM)
has been known and used for more than thirty years. The basic idea is to
impose Dirichlet boundary conditions weakly by using Robin type bound-
ary condition with a penalty parameter ε. We consider the following model
problem: find u such that

{

−4u = f in Ω,
u = g on Γ,

(1.1)

where Ω is a polygonal domain in Rd, d = 1, 2 or 3, with boundary Γ.
Further f ∈ H−1(Ω) and g ∈ H1/2(Γ) are given data, see [1] for definitions
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of these spaces. The finite element formulation using BPM [3, 4] now reads:
find U ∈ V such that

(∇U,∇v) + (ε−1U, v)Γ = (f, v) + (ε−1g, v)Γ for all v ∈ V , (1.2)

where (·, ·) is the L2(Ω) scalar product, (·, ·)Γ is the L2(Γ) scalar product,
and V ⊂ H1(Ω) is the space of continuous piecewise polynomials of degree
p with respect to a given triangulation K = {K} of Ω into elements K of
diameter hK . We define the mesh function (mesh parameter) h(x) such that
h(x) = hK when x ∈ K. We assume that the mesh is locally quasi-uniform.

We immediately note that this method is not consistent since u does
not solve equation (1.2). Multiplying equation (1.1) with a test function
and integrating over the domain using Green’s formula gives the following
identity for the exact solution u,

(∇u,∇v) − (∂nu, v)Γ = (f, v) for all v ∈ H1(Ω), (1.3)

where ∂nu = n · ∇u is the normal derivative of u. However, there is a
more complicated method for weakly imposing Dirichlet boundary condi-
tions called Nitsche’s method [15, 12] which is consistent. The idea in this
method is to include the term (∂nU, v)Γ that appears in equation (1.3) in
equation (1.2) together with a compensating term that makes the method
symmetric.

Both BPM and Nitsche’s method have been used for problems with in-
terior sub-domain interfaces. One of the first papers on the interior penalty
method is Babuška [2] from 1970. In a recent paper [14] this method has
been used for gluing together non-matching grids.

There are various reasons for studying the BPM. One is that it allows
Dirichlet (ε small), Neumann (ε large), and Robin (ε as a function on Γ)
boundary conditions in the same framework. It is also very easy to imple-
ment and it has for these reasons been used in many finite element codes
over the years. Another reason for studying this method is that it serves as
a simpler compliment to Nitsche’s method e.g. when solving problems on
non-matching grids. As mentioned before Lazarov et.al. [14] chooses this
method in their work on non-matching grids.

Previous Work. One of the first works on this subject is Babuška [3] from
1973. His results was then improved and extended among others by Barrett
and Elliott [4] during the eighties. Their work are all in an a priori setting
and has inspired us to do an a posteriori error analysis of this method. Some
important results from these papers are that for piecewise linears ε = h in
the boundary penalty formulation, equation (1.2), yields an optimal H 1(Ω)
error estimate but this choice leads to a suboptimal L2(Ω) error estimate.
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As mentioned earlier BPM is not a consistent method i.e. (1.2) will not
hold if U is replaced by u. For higher order polynomials this will force the
penalty parameter ε be proportional to a higher power of h. The reason
why ε ∼ h is desired is that this choice will not affect the condition number
of the stiffness matrix. High condition number leads to slow convergence
for iterative solvers. For higher order base functions Nitsche’s method is
optimal for ε ∼ h.

As far as we know this is the first a posteriori paper on the boundary
penalty method. However, there are several related papers on a posteriori
error estimates for discontinuous Galerkin and non-conforming finite element
methods [8, 5, 12].

New Contributions. The aim of this paper is to derive an a posteriori
error estimate in terms of the mesh parameter h and the penalty parameter ε,
and based on these results construct an adaptive algorithm to solve problem
(1.2) efficiently.

Our main results are the following bounds of the energy and L2(Ω) norm
of the error e = u− U :

‖∇e‖ ≤ C
(

‖hR(U)‖ + ‖g − U‖1/2,Γ

)

, (1.4)

‖e‖ ≤ C
(

‖h2R(U)‖ + ‖g − U‖−1/2,Γ

)

, (1.5)

where ‖·‖s,Γ is the Hs(Γ) norm, R(U) is a computable bound of the residual,
f + 4U ∈ H−1(Ω), on Ω, and C denotes throughout this paper various
constants independent of h and ε.

To design an adaptive algorithm from the energy semi-norm estimates
we need to see explicitly how the a posteriori quantity ‖g−U‖1/2,Γ depends
on ε. We introduce P as the L2(Γ) projection onto the restriction of V on
Γ and get,

‖Pg − U‖1/2,Γ ≤ Cε



‖P (∂nU)‖1/2,Γ +
∑

∂K∩Γ6=∅

‖R(U)‖K



 . (1.6)

Combining equation (1.4) and equation (1.6) yields the final error esti-
mate that will be used for the adaptive algorithm,

‖∇e‖ ≤ C
(

‖hR(U)‖ + ‖g − Pg‖1/2,Γ

)

(1.7)

+ Cε



‖P (∂nU)‖1/2,Γ +
∑

∂K∩Γ6=∅

‖R(U)‖K



 .

Obviously there exists an upper bound on ε in equation (1.2) for which
the approximation gets to poor. We can capture this bound by considering
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the error estimate in equation (1.7). We also need to impose a lower bound
on ε for at least two reasons: the condition number of the stiffness matrix
grows when ε decreases, and we may get undesired oscillations in the solution
when solving problems with rough boundary data (see Example 3 in section
4). The conclusion of this discussion is that ε needs to be small enough to
balance the two terms in equation (1.7) but not smaller.

We also present an estimate of the term ‖Pg − U‖−1/2,Γ in the L2(Ω)-
norm bound, see equation (1.5), and by using this estimate we get the fol-
lowing bound of the L2(Ω)-norm of the error,

‖e‖ ≤ C
(

‖(h2 + εh+ ε2)R(U)‖ + ‖g − Pg‖−1/2,Γ + ε‖g − Pg‖1/2,Γ

)

(1.8)

+ εC
(

‖P (∂nU)‖−1/2,Γ + ε‖P (∂nU)‖1/2,Γ

)

.

Here we see that ε ∼ h is not enough to get an optimal order error estimate
since the estimate contains the term ε‖P (∂nU)‖−1/2,Γ.

In this work we consider piecewise linear approximations since in this
case have an optimal a priori estimate in the energy semi-norm. We are not
interested in tracking the constants in the error estimates.

Outline. In Section 2, we present the a posteriori error analysis for control
in energy semi-norm and L2(Ω)-norm. In Section 3 we use the error esti-
mates to derive an adaptive algorithm for choosing the penalty parameter.
In Section 4 we present three numerical examples, and finally we present a
small summary in Section 5.

2 A Posteriori Error Estimates

2.1 The Error Representation Formula

Subtracting (1.2) from (1.3) yields the error equation

(∇e,∇v) + (ε−1e, v)Γ = (∂nu, v)Γ for all v ∈ V . (2.1)

Green’s formula gives,

(f + 4U, v) + (∂ne+ ε−1e, v)Γ = (∂nu, v)Γ for all v ∈ V , (2.2)

where the first scalar product is defined in the following way,

(f + 4U, v) =
∑

K

∫

K
(f + 4U)v dx−

∑

K

∫

∂K\Γ

∂U

∂nK
v ds. (2.3)
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We also need to take weighted L2(Ω) norms of f + 4U . We define our
domain residual according to [10] as a piecewise constant function,

R(U) = |f + 4U | +
1

2
max
∂K\Γ

h−1
K |[∂nU ]| on K ∈ K, (2.4)

where [·] is the difference in the function value over the edge. We note that
|(f + 4U, v)| ≤ ‖hsR(U)‖‖h−sv‖ for s ∈ R. Next we introduce a dual
problem: find φ such that

{

−4φ = ψ in Ω,
φ = 0 on Γ,

(2.5)

where ψ ∈ H−1(Ω). Multiplying (2.5) by the error e and using Green’s
formula yields,

(e, ψ) = (e,−4φ) = (∇e,∇φ) − (e, ∂nφ)Γ = (f + 4U, φ) − (g − U, ∂nφ)Γ.
(2.6)

It follows from equation (2.2) that (f + 4U, v) = 0 for v ∈ V such that
v = 0 on Γ. We then get (f + 4U, πφ) = 0, where πφ is the Scott-Zhang
interpolant of φ, see [6]. Together this gives,

(e, ψ) = (f + 4U, φ− πφ) − (g − U, ∂nφ)Γ (2.7)

2.2 The Error Estimates

We start this section by proving estimates of the error in energy and L2(Ω)
norm.

Theorem 2.1 It holds

‖∇e‖ ≤ C
(

‖hR(U)‖ + ‖g − U‖1/2,Γ

)

(2.8)

If we assume that there exists a constant C such that ‖φ‖2 ≤ C‖4φ‖ we

also have

‖e‖ ≤ C
(

‖h2R(U)‖ + ‖g − U‖−1/2,Γ

)

(2.9)

Proof. For the energy semi-norm estimate we start from equation (2.7) and
let ψ = −4e,

(e,−4e) = (f + 4U, φ− πφ) − (g − U, ∂nφ)Γ. (2.10)
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We have (e,−4e) = ‖∇e‖2 − (e, ∂ne)Γ and together with equation (2.10)
this gives

‖∇e‖2 = (f + 4U, φ− πφ) − (e, ∂nφ)Γ + (e, ∂ne)Γ (2.11)

≤ C
(

‖hR(U)‖‖∇φ‖ + ‖e‖1/2,Γ‖∂nφ‖−1/2,Γ + ‖e‖1/2,Γ‖∂ne‖−1/2,Γ

)

.

(2.12)

We recall the trace inequality,

‖n · v‖−1/2,Γ ≤ C
∑

∂K∩Γ6=∅

(‖v‖K + h‖∇ · v‖K) , (2.13)

where ‖ · ‖K is the L2(K) norm where K refers to elements in the mesh, see
([11], Theorem 2.2) and apply this result twice with v = ∇φ and v = ∇e on
equation (2.12) to get,

‖∇e‖2 ≤
1

2
C2‖hR(U)‖2 +

1

2
‖∇φ‖2 + ‖e‖1/2,Γ

∑

∂K∩Γ6=∅

(‖∇e‖K + ‖hR(U)‖K)

+ ‖e‖1/2,Γ

∑

∂K∩Γ6=∅

(‖∇φ‖K + ‖hR(U)‖K) . (2.14)

Next we use the following observation,

‖∇φ‖2 = (−4e, φ) = (∇e,∇φ) ≤ ‖∇e‖‖∇φ‖, (2.15)

i.e. ‖∇φ‖ ≤ ‖∇e‖ to get,

‖∇e‖2 ≤ C‖hR(U)‖2 +
1

2
‖∇e‖2 + 2‖e‖1/2,Γ (‖∇e‖ + ‖hR(U)‖) (2.16)

≤ C
(

‖hR(U)‖2 + ‖e‖2
1/2,Γ

)

+
3

4
‖∇e‖2. (2.17)

Subtracting 3/4‖∇e‖2 on both sides proves the first part of the theorem.
For the L2(Ω) estimate we use ψ = e/‖e‖ in (2.7) to get,

‖e‖ = (e, ψ) = (f + 4U, φ− πφ) − (g − U, ∂nφ)Γ. (2.18)

Now we use the assumption that there exists a constant C such that ‖φ‖2 ≤
C‖4φ‖ and use the trace inequality ‖∂nφ‖1/2 ≤ C‖φ‖2 to get

‖e‖ ≤ C‖h2R(U)‖‖φ‖2 + C‖g − U‖−1/2,Γ‖φ‖2 (2.19)

≤ C
(

‖h2R(U)‖ + ‖g − U‖−1/2,Γ

)

. (2.20)
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In Theorem 2.1 we get bounds with the ε dependence hidden. To be able
to construct an adaptive algorithm we wish to know how ‖g − U‖1/2,Γ and
‖g − U‖−1/2,Γ depends on ε. We use the triangle inequality

‖g − U‖s,Γ ≤ ‖g − Pg‖s,Γ + ‖Pg − U‖s,Γ, (2.21)

for s = 1/2 and s = −1/2. The first part is independent of ε and the second
part can be estimated. We start with ‖g − U‖1/2,Γ.

