
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Models and Methods for

Development of DSP

Applications on Manycore
Processors

Jerker Bengtsson

School of Information Science, Computer and Electrical Engineering
HALMSTAD UNIVERSITY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden, June 2009

ii

Models and Methods for Development of DSP Applications on
Manycore Processors

Jerker Bengtsson
ISBN 978-91-7385-288-3

c© Jerker Bengtsson 2009.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 2969
ISSN 0346-718X

Department of Computer Science and Engineering
Chalmers University of Technology
Technical Report No 62D.

Contact Information:

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg, Sweden
Telephone: +46 (0)31 772 1000
Fax: +46 (0)31 772 3663
URL: http://www.ce.chalmers.se

School of Information Science,
Computer and Electrical Engineering
Halmstad University
Box 823 SE-301 18 Halmstad, Sweden
Telephone: +46(0)35 16 71 00
Fax: +46(0)35 12 03 48
URL: http://www.hh.se/ide

Printed by Chalmers Reproservice
Göteborg, Sweden, Maj 2009.

iii

Abstract

Advanced digital signal processing systems require specialised high-performance
embedded computer architectures. The term high-performance translates to
large amounts of data and computations per time unit. The term embedded
further implies requirements on physical size and power efficiency. Thus the
requirements are of both functional and non-functional nature.

This thesis addresses the development of high-performance digital signal
processing systems relying on manycore technology. We propose building two-
level hierarchical computer architectures for this domain of applications. Fur-
ther, we outline a tool flow based on methods and analysis techniques for
automated, multi-objective mapping of such applications on distributed mem-
ory manycore processors. In particular, the focus is put on how to provide a
means for tunable strategies for mapping of task graphs on array structured
distributed memory manycores, with respect to given application constraints.
We argue for code mapping strategies based on predicted execution perfor-
mance, which can be used in an auto-tuning feedback loop or to guide manual
tuning directed by the programmer.

Automated parallelization, optimisation and mapping to a manycore pro-
cessor benefits from the use of a concurrent programming model as the start-
ing point. Such a model allows the programmer to express different types and
granularities of parallelism as well as computation characteristics of impor-
tance in the addressed class of applications. The programming model should
also abstract away machine dependent hardware details. The analytical study
of WCDMA baseband processing in radio base stations, presented in this the-
sis, suggests dataflow models as a good match to the characteristics of the
application and as execution model abstracting computations on a manycore.

Construction of portable tools further requires a manycore machine model
and an intermediate representation. The models are needed in order to decou-
ple algorithms, used to transform and map application software, from hard-
ware. We propose a manycore machine model that captures common hardware
resources, as well as resource dependent performance metrics for parallel com-
putation and communication. Further, we have developed a multi-functional
intermediate representation, which can be used as source for code generation
and for dynamic execution analysis.

Finally, we demonstrate how we can dynamically analyse execution using
abstract interpretation on the intermediate representation. It is shown that
the performance predictions can be used to accurately rank different mappings
by best throughput or shortest end-to-end computation latency.

Keywords: parallel processing, manycore processors, high-performance digital
signal processing, dataflow, concurrent models of computation, parallel code
mapping, parallel machine model, dynamic performance analysis.

iv

Sammanfattning

Avancerade inbyggda signalbehandlingssystem kräver ofta specialiserade och
högpresterande datorplattformar. Med högpresterande menas att stora datavoly-
mer och beräkningsintensiva algoritmer måste processas inom ett begränsat
tidsintervall. Inbyggda system har generellt oftast krav p̊a att understiga en
viss fysisk storlek och att de måste vara energieffektiva.

Denna avhandling fokuserar p̊a användning av flerkärniga processorer för
konstruktion av högpresterande signalbehandlingssystem. Vi föresl̊ar en da-
torarkitektur, i form av en tv̊a-niv̊a hierarki, för denna typ av signalbehndlings-
system. Vidare presenterar vi ett verktygsflöde baserat p̊a metoder och ana-
lystekniker för automatiserad mappning av s̊adana tillämpningar p̊a flerkärniga
processorer med distribuerat minne. Mer specifikt, vi fokuserar p̊a flexibla
strategier för kravstyrd mappning av beräkningsgrafer p̊a flerkärniga proces-
sorer organiserade i en tv̊a-dimensionell matrisstruktur. Vi förespr̊akar automa-
tiskt eller manuellt styrd reglering av mappingsdirektiv, där beslut baseras p̊a
återkoppling av prognostiserade exekveringsegenskaper.

Automatiserad parallellisering, optimering och mappning p̊a en flerkärnig
processor kan förenklas avsevärt genom att utg̊a ifr̊an en lämplig parallell pro-
grammeringsmodell. En s̊adan modell till̊ater en programmerare att uttrycka
olika typer och olika kornigheter av parallellism samt beräkningskarakteristik,
typiska för de typer av tillämpningar som adresseras. En s̊adan programmer-
ingsmodell måste ocks̊a abstrahera bort processorspecifika h̊ardvarudetaljer.
En analys av basbandsprocessning i WCDMA radiobasstationer, som presen-
teras i denna avhandling, pekar ut dataflödesmodeller som mycket lämpliga för
att programmera denna typ av tillämpningar, samt som exekveringsmodeller
för program mappade p̊a flerkärniga processor.

För att kunna konstruera portabla utvecklingsverktyg krävs det en lämplig
modell av flerkärniga processorer samt en mellanrepresentation. Processor-
modellen behövs för att kunna utveckla maskinoberoende algoritmer för trans-
formering och mappning av program. Vi föresl̊ar en flerkärnig processormodell
som f̊angar typiska h̊ardvaruresurser, s̊aväl som dess grundläggande, parallella
beräkningsoperationer. Vidare har vi utvecklat en multifunktionell mellanrep-
resentation, vilken kan användas som utg̊anspunkt för kodgenerering och för
dynamisk exekveringsanalys.

Slutligen, denna avhandling visar ytterligare hur vi kan prognostisera dy-
namiska programegenskaper vid exekvering p̊a flerkärniga processorer, genom
att tillämpa abstrakt tolkning av mellanrepresentationen. Vi demonstrerar hur
resultatet av dessa prognoser kan användas för att rangordna programmapp-
ningar enligt bäst periodisk genomströmning av data eller kortast svarstid.

v

Acknowledgements

There are several people who more or less have had some influence on my
work and the decisions I have made during the very crooked path leading to
completion of this thesis.

My main supervisor Bertil Svensson (DuracellTM Inside) for his encour-
agement, experienced advices and never fading enthusiasm and positiveness.
Not to forget, for all the time (weekends and evenings) spent reading papers,
reports and my theses produced during these years.

My assistant supervisor, Verónica Gaspes for providing constructive criti-
cism, concrete inputs and suggestions, and for being a good source for moral
support and advices in issues of non-functional character in life and work.

Professor Edward Lee, for hosting and inspiring me greatly and giving me
very valuable advices and suggestions during my very fruitful visit at Univer-
sity of California at Berkeley. Also, thanks to Man-kit ”Jackie” Leung for
discussing and providing solutions to problems that popped up during my first
close encounter with Ptolemy and the code generator framework during my
stay in Berkeley.

A large deal of this work has been done in various forms of cooperation and
discussions with with Ericsson AB. I am very greatful to Anders Wass who got
the leading role in the Ericsson relay race and hosted me and spent valuable
time discussing and supporting me during and after my stays in Kista. The
baton was later handed over to Henrik Sahlin and Peter Brauer who continued
guiding me through the LTE jungle, which greatly helped me when struggling
with how to find an academic entry point to real problems, finding the right
levels of abstraction and to obtain valuable insights into the industrial world.
These industrial connections have provided me with a great deal of insights
and experiences which can only be read between the lines in this thesis.

Professor Marina Papatriantafilou, for being actively committed as external
advisor in my support committee. Despite the limited room for meetings, there
has always been a positive and friendly attitude, and a good use of this limited
time leading to useful outcome.

Roland Thörner, who have absolutely nothing at all to do with this thesis,
but who is a very nice bloke and friend in his best years having a rarely good
sense of humor.

Finally, last but not least, my wife and constant brother in arms Hoai. Con
kiên cõng con voi. Anh yêu em.

The work presented in this thesis has been funded by research grants form the
Knowledge Foundation and Ericsson AB.

vi

Contents

Abstract iii

Acknowledgements v

Table of Contents vi

Lists of Appended Papers x

Other publications xi

1 INTRODUCTION 1
1.1 Microprocessor evolution: multicore versus manycore 2
1.2 High-performance digital signal processing 2
1.3 Scope of the thesis . 3
1.4 Problem description . 4
1.5 Research goals and approach 5
1.6 Contributions of the thesis . 6
1.7 Outline of the thesis . 8

2 HIERARCHICAL ARCHITECTURE FOR EMBEDDED HIGH-
PERFORMANCE SIGNAL PROCESSING 11
2.1 Embedded high-performance DSP systems 12
2.2 A hierarchical manycore architecture 13
2.3 Reconfigurable micro level structures 13
2.4 Evaluation of a reconfigurable micro level structure 15

2.4.1 Evaluating area performance 16
2.4.2 Evaluating resource utilisation 18

2.5 Implications for the further work 19

3 ANALYSIS OF WCDMA BASEBAND PROCESSING 21
3.1 WCDMA and the UTRAN architecture 22

3.1.1 The RBS . 22

viii Contents

3.1.2 Downlink transport channel multiplexing 23
3.2 Downlink processing analysis 23

3.2.1 Types of parallelism . 25

3.2.2 Real-time characteristics 25

3.2.3 Parameter configuration 26

3.2.4 Function level parallelism 27
3.2.5 Intra function characteristics 27

3.2.6 3G service use cases . 28

3.2.7 Mapping study of the use cases 29

3.3 Summary and implications . 30

4 STREAMING MODELS OF COMPUTATION 31

4.1 Introduction . 32

4.1.1 Domain specific programming solutions 32

4.1.2 Stream processing . 33

4.2 Synchronous dataflow . 34

4.2.1 Description of SDF . 35
4.3 StreamIt: a language implementing SDF 37

4.3.1 Limitations in StreamIt 37

4.4 A modelling framework for SDF languages 38

4.4.1 The StreamBits language 38

4.5 Related work . 39

5 MACHINE MODEL, INTERMEDIATE REPRESENTATION
AND ABSTRACT INTERPRETATION 41

5.1 Manycore code mapping tool 42
5.1.1 Target processors . 43

5.2 Model set . 44

5.2.1 Application model . 44

5.2.2 Machine model . 45

5.3 Timed configuration graphs . 46

5.3.1 Construction of timed configuration graphs 47
5.4 Abstract interpretation of timed configuration graphs 47

5.4.1 Interpretation using Process Network 48

5.4.2 Modelling limitations of the IR 50

5.5 Evaluating modelling accuracy 50

5.5.1 Experimental mapping cases 51
5.5.2 Execution strategy . 52

5.5.3 Comparing communication costs 52

5.5.4 Latency and throughput measurements 54

5.6 Discussion of the results . 56

5.7 Related work . 57

Contents ix

6 CONCLUSIONS AND FUTURE WORK 61
6.1 Conclusions . 62
6.2 Future work . 63

Bibliography 64

List of Figures 71

List of Tables 73

x Contents

Lists of Appended Papers

This thesis is based on the work contained in the following papers:

Paper A Johnsson, D., Bengtsson, J., and Svensson, B. (2004). Two-level re-
configurable architecture for high-performance signal processing. In Proc.
of Engineering of Reconfigurable Systems and Algorithms (ERSA’04),
pages 177-183, Las Vegas, USA.

Paper B Bengtsson, J. (2006). Baseband processing in 3G UMTS radio base
stations. Technical Report IDE0629, School of Information Science, Com-
puter and Electrical Engineering, Halmstad University, 2006.

Paper C Bengtsson, J., and Svensson, B. (2006). A configurable framework
for stream programming exploration in baseband applications. In Proc.
of The 11th Int’l Workshop on High-Level Programming Models And
Supportive Environments (HIPS’06) in conjunction with IPDPS (IPDPS
2006), Rhodes, Greece.

Paper D Bengtsson, J. and Svensson, B. (2008). A domain-specific approach
for software development on manycore platforms. ACM Computer Ar-
chitecture News, Special Issue: MCC08 - Multicore Computing 2008,
39(6):2-10.

Paper E Bengtsson, J., and Svensson, B. (2009). Manycore performance anal-
ysis using timed configuration graphs. To appear in Proc of. Int’l Symp.
on Systems, Architectures, Modeling and Simulation (SAMOS IX 2009),
Samos, Greece.

Contents xi

Other Related Publications

Bengtsson, J. (2006a). Efficient Implementation of Stream Applications on
Processor Arrays. Licentiate Thesis, Chalmers University of Technology,
March 30, 2006.

Bengtsson, J., Gaspes, V., and Svensson, B. (2007). Machine assisted code
generation for manycore processors. Real-time in Sweden, Väster̊as (RTIS
2007).

Bengtsson, J. and Svensson, B. (2008a). A set of models for manycore perfor-
mance evaluation through timed configuration graphs. Technical Report
IDE0856, School of Information Science, Computer and Electrical Engi-
neering, Halmstad University, 2008.

Bengtsson, J. and Svensson, B. (2008b). Methodologies and tools for devel-
opment of signal processing software on multicore Platforms . Workshop
on Streamings Systems in conjunction with 41st Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO 41).

Bengtsson, J., and Svensson, B. (2008c). A domain-specific approach for
software development on manycore platforms. In Proc. of First Swedish
Workshop on Multicore Computing (MCC08).

xii Contents

Chapter 1

INTRODUCTION

2 Introduction

1.1 Microprocessor evolution: multicore versus

manycore

The microprocessor industry has long been able to deliver increased perfor-
mance of processors incited by Gordon Moore’s predictions. This has to a
large extent been possible through technology scaling of transistors and wires,
continuously increased clock frequencies and adding more specialised functional
units around a centralised processor architecture. However, an undesirable side
effect of the technology scaling and the clock frequency race has been a rapid
increase in power dissipation, which started to push cooling technology to its
limit in the first years of 2000 [Carmean and Hall, 2001]. In 2005, Intel and
AMD made a significant change in their directions on the chase for more power
efficient performance, starting from a single core architecture and then doubling
the amount of cores per semiconductor process generation. The term multicore
has become highly associated with this concept. There are many arguments
for why this rather narrow minded design shift will unlikely be the ideal solu-
tion for dramatic improvements in power performance [Asanovic et al., 2006].
Sustainable and evolutionary solutions for parallel processing must be sought
from a broader perspective. As a response to this, the term manycore was
coined at the University of California at Berkeley to distinguish new and in-
novative parallel processor architectures from the more limiting core doubling
convention.