Theorem 2.2 It holds

‖Pg − U‖1/2,Γ ≤ Cε



‖P (∂nU)‖1/2,Γ +
∑

∂K∩Γ6=∅

‖R(U)‖K



 (2.22)

where Pg is the L2(Γ) projection of g onto the restriction of V on the bound-

ary.

Proof. We let z = P (ε∂nU) ∈ V and start by using the triangle inequality,

‖Pg − U‖1/2,Γ ≤ ‖z‖1/2,Γ + ‖Pg − U − z‖1/2,Γ (2.23)

≤ ε‖P (∂nU)‖1/2,Γ + C‖h−1/2(Pg − U − z)‖Γ, (2.24)

where we use an inverse estimate [6] in the second inequality. Next we need
to estimate ‖h−1/2(Pg − U − z)‖Γ.

From the error equation (2.2) we have,

−ε(f+4U, v) = (g−U−ε∂nU, v)Γ = (Pg−U−z, v)Γ for all v ∈ V . (2.25)

We let w ∈ V be equal to zero on interior nodes, w = P (h−1(Pg − U − z))
on Γ, and choose v = w in equation (2.25) to get,

‖h−1/2(Pg − U − z)‖2
Γ = (Pg − U − z, w)Γ (2.26)

= (Pg − U − ε∂nU,w)Γ (2.27)

= −ε(f + 4U,w). (2.28)

The right hand side in equation (2.26) can now be estimated in the following
way,

|(f + 4U,w)| ≤ C





∑

∂K∩Γ6=∅

‖R(U)‖K



 ‖w‖ (2.29)

≤ C





∑

∂K∩Γ6=∅

‖R(U)‖K



 ‖h−1/2(Pg − U − z)‖Γ. (2.30)
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We need to take a closer look at the second inequality. Let K be a triangle
at the boundary and E the corresponding boundary edge of this triangle.

For w as above and the finite element base functions ϕi we have ‖ϕ
1/2
i w‖2

K ≤

ChK‖ϕ
1/2
i w‖2

E , by equivalent norms in finite dimensional spaces, and scal-
ing. The assumption of local quasi-uniform mesh gives an estimate of ‖w‖
in the following way,

‖w‖2 =

∫

Ω

(

∑

i

ϕiw

)2

≤ C
∑

i

∫

Ω
ϕ2

iw
2 ≤ C

∑

i

∑

|K∩Γ|6=0

∫

K
ϕiw

2 (2.31)

≤ C
∑

i

∑

E

ChK‖ϕ
1/2
i w‖2

E ≤
∑

E

C‖h1/2w‖2
E = C‖h1/2w‖2

Γ, (2.32)

which means that ‖w‖ ≤ C‖h−1/2(Pg − U − z)‖Γ. Combining equation
(2.26) and equation (2.29) gives

‖h−1/2(Pg − U − z)‖Γ ≤ Cε
∑

∂K∩Γ6=∅

‖R(U)‖K . (2.33)

Together equation (2.33) and equation (2.23) now gives,

‖Pg − U‖1/2,Γ ≤ ‖z‖1/2,Γ + Cε
∑

∂K∩Γ6=∅

‖R(U)‖K , (2.34)

which proves the theorem.

Finally we close this section by finishing the L2(Ω)-norm estimate in the
same way as we did with the energy norm estimate. From Theorem 2.1 we
see that we need to estimate ‖g − U‖−1/2,Γ in terms of the mesh parameter
h and ε.

Theorem 2.3 It holds,

‖Pg − U‖−1/2,Γ ≤ εC
(

‖P (∂nU)‖−1/2,Γ + ‖∇e‖ + ‖hR(U)‖
)

(2.35)

Proof. We start in the same way as in the proof of Theorem 2.2. We let
z = P (ε∂nU) ∈ V and use the triangle inequality,

‖Pg − U‖−1/2,Γ ≤ ‖z‖−1/2,Γ + ‖Pg − U − z‖−1/2,Γ (2.36)

≤ ε‖P (∂nU)‖−1/2,Γ + ‖Pg − U − z‖−1/2,Γ. (2.37)
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We study the second term equation (2.37). By definition we have,

‖Pg − U − z‖−1/2,Γ = sup
w∈H1(Ω)

(Pg − U − z, w)Γ
‖w‖1,Ω

(2.38)

= sup
w∈H1(Ω)

(Pg − U − z, w −Qw)Γ
‖w‖1,Ω

(2.39)

+ sup
w∈H1(Ω)

(Pg − U − z,Qw)Γ
‖w‖1,Ω

= I + II, (2.40)

where Q is the L2(Ω)-projection onto the finite element space V . We start
with the first term I,

I ≤ sup
w∈H1(Ω)

‖h(Pg − U − z)‖1/2,Γ‖
1
h(w −Qw)‖−1/2,Γ

‖w‖1,Ω
(2.41)

≤ ‖h(Pg − U − z)‖1/2,Γ sup
w∈H1(Ω)

‖ 1
h(w −Qw)‖

‖w‖1,Ω
(2.42)

≤ C‖h(Pg − U − z)‖1/2,Γ (2.43)

≤ C‖h1/2(Pg − U − z)‖Γ, (2.44)

where the last step is done by an inverse inequality [6]. By a similar argument
as in the proof of Theorem 2.2, with the function w equal to P (h(Pg−U−z))
on Γ instead we get,

‖h1/2(Pg − U − z)‖Γ ≤ Cε‖hR(U)‖, (2.45)

i.e.

sup
w∈H1(Ω)

(Pg − U − z, w −Qw)Γ
‖w‖1,Ω

≤ Cε‖hR(U)‖. (2.46)

From equation (2.25) we have −ε(f + 4U,Qw) = (Pg − U − z,Qw)Γ.
We use this result to estimate the second term II as follows,

II = −ε sup
w∈H1(Ω)

(f + 4U,Qw)

‖w‖1,Ω
(2.47)

= −ε sup
w∈H1(Ω)

(−4e,Qw)

‖w‖1,Ω
(2.48)

= −ε sup
w∈H1(Ω)

(∇e,∇Qw) − (∂ne,Qw)Γ
‖w‖1,Ω

(2.49)

≤ ε

(

‖∇e‖ sup
w∈H1(Ω)

‖∇Qw‖

‖w‖1,Ω
+ ‖∂ne‖−1/2,Γ sup

w∈H1(Ω)

‖Qw‖1/2,Γ

‖w‖1,Ω

)

. (2.50)
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From [7, 9] we know that ‖Qw‖1,Ω ≤ C‖w‖1,Ω for locally quasi-uniform
meshes. Together with the estimate, ‖Qw‖1/2,Γ ≤ C‖Qw‖1,Ω, and equation
(2.50) this gives,

sup
w∈H1(Ω)

(Pg − U − z,Qw)Γ
‖w‖1,Ω

≤ εC
(

‖∇e‖ + ‖∂ne‖−1/2,Γ

)

. (2.51)

Equation (2.13) can now be used again with v = e. We get,

sup
w∈H1(Ω)

(Pg − U − z,Qw)Γ
‖w‖1,Ω

≤ εC (‖∇e‖ + ‖hR(U)‖) . (2.52)

Combining equation (2.37), (2.38), (2.41), and (2.52) finally proves the The-
orem.

Combining the estimate (2.9) of Theorem 2.1, Theorem 2.3, and the en-
ergy semi-norm estimate in Theorem 2.1 we finally end up with the following
L2(Ω)-norm estimate,

‖e‖ ≤ C
(

‖(h2 + εh+ ε2)R(U)‖ + ‖g − Pg‖−1/2,Γ + ε‖g − Pg‖1/2,Γ

)

(2.53)

+ εC
(

‖P (∂nU)‖−1/2,Γ + ε‖P (∂nU)‖1/2,Γ

)

.

Remark 2.1 In the final L2(Ω)-norm estimate, equation (2.53), we see that
for sufficiently smooth boundary data, g, letting ε ∼ h would give an optimal
order error for all terms but the εC‖P (∂nU)‖−1/2,Γ term. So if ∂nu 6= 0 we
need to let ε ∼ h2 to get optimal order convergence.

3 Adaptive Strategies

We design an adaptive strategy for the energy semi-norm estimate starting
from (2.8) in Theorem 2.1. Combining this result with equation (2.21) and
Theorem 2.2 gives the following equation:

‖∇e‖ ≤ C
(

‖hR(U)‖ + ‖g − Pg‖1/2,Γ

)

(3.1)

+ Cε



‖P (∂nU)‖1/2,Γ +
∑

∂K∩Γ6=∅

‖R(U)‖K





We introduce the notation,

r1 = ‖hR(U)‖ + ‖g − Pg‖1/2,Γ,

r2 = ε
(

‖P (∂nU)‖1/2,Γ +
∑

K∩Γ6=∅ ‖R(U)‖K

)

.
(3.2)
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Adaptive Algorithm. The aim is to choose ε such that r1 and r2 becomes
equally large.

• Let ε0 = h.

• Solve equation (1.2) for U .

• Calculate r1 and r2 according to equation (3.2).

• Determine if h-adaptivity is necessary from the size of r1.

• Let ε = ε0
r1

r2
.

If a mesh refinement (with new mesh parameter hnew) was needed in step
4 we replace r1 with ‖hnewR(U)‖ + ‖g−Pg‖1/2,Γ in step 5. This procedure
can then be done iteratively going from step 5 to step 2.

Remark 3.1 From experience and numerical tests for example in [13] we
know that the first term in r1 is in general over estimated due to the in-
equalities used to derive it. This is not the case with the other terms and
this fact could be a reason to decrease ε even further. So even though in
practice we want to use ε < ε0r1/r2 as large as possible it can we wise to
choose ε a bit under the bound.

Remark 3.2 We can also use other norms for the adaptive strategy. One
reason to choose the energy semi-norm is that ε ∼ h since r1 ∼ h and r2 ∼ ε.
If we instead consider the L2(Ω) norm we would get ε ∼ h2 to achieve opti-
mal order. These results agree with earlier a priori results [6].

Remark 3.3 The main reason for not choosing ε too small is that the con-
dition number of the stiffness matrix will be very large which leads to slow
convergence for iterative solvers. The choice ε ∼ h is optimal since in this
case the condition number of the matrix will not increase dramatically while
for ε ∼ h2 it will. The other reason will be illustrated in Example 3 below.