1.2 High-performance digital signal processing

High-performance signal processing systems, such as advanced radar systems,
has long required computer architectures capable of delivering performance
largely exceeding the performance of general purpose computer systems. Par-
allel embedded computer architectures were early been a must to manage the
processing requirements in such systems, and future generations will keep push-
ing these requirements higher [Åhlander, 2007]. Another similar example is the
signal processing required in radio base stations (RBS). In practice, an RBS is
a highly advanced parallel computer system. A state-of-the-art platform for 3G
WCDMA RBSs is typically designed using the latest ASIC and FPGA tech-
nologies to maximise the capability of serving as many number of concurrent
lines as possible [Zhang et al., 2003]. Further, each RBS site typically contains
many such parallel platforms.

Although there are many dissimilarities between these two examples of
high-performance signal processing systems, there is at least one very impor-
tant common denominator: development complexity and manufacturing cost.
Radar systems are typically produced in smaller series, which makes the cost
per system for ASIC development very high. In the telecommunication indus-

1.3 Scope of the thesis 3

try, the production series are much longer, which therefore makes the ASIC cost
per system much lower compared to radars. However, the cost of developing
ASICs increases dramatically for each semiconductor technology generation.
Furthermore, new and more complex functionality keeps being added to each
system generation. Thus, reducing manufacturing costs is one argument for
industry’s interest in using more commercial-of-the-shelf (COTS) manycore
hardware.

Taking wireless telecommunication industry as example, the trend is that a
growing part of the baseband platforms are implemented using programmable
hardware technology. An RBS typically has a life expectancy counted in
decades. Using programmable technology enables performance upgrading and
forward-compatibility; new standardised functionalities and improved algo-
rithms can be integrated after system roll-out. Moreover, different customers
need different system solutions to meet their specific site requirements and have
the ability to modify the network with respect to communication. This puts
further requirements on platform scalability.

1.3 Scope of the thesis

This thesis addresses a few of the many problems related to system and software
development for using manycore technology in embedded computer architec-
tures for high-performance signal processing applications. We focus on array
structured, software cached, distributed memory manycore processors. We be-
lieve that such machines provide good hardware scalability and good means for
predictable timing.

We address a certain class of high-performance digital signal processing
systems. We translate the term high-performance to real-time constrained
processing of large amounts of data and computation intensive algorithms. We
focus on embedded systems, thus there are further requirements on physical
size and power efficiency. Therefore, the requirements are of both functional
and non-functional nature. Applications that fit within this class are, e.g. base-
band processing in radio base stations and signal processing in modern radar
systems. Applications not belonging to this class are, e.g. weather simulations
and scientific computations, since there typically is no strict requirements on
response time.

Multi-processors have been widely explored in research since the 1980s and
early 1990s. There has also been a great deal of research on parallel program-
ming models. We have focused on finding solutions for manycore programming
and code mapping based on this earlier work; more specifically, we have inves-
tigated methods and techniques based on dataflow models of computation.

The problem of mapping task graphs to a parallel processing hardware is
well studied, and many solutions for automation of that problem exist. Given

4 Introduction

such a mapping, we focus on analysis techniques for the prediction of run-time
properties of such task graphs on the category manycore targets addressed.

1.4 Problem description

We are interested in performance efficient DSP task graph mapping on highly
parallel, generic manycore hardware. We are especially interested in self-timed
task graph mappings, which put minimal requirements on run-time overhead
for execution on manycore hardware [Lee and Ha, 1989]. To find solutions to
this overall problem, we were motivated to address the following questions:

• What are the trade-offs concerning system development using
different paradigms of manycore processors? Fine-grained many-
cores with reconfigurable interconnections theoretically offer a larger area
performance compared to more coarse-grained manycores. However, re-
ducing core hardware implemented functionality means that a certain
part of the hardware resources must be used to configure corresponding
functionality through software. Examples of such functionality can be
memory address and cache logic and configuration of data paths (switch-
ing/routing functionality). How does this strategy of moving certain func-
tionality to software - normally implemented in hardware - impact on
practically achievable area performance?.

• What are the typical computation characteristics and process-
ing requirements in embedded high-performance DSP systems?
Embedded high-performance DSP systems typically contain large amounts
of logical parallelism. These kinds of embedded systems are usually also
associated with a set of non-functional constraints, for example real-time
constraints. Furthermore, the hardware resources must be shared for
many concurrent processing tasks. To be able to determine requirements
on programming models, target hardware and mapping strategies for such
hardware, it is necessary to analyse typical algorithm characteristics, log-
ical parallelism etc. from a system perspective.

• What is a suitable parallel model of computation for DSP ap-
plications? Automated mapping of application software requires well-
defined parallel models of computation. Fewer and fewer are those who
still believe that the non-concurrent, shared memory programming model
offered by the C language is a good starting point for automated map-
ping to parallel hardware. A suitable parallel model of computation must
offer concurrency but also provide means for manycore hardware indepen-
dence.

1.5 Research goals and approach 5

• What is a suitable machine abstraction for manycore proces-
sors? Tools and application software must be portable. This requires
suitable intermediate representations for modular tool building. Further,
the target embedded systems are also associated with constraints of a
non-functional nature. Thus, the optimisation of DSP task graphs to
manycore hardware is a complex, multi-objective task with many trade-
offs. To deal with optimisation coupled to non-functional constraints, we
believe that such intermediate representations need to capture time and
offer means for analysis of dynamic execution costs.

1.5 Research goals and approach

The overall goals of this thesis work are:

1. to investigate trade-offs in signal processing implementation using differ-
ent paradigms of manycore technology;

2. to investigate models, methods and techniques for computer assisted map-
ping of signal processing task graphs on manycore hardware; and

3. to develop techniques for analysing and predicting dynamic execution
costs of DSP task graphs on manycores.

The research was initiated by studying and evaluating emerging manycore
architectures [Bengtsson and Lundin, 2003]. To be able to analyse system de-
sign trade-offs related to the choice of hardware technology, we later conducted
a study on parts of the physical layer processing in 3G radio base stations.
For the parts of the system studied, we found the synchronous dataflow model
of computation to offer a good match with the system and development re-
quirements and with the manycore hardware addressed. Considering industrial
requirements on tool and software portability, we further addressed methods
and techniques for automated software mapping on parallel hardware. To ab-
stract manycore hardware and to predict dynamic execution costs related to
non-functional properties, we identified the need for a new manycore machine
model providing realistic execution cost predictions and a multi-functional in-
termediate representation as an important research topic.

6 Introduction

1.6 Contributions of the thesis

The contributions of this thesis are as follows:

• Hierarchical processor architecture for high-performance signal
processing
We propose a hierarchical manycore processor architecture for multi-
dimensional signal processing platforms. We have investigated some of
the trade-offs related to different core granularities by comparing two
paradigms of existing manycore processors: a coarse-grained array of
tightly coupled RISC cores and a fine-grained reconfigurable array of sin-
gle instruction ALUs. In the latter, both control flow and data operations
must be mapped spatially using one or several of ALUs. Given a certain
chip area and assuming the same technology, our comparisons show that
the finer grained array has a potential peak performance of almost a factor
of 7 higher than the coarse-grained processor. Furthermore, we studied
the impact on performance when large amounts of ALU resources need
to be allocated for algorithm control flow. Our experiments shows that,
even if using up to as much as 75 percent of the ALUs for algorithm
control flow, it would still be competitive with the peak performance of
the coarse-grained alternative.

• Processing requirements and characteristics in WCDMA base-
band
We provide a comprehensive study of the complete set of processing func-
tions specified for 3G WCDMA downlink baseband. In the study, we
make an analysis of different types of potential parallelism. We discuss
the functionality and characterise the intra-algorithm computations and
data representations. On the basis of the study, we find that stream-
oriented models of computation constitute a very good match for describ-
ing the task and the pipeline parallelism that we identify on the function
level in the WCDMA processing chain. On the intra-algorithm level, we
also identify and discuss potential mapping on SIMD and MIMD parallel
hardware. Moreover, we conclude that the requirements on instruction-
level computations are mostly of a logical, rather than an arithmetical,
nature.

• Modelling framework for SDF based languages
We provide a framework specialised for the modelling of stream-oriented
languages based on the synchronous dataflow model of computation. We
used the StreamIt language in order to reason about implementation of
WCDMA downlink processing using stream-oriented languages. On the
basis of the WCDMA study, we identify a number of weaknesses related to
expressiveness in the StreamIt language and propose language extensions

1.6 Contributions of the thesis 7

related to data types and instruction level computations. Further, we
introduce the notion of a control mode - for periodical reconfiguration
of actors - and control streams - for distribution of actor reconfiguration
parameters. We demonstrate language improvements by modelling an
experimental language called StreamBits. In particular, we demonstrate
how we can extend the StreamIt language with syntactic means to express
computations on variable length bit-string data types.

• Models for manycore performance evaluation
We developed a set of models to be used as a part of a manycore map-
ping and code generation tool. Manycore processors are described using
a machine model that captures essential performance measures of array
structured, tightly coupled manycore processors. Moreover, we developed
a timed intermediate representation for manycore targets in the form of
a heterogeneous dataflow model. We show how the intermediate repre-
sentation is constructed for abstract interpretation, given a model of the
application (SDF) and a specification of the machine as input. Thus,
the use of the timed intermediate representation is two-fold: 1) we can
by means of abstract interpretation obtain feedback about the run-time
behaviour of the application and 2) we can use this IR as source for code
generation to parallel targets.

8 Introduction

• Rank based feed back tuning using performance predictions
We outline a design flow for iterative tuning of dataflow graphs on many-
cores using predicted performance feed back. The tool has two purposes:
1) to provide means for early estimates of application performance on
a specific manycore and 2) to provide means for a programmer or an
auto-tuner to tune mapping decisions on a manycore, based on feed back
of predictions of a mapped application’s dynamical behaviour. We eval-
uate the accuracy of the predictions calculated by our tool by making
comparisons with measurements on the Raw processor. We show that
we can fairly accurately predict both on-chip and off-chip communica-
tion costs. Furthermore, we show with our experiments that the tool’s
predictions can be used to correctly rank parallel mappings, by highest
throughput and shortest end-to-end latency, when tuning an application
implementation for such non-functional constraints.

1.7 Outline of the thesis

The thesis consists of two parts: a summary and a set of five appended papers.
The six following chapters in the summary of the thesis are briefly summarised
below.

• Chapter 2 summarises our work on investigating a domain specific com-
puter architecture for embedded high-performance digital signal process-
ing. We outline and motivate our proposal of a two level hierarchical
architecture. Further, we make an analysis of area performance trade-offs
associated with the choice of manycore structure and its core granularity.

• Chapter 3 presents a study of downlink baseband processing in 3G radio
base stations. We summarise the function flow and its functional require-
ments, the inter as well as intra-function characteristics and we identify
potential sources of logical parallelism. Further we discuss potential map-
ping of baseband use cases on common types of parallel processors.

• Chapter 4 introduces stream processing and dataflow models of compu-
tation in particular. Motivated by the baseband study in Chapter 3 and
the type of manycore architectures discussed in Chapter 2, we especially
focus on the synchronous dataflow model of computation. Furthermore,
we briefly discuss data types and language constructions that we find
useful for implementing baseband processing in languages based on the
SDF model of computation. Finally, we end the chapter by discussing
related work on stream-oriented languages.

• Chapter 5 presents our work on models for abstracting manycores and
DSP applications. We further propose a manycore intermediate represen-

1.7 Outline of the thesis 9

tation suitable for code generation and analysis of non-functional proper-
ties of SDF graphs when mapped on a particular manycore. The chapter
is finalized with related work on techniques and methods for mapping
task graphs on parallel processors. The chapter is ended by discussing
further related work.

• Chapter 6 contains conclusions and suggestions for further work.

10 Introduction

Chapter 2

HIERARCHICAL

ARCHITECTURE FOR

EMBEDDED

HIGH-PERFORMANCE

SIGNAL PROCESSING

12 Architecture for Embedded High-performance Signal Processing

This chapter summarises our work on investigations of a domain specific
computer architecture suited for embedded high-performance digital signal pro-
cessing. We motivate and outline our proposal of a two level hierarchical archi-
tecture. Further, we focus on analysing area performance trade-offs associated
with the choice of computation structure and its granularity in the lower ab-
straction level of our proposed architecture, as described in [Paper A].

2.1 Embedded high-performance DSP systems

We will first discuss some general system requirements that must typically be
considered for a computer architecture for the targeted application domain.
We discuss these requirements related to two examples of concrete applications
within this domain: signal processing in RBS and in radar systems.

Parallelism Embedded high-performance signal processing applications typ-
ically consist of several types and granularities of parallelism. From a
system perspective, modern radars are developed to be capable of oper-
ating in different modes and using multiple parallel antenna inputs. In
an RBS, the goal is to maximise the number of concurrent user channels
having different requests on the types of services. The signal processing
in a radar or an RBS constitutes pipelined function flows, exposing task,
data and pipeline parallelism. Each function can further contain different
amounts of fine-grained instruction level parallelism. We aim for an ar-
chitecture that is flexible and that can be dimensioned for heterogeneous
parallelism of variable amounts.

Non-functional properties Both radar systems and radio base stations are
real-time systems. Thus, one important type of non-functional con-
straints associated with such systems is time. New data are continuously
streamed into the system by a certain periodicity (throughput) and its
output must be produced within a certain time (end-to-end latency). A
sufficient mapping of a function flow must also fulfil the specified system
timing requirements. We must be able to offer appropriate parallel map-
ping strategies in order to process function flows of different structures
and with different computation loads, with respect to some given timing
requirements.

Scalability A set of, often computationally demanding, functions is applied on
multi-dimensional arrays of data collected from multiple antenna streams.
Embedded high-performance systems are typically built using boards
with multiple chips and even using multiple boards. The sizes and the
dimensions of the data shapes processed by the function flows typically
vary depending on for example the radar task or the number of con-
nected users and the specific services each is requesting from the wireless

2.2 A hierarchical manycore architecture 13

network. Thus, a domain specific computer architecture should be scal-
able in order to enable the designer to dimension a system for different
requirements.

System reconfiguration A system must be able to dynamically adapt to pe-
riodically changing computation requirements. From a service scheduling
point of view, the number of concurrent users and different types of ser-
vice requests in an RBS can change frequently by a certain (often very
short) periodicity. In practice, the size and the structure of the function
flows and the workload for each function change. Since these changes are
non-deterministic, the resource allocation must be done dynamically. In
conclusion, the computer architecture should be able to allow for fast re-
configurations (dynamic resource allocation) of the processing resources
to handle varying structures of the function flows and varying workloads
of the functions.

2.2 A hierarchical manycore architecture

In [Paper A], we propose a mesh structured computer architecture using a two
level hierarchical abstraction: a macro level structure and a micro level struc-
ture, see Figure 2.1. A mesh structure is easily scalable for different sizes of
parallel structures, both on chip level as well as on the board level. Further-
more, the two level hierarchy provides an abstraction for both homogeneous
and heterogeneous multiprocessor systems.

The macro level is a mapping abstraction for application and function level
parallelism. A macro node can very well abstract, for example, a programmable
manycore structure as well as a hardware implemented function accelerator.

The inside of a macro node constitutes the micro level structure. Depending
on the type of micro level structure, the architecture allows exploitation of fur-
ther task, pipeline, data and instruction level parallelism, in order to compute
the mapped functions as efficiently as required.

In our work, we have primarily focused our investigations on micro level
structures in the form of homogeneous manycore technology. This choice offers
a highly flexible mapping space and also simplifies programmability and code
mapping.

2.3 Reconfigurable micro level structures

In the most recent decade there has emerged a variety of different kinds of
parallel and so called reconfigurable processor architectures. There is no well
defined taxonomy for categorisation of such processors. Neither is there a good

14 Architecture for Embedded High-performance Signal Processing

Figure 2.1: A two level manycore hierarchy. Macro level nodes can be either
specialised cores, dsp or, as illustrated by the figure, a micro level manycore
structure.

definition, in our opinion, of what clearly distinguishes a ”reconfigurable” pro-
cessor from a ”programmable” processor. Instead, such processors are usually
coarsely compared by the granularity of the processing elements (PE), how the
PEs (or cores) are networked to form a parallel computing structure and how
computations and the mapping of programs are done [Mangione-Smith et al.,
1997].

The probably most explored and also most fine-grained of (re)configurable
structures are field programmable gate arrays (FPGA). However, such fine-
grained bit-level structures tend to require large amounts of logic to implement
arithmetic operations, such as multiplication, on word length data. This issue
has been addressed by the FPGA industry through embedding specialised word
level arithmetic units, such as multipliers, in the fine-grained FPGA logic.
However, the reconfiguration times in FPGAs are very long and therefore not
fitted for system requirements of fast run-time reconfiguration.

Word level reconfigurable manycore processors represent one class of in-
teresting manycore processors for signal processing functions. Interestingly,
research investigations have shown that it is possible to achieve performances
comparable with FPGAs for many applications requiring bit-level computa-
tions [Wentzlaff and Agarwal, 2004].

Many parallel processors have been designed in the form of an array struc-
ture, where the PEs (cores) are interconnected via a k-ary n-cubical network
(that is, a network of n dimensions and k cores in each dimension). Consider-
ing wire densities in VLSI implementations of such networks, it was shown by
William Dally in the early 1990s that low dimensional n-cubical networks yield

2.4 Evaluation of a reconfigurable micro level structure 15

lower communication latencies and higher hot spot throughput [Dally, 1990].
Research has later also suggested that it can be possible to build and efficiently
utilise two dimensional array structures with thousands of coarse-grained cores
[Moritz et al., 2001].

On the basis of these research findings and the characteristics of the appli-
cation domain, which we described in Section 2.1, we have focused our interest
on micro level structures in the form of mesh structured manycores.

2.4 Evaluation of a reconfigurable micro level

structure

Regarding the type and design of micro level nodes, the main issue is to choose a
manycore structure that offers a mapping space flexible enough for exploitation
of different types and levels of potential parallelism within different functions.
There are several aspects to consider, for example:

• What are the area performance trade-offs with respect to core granular-
ity?

• What are the functional requirements at the micro level nodes?

• What is the cost for implementing control flows and address logic?

In [Paper A] we mainly addressed these three aspects to get some indicative
answers. We chose to compare two different categories of existing manycore
structures.

The first one, the XPP array architecture from PACT shown in Figure 2.2,
is a homogeneous MISD (multiple instruction stream single data stream) array
processor consisting of word length ALUs, which offers a spatial reconfigurable
mapping space for algorithms [Baumgarte et al., 2001]. Using simple cores
without instruction or data memory naturally enables a large amount of cores
to be stamped out on a chip and thereby offers a large amount of instruction
level parallelism. Similar to FPGAs, the array of cores must be reconfigured
to switch from one algorithm to another. Further, each type of ALU operation
is performed within one clock cycle. The output from a computing core is
available for its nearest neighbours in the proceeding clock cycle. The XPP
array has on-chip data memory distributed over a set of memory elements.
These elements can also be combined to form larger logical memories, offering
a larger address range when needed. The array has no dedicated controller
logic to handle memory. Thus, memory read and write operations have to be
implemented using one or a set of ALUs.

The other, the Raw micro processor, shown in Figure 2.3, is a more coarse-
grained MIMD (multiple instruction stream multiple data stream) array of

16 Architecture for Embedded High-performance Signal Processing

ALU ALU ALU Mem

ALU ALU ALU Mem

ALU ALU ALU Mem

ALU ALU ALU Mem

ALU ALU ALU I/O

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU ALU I/OALU ALU

Mem

Mem

Mem

Mem

I/O

I/O

Array Configuration Storage
Config.

Controller

Figure 2.2: The figure illustrates the XPP dataflow processing array, which is
a reconfigurable MISD type of manycore.

fewer (16) cores, compared to the XPP array, but offers both temporal and spa-
tial mapping of algorithms [Taylor et al., 2002]. The cores are MIPS processors
with a slightly modified instruction set. Each core has instruction memory and
a local (private) data cache. Moreover, Raw cores have floating point units.
The cores are tightly coupled via four physical on-chip scalar operand networks
- two statically and two dynamically routed - mapped via the register files. This
means that the network can be treated as source and destination operands of
an instruction (hence, the name scalar operand networks). The static network
routers are programmable, so that static communication paths can be set up
between cores. The dynamic networks are wormhole routed message passing
networks, for core and memory communications of less deterministic nature.

2.4.1 Evaluating area performance

We have studied a specific implementation of the XPP array architecture - the
XPP-64A - and the first prototype implementation of Raw. It is difficult to
make a fair area performance comparison between Raw and XPP-64A since
they are of different types of architecture and are implemented in different
process technology. For example, large parts of the area for each Raw tile is
used for the floating point unit and for larger local data caches (Raw has in
total 512 Kb compared to XPP’s 12 Kb) and the processors are implemented
in different silicon processes. Raw cores use 32 bit word length, while XPP-
64As ALUs have 24 bit word length. Furthermore, the Raw processor and the

2.4 Evaluation of a reconfigurable micro level structure 17

core core PE core

core PE PE PE

core core PE core

core core core core

Router

Instruction

mem

Data

mem

Instr. Sequencer

Reg

file

Figure 2.3: The figure illustrates the Raw micro processor, which is a MIMD
type of manycore array.

Processor Cores Area (mm2) Lithography (µm)

Raw 16 250 0.15
XPP 64 32 0.13
XPP Scaled 320 250 0.15

Table 2.1: Comparison of instruction level parallelism per area for Raw with
XPP and the scaled XPP.

XPP-64A run at different clock frequencies. It should also be mentioned that
Raw has not in the first hand been implemented with the aim to maximise the
number of cores. However, we still find it very interesting to make a coarse
estimation of instruction level parallelism and performance per area to be able
to reason about trade-offs between core complexity (size), performance and
resource utilisation.

In the first part of our study, we evaluated area performance. Table 2.1
shows the number of cores on XPP-64A, the chip area and the lithography be-
fore and after up-scaling it to the same chip area and lithography used for Raw.
We denote the scaled XPP array XPP Scaled. In our estimates, we calculated
with a linear scaling from 13µm lithography up to 15µm, which was used for
the first implementation of the Raw prototype. The result is naturally a much
larger spatial computation space, offering 320 parallel instructions compared
to the 16 of Raw.

18 Architecture for Embedded High-performance Signal Processing

Processor Frequency (MHz) Peak Perf. (GOPS)

Raw 225 3.6
XPP 64 4.1
XPP Scaled 64 24.5

Table 2.2: Comparison of peak performance for Raw with XPP and the scaled
XPP.

Further we compared peak performances for Raw, XPP-64A and XPP
Scaled, see Table 2.2. Due to the uncertainty regarding how fast it is physi-
cally possible to clock XPP Scaled, we chose to use the same clock frequency,
64 MHz, as is documented for the XPP64-A. However, earlier and larger im-
plementations of the XPP array have been clocked at least at 100 MHz. It
should also be mentioned that PACT has aimed for a low clock frequency for
the XPP-64A in order to provide a low power performance ratio. Similarly, for
the Raw prototype, the reported clock frequency was 225 MHz.

2.4.2 Evaluating resource utilisation

An obvious trade-off, by making cores simpler as in the XPP architecture, is
that some amount of cores has to be used to implement algorithm control flows
and memory control logic. In the second part of our study, we evaluate the
resource utilisation ratio between control flow and data computations and what
impact this ratio has on reachable performance. To evaluate resource utilisa-
tion, we implemented a Radix-2 FFT on the XPP-64A. FFT is an important
class of algorithms used in DSP. The Radix-2 was chosen because it has a fairly
complex dataflow pattern, requiring a large amount of control flow [Proakis and
Manolakis, 1996].

The Radix-2 FFT is logically computed in log n stages. We implemented
an FFT module on the XPP-64A array, optimised for a stream throughput of
one complex sample per clock cycle. This module can either be spread out in n

instances, to create pipelined computation of the FFT, or as a single instance,
where the n stages are iteratively computed by a single FFT module. Figure
2.4 shows a high level block schematic of the implemented Radix-2 FFT module
and how the utilised ALU resources are distributed in the form of control flow
and of data computations.

A considerable part, 76% of the resources used, is used to implement algo-
rithm control flow and memory management (address generation, double buffer
synchronisation etc.). The remaining 26% used for computations corresponds
to the butterfly computations. This relation in resource utilisation might seem
highly inefficient, but it is important to bear in mind that ordinary micro pro-
cessor program code requires portions of the code to do address calculations,

2.5 Implications for the further work 19

Address

Generator

Bit

Reverse

Butterfly

Double

buffer

26%

74%

from stage N-1

to stage N+1

Legend

Control computations

Data computations
FFT

constants

Address

Generator

Local memory

Resource usage

Figure 2.4: The block diagram to the left illustrates the implemented FFT
module. The diagram to the right shows the amount of cores used for control
flow and data flow respectively. Local memory was needed to be used for
both double buffering, in order to relax synchronisation between FFT modules
when mapped in a pipelined fashion, as well as for storing pre-calculated FFT
constants

control flow (loops and conditional statements etc.) and synchronisation. Turn-
ing back to our calculations presented in Table 2.2, we can quickly establish
that using only 15% of the XPP Scaled’s resources still means that the XPP
array is competitive compared to the peak performance of a more traditional
CMP (chip multi processor) architecture (3.6/24.5). Even if it would probably
be easier in practice to come close peak performance on Raw than on XPP,
a part of the computations would still be temporal control flow, which will
naturally decrease the throughput. Furthermore, our FFT implementation is
capable of computing one complex valued sample per clock cycle, which, if not
impossible, would at least be very difficult to achieve on a CMP due to longer
communication latencies and a much more limited spatial mapping possibility.

2.5 Implications for the further work

Many algorithms in the DSP domain require less complex control flow com-
pared to the FFT algorithm and can be mapped with good resource utilisation,
thus reaching high performance. Other algorithms will need to utilise run-
time reconfiguration when using micro level structures such as the XPP array.
Johnsson et al. addressed the run-time reconfiguration aspects by analysing
the requirements on speed of run-time reconfigurability from the perspective of
a radar application [Johnsson et al., 2005]. This study concluded that recon-
figurable array processors, like the PACT XPP, have the potential of managing
the reconfiguration times as required in the radar use cases.

In our opinion, a more serious issue with manycore processors, such as the
XPP and Raw, is that the programming complexity rapidly increases with the

20 Architecture for Embedded High-performance Signal Processing

number of cores. The implementation of the Radix-2 FFT required hardware-
near programming (using the native XPP assembly language) in order to opti-
mise the dataflow (throughput) with respect to maximum I/O capacity. Fur-
ther, the spatial placing and routing of the algorithm in whole was needed to
be done fully manually. This low level programming proved to be very time
consuming, error prone and very difficult in terms of debugging. Moreover, for
industry, it would be strategically very risky to introduce such tight dependen-
cies to a specific processor architecture. This is one of the main reasons why
industry has been unwilling to use commercially available manycore technology.

The results of the experiments conducted in this study further motivated
us to focus our research on parallel models of computation and program-
ming methodologies for machine independent application development for array
structured manycores.

Chapter 3

ANALYSIS OF WCDMA

BASEBAND

PROCESSING

22 Analysis of WCDMA Baseband Processing

This chapter is based on the contents of [Paper B], which is a study of one
concrete, complex and relevant, industrial application: baseband processing of
the WCDMA downlink in 3G radio base stations. The study has three main
goals and contributions: 1) to summarise and provide a complete overview
(abstraction) of the functional requirements in downlink baseband processing,
2) to characterise function level characteristics (such as data dependencies),
intra function characteristics (such as data representation and instruction level
computations) and, finally, 3) to identify potential exploitation of parallelism.
The chapter will summarise the more important contents of the study and
a give concluding discussion of the matching potential with stream/dataflow
models of computation.

3.1 WCDMA and the UTRAN architecture

There are several 3G enabling technologies, such as EDGE, CDMA 2000 and
WCDMA. The wideband code division multiple access (WCDMA) radio tech-
nology is the universal standard chosen by the 3GPP standardisation organ-
isation for 3G mobile networks [Holma and Toskala, 2004]. The WCDMA
technology constitutes the core of the UMTS terrestrial radio access network
(UTRAN) architecture shown in Figure 3.1. The UTRAN architecture is built
upon one or several radio network subsystems (RNS). An RNS is a sub-network
comprising a radio network controller (RNC) and one or several Node B’s. Node
B is the terminology used by the 3GPP for a radio base station (RBS). At ser-
vice requests from users, the RNC is responsible for setting up physical radio
channels provided by the Node B.

3.1.1 The RBS

The RBS1 implements the lowest layer of the UTRAN layers, i.e. the physical
layer and the radio. The functionality of the RBS can generally be described
as a mapping procedure of logical channels from higher layers (L2 and above)
to the physical radio channels (L1). In the downlink (from the RBS to the
user equipment), data frames from higher layers are encoded, multiplexed and
modulated before radio transmission. In the uplink (from the user equipment
to the RBS), physical channels are demodulated, de-multiplexed, decoded and
mapped onto higher layer frame structures. More briefly, an RBS can be viewed
as the modem in wireless telecommunication networks.