4 Numerical Examples

We present three numerical examples to verify the theoretical results of the
error analysis.
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Figure 1: Error in energy semi-norm for different h and ε.

Example 1. In the first example Ω is the unit square and g = 0 on the
boundary. The load f is chosen such that the exact solution u(x, y) =
x(1−x)y(1−y). The aim is to use our adaptive strategy to choose ε in such
a way that the error from the penalty method is of the same order as the
discretization error. Since the exact solution is known we first present a plot,
Figure 1, with the energy semi-norm of the error calculated for different h
(we use quasi-uniform meshes) and ε. We see clearly for each h how the
error eventually converges to the discretization error and we get no further
improvement by decreasing ε.

The adaptive strategy is designed to find the biggest ε for which we
achieve discretization error by considering the error estimators r1 and r2.
Figure 2 shows the values of the error estimators for a fix value of h = 0.025.
We see that the discretization part of the error r1 is fairly constant and
that the ε dependent part r2 is proportional to ε. It is clear that the two
terms r1 and r2 captures the essence of the behavior of the error in the
energy semi-norm. The adaptive strategy would in this situation suggest
that ε = ε0r1/r2. As seen when comparing the figures we get a slight over
estimate of ε arising from the fact that r1 is over estimated.

To sum up this example we analyze the h-dependence of ε in our method.
In this particular example ε = ε0r1/r2 for different ε0 in the range 10−1 to
10−7. As seen from the small clusters in Figure 3 we get very similar results
on ε for different ε0. We also recognize that ε is proportional to h.
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Figure 3: The penalty parameter ε chosen according to adaptive strategy
for different ε0 and h.
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777 nodes

Figure 4: Solution to the second test problem

Example 2. Next we turn our attention to a situation where g 6∈ V on
one part of the boundary. We let g = 0 on three parts of the unit square and
on the fourth part we let g be saw shaped as seen in Figure 4. The peaks
and valleys are chosen so that they do not coincide with the mesh. Using a
constant ε would in this example not be the best approach since we need a
very small ε just on a part of the boundary where the normal derivative of
the solution is large. Motivated by the results in Theorem 2.2 we use two
different values of ε, ε1 on the simple part and ε2 on the complicated part.
In Figure 5 we see the result of using our algorithm with ε0 = h as a starting
guess for different h. The penalty parameter is chosen as

εi = ε0
|Γi|

|Γ|

‖hR(U)‖

‖g − U‖1/2,Γi

, (4.1)

where |Γi| is the length of the boundary segment Γi. If the function g allows
it can be convenient to replace ‖g−U‖1/2,Γ by ‖g−U‖1,Γ in practice. This
gives a lower value of ε but is simpler to compute. It is clear that the
algorithm suggests us to choose a much higher ε on the simple part of the
domain. We also see that both ε1 and ε2 are proportional to h just with
different constants.

Example 3. Finally we study an interesting effect that can arise from
choosing ε to small. From the earlier a priori work [3, 4] it is clear that
this can lead to problems. This effect can not be seen explicitly from the
a posteriori error estimates but it can be taken care of using the proposed
adaptive strategy.
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Figure 5: The boundary error ‖e‖Γ and εi calculated for different values of
h.

We let g be close to discontinuous, zero on one part of the boundary and
one on the other with a very steep sloop that connects the parts, see Figure
6. Further we let f = 1. We solve the problem by iterating the adaptive
algorithm starting from ε = h = 1/40 and find an optimal ε = 1/151, see
Figure 6 (right). Then we solve the same problem using a ten times smaller
ε = 1/1510 (left). We see clearly that a too small choice of ε for this problem
leads to oscillations in the solution. If ε is decreased further the effect is even
stronger.

The reason for this behavior is that equation (1.2) will force U ≈ Pg
if ε is very small and it is known that the L2 projection P has oscillating
behavior for discontinuous data. This example together with the size of the
condition number motivates using the adaptive procedure when choosing ε.

5 Conclusion

We have derived two a posteriori error estimates and designed an adaptive
strategy for choosing the penalty parameter ε in BPM for one of these.
We present numerical examples that confirms our theoretical results and
we conclude that by this strategy we achieve optimal order convergence for
piecewise linears which agrees with earlier a priori work.
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Abstract

In this paper we study the Galerkin least-squares method for mini-
mizing pollution when solving Helmholtz equation. We especially con-
sider how stochastic perturbations on a structured mesh affects the
optimal choice of the method parameter τ . The analysis is based on
an error representation formula derived by a posteriori error estimates
using duality. The primary goal with this work is not to present a
brand new method for this problem but to show how existing methods
derived for structured meshes can be modified to work on unstructured
grids. We conclude that a parameter optimized for a structured mesh
needs to be increased by a term proportional to the variance of the per-
turbation to be unbiased on a perturbated grid. We present numerical
examples in one and two dimensions to confirm our theoretical results.

1 Introduction

It is well known that the standard Galerkin finite element method suffers
from a substantial loss of accuracy when solving the Helmholtz equation for
higher wave numbers. The problem is basically that the waves propagate to
slow when using the standard Galerkin method. The solution is to increase
the numerical wave number.
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Previous work. The choice of numerical wave number have been solved
by dispersion analysis in one and two dimension. In one dimension it is
actually possible to achieve nodal exactness by the Galerkin Least-Squares
(GLS) method, see [6, 9, 5], or the Generalized Finite Element Method
(GFEM), see [2], and in two dimensions these methods gives significant
improvement compared to the standard Galerkin method. The expression
”pollution” is often used to describe this phenomenon and it was first stated
in [2]. A draw back of using these methods to determine the numerical wave
number in higher dimensions is that they are designed to be optimal for one
certain direction on a structured grid.

Recent work on variational multiscale methods and subgrid modelling
[8, 7] has given an understanding of the origin of GLS. It also represents an
alternative to the dispersion analysis that works independent of the structure
of the mesh. In a paper dealing with edge elements for electro-magnetic mod-
elling [10] an improvement in accuracy when solving the vector Helmholtz
equation was discovered on unstructured grids. This effect can also be seen
in numerical studies for example in [5]. These results encouraged us to
further investigate this area.

New contributions. Our goal with this paper is to understand how meth-
ods for minimizing pollution on structured grids needs to be modified to suit
unstructured grids. To create the unstructured grid we start with a struc-
tured grid and add perturbations to the nodes from a given distribution. We
need a method for computing an optimal method parameter τ on a given
mesh. We achieve this by deriving an error representation formula using
a posteriori error estimation techniques iteratively and choosing τ so this
error functional equals zero. This method is independent of the structure
of the mesh and converges to an optimal τ in the sense that a given linear
functional of the error is zero for this choice of τ .

We then study a family of meshes with stochastic perturbations δi, in
each interior node i, and calculate the expected value of τ , E[τ ]. In one
dimension we get the following result:

E[τ ] = Ch2k2(1 + 6Var(δi)), (1.1)

where C < 0 is a constant that can be calibrated by a standard method on
a structured grid e.g. see [5]. This means that the numerical wave number
kh modifies in the following way, k2

h = k2(1 − τk2). From equation (1.1) we
see clearly that the average of τ calculated on perturbated girds will not be
equal to τ calculated on the structural grid. However we also see that for
small perturbations, τ from the structural calculation is a good estimate.
The challenge is to extend this analysis to two dimensions where it is much
harder to find an optimal τ .

2



In two dimensions we again derive an optimal τ independent of the struc-
ture of the mesh by using an error representation formula based on an a
posteriori error estimate. The procedure needs to be done in an iterative
fashion. A typical linear functional of the error we study could be an integral
over the error over an outflow boundary. Again we recognize a modification
of τ proportional to the variance of the perturbation. For a plane wave in
two dimensions numerical calculations shows improved results compared to
a plane wave in one dimension. We argue that this effect arises from the
fact that the variance of on integral of the error on the outflow boundary
is smaller than the variance of the error measured in one point. This could
explain the effect in [10].

Of course there are numerous advantages of using randomized unstruc-
tured meshes instead of structured ones. When it comes to wave propagation
on of the most important are that a randomized mesh is isotropic i.e. ”looks
the same” in all directions. This means that if we can find an optimal τ
for one direction it will work well for waves propagating in an arbitrary
direction.

Outline In §2 we present a one dimensional model problem, derive an
a posteriori error estimate and state a formula for choosing the method
parameter τ . We then study how this choice of τ depends on the structure
of the mesh. In §3 we present numerical results for this problem and in §4
we turn our attention to a two dimensional model problem. Again we derive
an a posteriori error estimate from which we can calculate the parameter τ .
In §5 we present numerical results for two test examples and finally in §6 we
draw some conclusions of this work.

2 One Dimensional Model Problem

We consider the following one dimensional model problem: find u such that






−u′′ − k2 u = 0 in Ω,
u′(0) = ik,

u′(π) = ik u(π) ,
(2.1)

where Ω = [0, π]. This setting makes the wave propagate freely from left to
right with analytic solution u(x) = eikx. The corresponding weak formula-
tion reads: find u ∈ H1(Ω) such that

(u′, v′) − k2 (u, v) − ik u(π)v(π)∗ = −ik v(0)∗, for all v ∈ H1(Ω), (2.2)

where (·, ·) is the ordinary L2(Ω) scalar product and v(x)∗ is the complex
conjugate of v(x).

3



2.1 The Galerkin Least-Squares Method

The GLS stabilization, see [6], of the weak form reads: find u ∈ H 1(Ω) such
that

(u′, v′)−k2 (u, v)+(τ Lu,Lv)Ω̃−ik u(π)v(π)∗ = −ik v(0)∗, for all v ∈ H1(Ω),
(2.3)

where τ is a complex number, L = − ∂2

∂x2 −k
2, and Ω̃ is the union of element

interiors. This method can now be discretized and we can introduce p =
1− τk2 as the new parameter. If we for the sake of simplicity only consider
the space V of piecewise linear base functions we get: find U ∈ V such that

(U ′, v′) − k2p (U, v) − ik U(π)v(π)∗ = −ik v(0)∗, for all v ∈ V . (2.4)

Here we see that the stabilization is done basically by changing the wave
number in the Galerkin method, see [6]. Next we present an a posteriori
error analysis for the piecewise linear case.

2.2 Error Representation Formula

We would like to choose p in order to minimize a given linear functional of
the error e = u− U i.e. (e, ψ), where ψ is a given function in H−1(Ω). We
begin the a posteriori analysis by presenting the dual problem: find φ such
that







−φ′′ − k2 φ = ψ in Ω,
φ′(0) = 0,

φ′(π) = −ik φ(π) ,
(2.5)

We proceed with the following calculation,

(e, ψ) = (e,−φ′′ − k2 φ) (2.6)

= (e′, φ′) − (k2 e, φ) − [eφ′∗]π0 (2.7)

= −(U ′, φ′) + (k2 U, φ) + [u′ φ∗]π0 − ik e(π)φ(π)∗ (2.8)

= (U ′′, φ− πφ) + (k2 U, φ− πφ) − (U ′, πφ) (2.9)

+ (k2U, πφ) + ik U(π)φ(π)∗ − ik φ(0)∗

= (U ′′, φ− πφ) + (k2 U, φ− πφ) + (τ k4U, πφ) (2.10)

= (k2 U, φ− πφ) + (τ k4U, πφ). (2.11)

This calculation suggests that τ = − (k2 U,φ−πφ)
(k4U,πφ)

or in terms of p,

p = 1 − τk2 =
(U, φ)

(U, πφ)
(2.12)
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would make (e, ψ) small.

Remark 2.1 We also note that if there exists a τ̂ such that (e, ψ) = 0 it

can always be written on the form τ̂ = − (k2 U,φ−πφ)
(k4U,πφ)

or p̂ = (U,φ)
(U,πφ) .

Remark 2.2 In practice φ will not be known so we have to calculate it
numerically. Since we need to subtract the interpolant we use higher order
elements for the dual problem. However this is a computationally expensive
way of getting high accuracy and should primarily be used if error control
is essential.

It is possible to proceed iteratively starting with p0 = 1 solving equation
(2.4) for Un and choosing,

pn+1 =
(Un, φ)

(Un, πφ)
for n = 0, 1, . . . . (2.13)

In section 3 we present numerical results that shows fast convergence for
this particular algorithm for nodal error control. We are going to use the
iterative algorithm described in equation (2.13) to calculate optimal values
of p on perturbated grids. In this way we can study how an optimal p
depends on the size of the perturbation δ.

2.3 Unstructured Mesh

We introduce a new parameter 0 ≤ δ < 1 which is a measure of how un-
structured the mesh is. We divide [0, π] into n subintervals in the following
way,







x0 = 0
xi = iπ

n + δi, for i = 1, . . . , n− 1,
xn = π,

where δi ∈ U([− δπ
2n ,

δπ
2n ]), see Figure 1. From this definition we note that the

interval length hi = xi−xi−1 the perturbated mesh is equal to h+ δi− δi−1.
With this notation we need to define δ0 = δn = 0. We are interested in
how the expected value and the variance of the error (e, ψ) depends on δ,
h = π/n, and k. We now see p as a stochastic parameter p̂ and use equation
(2.11) to get,

(e, ψ) = k2(U, φ − πφ) − k2(p̂− 1)(U, πφ). (2.14)

Our aim is to find p = E[p̂] such that E[(e, ψ)] = 0 for a given δ. We start
with the following Lemma.
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Figure 1: One dimensional unstructured mesh with n = 19 and δ = 0.4.

Lemma 2.1 Let z ∈ C2([0, h]) such that z(0) = z(h) = 0, ϕ0 = 1 − x
h , and

ϕ1 = x
h . Then we have,

∫ h
0 ϕ0z dx = −h2

3

∫ h
0 ϕ

2
0ϕ1z

′′ dx− h2

6

∫ h
0 ϕ0ϕ

2
1z

′′ dx,
∫ h
0 ϕ1z dx = −h2

6

∫ h
0 ϕ

2
0ϕ1z

′′ dx− h2

3

∫ h
0 ϕ0ϕ

2
1z

′′ dx.
(2.15)

Proof. We start with
∫ h
0 ϕiz dx for i = 0, 1 and integrate by part. We

use the fact that (−hϕ0)
′ = 1, (hϕ1)

′ = 1 and that the boundary term will
vanish since z(0) = z(h) = 0 to get,

∫ h
0 ϕ0z dx = h

2

∫ h
0 ϕ

2
0z

′ dx,
∫ h
0 ϕ1z dx = −h

2

∫ h
1 ϕ

2
1z

′ dx.
(2.16)

Next we proceed with the first equation in (2.16) and use that (hϕ1)
′ = 1

and integrate by parts,

∫ h

0
ϕ2

0z
′ dx = −h

∫ h

0
ϕ1

(

ϕ2
0z

′
)′
dx = 2

∫ h

0
ϕ0ϕ1z

′ dx− h

∫ h

0
ϕ1ϕ

2
0z

′′ dx.

(2.17)
Since ϕ0 + ϕ1 = 1 on [0, h] we have,

0 =

∫ h

0
(ϕ0 + ϕ1)

2z′ dx =

∫ h

0
(ϕ2

0 + 2ϕ0ϕ1 + ϕ2)z′ dx, (2.18)

inserted in equation (2.17) this yields

∫ h

0
ϕ2

0z
′ dx = −

1

2

∫ h

0
ϕ2

1z
′ dx−

h

2

∫ h

0
ϕ2

0ϕ1z
′′ dx. (2.19)

A similar calculation gives

∫ h

0
ϕ2

1z
′ dx = −

1

2

∫ h

0
ϕ2

0z
′ dx−

h

2

∫ h

0
ϕ0ϕ

2
1z

′′ dx. (2.20)

Together equation (2.19) and equation (2.20) now gives

∫ h
0 ϕ

2
0z

′ dx = −2h
3

∫ h
0 ϕ

2
0ϕ1z

′′ dx− h
3

∫ h
0 ϕ0ϕ

2
1z

′′ dx,
∫ h
0 ϕ

2
1z

′ dx = h
3

∫ h
0 ϕ

2
0ϕ1z

′′ dx+ 2h
3

∫ h
0 ϕ0ϕ

2
1z

′′ dx.
(2.21)
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Finally we combine equation (2.16) and (2.21) to prove the Lemma.

We initially need to study how the first term i equation (2.14) depends
on the stochastic parameters {δi}

n−1
i=1 .

(U, φ− πφ) =

n
∑

i=1

∫ xi

xi−1

U(φ− πφ) dx (2.22)

On each element [xi−1, xi] we assume φ ∈ C2([xi−1, xi]) and apply Lemma
2.1 with z = φ− πφ, ϕ0 = ϕi−1, ϕ1 = ϕi, and h = hi to get,

(U, φ− πφ) =
n
∑

i=1

∫ xi

xi−1

U(φ− πφ) dx (2.23)

=
n
∑

i=1

Ui−1

∫ xi

xi−1

ϕi−1(φ− πφ)(x) dx (2.24)

+

n
∑

i=1

Ui

∫ xi

xi−1

ϕi(φ− πφ)(x) dx

= −

n
∑

i=1

h2
i

6

∫ xi

xi−1

φ′′ϕi−1ϕi (U(x) + Ui−1 + Ui) dx (2.25)

= −
n
∑

i=1

h3
i

1

hi

∫ xi

xi−1

1

6
φ′′ϕi−1ϕi (U(x) + Ui−1 + Ui) dx. (2.26)

We introduce the following notation,

zi({δi}
n−1
i=1 ) = −

k2

hi

∫ xi

xi−1

1

6
φ′′ϕi−1ϕi (U(x) + Ui−1 + Ui) dx. (2.27)

With this notation equation (2.14) and equation (2.23) now gives

(e, ψ) =
n
∑

i=1

h3
i zi − (p̂− 1)

∫ π

0
k2Uπφdx. (2.28)

We now make the following simplification. We replace zi in equation
(2.28) with z̄i which is zi calculated on a structured grid i.e.

z̄i = −
k2

h

∫ ih

(i−1)h

1

6
φ′′ϕ̄i−1ϕ̄i

(

Ū(x) + Ūi−1 + Ūi
)

dx, (2.29)

where ϕ̄i are the base functions on the structured grid and Ū is the solution
on the structured grid. This means that z̄i are not stochastic variables.
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We also introduce w̄ =
∫ π
0 k2π̄φ(x)Ū (x) dx, where π̄ in the Scott-Zhang

interpolant, see [3], onto the structured grid, i.e w̄ is not stochastic.
If hk is small these approximations can be motivated by linearization in

terms of δ but the most important argument is the good agreement we get
with numerical experiments, see section 3. We define an approximation to
(e, ψ) in the following way,

ēψ =

n
∑

i=1

h3
i z̄i − (p̂− 1)w̄, (2.30)

and we choose p̂ such that ēψ = 0 i.e.

p̂ = 1 +
1

w̄

n
∑

i=1

h3
i z̄i. (2.31)

Since we want to find one parameter p that suits many meshes with a given
δ we study the expected value of p̂. To do this we need to do the following
observation,

E[p̂] = 1 +
1

w̄
E

[

n
∑

i=1

h3
i z̄i

]

(2.32)

= 1 +
1

w̄

n
∑

i=1

E[h3
i ]z̄i (2.33)

= 1 +
1

w̄

n
∑

i=1

E[(h + δi − δi−1)
3]z̄i (2.34)

= 1 +
1

w̄

n
∑

i=1

E[h3 + 3h2(δi − δi−1) + 3h(δi − δi−1)
2 + (δi − δi−1)

3]z̄i

(2.35)

= 1 +
1

w̄

n
∑

i=1

(

h3 + 3h2E[δi − δi−1]
)

z̄i (2.36)

+
1

w̄

n
∑

i=1

(

3hE[(δi − δi−1)
2] +E[(δi − δi−1)

3]
)

z̄i

= 1 +
1

w̄

n
∑

i=1

(

h3 + 3hE[(δi − δi−1)
2]
)

z̄i (2.37)

= 1 +
1

w̄

n
∑

i=1

(

h3 + 6hVar(δi)
)

z̄i (2.38)

= 1 +

∑n
i=1 hz̄i
w̄

(

h2 + 6Var(δi)
)

, (2.39)
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where we use that {δi}
n−1
i=1 are independent, E[δi] = 0, and E[δ2i ] = E[δ2i−1] =

V ar(δi). We neglect the boundary effect due to the fact that δ0 and δn are
not stochastic. If we let z̄ =

∑n
i=1 hz̄i we have

p = E[p̂] = 1 +
z̄

w̄
(h2 + 6Var(δi)) (2.40)

Remark 2.3 For the uniform distribution Var(δi) = h2δ2

12 i.e.

p = 1 +
z̄

w̄
h2

(

1 +
δ2

2

)

(2.41)

Remark 2.4 Given δ we can find p by using one for the standard methods
[5, 2] for structured meshes and then add the contribution suggested in equa-
tion (2.41). For example if we want nodal exactness in the right endpoint
x = π we can use the formula from [5] for nodal exactness on structured
mesh to find z̄/w̄.

Given a formula (2.41) to find p we would like to estimate the error (e, ψ)
in terms of h, k, and δ. We start by estimating the variance of ēψ.

Proposition 2.1 It holds

Var(ēψ) = h6

(

3

2
δ2 +

3

4
δ4 +

1

28
δ6
) n
∑

i=1

z̄2
i (2.42)

Proof. We start from equation (2.30) with p̂ chosen according to equation
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(2.32). We note that E[ēψ ] = 0 so Var(ēψ) = E[ē2ψ ],

Var(ēψ) = E[ē2ψ] (2.43)

= E





(

n
∑

i=1

h3
i z̄i − (p̂− 1)w̄

)2


 (2.44)

= E





(

n
∑

i=1

h3
i z̄i

)2


− 2E

[

n
∑

i=1

h3
i z̄i

]

E[(p̂− 1)w̄] +E[(p̂− 1)w̄]2

(2.45)

= E





(

n
∑

i=1

h3
i z̄i

)2


− 2E

[

n
∑

i=1

h3
i z̄i

]

E

[

n
∑

i=1

h3
i z̄i

]

+E

[

n
∑

i=1

h3
i z̄i

]2

(2.46)

= E





(

n
∑

i=1

h3
i z̄i

)2


−E

[

n
∑

i=1

h3
i z̄i

]2

(2.47)

=

n
∑

i=1

(

E[h6
i ] −E[h3

i ]
2
)

z̄2
i . (2.48)

We need to calculate the expected value of different powers of δi. We have
E[δ2n−1

i ] = 0 and

E[δ2ni ] =
δ2nh2n

(2n+ 1)22n
, (2.49)

for all n ∈ N. We use these result and hi = h+ δi − δi−1 to get,

Var(ēψ) =
n
∑

i=1

(

E[h6
i ] −E[h3

i ]
2
)

z̄2
i (2.50)

=

n
∑

i=1

h6

(

1 +
5

2
δ2 + δ4 +

1

28
δ6 − 1 − δ2 −

1

4
δ4
)

z̄2
i (2.51)

=

n
∑

i=1

h6

(

3

2
δ2 +

3

4
δ4 +

1

28
δ6
)

z̄2
i , (2.52)

which proves the proposition.