1In the rest of the thesis we will use the term RBS when referring to Node B.

3.2 Downlink processing analysis 23

Node B

Node B

Node B

Node B

Core

Network

(CN)

User

Equipment

(UE)

Air Interface

(Uu)
Circuit Switched

IUCS

Packet Switched

IUPS

Iur

Iub

Iub

UTRAN

RNC

RNC

Figure 3.1: Utran.

3.1.2 Downlink transport channel multiplexing

The baseband processing of the downlink in an RBS constitutes a pipelined
function flow, see Figure 3.2. There are several types of transport channels:
control, shared and dedicated user channels. The analysis in our study is
limited to the processing of user dedicated transport channels (DCHTRCH).
Furthermore, the processing is performed with different processing rates at
different stages in the baseband: symbol rate and chip rate. Symbol rate
corresponds to the rate of information bits, i.e. each information bit in the user
data streams corresponds to one symbol. At the chip rate, each information
bit (symbol) has been spread out on a longer code bit sequence. Our study
covers only the symbol rate functions, i.e. we do not cover functionality such
as code spreading, modulation and the radio.

3.2 Downlink processing analysis

A single user can be allocated one or several dedicated transport channels (as
illustrated by the 1 to n branches in the abstract task graph in Figure 3.2),
depending on the type of service requested. In the mid stage in the graph, the
user channels are multiplexed into a single composite transport channel (CC-
TRCH). Then, depending on the required bandwidth, the composite channel is
segmented and mapped on a number of physical channels (the 1 to m output
branches in the figure). The structure of the task graph for each individual
user is static during the service session.

24 Analysis of WCDMA Baseband Processing

f1 f2 f3 f4 f5 f6 f7

f1 f2 f3 f4 f5 f6 f7

f1 f2 f3 f4 f5 f6 f7

f8 f9 f10

f11 f12

f11 f12

f11 f12

f1 f2 f3 f4 f5 f6 f7

N dedicated transport channels Coded composite transport channel

1

2

3

n

Phy 1

Phy 2

Phy m

Figure 3.2: Abstract task graph describing the symbol rate function flow in
WCDMA downlink. The input of N user transport channels is multiplexed (at
f8 in the figure) and mapped to M physical channels (at f10).

ID Function

f1 Cyclic redundancy check (CRC)
f2 Block concatenation and segmentation
f3 Channel coding
f4 Rate matching
f5 First DTX insertion
f6 First interleaving
f7 Frame segmentation
f8 Channel multiplexing
f9 Second DTX insertion
f10 Physical channel segmentation
f11 Second interleaving
f12 Physical channel mapping

Table 3.1: The table lists the types of downlink functions corresponding to the
graph in Figure 3.2. These functions are described in [Paper B].

3.2 Downlink processing analysis 25

3.2.1 Types of parallelism

To avoid confusion about what we mean with certain types of logical parallelism
in an application, we start by making a few definitions of such types. We
refer to the abstract program implementing the downlink processing as the
task graph. Nodes in the task graph correspond to functions, having a private
address space, and edges represent the data dependencies between the functions
(communication). The functions are considered to be infinitely repeated. We
make the following definitions of logical program parallelism, using a function
as the basic unit of computation:

Task parallelism. Two functions that are on separate branches in a task
graph, in a way such that the output of one function never reaches the input
of the other, are said to be task parallel.

Data parallelism. Any function that can be instantiated in multiple copies,
such that no data dependency exists between the instances, is said to be data
parallel.

Pipeline parallelism. Chains of functions having a producer consumer de-
pendency are said to be pipeline parallel.

3.2.2 Real-time characteristics

An RBS is a real-time system. The correctness of the functionality is not only
dependent on the logical correctness of its computations but also on at which
point in time the system is able to consume and produce input and output data.
In the case of an RBS, it means that certain processing requirements must be
fulfilled to manage air and RNC interface compatabilities and to provide a
certain level of quality-of-service.

The system’s input data rate is determined by the transmission time inter-
val (TTI), see Figure 3.3 and the size and number of transport blocks carrying
payload data. The output must be produced with respect to the given radio
frame rate (10 ms in WCDMA), at which information is transmitted over the
air. Services such as voice transmissions naturally put requirements on compu-
tation end-to-end latencies for user comfort. Furthermore, since re-transmission
requests are handled by higher layers, there is naturally also a requirement on
end-to-end computation latency, in order to meet a certain quality-of-service
(effective bandwidth) for varying radio conditions.

Remarks on the real-time aspects Considering mapping of different task
graphs on parallel hardware, we see a need to explore different parallel mapping
strategies, allowing optimisation not only with respect to workload (number
of concurrent users and services) but also with respect to the given timing
requirements.

26 Analysis of WCDMA Baseband Processing

TB TB TB TB

TB

TB

TB

TTI A TTI B

TB

TB TB

Figure 3.3: The transmission time interval (TTI) is always fixed during a trans-
mission. For transmission of single transport blocks (TB), the length of trans-
port blocks can be variable, as can be seen to the left in the figure. For trans-
mission of transport block sets, all transport blocks must be of the same length,
as can be seen to the right.

Dynamic Transport block size 0-5000 bit
Transport block set size 0-200000 bit

Semi-static Transmission time interval 10,20,40,80 ms.
Channel coding type no coding, convolution, turbo
Code rates (convolution) 1/2 or 1/3
CRC size 0,8,12,16,24

Table 3.2: Transport format attribute options used to configure the baseband
functions at the sender and the receiver.

3.2.3 Parameter configuration

The processing functions are individually configured using a set of transport
format attributes. Table 3.2 shows these parameters. The dynamic attributes
can be altered each TTI and are mainly used for configuring the functions
to adjust to the current data to be processed. However, all transport blocks
belonging to the same transport block set within the same TTI must be of
the same size. We will make use of this information when discussing map-
ping of the logical parallelism on certain types of parallel hardware. The semi
static attributes are configured once when setting up a service session. These
parameters mainly configure the mode of functions and the TTI.

Remarks on Parameter configuration It is important to consider the
configuration of parameters from at least two aspects. Firstly, considering
a distributed software implementation on parallel hardware, there will be a
need for a suitable representation of configuration data, and especially how to
efficiently deal with distribution of the configuration data. Secondly, different
configurations of functions in parallel transport channels indicate a limitation
on certain data parallel hardware (SIMD).

3.2 Downlink processing analysis 27

3.2.4 Function level parallelism

When studying the abstract task graph for the downlink, as was shown in
Figure 3.2, two types of coarse-grained parallelism are naturally exposed: task
parallelism and pipeline parallelism. All data dependencies between functions
are of the producer consumer type. The channel multiplexing function (node
f8 in Figure 3.2) constitutes the first logical point of synchronisation in the
downlink task graph. Before the multiplexing function, each branch of the
graph (nodes f1 to f7) can be computed in a task parallel way, and the functions
within each branch can be computed in a pipeline parallel way. The functions
processing the composite transport channel (nodes f8 - f10) are pipeline parallel.
After physical channel mapping (node f10), the functions (nodes f11-f12) can
be mapped task parallel (if several physical channels are used) and pipeline
parallel within each physical channel flow.

Remarks on task and pipeline parallelism On an abstract level, both
potential task and pipeline parallelism are naturally exposed. To further de-
termine potential data parallel mappings of the downlink task graph, it is
necessary also to analyse intra-function data dependencies.

3.2.5 Intra function characteristics

In our analysis we mainly consider logical parallelism exposed in the specifi-
cation of the standard. To examine potential intra algorithm parallelism, we
need to analyse the computation characteristics of the standardised processing
functions. For a more detailed analysis of the functions, the reader is referred
to [Paper B]. Here we give a short summary of the characteristics.

Data dependencies The data streaming through the functions have the
form of logically serial streams of binary information symbols. The functions
specified for the downlink functions are therefore, to a large extent, performing
bit serial computations. This means that there is in general no obvious fine-
grained data parallelism exposed within the algorithms. However, most of the
functions allow bit parallel mapping and computation of the data using word
length data types. None of the symbol rate functions has data dependencies
between iterations, i.e. between the processing of consecutive TTIs. This
means that most of the task parallel functions in the downlink computation
graph potentially also, from a logical point of view, are data parallel.

Instruction level computations The computations on the data are pri-
marily of a logical nature. The functions performing different kinds of data
coding, such as CRC, convolution and turbo coding, are dominated by logical
arithmetic and shift operations. Computing such functions bit serially using bit

28 Analysis of WCDMA Baseband Processing

parallel hardware is not an efficient usage of the hardware. Therefore, software
implemented solution of such algorithms typically make use of pre-calculated
look-up tables whenever possible. Bit serial calculations are thus transformed
to bit parallel masking and memory reads and writes. Other functions mainly
reshape the block representations of the data streams, for example the block
concatenation and the segmentation functions. Further, another category is
the interleaving and rate matching functions, where data are either scrambled
or modified on a bit level basis.

Remarks about intra function characteristics We have studied the down-
link computation graph from a logical point of view, given by the 3GPP speci-
fications. We conclude that logical parallelism is dominates a on function level.
On the intra function level, performance gain is related more to an acceleration
of computations. However, a thorough analysis of opportunities for instruction
parallel computations requires implementation studies of the complete task
graph.

3.2.6 3G service use cases

We selected two service use cases (given by the 3GPP standard) that have
different processing requirements on the baseband: one service configuration
for voice transmission and the other for arbitrarily high bit rate data transmis-
sions. These use cases are used to analyse the processing characteristics of the
downlink functions.

Adaptive Multi Rate voice transmission Adaptive multi rate (AMR) is
the technique for the coding and decoding of dynamic rate voice data included
in the UMTS2. This technique allows dynamic alternations of the bit rate
for voice transmissions during the service session. The output of the AMR
encoder is arranged in three classes of bit streams (A,B and C), depending on
how important specific bits are for quality. The A bits are the most important
and the C bits are the least important. In this use case, each of the three bit
stream classes is mapped on its own dedicated user transport channel. The
output stream is mapped on a single physical channel.

High bit rate data transmission The 3GPP standard specifies a set of
user equipment (UE) classes with different radio access capabilities3. These
capability classes define the data rates and services that must be supported for
a UE of a certain class. We used the requirements for the highest capability

2Technical Specification Group Radio Access Network; Services provided the physical
layer, TS 25.302 (Release 5), www.3gpp.org

3Technical Specification Group Radio Access Network; UE Radio Access capabilities, TS
25.306 (Release 5), www.3gpp.org

3.2 Downlink processing analysis 29

class supporting bit rates up to 2048 kbps4. In this use case, the input is
mapped on 16 user transport channels (maximum in this UE class) and the
output is mapped on 3 (maximum) physical channels.

3.2.7 Mapping study of the use cases

In [Paper B] we discuss mapping of the service use-cases on different types
of common parallel hardware. We studied how the services are mapped on
transport channels and what the required parameter configurations are for
the two use cases. Function by function, we reason about possibilities and
complications for exploiting hardware supported SIMD and MIMD processing
when mapping the downlink task graphs for each service.

SIMD mapping One possible mapping option we have studied is to logi-
cally group multiple transport channels (which are logically task parallel) to
be computed using data parallel hardware. Thus we use one single instruction
stream for processing n transport channels, where the user data are partitioned,
mapped and computed on an n-words wide SIMD unit.

Efficient SIMD processing of multiple user channels requires that the chan-
nels are uniformly configured and that the transport blocks are of equal size.
For the AMR use case, this is unfortunately not the case. The transport blocks
mapped on their respective transport channels are not of equal length. To
compute the bit streams on word length hardware, the algorithm control flow
naturally becomes dependent on the length of the transport blocks (recall that
many of the functions logically compute bit serially). In the AMR case, the
algorithm control flow becomes asymmetric. Another complication is that dif-
ferent CRC polynomials and convolution coding rates are used for each of the
three channels.

For the high bit rate data service, the transport blocks are of equal size.
Furthermore, the configuration parameters for all transport channels can be
configured equally. However, SIMD mapping on a transport channel basis still
introduces complications for this use case as well. For example, algorithms
based on look-up table techniques need to be serialised (for example, the CRC
and the coding functions).

In conclusion, SIMD parallel computation on a task/data parallel user
transport channel basis introduces many complications. However, it is an open
question whether certain functions for certain services could be beneficially
(in terms of performance gain) SIMD computed. Implementation studies on a
lower level will be required to answer this question.

4The later addition of HSDPA and HSUPA to the 3G standard allows higher bit-rates.

30 Analysis of WCDMA Baseband Processing

MIMD mapping A MIMD processor enables asynchronous parallel compu-
tations of task, data and pipeline parallelism. The trade-off, compared to a
SIMD parallel mapping, is a higher cost for parallel synchronisation and com-
munication (moving the data between cores) at certain points in a program.
The downlink task graph naturally constitutes a good match with MIMD hard-
ware.

Considering parallel implementation of WCDMA baseband processing on a
MIMD structure, there are many interesting issues related to the synchronisa-
tion of parallel computations and function configuration. First of all, how do
we handle the synchronisation of functions processing different TTIs of data
and how do we handle synchronised of distribution configuration parameters?

3.3 Summary and implications

This chapter provided a summary of our analysis of the WCDMA downlink
processing in third generation wireless telecommunication systems [Paper B].
We have discussed different types of logical parallelism exposed in the WCDMA
downlink symbol rate functions. The computations are primarily of a logical
nature rather than of an arithmetical nature, further motivating expressing
computations on variably sized bit streams of data. We have discussed possi-
bilities and complications related to application mapping on certain types of
common parallel hardware. Further, we find it motivated to investigate ex-
pressions of computations on SIMD parallel and bit level computations. For
this application domain, it should be possible to express computations on vari-
able bit fields of data as well as data parallelism on the word length of data.
Real-time applications, such as the 3G baseband, require task graph mapping
strategies with respect to non-functional properties such as computational tim-
ing constraints.

Chapter 4

STREAMING MODELS

OF COMPUTATION

32 Streaming Models of Computation

This chapter introduces streaming models of computation, and we describe
the synchronous dataflow model of computation in particular. We motivate
the focus on the synchronous dataflow model of computation with respect to
the baseband study discussed in Chapter 3 and with respect to the type of
manycore architectures we are investigating. Finally, we briefly describe the
work presented in [Paper C], where we provide a small modelling framework
for elaborating with domain specific SDF languages.