We need to estimate the sum in equation (2.42) in terms of h and k. For
ψ ∈ H−1(Ω) independent of h and k we have |φ| ≤ C/k for some constant
C and thereby |φ′′| ≤ Ck. The magnitude of the numeric solution U is
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independent of k so from equation (2.27) we get |z̄i| ≤ Ck3. This yields

n
∑

i=1

z̄2
i ≤

n
∑

i=1

Ck6 ≤ C
k6

h
. (2.53)

We are not interested in tracking the constants in the following theory, only
the h, k, and δ dependence. If we neglect the δ4 and δ6 terms in Proposition
2.1 and use it together with equation (2.53) we get

Var(ēψ) ≤ Ch5k6δ2. (2.54)

Since E[ēψ ] = 0 we can use the Chebyshev inequality to get a bound of |ēψ|,

P (|ēψ | > ε) ≤
Var (ēψ)

ε2
. (2.55)

By choosing ε = Dδh5/2k3 we get P
(

|ēψ| > Dδh5/2k3
)

≤ C
D hence with D

large we can make this quantity arbitrarily small i.e. there exists C inde-
pendent of δ, h, and k such that

P (|ēψ | ≤ Cδh5/2k3) > 1 − ε (2.56)

for each ε > 0.

3 Numerical Results in One Dimension

We study pointwise error control. This is done by choosing ψ as the Dirac
delta measure in a chosen node. We can actually find an analytic formula
for the dual solution in this case,

φz(x) =
eik(π−z)

ikeikπ
cos(kx) −

1

k
sin(k(x− z))I{x>z}, (3.1)

where z indicates a point mass in x = z. We note that φz(x) ∈ C2([xi−1, xi])
for i = 1, . . . , n. We proceed with a numerical simulation to verify that the
iterative algorithm described in equation (2.13) converges and gives an opti-
mal value of p. Figure 2 shows rapid convergence for the iterative algorithm
towards machine precision. Here ψ is chosen as the dirac measure in x = π
i.e. ψ = δπ.

In Figure 3 we illustrate how well equation (2.41), where z̄/w̄ is cal-
culated on a structured mesh, compares to numerical experiments of the
iterative a posteriori method, equation (2.13). For each δ, 5000 meshes
have been evaluated, by iteration until convergence, and the stars are the
mean value of these. The dashed line is the theoretical value of equation
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Figure 2: The error |u(π) − U(π)| verses number of iterations

(2.41). We see quite a good agreement between numerics and theory. Re-
member that the theoretical value is based on approximations. The variance
is proportional to the square of δ which agree with the theoretical result in
equation (2.41).

By changing h and k separately while holding δ = 0.1 we also get an
idea of how the variance of p̂ depends on these variables, see Figure 4.
In this particular case we get Var(p̂) ∼ h7.3k6.1 or Var ((e, ψ)) ∼ h7.3k8.1,
since Var((e, ψ)) ∼ k4(U, πφ)2Var(p) ∼ k2Var(p), which is even better than
Var (ēψ)) ≤ Ch5k6 that we got from theory, see equation (2.54).

Another interesting measure of the error is the mean value i.e. ψ = 1.
Letting v = 1 in (2.4) gives us, (U, 1) = i

kp(1 − U(π)). We have u = eikx so

(u, 1) = i(1−u(π))
k which makes

(e, 1) = −
i

kp
e(π) +

(p− 1)

p
(u, 1). (3.2)

Since p is close to one this calculation shows that the nodal error in π is
very closely related to the mean of the error and coincides if k = 2n, n ∈ N,
since (u, 1) = 0 in that case.

4 Two Dimensional Model Problem

In two dimensions we consider a plane wave with wave number

k = k(cos(θ), sin(θ)) (4.1)

12



0 0.05 0.1 0.15 0.2 0.25
1.034

1.0345

1.035

1.0355

δ

|E
(p

)|

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8
x 10

−4

δ

|s
td

(p
)|

Figure 3: The expected value, |E[p̂]| (above), and the standard deviation ,
|σ(p̂)| (below), verses δ.

0.5 1 1.5 2 2.5 3 3.5
−17.5

−17

−16.5

−16

−15.5

−15

−14.5

−14

−13.5

log(k)

lo
g(

V
(p

))

psi=δπ, 5 nodes per wave length, slope: −1.21

0.5 1 1.5 2 2.5 3 3.5
−30

−25

−20

−15

−10

−5

log(π/(hk))

lo
g(

V
(p

))

psi=δπ, k=2, slope: −7.29

Figure 4: log (Var(p̂)) verses log k (left) and the logarithm of the number of
nodes per wavelength (right).

13



propagating on a unit square, see Figure 5. We use a model problem from
[5] with inhomogeneous Robin boundary conditions chosen such that the
solution u is equal to eik·x: find u ∈ H1(Ω) such that

{

−4u− k2 u = 0 in Ω,
−∂nu = −ik(u− g) on Γ,

(4.2)

where Ω is a polygonal domain in Rd, d = 2, 3 with boundary Γ.

4.1 The Galerkin Least-Squares Method

The corresponding discretized GLS method reads: find U ∈ V ⊂ H 1(Ω)
such that

(∇U,∇v)−k2 (U, v)+ (τ LU,Lv)Ω̃ − ik(U, v)Γ = −ik(g, v)Γ, for all v ∈ V ,
(4.3)

where (·, ·)Γ is the L2(Γ) scalar product, L = −4 − k2 and V is the finite
element space of piecewise polynomials of degree p. Again we want to find
a criteria for choosing τ that minimizes a given linear functional of the
error. We proceed as in the one dimensional case starting with the error
representation formula.

4.2 Error Representation Formula

The corresponding dual problem reads: find φ such that
{

−4φ− k2 φ = ψΩ in Ω,
−∂nφ = ik(φ− ψΓ) on Γ,

(4.4)

where ψΩ ∈ H−1(Ω) and ψΓ ∈ H1/2(Γ), see [1] for a definition of these
spaces. To the right in Figure 5 we have the dual solution calculated for ψ
as a point mass in (0.5, 0.5). In this setting we consider two types of linear
functionals of the error at the same time, namely (e, ψΩ) and (e, ψΓ)Γ. The
a posteriori analysis gives,

(e, ψΩ) − ik(e, ψΓ)Γ = (∇e,∇φ) − (k2e, φ) + (e, ikφ)Γ (4.5)

= (∂nu, φ)Γ − (∇U,∇φ) + (k2U, φ) + (e, ik φ)Γ (4.6)

= (ik(U − g), φ)Γ − (∇U,∇φ− πφ) + (k2U, φ− πφ)
(4.7)

− (∇U,∇πφ) + (k2 U, πφ)

= (4U + k2 U, φ− πφ) − (∂nU − ik(U − g), φ − πφ)Γ
(4.8)

+ (τLU,Lπφ)Ω̃,
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Figure 5: Real part of the solution to the primal problem with θ = π/4 and
to the dual problem with ψΩ = δ[.5,.5]

where the first scalar product in the last row is defined in the following way,

(4U, v) =
∑

K∈K

∫

K
4U v dx−

∑

K∈K

∫

∂K\Γ

∂U

∂nK
v ds, for all v ∈ H1(Ω),

(4.9)
where K refers to elements in the mesh with boundary ∂K and K = {K} is
the set of elements in the mesh. We get the following error representation
formula,

(e, ψΩ) − ik(e, ψΓ)Γ = (−LU, φ− πφ) (4.10)

+ (−∂nU + ik(U − g), φ − πφ)Γ + (τLU,Lπφ)Ω̃.

We derive a method for choosing τ by letting (4.10) be equal to zero,

τ = −
(4U + k2 U, φ− πφ) − (∂nU − ik(U − g), φ− πφ)Γ

(LU,Lπφ)Ω̃
(4.11)

We define (RΩ, v) = (4U + k2 U, v), for all v ∈ H1(Ω), and (RΓ, v)Γ =
(∂nU + ik(U − g), v)Γ, for all v ∈ H1(Γ), as domain and boundary residual.

Again we end up with a strategy for choosing τ . As in the one-dimensional
case this approach is independent of the structure of the mesh. We consider
plane waves sent in different angles over the unit square. The one dimen-
sional analysis suggests that there exists a parameter that gives us a good
approximation if δ as a function of θ is close to constant. This is the case on
a totally unstructured mesh but can never be the case for a structured mesh.
This implies that we only need to optimize for one angle θ by the method
described in equation (4.11) to get a good approximation for all angles. The
reason for this is that a totally unstructured is much more isotropic than a
structured mesh (if the domain is large enough).
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Figure 6: Delaunay triangulations with various δ.

5 Numerical Results in Two Dimensions

We study problems on two different geometries.

Example 1. First we study a plane wave on the unit square. We use the
same setting as in [5] i.e. Robin type boundary conditions that approxi-
mately makes the wave propagate freely over the boundaries. Since we are
interested in calculating a correction for unstructured meshes and also how
this correction compares to earlier work on structured grids we start with
a regular mesh constructed by the Delaunay algorithm on a two dimen-
sional lattice. Then we add small perturbations to the interior nodes and
proceed with another Delaunay triangulation, see Figure 6. We introduce a
parameter δ in analogy with the one dimensional case that measure how un-
structured the mesh is. Now the perturbation of the interior nodes are done
both in x and y direction so δ has two entries (δx, δy). Below δx = δy = δ
if nothing else is mentioned. On these meshes we calculate an optimal p for
error control on the outflow boundary Γo when the wave propagates in the
x-direction i.e. θ = 0. This means that Γo = {(x, y) : x = 1, 0 ≤ y ≤ 1}.
In equation (4.10) this is achieved by letting ψΩ = 0 and ψΓ = IΓo

to get φ
and then using equation (4.11). To get small error i.e. find the optimal p
we repeat this process iteratively in analogy with equation (2.13) until the
error is about one millionth of the Galerkin error.

In Figure 7 we see how p depends on δ. It is slowly increasing for small δ
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unstructured meshes.

except a jump between δ = 0 and δ = 0.05 depending on the big structural
change in the grid. For δ = 0 we have a regular mesh and for δ = 0.05 we
get an approximate union jack shape. For bigger δ we see that p increases
in the same way as in the the one dimensional case. The dashed lines are
from a classic GLS-method optimized for the regular mesh, δ = 0 in Figure
6, and the standard Galerkin method, p = 1. In this example k = 20.