4.1 Introduction

A paradigm shift from centralised processor architectures to manycore archi-
tectures will naturally also require a paradigm shift in programming models,
languages, compilers and development tools. Programs must be concurrent and
malleable for highly parallel and communication exposed hardware interfaces of
manycores. Sequential languages conventionally used in the embedded systems
industry, such as C, and especially the supporting compiler technology, have
been developed for sequential processor architectures exposing a global memory
space. Especially considering non-coherent distributed memory manycores, C
does not offer a suitable means for expressing concurrency and other knowledge
that is important for such a machine target. Important parallel information
present in the applications many times must be pruned and it is often not
possible to automatically recover such knowledge.

The conventional way of describing concurrency in C programs is to use
threads, which are sequential processes logically sharing memory. Relying on
threads as a concurrent programming model for code generation to manycore
processors is a bad approach for at least two reasons: 1) threads provide an
illusion of a shared memory space, which becomes very complex and expensive
to resolve when mapped to a distributed memory processor and 2) threads are
highly non-deterministic in their nature [Lee, 2006]). A reliable and predictable
implementation using threads is relying on programming style and well-defined
thread overlay mechanisms, such as semaphores, locks, barriers etc. For au-
tomatised mapping to a manycore target, such a source constitutes a state-
space that is highly complex to analyse (perhaps many times even impossible),
in order to realistically predict its runtime behaviour.

4.1.1 Domain specific programming solutions

We argue that domain specific development methods and tools will be needed
to achieve development efficiency for manycore technology. The structure of
computations and processing requirements is often quite different for different
applications.

As was discussed with one concrete example in Chapter 3, applications in
the signal processing domain typically contain a high degree of parallelism and

4.1 Introduction 33

predictable data dependencies, which together form logical function flows in
terms of directed graphs. The task of finding an optimal mapping of task
graphs on a parallel processor has long been known to be an NP Hard problem
[El-Rewini et al., 1995]. There are known solutions for finding near-optimal
mappings in linear time [Kwok and Ahmad, 1999]. However, the graph of
course has to be known and, in addition, it has to be suitably constructed
for the specific optimisation objectives in question. We believe that means for
constructing such task graphs, including computational constraints, must be
lifted up all the way to the programmer.

Since we are mainly targeting real-time applications, another issue is tim-
ing analysis. It is important that the schedules of computations (tasks) are
predictable to be able to optimise programs with respect to given real-time
constraints. Moreover, timing analysis require well defined models of tasks
and their properties when executed not only to ensure determinism, but also in
order to minimise run-time overhead in terms of scheduling complexity, context-
switching etc.

4.1.2 Stream processing

One of the more promising matches with the signal processing domain is var-
ious forms of stream processing. The term stream has become attributed to
P J Landin for his work in the early 1960s, in which he used the notion of
streams (in the context of lambda calculus) to model loop and I/O data flows
[Landin, 1964]. The stream notion was later shown to be useful for research
on computational theory in different kinds of computing systems, which are
grouped using the general term stream processing systems (SPSs).

The common definition of an SPS is an implementation of a network of
processes that communicates via channels. Such a system can be described
by means of a graph. The processes logically compute in parallel, taking data
streams as input and producing data streams as output. SPSs in general can
be specified and analysed using different theories of stream transformers (STs)
[Stephens, 1997]. An ST is defined as an abstract system that takes a set of
n input streams and produces a set of m output streams. Mathematically, an
ST can be described as a function

Φ : [T → A]n → [T → A]m

where A is some data set of interest, T = N represents discrete time and
n, m ≥ 1.

Dataflow constitutes one very interesting flavour of SPS, which has been
a subject to research on computer architecture and modelling of concurrent
software for more than 30 years. In dataflow, computations are either data

34 Streaming Models of Computation

driven, i.e. the processes are computing when input data is available, or de-
mand driven, where processes actively request input data when they wish to
fire. Much attention in the past years of research has been paid to different
techniques for mapping and computing dataflow graphs on parallel hardware.
A good overview of the advances in the research in this area can be found in
[Najjar et al., 1999]. The vertices (processes) in a dataflow graph are called
actors1 [Agha, 1986], and these perform the computations. The edges im-
plement FIFO buffers representing the data paths (channels) by which actors
communicate. Communication via the channels is the only way an actor can
influence the computation of another actor. The firing (computation) of an
actor is locally controlled; an actor fires when the required input is available,
and many actors may fire simultaneously. Thus, dataflow graphs are naturally
concurrent. Actors can be of variable granularity, and hierarchical composi-
tions of actors can be constructed. This also means that an actor can very
well be another dataflow graph. This is possible by treating not only actors as
compositional components but also the network [Eker et al., 2003].

4.2 Synchronous dataflow

One special case of dataflow is synchronous dataflow (SDF), developed by Lee
and Messerschmitt in the middle of the 1980s [Lee and Messerschmitt, 1987].
In SDF, the number of tokens produced and consumed by an actor when it
fires is specified a priori for each input and output channel. A token is an
abstraction for the type and size of the units of data communicated through
the channels. If an actor can be specified with input and output rates, the actor
is said to be synchronous. If all actors in a dataflow graph are synchronous, it
is a synchronous dataflow graph.

There are many advantages of SDF compared to conventional dataflow. The
a priori specified token consumption and production rates enable compile time
scheduling of SDF graphs. This naturally means that more efficient runtime
code can be generated since no or very little run-time execution supervision
is required [Battacharyya, 1994]. Moreover, the channels in an SDF graph
require some form of buffer implementation. Since an SDF graph is periodically
executed by a static schedule, the required buffer size is predictable and the
buffers are guaranteed never to overflow. Moreover, a consistent SDF schedule
can be executed forever without deadlock. An important property is that, as
long as the integrity of the dataflow is respected, any parallel or sequential
implementation of the dataflow specification yields the same result.

1In older literature these are sometimes more abstractly referred to as nodes, blocks or
computation units.

4.2 Synchronous dataflow 35

a b c

d

D

2D

1 1

1 1

1

1

2

2

Figure 4.1: Simple SDF graph illustrating rate and delay specifications, as well
as the use of feed-back loops.

4.2.1 Description of SDF

We will give a more detailed description of SDF graphs based on the definitions
in [Lee and Messerschmitt, 1987]. Figure 4.1 shows a simple example of an SDF
graph consisting of four actors and four channels. Each incoming and outgoing
channel of an actor is associated with a non-negative integer that specifies the
token consumption and production rates. We use rin to denote consumption
rate and rout to denote production rate. A channel connecting an output of
actor a to an input of actor b is denoted c(a, b).

Actor An actor is an atomic unit of computation that consumes and produces
data through a finite set, P = Pin ∪ Pout, of ports. The set Pin is input
ports and the set Pout is output ports and Pin ∩ Pout = ∅. When an
actor fires, it consumes rin tokens from all p ∈ Pin and, after firing, it
has produced rout tokens on all p ∈ Pout.

Channel A channel is a FIFO queue. When an actor consumes a token from
an incoming channel, it is removed from the channel. Similarly, when a
token is produced on a channel, it is discarded.

SDF graph An SDF graph (SDFG) is a tuple (A, C) with a finite set, A,
of actors and a finite set, C ⊆ Pout × Pin, of channels. Every port is
connected to precisely one c ∈ C and every c ∈ C is connected to ports,
such that the source of every c ∈ C is an output port of some actor and
the destination of every c ∈ C is an input port of some actor.

Delay Let c(ai, aj) be the channel connecting an output port of actor ai to an
input port of actor aj . If c(ai, aj) has k units of delay, it means that the
nth token consumed by aj will be the (n− k)th token produced by ai on
c(ai, aj).

The SDF graph in Figure 4.1 has two channels specified with a sample delay:
channel c(b, b), which is a feed back channel (self loop) that has a delay of one

36 Streaming Models of Computation

unit (D), and channel c(b, d), which has a delay of two units (2D). The specified
delay corresponds to a token offset in the buffer implementing the channel in
question.

The repetition vector, q, for the SDF graph in Figure 4.1 is 2a2bcd (or
[2211]T in vector notation). The topology of an SDF graph can be described
by means of a topology matrix Γ; each row is assigned to a uniquely numbered
channel and each column is assigned to a uniquely numbered actor. If an actor
i produces n tokens on channel j, the element on entry (j, i) in Γ is n (the
production rate). If an actor k produces m tokens on channel l, the element
on entry (l, k) in Γ is −m (the consumption rate negated). An actor with a
connection to itself (i.e. a self loop) has only one entry in Γ. Its value is the
net difference between the actors’ production and consumption rates on this
channel. This net difference must obviously be zero; otherwise execution of the
SDF will deadlock. For all other entries, the elements are zero.

The topology matrix for the SDF graph in Figure 4.1 can be constructed
as follows. Let actors a, b, c and d be numbered 1, 2, 3, 4 and let channels
c(a, b), c(b, b), c(b, c) and c(b, d) be numbered 1, 2, 3, 4, respectively. Then, the
topology matrix for the SDF graph in Figure 4.1 is

Γ =

1 −1 0 0
0 0 0 0
1 0 −2 0
0 1 0 −2

(4.1)

The repetition vector, q, is calculated by solving a set of linear balance
equations. The balance equations can be written in matrix form as Γ× q = O,
where O is a vector of zeros. Not all SDF graphs are computable (if assuming
an SDF graph to be periodic and non-terminating). For example, not appro-
priately specified production and consumption rates can lead to an inconsistent
specification of an SDF graph. The consistency property (see below) of SDF
guarantees that the graph can be indefinitely repeated without deadlocks.

Consistent repetition vector A repetition vector q is said to be non-trivial,
if and only if q(a) > 0 for all a ∈ A. An SDFG is consistent if it has a
non-trivial repetition vector q. For each SDFG that is consistent, there is
a unique smallest non-trivial repetition vector that determines the mini-
mum necessary firings of each actor for periodical execution of the SDFG.

Periodic and infinite admissible schedule A periodic admissible schedule
φ is a non-empty ordered list of actors such that, if actors are fired in the
sequence given by φ, the amount of data buffered by channels will remain
non-negative and bounded. Each actor must appear at least once in φ. If
φ is infinitely repeatable, φ is a periodic and infinite admissible schedule.

4.3 StreamIt: a language implementing SDF 37

Proofs and necessary conditions on matrix Γ for finding a periodic admissible
schedule can be found in [Lee and Messerschmitt, 1987].

4.3 StreamIt: a language implementing SDF

One example of a programming language implementing the SDF model of com-
putation is StreamIt [Thies et al., 2002]. The StreamIt language has been
designed with the objective of providing a portable programming model of
streaming data applications, such as signal processing, for communication ex-
posed architectures. Unlike many other languages intended for similar proces-
sor targets, StreamIt provides a single machine independent concurrent lan-
guage that abstracts away both the processors and the communication [Duller
et al., 2003][Das et al., 2004][PACT, 2005][Eichenberger et al., 2005].

In StreamIt, an actor roughly corresponds to a filter. Hierarchical StreamIt
programs are created using pipelines, which are container constructions per-
forming no computations themselves. Parallel streams are restrictively ex-
pressed using split and join constructions, offering a pre-defined and limited
set of basic join and split policies. Furthermore, StreamIt filters are limited
to having single stream input and output. Thus, StreamIt enforces a highly
regular (restricted) channel connectivity of SDF programs.

4.3.1 Limitations in StreamIt

We studied issues when StreamIt is used as the implementation language for
the WCDMA downlink processing. The single stream input and output of
actors obviously limits expressibility. This can indeed become problematic for
certain concurrent function flows with more complex (multiple) data dependen-
cies. However, for implementation of the function flow in WCDMA downlink,
it was shown in Section 3 that most data dependencies are of a single stream
producer consumer type. Thus, neither the single stream limitation nor the
restricted set of split and join policies becomes an issue from this point of view.
However, we find the single stream more limiting, when considering periodical
distribution of baseband configuration parameters. Mixing computation data
with configuration data introduces undesired dependencies between token off-
sets in a stream and in the filter code. More precisely, the programmer must
carefully consider early in the design which part (offsets) of the stream is con-
trol data and which part is computation data. If consumption or production
rates of control or data at any time during development are changed, both
control and computation code might have to be revised.

The concurrent stream constructions (split and join) and the hierarchical
pipeline construction enable adjustment of the granularity of function paral-
lelism when possible. However, there are no syntactical means for explicitly

38 Streaming Models of Computation

expressing fine-grained data parallelism for single instruction computations (i.e.
SIMD) on vectors of data. Ritz et al. developed techniques for automatic vec-
torization based the SDF rate specifications [Ritz et al., 1993]. However, we
believe that offering syntactical means for expressing computations on data
parallel types will increase programmers’ awareness of such parallelism and
thereby enable different alternative implementations of data parallel filter (ac-
tor) code.

Further, as concluded in the WCDMA analysis, the dominating form of
computations are bit level computations on serial bit streams of data. No
syntactical means is provided to be able to express computations on variable
sized bit fields.

4.4 A modelling framework for SDF languages

We implemented a modelling framework in Java for prototyping and elaborat-
ing with extensions and improvements on data types, operators and stream
constructions related to the StreamIt language. The motivation for build-
ing such a framework is to provide a means to easily experiment with and
demonstrate extensions to such languages. In particular, we were motivated
to elaborate with possible improvements concerning the limitations we expe-
rienced in StreamIt. In [Paper C] we propose different machine independent
data types and operators, as well as extended filter constructions for dealing
with periodical filter reconfiguration.

4.4.1 The StreamBits language

In [Paper C] we further present a small prototype language, StreamBits, which
we use to demonstrate types and operators for bit level and data parallel
computations. Moreover, we propose the introduction of logical configura-
tion streams to express distributed filter reconfiguration. We later learned
that Solar-Lezama et al. in 2005 also presented a tool (unfortunately) named
StreamBits, which addresses bit stream computations in the StreamIt language
[Solar-Lezama et al., 2005]. However, their approach was to use a sketching
technique (template based programming) to provide bit structural informa-
tion to the compiler. Further, they did not address filter reconfiguration and
fine-grained data parallelism.

Similar to StreamIt, a StreamBits program is composed using Filter and
Pipeline components. However, StreamBits supports dual input and output
streams – one for data and one for configuration data. The data stream consti-
tutes the stream on which a filter performs its computation. The configuration
stream is used to periodically distribute reconfiguration parameters to filters
throughout the distributed network.

4.5 Related work 39

A StreamBits Filter has three basic execution modes – init, work and
configure. Transitions between these modes are mapped automatically at
compilation time, and the programmer only needs to define the functionality
within each mode. The init mode is executed once, before the first firing of
the filter, to initialise variables and parameters, and the work mode executes
the fire code. The configure mode is a feature not supported in StreamIt.
It is executed once before each execution of the work mode. The configure

mode has been implemented to support more flexible programming of periodical
filter reconfiguration of the baseband algorithms (recall the transport format
parameters describe in Section 3). With a configure mode and a logically
separate configuration stream, configuration programming can be defined and
modified without any changes in the filters’ fire (work) code.