The similarities with the one dimensional result does not come as a sur-
prise. Since the dual solution is independent of y in this particular example
we can use equation (4.11) to proceed with the following heuristic calcula-
tion,

−τ(LU,Lπφ)Ω̃ = (RΩ, φ− πφ) + (RΓ, φ− πφ)Γ (5.1)

=

∫ 1

0

∫ 1

0
RΩ(φ− πφ) dy dx (5.2)

+

∫

{x∈[0,1], y=0}
RΓ(φ− πφ) dx

−

∫

{x∈[0,1], y=1}
RΓ(φ− πφ) dx

≈

∫ 1

0
(φ− πφ)

∫ 1

0
RΩ dy dx+

∫ 1

0
C(x)(φ− πφ) dx (5.3)

=

∫ 1

0
D(x)(φ − πφ) dx. (5.4)
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δ = 0.3 and kh is hold constant.

Using the one dimensional result in equation (2.41) and that (LU,Lπφ)Ω̃
should not depend heavily on δ we get that τ ∼ h2+CVar(δx) ∼ h2(1+Cδ2x).
The additional assumption we need to do in this case is that also πφ is almost
constant in the y direction.

We note one difference that actually suggests better results in the two
dimensional case when the error is integrated over the outflow boundary.
Instead of having essentially e =

∫

Rφdx, where R is the residual, we get in
two dimensions e =

∫

(
∫

Rdy)φdx i.e. an integral over the residual in the
y-direction. This would decrees the variance of the error and therefore also
the error bound by the Chebyshev inequality in equation (2.54).

Numerical results confirms this. We let δ and hk be constant and k to
be free. The variance of ik(e, IΓo

)Γ is computed for 100 different meshes in
Figure 8. As seen to the left in Figure 8 Var(p) ∼ (hk)αk−2 for some α. With
a similar calculation as in the one dimensional case we get Var (ik(e, IΓo

)Γ) =
k4(U, πφ)2Var(p) and since (U, πφ) ∼ 1 we get Var ((e, IΓo

)Γ) ∼ k2Var(p) ∼
(hk)α. We see this in the right plot in Figure 8 where we plot Var (ik(e,Γo

)Γ)
verses k while holding hk constant. To determine α we perform another test
where we vary h while holding k constant. The result is presented in Figure
9. We see that α is approximately equal to 10 i.e. as we suspected we gain
one h compared to the one dimensional case,

Var ((e, IΓo
)Γ) ∼ (hk)10, (5.5)

and from the Chebyshev inequality we get from these numerical tests

P (|(e, IΓo
)Γ| ≤ C(hk)5) ≥ 1 − ε (5.6)
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for ε > 0 i.e. we have no pollution effect for error control in this specific
norm on meshes with constant δ.

The variance of the error can also measure the angle depends in the
method. With this result we would not expect worse angle dependence
when k increases and hk is hold constant which is a very nice result.

Example 2. Finally we consider a bit more complicated problem where
we simulate waves travelling through a slit of width εy and thickness εx. The
domain is a rectangle of length π/2 and hight π/4 with two εx wide walls
in the middle only leaving a gap of εy between them. The wave number is
set to 20 so we expect five full waves in the centre of the domain y = π/8.
The real part of the solution of the primal and dual are presented in Figure
10 and Figure 11. The dual solution is calculated for nodal error control
in (x, y) = (π/2, π/8). The wave plane propagates towards the slit and
creates approximately a point source at the slit. We get the characteristic
circular waves as when rocks falls into the sea continuously in one point. The
amplitude decreases as the wave propagates away from the slit in the same
way as the dual solution decays from the point mass in (x, y) = (π/2, π/8).

6 Conclusion

We have discussed how and when standard methods for solving the pollution
problem on structured grids needs to be modified to suit unstructured grids.
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Figure 10: Real part of the solution using our method to determine τ .
εx = 0.03 and εy = 0.1.
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Figure 11: Real part of the dual solution for error control in (x, y) =
(π/2, π/8).
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The analysis is based on a posteriori error estimates of model problems in
one and two dimensions. We present numerical simulations that confirms
our theoretical results on both one and two dimensions.
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Adaptive Variational Multiscale Methods

Based on A Posteriori Error Estimation
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Abstract

The variational multiscale method (VMM) provides a general frame-
work for construction of multiscale finite element methods. In this pa-
per we propose a method for parallel solution of the fine scale problem
based on localized Dirichlet problems which are solved numerically.
Next we present a posteriori error estimates for VMM which relates
the error in linear functionals and the energy norm to the discretiza-
tion errors, resolution and size of patches in the localized problems, in
the fine scale approximation. Based on the a posteriori error estimates
we propose an adaptive VMM with automatic tuning of the critical
parameters. We primary study elliptic second order partial differential
equations with highly oscillating coefficients or localized singularities.

1 Introduction

Many problems in science and engineering involve models of physical systems
on many scales. For instance, models of materials with microstructure such
as composites and flow in porous media. In such problems it is in general
not feasible to seek for a numerical solution which resolves all scales. Instead
we may seek to develop algorithms based on a suitable combination a global
problem capturing the main features of the solution and localized problems
which resolves the fine scales. Since the fine scale problems are localized the
computation on the fine scales is parallel in nature.
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†Graduate Research Assistant, Department of Mathematics, Chalmers University of
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Previous work. The Variational Multiscale Method (VMM) is a general
framework for derivation of basic multiscale method in a variational context,
see Hughes [8] and [10]. The basic idea is to decompose the solution into
fine and coarse scale contributions, solve the fine scale equation in terms of
the residual of the coarse scale solution, and finally eliminate the fine scale
solution from the coarse scale equation. This procedure leads to a modified
coarse scale equation where the modification accounts for the effect of fine
scale behavior on the coarse scales. In practice it is necessary to approxi-
mate the fine scale equation to make the method realistic. In several works
various ways of analytical modeling are investigated often based on bubbles
or element Green’s functions, see Oberai and Pinsky, [11] and Arbogast [1].
In [7] Hou and Wu present a different approach. Here the fine scale equa-
tions are solved numerically on a finer mesh. The fine scale equations are
solved inside coarse elements and are thus totally decoupled.

New contributions. In this work we present a simple technique for nu-
merical approximation of the fine scale equation in the variational multiscale
method. The basic idea is to split the fine scale residual into localized con-
tributions using a partition of unity and solving corresponding decoupled
localized problems on patches with homogeneous Dirichlet boundary condi-
tions. The fine scale solution is approximated by the sum Uf =

∑

i Uf,i of
the solutions Uf,i to the localized problems. The accuracy of Uf depends on
the fine scale mesh size h and the size of the patches. We note that the fine
scale computation is naturally parallel.

To optimize performance we seek to construct an adaptive algorithm for
automatic control of the coarse mesh size H, the fine mesh size h, and the
size of patches. Our algorithm is based on the following a posteriori estimate
of the error e = u − Uc − Uf in the energy norm for the Poisson equation
with variable coefficients a:

‖e‖a ≤ C
∑

i∈C

‖HR(Uc)‖ωi
‖ 1√

a
‖L∞(ωi) (1.1)

+ C
∑

i∈F

(

‖
√
HΣ(Uf,i)‖∂ωi

+ ‖hRi(Uf,i)‖ωi

)

‖ 1√
a
‖L∞(ωi),

where

(−Σ(Uf,i), vf )∂ωi
= (f+∇·a∇Uc, ϕivf )ωi

−a(Uf,i, vf )ωi
, for all vf ∈ V h

f (ω̄i),
(1.2)

C refers to nodes where no local problems have been solved, F to nodes where
local problems are solved, Uc is the coarse scale solution, U = Uc+Uf , R(U)
is a computable bound of the residual f + ∇ · a∇U , Ri(Uf,i) is a bound of
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the fine scale residual ϕi(f +∇·a∇Uc)+∇·a∇Uf,i, Σ(Uf,i) is related to the
normal derivative of the fine scale solution Uf,i and measures the effect of
restriction to patches. If no fine scale equations are solved we obtain the first
term in the estimate; the first part of the second sum measures the effect of
restriction to patches; and finally the second part measures the influence of
the fine scale mesh parameter h.

In addition to the energy norm error estimate we also derive error repre-
sentation formulas for errors in linear functionals of the computed solution
using duality techniques. The framework is fairly general and may be ex-
tended to other types of multiscale methods, for instance, based on localized
Neumann problems.

Outline. In Section 2 we introduce the model problem and the variational
multiscale formulation of this problem we also discuss the split of the coarse
and fine scale spaces. In Section 3 we present a posteriori estimates of
the error leading to Section 4 where we present an adaptive algorithm. In
section Section 5 we present numerical results and finally Section 6 consists
of concluding remarks and suggestions on future work.

2 The Variational Multiscale Method

2.1 Model Problem

We study the Poisson equation with a highly oscillating coefficient a and
homogeneous Dirichlet boundary conditions: find u ∈ H 1

0 (Ω) such that

−∇ · a∇u = f in Ω, (2.1)

where Ω is a polygonal domain in Rd, d = 1, 2, or 3 with boundary Γ,
f ∈ H−1(Ω), and a ∈ L∞(Ω) such that a(x) ≥ α0 > 0 for all x ∈ Ω. The
variational form of (2.1) reads: find u ∈ V = H1

0 (Ω) such that

a(u, v) = (f, v) for all v ∈ V , (2.2)

with the bilinear form

a(u, v) = (a∇u,∇v) (2.3)

for all u, v ∈ V.

2.2 The Variational Multiscale Method

We employ the variational multiscale scale formulation, proposed by Hughes
see [8, 10] for an overview, and introduce a coarse and a fine scale in the
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problem. We choose two spaces Vc ⊂ V and Vf ⊂ V such that

V = Vc ⊕ Vf . (2.4)

Then we may pose (2.2) in the following way: find uc ∈ Vc and uf ∈ Vf such
that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,

a(uc, vf ) + a(uf , vf ) = (f, vf ) for all vf ∈ Vf .
(2.5)

Introducing the residual R : V → V ′ defined by

(R(v), w) = (f, w) − a(v, w) for all w ∈ V, (2.6)

the fine scale equation takes the form: find uf ∈ Vf such that

(f, vf ) − a(uf , vf ) = (R(uc), vf ) for all vf ∈ Vf . (2.7)

Thus the fine scale solution is driven by the residual of the coarse scale
solution. Denoting the solution uf to (2.7) by uf = TR(uc) we get the
modified coarse scale problem

a(uc, vc) + a(TR(uc), vc) = (f, vc) for all vc ∈ Vc. (2.8)

Here the second term on the left hand side accounts for the effects of fine
scales on the coarse scales.

2.3 A VMM Based on Localized Dirichlet Problems

We introduce a partition K = {K} of the domain Ω into shape regular
elements K of diameter HK and we let N be the set of nodes. Further we
let Vc be the space of continuous piecewise polynomials of degree p defined
on K.