StreamBits supports the common types and arithmetic operators in StreamIt.
We have also introduced types to support representation and computation on
bit field data and data parallel vectors. We describe these types in [Paper
C] and also briefly demonstrate the usage of the types and some of the type
specific operators with a small example.

4.5 Related work

There are several other, both recent and earlier, approaches that have been
taken for domain-specific programming of embedded systems based on stream-
oriented models. A large amount of various stream processing languages has
been researched and developed during the past 30 years. See [Stephens, 1997]
for a good survey. Well known synchronous languages are SIGNAL [Gautier
et al., 1987], LUSTRE [Halbwachs et al., 1991] and SISAL [Gaudiot et al., 1997],
which require inputs to be available before firing computations. ESTEREL
is a concurrent real-time programming language but which was designed for
asynchronous dataflow systems [Berry and Gonthier, 1992].

Brook is a programming language based on C but it has been extended
with data-parallel constructs [Buck et al., 2004]. Computations that operate
on local data are described using a kernel construct. Access to memory must
be arranged using special stream constructs, where the stream elements can
be primitive scalars, vectors or record constructs. The Brook language was
designed to be adoptable to a wide range of manycore and so called stream
processors such as Imagine, Trips and Raw[Kapasi et al., 2003][Burger et al.,
2004][Taylor et al., 2004]. In the work reported, it has, however, mainly been
used for experiments on programming of graphics acceleration hardware, such
as the NVIDIA GeForce 6800.

Other languages very similar to Brook are Cg [Mark et al., 2003] and the
StreamC/KernelC language. The Cg language is a language specialized for
graphics hardware, which uses the concept of stream kernels but does not

40 Streaming Models of Computation

provide syntactical notion for well structured specification kernel networks. The
Stream-C/Kernel-C was developed for the Imagine stream processor, which is a
SIMD/Vector processor architecture [Kapasi et al., 2003]. The main difference
compared to to Brook is that, in StreamC/KernelC, kernels are programmed
using a specific sub-set of the language (KernelC) while the complete program
– the structure of kernel compositions and data streams – is described using the
StreamC sub-set of the language. A more recent language, related to Stream-
C/Kernel-C, is the Sequoia language [Fatahalian et al., 2006]. In summary,
these languages mentioned have been developed with focus a on capturing fine-
grained data parallelism and locality of data in programs.

We find the StreamIt language one of the more interesting, fairly recent lan-
guages for manycore code generation. StreamIt is a highly specialized language
which, unlike many other stream processing languages, is not designed on the
basis of the language C. Benchmarks written in StreamIt, compiled to Raw,
have shown promising results in processor utilization [Gordon et al., 2006].

The Spidle description language [Consel et al., 2003] is similar to StreamIt.
This language was developed to investigate how to support a higher degree of
expressability and engineering efficiency in the development of signal processing
applications. However, in this language, multiple parallel streams are supported
and the input-output interfaces kernels are defined using interface declarations,
which enables a higher degree of reusability of code compared to StreamIt.

Our introduction of multiple modes of actors (work and configuration) in
the StreamBits language is similar to cyclo-static dataflow (CSDF) [Bilsen
et al., 1995][Parks et al., 1995]. In CSDF, multiple firing rules (modes) can
be specified and the number of tokens produced and consumed can vary from
one firing to another according to a cyclic pattern. However, CSDF is much
more general, and scheduling can become much more complicated compared to
SDF.

Chapter 5

MACHINE MODEL,

INTERMEDIATE

REPRESENTATION AND

ABSTRACT

INTERPRETATION

42
Machine Model, Intermediate Representation and Abstract

Interpretation

This chapter is based on the contents of [Paper D] and [Paper E]. We dis-
cuss in detail a set of models for the development of a manycore mapping
and code generation tool. Further, we introduce a timed intermediate repre-
sentation with the purpose of both being used as input to a code generator
and for evaluating performance and non-functional behaviour using abstract
interpretation. We describe the essence of the models, how the intermediate
representation is constructed using these models and how they fit in a tool flow.

5.1 Manycore code mapping tool

In embedded real-time systems, optimising scheduling and resource allocation
for parallel processors is a problem that typically demands paying attention to
many system requirements. Exploiting maximum available parallelism in a pro-
gram is not necessarily the optimal solution seen from a system perspective.
Embedded real-time systems also infer non-functional requirements, whereof
one of the more important categories is time. Parallel computing using multiple
processors naturally introduces costs for communication, synchronisation and
for buffering of data. For example, increasing application throughput through
hardware pipelining typically results in an increased end-to-end computation
latency. Considering the amounts and various forms of logical parallelism ex-
posed in the type of applications we address, the problem of finding the best
fitted parallel implementation of a task graph - with respect to the available
processor resources and the application requirements - quickly becomes a non-
trivial implementation task.

To handle a multi objective optimisation in complex embedded systems, we
believe that programmers must have a greater influence on the parallel mapping
strategy. We believe that automated code generation tools need to include user
directed mapping strategies. One possibility to do this is to include means for
specifying non-functional constraints in the application model, such as timing
and resource allocation constraints.

Our approach is a design flow offering iterative tuning of the code mapping
process. Figure 5.1 outlines the modular abstraction of our design flow. The
input constitutes a model of the application (SDF) and a model of the manycore
machine. The output is parallel code that is statically mapped for a specific
manycore. We have focused on methods and techniques for analysis of non-
functional properties, mainly timing. Such information can be fed back in the
context of an auto-tuning loop or, be presented to the user for manual tuning
using mapping directives, as illustrated in the figure. In [Paper D] and [Paper
E] we present our models, intermediate representation (IR) and a methodology
for abstract evaluation of the IR with the purpose of:

• abstracting hardware specific details of a certain class of manycores

5.1 Manycore code mapping tool 43

Model Analysis

Dataflow
Scheduling

Model
Transformation

Abstract
Interpretation

Code
Generation

User
feedback

Machine
specification SDF

Manycore
configuration

(Timed IR)

Figure 5.1: A modular illustration of the code mapping framework.

• performing early development analysis of non-functional properties for
manual or automatised map tuning of synchronous data flow graphs.

5.1.1 Target processors

An increasing amount and variety of manycore processors are commercially
available. However, a big commercial breakthrough of these processors in com-
puting industry has still not appeared. This is to a large extent caused by the
lack of efficient development tools, established programming models and pro-
cessor independent languages. We believe that dataflow models of computation
will play an important role in development tools for such processors. Our work
mainly focuses on methods and techniques for dataflow code mapping to a cer-
tain class of array-structured MIMD (multiple instruction multiple data) type
of manycores, as was discussed in Chapter 2. We make the following general
categorisation (limitation) of the class of manycores we are targeting for:

Homogeneous and tightly coupled cores A homogeneous array of cores
with nearest neighbour communication simplifies construction of tools
for code mapping. The communication network is naturally one of the
more important resources that highly influence the total cost (in execution
time) for parallel execution of a task graph. Minimising communication
latencies naturally enables exploitation of finer grained parallelism. Fur-
ther, decentralizing communication between cores by means of a mesh

44
Machine Model, Intermediate Representation and Abstract

Interpretation

structure increases predictability in communication timing, which is im-
portant in real-time applications.

Individual instruction sequencing Many DSP algorithms contains sequen-
tial computations. Naturally, some algorithms have more complex con-
trol flows and/or intra algorithm data dependencies [Paper B], which
makes them either very difficult or very costly to process spatially (i.e.
instruction-level streaming). We believe that manycores offering a bal-
anced mix of spatial and temporal mapping possibilities are better suited
for software implementation of arbitrary signal processing graphs.

Distributed memory A coherent shared memory architecture simplifies the
programmer’s task. However, such memory architectures tend not to
scale well when the number of cores is growing [Barua et al., 1999]. Most
data dependencies in DSP applications are of a producer consumer type
and happen fairly regularly in time. Non-coherent distributed memory
architectures (bank exposed) allow programmers and mapping tools to
take advantage of locality and reduce network contention and overhead
when accessing shared memory resources.

Software managed memory transactions Conventional hardware imple-
mented caching introduces unpredictable timing and complicates real-
time analysis [Muller et al., 1998]. Since the flow of functions and the
data dependencies between functions in DSP applications often follow a
fairly predictable pattern [Paper B], manycores with software managed
transactions on shared memory banks can be used. This reduces the
complexity of real-time analysis on memory transactions and scheduling
of network communication.

5.2 Model set

The design and construction of a tool for manycore code mapping require a set
of models for abstraction of the hardware resources and the way applications are
computed on the target hardware. The models are needed to be able to develop
strategic algorithms required for transformation of the high-level program input
to a hardware configuration output. Besides serving as a resource abstraction
for the hardware, the machine model further needs to provide performance
metrics useful for estimation of dynamic computation costs.

5.2.1 Application model

Our choice of application model is the SDF. To be able to analyse the cost
resulting from different choices of transformation during the mapping process,
and to be able to analyse the execution cost when processing a certain SDF

5.2 Model set 45

graph on manycore hardware, we need measures of execution times and re-
quirements on communication and memory usage. We assume these data to
have been collected (specified by the user and/or during the model analysis,
see Figure 5.1). For each actor a we assign an individual tuple

< rp, rm, Rs, Rs >

where

• rp is the worst case execution time of a, in number of operations

• rm is the maximum requirement on memory allocation of a, in number
of words

• Rr = [rr1
, rr2

, . . . , rrn
] is a sequence where rrn

is the consumption rate
for each input channel 1 : n of actor a

• Rs = [rs1
, rs2

, . . . , rsm
] is a sequence where rrm

is the production rate for
each output channel 1 : m of actor a.

We have chosen to rely on constant measures of execution times (the worst
case) in order to keep our models simple. For actors where the computations are
state or data dependent, the execution times will vary between best case and
worst case. Naturally, this will affect the prediction accuracy of the execution
trace more or less depending on the current state of the program. However,
our goal is not to guarantee real-time feasibility. The main goal is to provide a
dynamic cost model allowing us to direct map tuning of SDF graphs.

5.2.2 Machine model

The purpose of the machine model is two-fold:

1. to capture processor resources that are important for computing the
costs of computation and communication when processing a distributed
dataflow graph;

2. to provide a common machine abstraction to enable tool and application
portability.

The machine model is a pair of tuples (M, F (M)) where M is a set of
resource parameters abstracting common machine resources and F (M) is a set
of abstract performance functions abstracting common basic operations of a
manycore machine. To specify a particular machine, it is required to 1) give
values to all parameters of M and 2) define the performance functions

F (M) =< tp, ts, tr, tc, tgw, tgr >

where

46
Machine Model, Intermediate Representation and Abstract

Interpretation

• tp is a function evaluating the time to execute a sequence of instructions

• ts is a function evaluating the core occupancy when sending a data stream

• tr is a function evaluating the core occupancy when receiving a data
stream

• tc is a function evaluating network propagation delay for a data stream

• tgw is a function evaluating the time for writing a stream to global mem-
ory

• tgr is a function evaluating the time for reading a stream from global
memory.

The performance functions F (M) are functions of the machine parameters
M (see Section 2 in [Paper D]). These functions can be used to determine the
execution costs resulting from different choices of graph transformation and
resource allocation. Thus, the costs are functions of both resources and their
locations, rather than being a static cost estimate, which for example is used
in the StreamIt compiler infrastructure for clustering [Gordon et al., 2006]. In
Section 5 of [Paper E] we show how these functions are defined for the Raw
processor.

5.3 Timed configuration graphs

Portability of both tools and application code naturally requires a manycore
intermediate representation. If the goal were just to abstract away processor
specific details, such intermediate representation could very well be a fairly
simple data structure. However, since we are also interested in analysing non-
functional properties for a certain mapping of a graph, there is a need also to
represent both time and the execution model. We have developed an IR which
we call a timed configuration graph. The usage of this graph is two-fold:

1. the IR represents an SDF program after it has been transformed and
mapped on the resources offered a specific manycore. We can use this IR
as input to a code generator back-end, in order to generate the code for
each core, the code for communication and the mapping of memory;

2. the IR can be used to evaluate different run-time properties using abstract
interpretation. This evaluation can either be used for feed back in an
auto-tuning optimisation loop or be presented to the programmer for
step-wise tuning of the mapping constraints.

5.4 Abstract interpretation of timed configuration graphs 47

5.3.1 Construction of timed configuration graphs

We target a design flow using a two step strategy as was introduced by Sarkar
[Sarkar, 1989]1. In the two step strategy, the first step consists of task clustering
and the second step consists of scheduling the clusters on the processor. These
two steps are performed independently of each other. With scheduling we
mean core allocation and scheduling of communication. Comparisons have
shown that a two step strategy tends to produce more qualitative mappings
than single step strategies [Kianzad and Bhattacharyya, 2006].

A timed configuration graph GA
M (V, E) describes a synchronous dataflow

program A mapped on an abstract machine M (Section 4 in [Paper E]). V is
the set of vertices and E is the set of edges. There are two types of vertices:
core vertices, vp, and memory vertices, vb. A core vertex represents a set of
SDF sub-graphs of A mapped on a core. Memory vertices represent buffers
mapped in shared memory. The set of edges, E, represents the configuration
for the on-chip network.

When constructing a timed configuration graph, GA
M (V, E), the SDF graph

A is first clustered into sub-graphs. Each SDF sub-graph is then assigned to a
core in M during the scheduling step. The edges of the SDF graph that end
up inside a vertex of type vp will be implemented using local memory, so they
do not appear as top level (visible) edges in GA

M . The edges of the SDF that
reach between pairs of vertices not belonging to the same SDF sub-graphs can
be mapped in two different ways:

1. as a network connection between the two cores; such a connection is
represented by an edge;

2. as a buffer in global memory. In this case, a memory vertex is introduced.

When GA
M has been completely constructed, each vp, vb ∈ V and e ∈ E has

been assigned costs (in time) for computation, communication and memory
read and writes, respectively. The costs are calculated using the parameters
of M and the performance functions F (M) (Section 3 [Paper E]). These costs
comprise the static part of the costs, relative to the current time and the current
state of the system, when computing the total cost for executing an application.

5.4 Abstract interpretation of timed configura-

tion graphs

In [Paper D] we further present how we can make an abstract interpretation of
the timed configuration graph and how an interpreter can be implemented by

1Automated clustering and cluster scheduling are not yet implemented in our tool. The
transformation of SDF graphs to the IR is currently done by hand.