We shall now construct an algorithm which approximates the fine scale
equation by a set of decoupled localized problems. We begin by writing
uf =

∑

i∈N uf,i where

a(uf,i, vf ) = (ϕiR(uc), vf ) for all vf ∈ Vf , (2.9)

and {ϕi}i∈N is the set of Lagrange basis functions in Vc. Note that {ϕi}i∈N

is a partition of unity with support on the elements sharing the node i. We
call the set of elements with one corner in node i a mesh star in node i and
denote it Si

1. Thus functions uf,i correspond to the fine scale effects created
by the localized residuals ϕiR(uc). Introducing this expansion of uf in the
right hand side of the fine scale equation (2.5) and get: find uc ∈ Vc and
uf =

∑

i∈N uf,i ∈ Vf such that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,

a(uf,i, vf ) = (ϕiR(uc), vf ) for all vf ∈ Vf and i ∈ N .
(2.10)
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We use this fact to construct a finite element method for solving (2.10)
approximately in two steps.

• For each coarse node we define a patch ωi such that supp(ϕi) ⊂ ωi ⊂ Ω.
We denote the boundary of ωi by ∂ωi.

• On these patches we define piecewise polynomial spaces Vh
f (ωi) with

respect to a fine mesh with mesh function h = h(x) defined as a
piecewise constant function on the fine mesh. Functions in Vh

f (ωi) are
equal to zero on ∂ωi.

The resulting method reads: find Uc ∈ Vc and Uf =
∑n

i Uf,i where Uf,i ∈
Vh

f (ωi) such that

a(Uc, vc) + a(Uf , vc) = (f, vc) for all vc ∈ Vc,

a(Uf,i, vf ) = (ϕiR(Uc), vf ) for all vf ∈ Vh
f (ωi) and i ∈ N .

(2.11)

Since the functions in the local finite element spaces Vh
f (ωi) are equal to zero

on ∂ωi, Uf and therefore U will be continuous.

Remark 2.1 For problems with multiscale phenomena on a part of the do-
main it is not necessary to solve local problems for all coarse nodes. We let
C ⊂ N refer to nodes where no local problems are solved and F ⊂ N refer
to nodes where local problems are solved. Obviously C ∪ F = N . We let
Uf,i = 0 for i ∈ C.

Remark 2.2 The choice of the subdomains ωi is crucial for the method. We
introduce a notation for extended stars of many layers of coarse elements
recursively in the following way. The extended mesh star S i

L = ∪j∈Si

L−1

S
j
1

for L > 1. We refer to L as layers, see Figure 1.

2.4 Subspaces

The choice of the fine scale space Vf can be done in different ways. In a
paper by Aksoylu and Holst [4] three suggestions are made.

Hierarchical basis method. The first and perhaps easiest approach is
to let Vf = {v ∈ V : v(xj) = 0, j = N}, where {xi}i∈N are the coarse mesh
nodes. When Vf is discritized by the standard piecewise polynomials on the
fine mesh this means that the fine scale base functions will have support on
fine scale stars.
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Figure 1: Two (left) and one (right) layer stars.

BPX preconditioner. The second approach is to let Vf be L2(Ω) or-
thogonal to Vc. In this case we will have global support for the fine scale
base functions but for the discretized space we have rapid decay outside fine
mesh stars.

Wavelet modified hierarchical basis method. The third choice is a
mix of the other two. The fine scale space Vf is defined as an approximate
L2(Ω) orthogonal version of the Hierarchical basis method. We let Qa

cv ∈ Vc

be an approximate solution (a small number of Jacobi iterations) to

(Qa
cv, w) = (v, w), for all w ∈ Vc. (2.12)

and define the Wavelet modified hierarchical basis function associated with
the hierarchical basis function ϕHB to be,

ϕWHB = (I −Qa
c )ϕHB , (2.13)

see Figure 2.
For an extended description of these methods see [3, 4, 2]. In this paper

we focus on the WHB method.

3 A Posteriori Error Estimates

3.1 The Dual Problem

To derive a posteriori error estimates of the error in a given linear functional
(e, ψ) with e = u − U and ψ ∈ H−1(Ω) a given weight. We introduce the
following dual problem: find φ ∈ V such that

a(v, φ) = (v, ψ) for all v ∈ V. (3.1)
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Figure 2: HB-function and WHB-function with two Jacobi iterations.

In the VMM setting this yields: find φc ∈ Vc and φf ∈ Vf such that

a(vc, φc) + a(vc, φf ) = (vc, ψ), for all vc ∈ Vc,

a(vf , φf ) + a(vf , φc) = (vf,ψ), for all vf ∈ Vf .
(3.2)

3.2 Error Representation Formula

We now derive an error representation formula involving both the coarse
scale error ec = uc−Uc and the fine scale error ef =

∑

i∈N ef,i :=
∑

i∈N (uf,i−
Uf,i) that arises from using our finite element method (2.11).

We use the dual problem (3.2) to derive an a posteriori error estimate
for a linear functional of the error e = ec + ef . If we subtract the coarse
part of equation (2.11) from the coarse part of equation (2.10) we get the
Galerkin orthogonality,

a(ec, vc) + a(ef , vc) = 0 for all vc ∈ Vc. (3.3)

The same argument on the fine scale equation gives for i ∈ F ,

a(ef,i, vf ) = (f, ϕivf ) − a(ec, ϕivf ), for all vf ∈ Vh
f (ωi). (3.4)

We are now ready to state the an error representation formula.

Theorem 3.1 If ψ ∈ H−1(Ω) then,

(e, ψ) =
∑

i∈C

(ϕiR(U), φf )+
∑

i∈F

(

(ϕiR(Uc), φf − vh
f,i)ωi

− a(Uf,i, φ
h
f − vh

f,i)ωi

)

(3.5)
for all vh

f,i ∈ Vh
f (ωi) and i ∈ F .

Proof. Starting from the definition of the dual problem and letting v = e =
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u− Uc − Uf we get

(e, ψ) = a(e, φ) (3.6)

= a(e, φf ) (3.7)

= a(u− Uc, φf ) − a(Uf , φf ) (3.8)

= (R(Uc), φf ) − a(Uf , φf ) (3.9)

= (R(Uc), φf ) −
∑

i∈F

a(Uf,i, φf ) (3.10)

=
∑

i∈C

(ϕiR(Uc), φf ) (3.11)

+
∑

i∈F

(ϕiR(Uc), φf ) − a(Uf,i, φf ). (3.12)

Since equation (2.11) holds we can subtract functions vh
f,i ∈ Vh

f (ωi) where
i ∈ F from equation (3.12). We end up with

(e, ψ) =
∑

i∈C

(ϕiR(Uc), φf )+
∑

i∈F

(ϕiR(Uc), φf−vh
f,i)−a(Uf,i, φf−vh

f,i), (3.13)

which proves the theorem.

For example we can choose vh
f = πhφf , where πhφf is the Scott-Zhang

interpolant of φf onto Vh
f (ωi).

Remark 3.1 In practice the dual problem has to be solved numerically and
the solution has to be in a finer space then the primal solution. To achieve
this we can increase the number of layers when solving the dual problem.

3.3 Energy Norm Estimate

Next we introduce a notation for a bound of the residual. Let R(U) be a
bound of the residual defined in the following way, see [6]:

R(U) = |f + ∇ · a∇U | + 1

2
max
∂K\Γ

h−1
K |[a∂nU ]| on K ∈ K, (3.14)

where K is the set of elements in the mesh and [·] is the difference in
function value over the current interior edge. We note that |(R(U), v)| ≤
‖hsR(U)‖‖h−sv‖ for s ∈ R. We define Ri(Uf,i) in the same way as R(U)
on the local mesh but with U replaced by Uf,i and f replaced by ϕiR(Uc).

We also define a new space on the patches. Let V h
f (ω̄i) be the space

of piecewise polynomials of degree p on ωi. This space is identic to V h
f (ωi)
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with the difference that V h
f (ω̄i) is not necessarily zero on the boundary ∂ωi.

This means that V h
f (ωi) ⊂ V h

f (ω̄i).

We now state the following estimate for the error in the energy norm,
‖e‖a = a(e, e)1/2.

Theorem 3.2 It holds,

‖e‖a ≤ C
∑

i∈C

‖HR(Uc)‖ωi
‖ 1√

a
‖L∞(ωi) (3.15)

+ C
∑

i∈F

(

‖
√
HΣ(Uf,i)‖∂ωi

+ ‖hRi(Uf,i)‖ωi

)

‖ 1√
a
‖L∞(ωi),

where

(−Σ(Uf,i), vf )∂ωi
= (ϕiR(Uc), vf )ωi

− a(Uf,i, vf )ωi
, for all vf ∈ V h

f (ω̄i).
(3.16)

Proof. We start with similar arguments as in the proof of Theorem 3.1.
We use the error equation (3.3) with vc as the Scott-Zhang interpolant πce

onto the coarse space Vc, see [5], to get,

‖e‖2
a = a(e, e) (3.17)

= a(e, e − πce) (3.18)

= a(u− Uc, e− πce) − a(Uf , e− πce) (3.19)

= (R(Uc), e− πce) − a(Uf , e− πce) (3.20)

=
∑

i∈C

(ϕiR(Uc), e− πce) (3.21)

+
∑

i∈F

(ϕiR(Uc), e − πce) − a(Uf,i, e− πce)

=
∑

i∈C

(ϕiR(Uc), e− πce) (3.22)

+
∑

i∈F

(ϕiR(Uc), πf,i(e− πce)) − a(Uf,i, πf,i(e− πce))

+
∑

i∈F

(ϕiR(Uc), e − πce− πf,i(e− πce))

−
∑

i∈F

a(Uf,i, e− πce− πf,i(e− πce))

= I + II + III (3.23)
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where πf,i is the Scott-Zhang interpolant onto Vf (ωi). We start by esti-
mating the first term of equation (3.23), I. From interpolation theory [5] we
have,

∑

i∈C

(ϕiR(Uc), e− πce) ≤
∑

i∈C

‖ϕiR(Uc)‖ωi
‖e− πce‖ωi

(3.24)

≤ C
∑

i∈C

‖HR(Uc)‖ωi
‖∇e‖ωi

. (3.25)

Next we turn our attention to the second term of equation (3.23), II. We in-
troduce Σ(Uf,i) which the piecewise polynomial defined on ∂ωi that uniquely
solves,

(−Σ(Uf,i), vf )∂ωi
= (R(Uc), ϕivf )ωi

− a(Uf,i, vf )ωi
, for all vf ∈ V h

f (ω̄i).
(3.26)

With this definition we get the following estimate for the second term,

II =
∑

i∈F

(−Σ(Uf,i), πf,i(e− πce))∂ωi
(3.27)

≤
∑

i∈F

‖
√
HΣ(Uf,i)‖∂ωi

‖ 1√
H
πf,i(e− πce)‖∂ωi

. (3.28)

We use the the following trace inequality from [5],

‖πf,i(e− πce)‖2
∂ωi

≤ C

(

1

H
‖πf,i(e− πce)‖2

ωi
+H‖∇πf,i(e− πce)‖2

ωi

)

.