48
Machine Model, Intermediate Representation and Abstract

Interpretation

very simple means on top of a dataflow process network. We have implemented
such an interpreter in the Ptolemy modelling environment [Brooks et al., 2008].

The process network (PN) domain2 in Ptolemy is a super-set of the SDF
domain. The main difference in PN, compared to SDF, is that PN actors
fire asynchronously and channels have no a priori specified production and
consumption rates. If an actor (process) tries to perform a read operation on an
empty input channel, it will block until new data are available. The PN domain
implemented in Ptolemy is a special case of Kahn process networks [Kahn,
1974]. Unlike in a Kahn process network, PN channels have bounded buffer
capacity, which means that a process also temporarily blocks when attempting
to perform a write to a buffer that is full [Parks, 1995]. This property makes
it possible to easily model link occupancy on the network. A dataflow process
network model mimics the behaviour of the types of manycores we are studying
very well.

Timed configuration graphs are implemented by means of a heterogeneous
and hierarchical dataflow model. The top level is a PN model. Core vertices are
implemented using dedicated core actors, and memory vertices are implemented
using dedicated memory actors. The SDF application model, provided as input
to the tool, is transformed to a distributed SDF model embedded in the PN
model. The inter cluster edges in the SDF graph are cut and replaced by
top level PN channels representing the inter core communication. However,
apart from this temporary cut, the SDF model is still intact. We will now
briefly summarise our implementation of timed configuration graphs and how
we make abstract interpretation [Paper D].

5.4.1 Interpretation using Process Network

There are different possible approaches for analysing the dynamic behaviour
of a dataflow model. One is to let the model calculate resource and timing
properties on itself during execution of the model. Another is to generate an
abstract representation of the model. We have chosen the latter alternative.
The main motivation for this decision is that we are striving for an implemen-
tation that does not require modification of the underlying modelling archi-
tecture in Ptolemy. Our intermediate representation and abstract interpreter
are added on top of the Ptolemy infrastructure, where no modification is re-
quired. Although we have not made any experimental comparison, we believe
the approach of interpretation on an abstract representation of the mapped
SDF graph to be more beneficial in terms of modelling performance.

Program abstraction We abstract the firing for each SDF actor by means
of a sequence, S, of receive, compute and send operations:

2In Ptolemy, a model of computation is called a domain.

5.4 Abstract interpretation of timed configuration graphs 49

S = tr1
, tr2

. . . trn
, tp, ts1

, ts2
, . . . , tsm

The abstract operations have been bound to static costs computed using the
machine model M and the performance functions F (M), presented in Section
5.2.

Time There is no notion of global time in a process network. Each of the top
level vertices of GA

M (cores and memories) is an individual process. Each of the
core processes has a local clock, t. The clock, t, is stepped by means of (not
equal) time segments. The length of a time segment corresponds to the static
cost bound to a certain operation in S and possibly a dynamic cost (blocking
time) when issuing send or receive operations addressed to other cores or shared
memories.

Cores and memory A core actor implements a state machine. For each
actor that is firing, the current state is evaluated and then stored in the history.
The history is a chronologically ordered list describing the state evolution from
time t = 0.

Memory actors model competing memory transactions by the first come
first served policy. A read or write latency is added to the current time of a
read or write operation.

States For each core, we record during which segments of time computations
and communication operations were issued. For each core actor, a state list
maps to a state type ∈ StateSet, a start time, tstart, and a stop time, tstop.
The state of a vertex is a tuple

state =< type, tstart, tstop >

The StateSet defines the set of possible state types:

StateSet = {receive, compute, send, receiveMem, sendMem}

The value of tstart is the start of the time segment corresponding to the cur-
rently processed operation, and tstop is the end of the time segment. For all
states, time tstop corresponds to tstart + ∆, where ∆ includes the static cost
bound to the particular operation. For send, receive, receiveMem and send-
Mem ∆ also possibly includes a dynamic cost (blocking time) while issuing the
operations.

50
Machine Model, Intermediate Representation and Abstract

Interpretation

Synchronisation of clocks The timed configuration graph is synchronised
by means of discrete events. Send and receive are blocking operations. A
read operation blocks until data are available on the edge, and a write oper-
ation blocks until the edge is free for writing. During a time segment, only
one message can be sent over an edge. Synchronisation of time between com-
municating actors requires two way communication. Thus, each edge in the
mapped SDF graph is represented by a pair of oppositely directed edges in the
implementation of GA

M .

Network propagation time Channels perform no computation. We use a
delay actor to account for propagation times over edges. The delay actor adds
the edge weight (corresponding to tc ∈ F (M)), that has been assigned to each
top level edge during the construction of GA

M

Program interpretation The core interpreter makes state transitions de-
pending on the current operation, the associated static cost of the operation
and whether send and receive operations block or not (the dynamic cost). A
state generating function takes timing parameters as input and returns next
state ∈ StateTypes.

5.4.2 Modelling limitations of the IR

The use of a process network for implementation of timed configurations graphs
has some limitations. In our current implementation, the network is modelled
on a relatively high level, at which communication is represented using point-
to-point channels. Thus, we are currently not able to model link level concur-
rency and buffer capacity of the network. This was partly a design decision,
because we wanted to keep the network abstraction at a high level for reasons
of modelling performance. However, this decision was also made because of the
properties of process networks, which complicate modelling of shared resources.
Processes in PN execute asynchronously, driven by the availability of data. Pro-
cesses connected to shared resources therefore require active time sharing to
keep the model running. These are problems that can be solved, but at the
price of a lower level of implementation of the intermediate representation.

5.5 Evaluating modelling accuracy

In [Paper E] we make an evaluation of the tool with the purpose of:

• evaluating the accuracy of the tool’s performance predictions with respect
to actual performance;

5.5 Evaluating modelling accuracy 51

CORE CORE CORE CORE

CORE CORE CORE CORE

CORE CORE CORE CORE

CORE CORE CORE CORE

RAM

RAM

RAM

RAM

Figure 5.2: Overview of the Raw processor, including the Raw memory con-
figuration used for our experiments. Four non-coherent shared memory banks
are located on the east side ports of the chip.

• investigating whether the predictions can be used to rank different map-
pings of an application with respect to latency and throughput.

In Section 3 in [Paper E] we demonstrate how we configure the machine
model in order to model the Raw processor. Raw is a tiled, moderately parallel
MIMD architecture with 16 (4 × 4) programmable tiles (cores) [Taylor et al.,
2002]. The cores are tightly connected via two different types of communication
networks: two statically and two dynamically routed. For our experiments, we
have use a Raw set-up with four off-chip, non-coherent memory banks, see
Figure 5.2. In the rest of this chapter we briefly summarise our experiments
and the results presented in [Paper E].

5.5.1 Experimental mapping cases

For evaluation of our tool’s prediction accuracy, we experimented with differ-
ent mappings of two applications: matrix multiplication and merge sort. We
chose matrix multiplication since it requires fairly large amounts of data to be
communicated over the network and since it is good for testing the modelling
of communication between the cores and off-chip shared memory. The matrix
mappings on Raw are illustrated in Figure 5.3.

In contrast to matrix multiplication, our implementation of the merge sort
algorithm has very low requirements on computation and communication. The
merge sort mappings on Raw are illustrated in Figure 5.4. The computation
and communication load for each node in the tree increases with the depth of
the application graph. The different mappings of matrix and merge sort are
further described in Section 6 of [Paper E].

52
Machine Model, Intermediate Representation and Abstract

Interpretation

1

3

4

2

1

3

4

2

1

3

4

2

Matrix1 Matrix2 Matrix3

Figure 5.3: Three different mappings of the 32×32 elements matrix multiplica-
tion using four cores. Square symbols represent memory and circular symbols
represent cores.

5.5.2 Execution strategy

Our implementations are self-timed executions [Lee and Ha, 1989]. In a self-
timed execution, scheduling (execution order) and core allocation are deter-
mined at compile-time, while synchronisation is handled at run-time. Each
core executes actors according to a predetermined firing schedule. A core exe-
cutes the firing of an actor first when data are available.

Initially, a self-timed execution begins computing in a non-steady state
and, later, after a number of iterations, converges to a steady state schedule.
All predictions and corresponding measurements are made during steady state
execution of the dataflow graphs. Bhattacharyya et al. studied and developed
techniques for minimising synchronisation overhead in self-timed executions on
multiprocessors [Bhattacharyya et al., 1995].

5.5.3 Comparing communication costs

Communication overhead is a major factor that typically limits performance
gain in a parallel implementation. Therefore we have studied the accuracy of
the predicted performance on send and receive operations. We use ”Rawmm”
to denote predicted performance (using our tool) and ”Raw” to denote the real
performance measured on Raw.

Matrix send and receive times For each of the three test mappings of
Matrix reported (see Table 1, Section 6 of [Paper E]), the predicted receive

5.5 Evaluating modelling accuracy 53

1 2 3 4

6

J J

1 2 3 4

65 7

Merge Merge fused

Figure 5.4: The graph to the left is a fully parallel mapping of the merge sort
(denoted Merge) and, in the graph to the right, leaf nodes have been pair-wise
clustered and mapped to the same core. The smaller node denoted J, in cores
1 and 4, symbolise a join operation performed on the output channels.

times are slightly pessimistic (which is preferable to optimistic). The differences
between the predicted and the measured receive times vary between +2.3% and
+12.6%.

In Matrix1 and Matrix3 (Figure 5.3), input and output are stored in shared
memory banks. While the timed configuration graph do account for asymmetric
memory access, it does not model network buffers and link concurrency. This
is the main reason for the varying accuracy of the predicted core receive times
in Matrix1 and Matrix3.

In Matrix2, each core has exclusive access to its own memory bank, i.e.
there are no collisions on the network. Raw cores (which are of the MIPS type)
are eight stage pipelined, meaning that execution of instructions experiences
variable latency in practice. In contrast to our machine model, the true send
and receive occupancies on Raw are therefore not always constant.

The predicted send times for each of the three mappings of Matrix were
found to be accurate with the measured send time on Raw (Table 2, Section
6 in [Paper E]). There are no variances in the send times because no (or very
few) collisions occur during concurrent send phases, which is further discussed
in Section 6 in [Paper E].

Merge sort send and receive times In the corresponding experiment on
merge sort, only core-to-core communication is utilised and the communication
consists of very small messages (of a length of 1 to 4 words). This mapping was
chosen to force unbalanced core communication and computation loads. The
goal of this particular experiment was to obtain an indication of how accurately
Rawmm models short messaging and unbalanced communication loads. For
Merge, the predicted times were found to be exact or very accurate.

For Merge fused, we could see that Rawmm evaluated the receive time 75%
higher, compared to the measurements on Raw for cores 2 and 3 (Table 3,

54
Machine Model, Intermediate Representation and Abstract

Interpretation

Section 6 in [Paper E]). The reason is that the computation loads for the
downstream cores 2 and 3, after the clustering, are lower than for the upstream
stream cores (1 and 4). On Raw, each core and router entry has a buffer
capacity of 5 words, allowing for several short messages to be stored on the
network. In contrast, Rawmm models communication pessimistically in the
sense that we only allow one message at a time on a network link. Thus,
communication between sender and receiver is more tightly synchronised in
our model, which can potentially lead to falsely predicted blocking times, as in
this particular case.

Similarly, the predicted send times are fairly close to the measured times
(the difference is 9.1% or less). The send time comparisons are shown in Table
4, Section 6 in [Paper E].

5.5.4 Latency and throughput measurements

In [Paper E], we used the same mappings to compare predicted and measured
end-to-end latency and throughput. The purpose was to evaluate whether the
predictions, despite a certain deviation, could be used to correctly rank the
different mappings with respect to shortest latency and highest throughput.

Latency based ranking of merge sort mappings Figure 5.5 shows the
predicted latencies (in clock cycles) for Merge and Merge fused as a function
of the current iteration, compared to the measured latencies. It can be seen
in the figure at which iteration each of the mappings reaches its steady state
of execution, i.e. when the latency curve levels out. For the Merge mapping,
the measured latency is underestimated by a factor of 2. This is explained
by the fact that the machine model is currently not able to accurately model
the on-chip network’s network buffer state. Thus, the difference in iteration
count between the first upstream core and the last downstream core is larger
in the Raw implementation than in the modelled execution of Raw. On Raw,
the end-to-end latency keeps growing until a steady state is reached. A steady
state will be reached faster in the modelled execution. To tighten the latency
predictions for certain cases of unbalanced computation loads, this experiment
shows that we need to account for the network buffer capacity in the machine
model.

For Merge fused, we can see that the latency has instead been overestimated,
but is closer to the measured latency. The reason is that both the workload
and the communication load in Merge fused are better balanced than in Merge,
which forces Merge fused to reach a steady state after fewer iterations.

Further, if we rank the predicted latencies of Merge and Merge fused, even if
the predictions have varying accuracy, we still see that an optimisation decision
based on the predictions would (for this case) correctly identify Merge fused as
the better mapping.

5.5 Evaluating modelling accuracy 55

0 2 4 6 8 10 12 14 16 18
0

100

200

300

400

500

600

700

800

900

1 000
Merge Computation Latency

Iteration

C
lo

ck
 c

yc
le

s

Merge Raw
mm

Merge Raw
Merge fused Raw

mm

Merge fused Raw

Figure 5.5: Comparison of predicted (Rawmm) and measured (Raw) end-to-end
latency for Merge and Merge fused.

Latency based ranking of matrix multiplication mappings Figure 5.6
shows the predicted end-to-end latencies for Matrix1, Matrix2 and Matrix3,
compared to the measured latencies in Raw. We can see that the three differ-
ent mappings of the matrix multiplication converge to steady state at different
numbers of iterations. Unlike in the merge sort experiment, the computation
tasks distributed on the cores are naturally load balanced. The reason for
the different implementations reaching steady state at different points in time
is that the cores used in the different mappings are experience different com-
munication delays due to network contention. Contention effects are a large
contributing factor to an underestimate of the latencies for Matrix1 and Ma-
trix3. This can be verified by observing that the plot for Matrix2 on Rawmm

and Raw (which is a contention free mapping of the matrix multiplication) is
fairly accurate compared to the predictions for Matrix1 and Matrix3. However,
if we rank the predicted steady-state latencies for all mappings, we see that an
optimisation decision based on latency minimisation would also correctly sug-
gest Matrix2 as the best alternative and that Matrix has shorter latency than
Matrix3.