(3.29)

Next we use that the Scott-Zhang interpolant is both L2 and H1 stable from
[5] to get,

‖πf,i(e− πce)‖2
∂ωi

≤ C

(

1

H
‖e− πce‖2

ωi
+H‖∇(e− πce)‖2

ωi

)

(3.30)

≤ CH‖∇e‖2
ωi
. (3.31)

We conclude
II ≤ C

∑

i∈F

‖
√
HΣ(Uf,i)‖∂ωi

‖∇e‖ωi
. (3.32)

We now take on the third term in equation (3.23),
∑

i∈F (ϕiR(Uc), e−πce−
πf,i(e− πce)) − a(Uf,i, e− πce− πf,i(e− πce)),

III ≤ C
∑

i∈F

‖hRi(Uf,i)‖ωi
‖∇(e− πce)‖ωi

(3.33)

≤ C
∑

i∈F

‖hRi(Uf,i)‖ωi
‖∇e‖ωi

. (3.34)
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We need to do the following simple observation,

‖∇e‖ωi
≤ ‖ 1√

a
‖L∞(ωi)‖

√
a∇e‖ωi

, (3.35)

by Hölder’s inequality. We go back to equation (3.17) and use the estimates
of the three terms together with equation (3.35)

‖e‖2
a ≤

∑

i∈C

(ϕiR(Uc), e− πce) (3.36)

+
∑

i∈F

(ϕiR(Uc), πf,i(e− πce)) − a(Uf,i, πf,i(e− πce))

+
∑

i∈F

(ϕiR(Uc), e − πce− πf,i(e− πce))

−
∑

i∈F

a(Uf,i, e− πce− πf,i(e− πce))

≤ C
∑

i∈C

‖HR(Uc)‖ωi
‖∇e‖ωi

(3.37)

+ C
∑

i∈F

‖
√
HΣ(Uf,i)‖∂ωi

‖∇e‖ωi

+ C
∑

i∈F

‖hRi(Uf,i)‖ωi
‖∇e‖ωi

≤ C

(

∑

i∈C

‖HR(Uc)‖ωi
‖ 1√

a
‖L∞(ωi)

)

‖e‖a (3.38)

+ C

(

∑

i∈F

‖
√
HΣ(Uf,i)‖∂ωi

‖ 1√
a
‖L∞(ωi)

)

‖e‖a

+ C

(

∑

i∈F

‖hRi(Uf,i)‖ωi
‖ 1√

a
‖L∞(ωi)

)

‖e‖a

Finally we get

‖e‖a ≤ C
∑

i∈C

‖HR(Uc)‖ωi
‖ 1√

a
‖L∞(ωi) (3.39)

+ C
∑

i∈F

(

‖
√
HΣ(Uf,i)‖∂ωi

+ ‖hRi(Uf,i)‖ωi

)

‖ 1√
a
‖L∞(ωi),

which proves the theorem.
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Remark 3.2 We need to motivate the definition of Σ(Uf,i):

(−Σ(Uf,i), vf )∂ωi
= (ϕiR(Uc), vf )ωi

−(a∇Uf,i,∇vf )ωi
, for all vf ∈ V h

f (ω̄i),
(3.40)

in equation (3.16). The function Σ(Uf,i) is a piecewise polynomial defined
on the boundary of patch ωi. Remember that

(ϕiR(Uc), vf )ωi
− (a∇Uf,i,∇vf )ωi

= 0, for all vf ∈ V h
f (ω̄i), (3.41)

This means that have the same number of unknowns and equations and in
practice calculating Σ(Uf,i) will come down to solving a linear system with a
mass matrix defined on the boundary of the patch. There is a close connec-
tion between Σ(Uf,i) and n ·a∇Uf,i in fact Σ(Uf,i) is the L2(∂ωi) projection
of n · a∇Uf,i. This is further discussed in [9].

3.4 Application to A Posteriori Error Estimates for the Stan-

dard Galerkin Method

We use the variational mutiscale method on a dual problem to estimate the
error of the standard Galerkin solution on the coarse mesh: find U ∈ Vc

such that

a(U, v) = (f, v), for all v ∈ Vc. (3.42)

The corresponding discrete variational multiscale method for the dual reads:
find Φc ∈ Vc and Φf =

∑

i∈N Φf,i where Φf,i ∈ Vh
f (ωi) such that

a(vc,Φc) + a(vc,Φf ) = (vc, ψ) for all vc ∈ Vc,

a(vf ,Φf,i) = (ϕivf , ψ) − a(ϕivf ,Φc) for all vf ∈ Vh
f (ωi).

(3.43)

Since we have a(u, v) = (f, v) for all v ∈ Vc we can subtract equation
(3.42) from this equation to get the Galerkin orthogonality,

a(u− U, v) = 0, for all v ∈ Vc. (3.44)

We formulate an error representation formula for the standard Galerkin
method in the following proposition.

Proposition 3.1 It holds

(u− U,ψ) =
∑

i∈N

(R(U),Φf,i) + (R(U), φf − Φf ). (3.45)

12



Proof. Together equation (3.44) and equation (3.2) gives

(u− U,ψ) = a(u, φc + φf ) − a(U, φc + φf ) (3.46)

= (f, φc + φf ) − a(U, φc + φf ) (3.47)

= (R(U), φf ) (3.48)

Finally we add and subtract the Φf term.

If we can get a bound of φf −Φf in terms of the fine mesh parameter h
and the size of the subdomains ωi, the computable terms (R(U),Φf,i) will
serve as local error estimators that points out elements where the fine scale
influence is significant. This is done in the following theorem

Theorem 3.3 It holds,

|(R(U), φf − Φf )| ≤ Ca‖HR(U)‖
∑

i∈N

‖
√
HΣ(Φf,i)‖∂ωi

‖ 1√
a
‖L∞(ωi) (3.49)

+Ca‖HR(U)‖
∑

i∈N

‖hRi(Φf,i)‖ωi
‖ 1√

a
‖L∞(ωi),

where

(Σ(Φf,i), vf )∂ωi
= a(Φf,i, vf )ωi

− (ψ + ∇ · a∇Φc, vf )ωi
, for all vf ∈ V h

f (ω̄i),
(3.50)

and Ri(Φf,i) is defined in analogy with with the earlier definition for Ri(Uf,i).

Proof. We start with the rest term of equation (3.45),

|(R(U), φf − Φf )| = |a(e, φf − Φf )| (3.51)

≤ ‖e‖a ‖φf − Φf‖a (3.52)

≤ ‖e‖a ‖φ− (Φc + Φf )‖a. (3.53)

From standard a posteriori theory we know that ‖e‖a ≤ Ca‖HR(U)‖, for
some constant Ca depending on a, and from Theorem 3.2 with f = ψ, u = φ,
Uc = Φc, Uf = Φf , C = ∅, and Uf,i = Φf,i we have,

‖φ− (Φc + Φf )‖a ≤ C
∑

i∈N

‖
√
HΣ(Φf,i)‖∂ωi

‖ 1√
a
‖L∞(ωi) (3.54)

+ C
∑

i∈N

‖hRi(Φf,i)‖ωi
‖ 1√

a
‖L∞(ωi),

with Σ(Φf,i) defined as in equation (3.50). The theorem follows immediately
by combining equation (3.53) and equation (3.54).
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4 Adaptive Algorithm

We use the energy norm estimate in Theorem 3.2 to construct an adaptive
algorithm. We remember the result,

‖e‖a ≤ C
∑

i∈C

‖HR(Uc)‖ωi
‖ 1√

a
‖L∞(ωi) (4.1)

+ C
∑

i∈F

(

‖
√
HΣ(Uf,i)‖∂ωi

+ ‖hRi(Uf,i)‖ωi

)

‖ 1√
a
‖L∞(ωi),

These contributions to the error can easily be understood. The first term is
the standard a posteriori estimate for a Galerkin solution on the coarse mesh
i.e. this is what we get if we do not solve any local problems. The first part
of the second sum represents the error arising from the fact that we solve the
local problems on patches ωi instead of the whole domain. Remember that
Σ(Uf,i) is closely related to the normal derivative of the fine scale solution
on the boundary of the patches. Finally, the second part of the second sum
represents the fine scale resolution. The two contributions to the second sum
clearly points out the parameters of interest when using our method. The
first one is the patch size, increasing patch size will decrease ‖

√
HΣi‖∂ωi

,
the second one is the fine scale mesh size h.

From equation (4.1) we now state the following adaptive algorithm:

Adaptive Algorithm.

• Start with no nodes in F .

• Calculate a solution U on the coarse mesh.

• Calculate the residuals for each coarse node, Ri = ‖HR(Uc)‖ωi
.

• Calculate the contributions from the first term of the local problems,
Si = ‖

√
HΣi‖∂ωi

.

• Calculate the contributions from the second term of the local problems,
Wi = ‖hRi(Uf,i)‖ωi

.

• For large values in Ri add i to F , for large values in Si or Wi either
increase the number of layers or decrease the fine scale mesh size h for
local problem i. Return to 2 or stop if the desired tolerance is reached.

5 Numerical Examples

We solve two dimensional model problems with linear base functions defined
on a uniform triangular mesh.
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Figure 3: Unit square with a slit between (0.5, 0.5) and (1, 0.5).

Example 1. In the first example we let a = 1, f = 1, and Ω be the unit
square with a slit, see Figure 5. The solution u is forced to be zero on the
boundary including the slit. We solve the problem by using the adaptive
algorithm above with a refinement level of 10 % each iteration. Figure 5
shown the adaptive choice of refinement level k, where h = H · 2−k, and
number of layers L for the local problems after one and two iterations. We
plot the difference between our solution and a reference solution in Figure
5. We see that the Galerkin solution has a large error in the singularity and
that we can take care of this singularity by solving local problems chosen in
an adaptive fashion.

Example 2. In this example we use a simple geometry, the unit square,
but we let the coefficient a oscillate rapidly according to Figure 5. We cal-
culate a reference solution on the fine space and compare it to the standard
Galerkin on the coarse mesh with and without solving local problems. We
see that standard Galerkin on a coarse mesh performs badly for this prob-
lem, Figure 5. Solving local problems using one layer stars give the solution
the correct magnitude and if we use two layers we see that the fine scale fea-
tures of the solution starts to fall into place. In this example no adaptivity
was used. Local problems was solved for all coarse nodes.

6 Conclusions and Future Work

We have presented a method for parallel solution of the fine scale equations
in the variational multiscale method based on solution of localized Dirichlet
problems on patches and developed an a posteriori error analysis for the
method. Based on the estimates we design a basic adaptive algorithm for
automatic tuning of the critical parameters: resolution and size of patches
in the fine scale problems. It is also possible to decide wether a fine scale
computation is necessary or not and thus the proposed scheme may be com-
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Figure 4: Refinement level, h = H · 2−k, and number of layers L for each
coarse node. The upper pictures are after one iteration in the adaptive
algorithm and the lower pictures are after two iterations.
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Figure 5: The error in the Galerkin solution (left), after one step in the
adaptive algorithm (middle), and after two steps (right).

Figure 6: The coefficient is discontinuous with the values a = 1 on the white
squares and a = 0.05 on the lattice.
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Figure 7: Reference solution (upper left), standard Galerkin on coarse mesh
(upper right), solution with local problems using one layer stars (lower left),
and finally local problems using two layer stars (lower right).
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bined with a standard adaptive algorithm on the coarse scales. The method
is thus very general in nature and may be applied to any problem where
adaptivity is needed.

In this paper we have focused on two scales in two spatial dimensions.
A natural extension would be to solve three dimensional problems with
multiple scales. It is also natural to extend this theory to other equations
modeling for instance flow and materials.
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