Throughput based ranking of merge sort mappings Table 5.1 shows
the predicted and the measured throughput for Merge (within a 4.4% differ-

56
Machine Model, Intermediate Representation and Abstract

Interpretation

0 2 4 6 8 10 12 14 16 18
18.000

18.400

18.800

19.200

19.600

20.000

20.400

20.800

21.200

21.600

22.000
Matrix Computation Latency

Iteration

C
lo

ck
 c

yc
le

s

Matrix1 Raw
mm

Matrix1 Raw
Matrix2 Raw

mm

Matrix2 Raw
Matrix3 Raw

mm

Matrix3 Raw

Figure 5.6: Comparison of the modelling accuracy of the computation latency
of three different mappings of the parallel matrix multiplication.

ence) and Merge fused (within a 10% difference). The predictions are fairly
close to the measurements on Raw for both Merge and Merge fused. We can
also see that both the predicted and the measured throughput show that Merge
has a higher throughput than Merge fused. When optimising for throughput,
our predictions correctly rank Merge as the best.

Throughput based ranking of matrix multiplication mappings Table
5.2 shows the comparisons of throughput for Matrix1, Matrix2 and Matrix3.
Note that, unlike in all the other experiments, our model has predicted a slightly
optimistic throughput. However, if we rank both the predicted throughput and
the measured throughput, we can also in this case see that the predictions will
be ranked in the same order as for the measured. Thus, if we use the predictions
for throughput optimisation, our tool correctly identifies the better solution for
this example as well.

5.6 Discussion of the results

This chapter has presented an evaluation of the prediction accuracy of the tool.
The communication times predicted between cores are slightly pessimistic, but
we demonstrated that, for the small set of mappings explored in the experi-

5.7 Related work 57

Application Rawmm Raw diff

Merge 119 104 +4,4%
Merge fused 132 120 +10%

Table 5.1: Merge steady state periodicity (clock cycles).

Application Rawmm Raw diff

Matrix1 19249 19434 -0,9%
Matrix2 19059 19143 -0,4%
Matrix3 19248 19401 -0,8%

Table 5.2: Matrix steady state periodicity in (clock cycles).

ments, our tool can still correctly rank the different mappings with respect to
highest throughput or shortest latency. However, the comparisons also reveal
that the predictions of end-to-end latency for unbalanced computation loads
can be quite inaccurate. This was demonstrated to be mainly dependent on
the high abstraction level used in the modelling of on-chip communication; it
does not capture buffer state or contention effects in the network. However,
this is mainly a limitation set by the current implementation of the timed
configuration graphs.

We have at this stage only experimented with a small set of different graph
layouts (for merge sort and matrix multiplication), which are normally parts
of larger application graphs. However, we believe that the slight inaccuracy
(pessimism) of the predicted send of receive times is of lesser importance than
capturing buffer capacity and network contention, in terms of providing more
reliable predictions for ranking task graph mappings. To capture such effects, it
is necessary to include a lower level modelling abstraction of on-chip networks.
Further, experiments with a more extensive set of both larger and smaller task
graphs are needed to be able to quantify the reliability of our tool.

5.7 Related work

One of the more extensively explored problems in parallel processing is the
problem of mapping task graphs to multiprocessors. Heuristic solutions are
required since this is known to be an NP complete problem [El-Rewini et al.,
1995][Kwok and Ahmad, 1999]. In the late 1980s, Sarkar introduced the two
step mapping method, where clustering is performed in a first step indepen-
dently of the second step of cluster scheduling (resource allocation), which can
both be applied at compile time [Sarkar, 1989]. A number of leading algorithms

58
Machine Model, Intermediate Representation and Abstract

Interpretation

for both single step and two step clustering, with common objectives of trans-
forming and mapping task graphs for multiprocessor systems, are reviewed in
[Kianzad and Bhattacharyya, 2006]. A rich set of solutions is available, and
thus we have not put any effort into this particular problem in our work.

The dynamic level scheduling algorithm proposed by Sih and Lee is single-
step heuristic, taking inter-processor communication overhead into account
during clustering. In a way similar to our work, Sih developed this scheduling
algorithm to be used for producing feedback to the programmer for iterative
refining of the task graph and the architecture [Sih, 1991]. However, it has
been demonstrated through experimental comparisons by Kianzad and Bhat-
tacharyya that two step methods tend to produce more qualitative schedules
than single step methods [Kianzad and Bhattacharyya, 2006].

Unfortunately, expanding an SDF graph to an acyclic precedence graph –
which is the assumed representation for many older scheduling and mapping
algorithms – can lead to an explosion of nodes. This problem can partly be re-
duced by using different clustering techniques before expanding the SDF graph
to an acyclic precedence graph (APG) [Pino and Lee, 1995]. We are interested
in techniques for analysis and mapping of SDF graphs without conversion to
an APG, i.e. using direct SDF representation.

The StreamIt language implements a restricted set of SDF. The StreamIt
compiler implements a two step mapping (dataflow scheduling and clustering,
followed by core allocation) using direct representation of SDF graphs [Gor-
don et al., 2006][Taylor et al., 2002]. However, the StreamIt compiler uses
a rather static cost model to determine clustering and core allocation costs.
Further, neither the language nor the compiler provides any means to express
non-functional constraints or other application specific optimisation criteria to
tune the parallel mapping and code generation. The dataflow scheduling, clus-
tering and mapping algorithms implemented by the StreamIt compiler generate
parallel mappings that make a fair trade-off between throughput and end-to-
end latency. In order to improve a mapping, in terms of reducing latency or
improving throughput, programs have to be restructured.

Throughput is one important non-functional requirement in the real-time
applications we are addressing. Ghamarian et al. provide methods for through-
put using state space analysis (simulating execution of the SDF) on direct rep-
resentation of multi-rate SDF graphs [Ghamarian et al., 2006]. Further, Stuijk
et al. developed a multiprocessor resource allocation strategy for throughput
constrained SDF graphs [Stuijk et al., 2007]. We are addressing techniques
that allow application specific combinations of timing constraints and for how
these can be used to direct the mapping process.

Bambha et al. reviewed different intermediate representations for differ-
ent objectives on optimisation and synthesis for self-timed execution of SDF
programs to multiprocessor DSP systems [Bambha et al., 2002]. They assume
homogenous representation of SDF graphs, which exposes a higher degree of

5.7 Related work 59

task parallelism based on the rate signatures. Our work is similar, but we
are mainly interested in intermediate representations on multi-rate SDF and in
minimising transformation between different representations during the map-
ping process.

Several researchers have addressed the development of frameworks for auto
tuned optimisation of signal processing kernels. The FFTW system focuses
on adapting the implementation of the discrete Fourier transform for different
target platforms using profile feed- back [Frigo and Johnson, 2005]. The SPI-
RAL project focuses on automated feed- back driven optimisation of a broader
scope of signal processing kernels using machine learning techniques, starting
from formal mathematic specifications using a symbolic language called SPL
[Püschel et al., 2005]. Similar to FFTW, ATLAS is an auto tuning system for
linear algebra kernels. Commonly for these systems is that they only deal with
algorithm libraries provided by the library designer [Demmel et al., 2005].

Yotov et al. have further compared an empirical tuning engine with a model-
driven tuning engine in the ATLAS system [Yotov et al., 2003]. The machine
parameters used in their experiments are cache and register file sizes and the
number of floating-point registers and floating-point multiplication units. They
found that model-driven optimisers can generate code with performance com-
parable to code generated using empirical optimisers.

PetaBricks is a parallel language and an auto tuning compiler [Ansel et al.,
2009]. In PetaBricks, it is the programmer that specifies different implemen-
tations of algorithms and how they can be combined. The decision on which
algorithm to use is determined by the PetaBricks compiler and run-time sys-
tem.

60
Machine Model, Intermediate Representation and Abstract

Interpretation

Chapter 6

CONCLUSIONS AND

FUTURE WORK

62 Conclusions and future work

6.1 Conclusions

The computing industry is facing a grand challenge with the entrance of many-
core technology. The work presented in this thesis has addressed a few of the
many issues related to development of industrial embedded high-performance
applications using manycore technology.

The first goal of the work was to explore performance trade-offs related
to the choice of manycore processing paradigm. In particular, we compared
area performance trade-offs related to spatial processing on fine-grained many-
cores versus temporal and spatial processing on coarse-grained manycores. It
was estimated by calculations that a finer-grained manycore with no dedicated
control logic has a clear area performance advantage over more coarse-grained
manycores with program sequencing in each core, even if much of the data
processing resources must be used for program control. On the basis of typical
processing requirements of high-performance DSP applications, we outlined a
two level reconfigurable computer architecture based on finer-grained manycore
technology at the lowest level.

The second goal was to investigate suitable computation models and tech-
niques for programming manycores and for the development of tools for com-
puter assisted mapping of signal processing task graphs. We performed an an-
alytical study of parts of the baseband processing required in WCDMA radio
base stations. This study concluded that the WCDMA function flows indeed
provide a good match for implementation using stream processing models of
computation. We studied the WCDMA specifications with respect to differ-
ent types of large-grain parallelism, the real-time aspects of such systems, and
system reconfiguration and computation characteristics on the algorithm level.
The synchronous dataflow language StreamIt was used to evaluate implemen-
tation issues of the WCDMA processing in a stream processing language. On
the basis of this evaluation, we proposed extensions to the StreamIt language
to be able to deal with instruction level data parallelism and express compu-
tations on bit-serial streams and periodical reconfiguration of the distributed
filters (actors). We provided a modelling framework for practical elaboration
with languages based on the synchronous dataflow model of computation.

Finally, the third goal was to develop techniques for analysing non-functional
properties and predicting dynamic execution costs on manycore processors.
The portability of tools and application software requires a set of models to
abstract application software and target processors. We presented a machine
model that allows tool builders and application developers to specify the re-
sources and the computation performance for a certain class of array structured
manycores. Compiling source programs to an abstract manycore target further
requires a suitable intermediate representation. To be able to predict the dy-
namic execution behaviour of a certain task graph on a certain manycore target,
there is a need also to represent both the execution model and time. We have

6.2 Future work 63

proposed and developed one way to implement our intermediate representation
using a discrete event model on top of a dataflow process network. Further-
more, we present techniques for predicting run-time performance by means of
abstract interpretation. It was further demonstrated, even if only for a small
set of task graphs, that the performance predictions generated were useful in
ranking mappings by optimisation with respect to application end-to-end la-
tency and throughput.

6.2 Future work

There are several problems that we have not yet addressed and solutions we
proposed that can be further refined:

Prediction accuracy It is motivated to further investigate how to include
a lower, more detailed, level of network abstraction in the intermediate
representation. We demonstrated that it is of particular importance for
prediction accuracy to include modelling of network buffers and network
contention effects.

Automated mapping and tuning We have not dealt with automation of
the task graph transformation and mapping process. An extensive num-
ber of solutions has been reported on task graph transformation and task
graph mapping on multiprocessors that can be used as a basis. Fur-
ther work should investigate how predicted feed back can be beneficially
used in combination with user specified mapping constraints to tune the
mapping process.

Heterogeneous application models The synchronous dataflow model of
computation has many advantages that simplify model analysis, model
transformation and the generation of compact code. However, one trade-
off for these advantages is a limited expressibility. We see a need for
investigating the usage of heterogenous models of computation for appli-
cation development and how to efficiently implement them on manycore
hardware.

Dynamic resource mapping In our work, we have only dealt with the case
of static mapping of application graphs. Such a mapping can often only be
used to describe smaller parts of a system or a system in a limited state
space. In industrial applications of the kind that we address, systems
must be able to handle fast and adaptive reconfiguration of task graphs.
There is a need to further investigate combined static and dynamic task
graph mapping and resource allocation methods.

64 Bibliography

Bibliography

Agha, G. (1986). Actors: a model of concurrent computation in distributed
systems. MIT Press, Cambridge, MA, USA.

Åhlander, A. (2007). Efficient Parallel Architectures for Future Radar Signal
Processing. PhD thesis, Chalmers University of Technology.

Ansel, J., Chan, C., Wong, Y. L., Olszewski, M., Zhao, Q., Edelman, A., and
Amarasinghe, S. (2009). PetaBricks: A language and compiler for algorithmic
choice. In Proc. of ACM SIGPLAN Conf. on Programming Language Design
and Implementation, Dublin, Ireland.

Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer,
K., Patterson, D. A., Plishker, W. L., Shalf, J., Williams, S. W., and Yelick,
K. A. (2006). The landscape of parallel computing research: A view from
Berkeley. Technical Report UCB/EECS-2006-183, EECS Department, Uni-
versity of California, Berkeley.

Bambha, N., Kianzad, V., Khandelia, M., and Battacharyya, S. (2002). Inter-
mediate representations for design automation of multiprocessor DSP sys-
tems. In Design Automation for Embedded Systems, volume 7, pages 307–
323. Kluwer Academic Publishers.

Barua, R., Lee, W., Amarasinghe, S., and Agarwal, A. (1999). Maps: a
compiler-managed memory system for Raw machines. ACM SIGARCH Com-
puter Architecture News, 27(2):4–15.

Battacharyya, S. S. (1994). Compiling Dataflow Programs for Digital Signal
Processing. PhD thesis, University of California at Berkeley.

Baumgarte, V., May, F., Vorbach, M., and Weinhardt, M. (2001). PACT XPP
- a self-reconfigurable data processing architecture. In Proc of Int’l Conf.
on Engineering of Reconfigurable Systems and Algorithms, Las Vegas, NV,
USA. CSREA Press.

66 Bibliography

Bengtsson, J. and Lundin, B. (2003). Reconfigurable architectures for high-
performance computing. Master’s thesis, Technical report IDE0306, Halm-
stad University, Halmstad, Sweden.

Berry, G. and Gonthier, G. (1992). The ESTEREL synchronous program-
ming language : design, semantics, implementation. Science of Computer
Programming, 19(19).

Bhattacharyya, S. S., Sriram, S., and Lee, E. A. (1995). Minimizing synchro-
nization overhead in statically scheduled multiprocessor systems. In Proc.
of the IEEE Int’l Conf. on Application Specific Array Processors, page 298,
Washington, DC, USA. IEEE Computer Society.

Bilsen, G., Engels, M., Lauwereins, R., and Peperstraete, J. (1995). Cyclo-
static data flow. In Proc. of the IEEE Int’l Conf. on Acoustics, Speech, and
Signal Processing, volume 5, pages 3255–3258 vol.5.

Brooks, C., Lee, E. A., Liu, X., Neuendorffer, S., Zhao, Y., and Zheng, H.
(2008). Heterogeneous Concurrent Modeling and Design in Java (Volume 1:
Introduction to Ptolemy II). Technical Report UCB/EECS-2008-28, EECS
Dept., University of California, Berkeley.

Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M.,
and Hanrahan, P. (2004). Brook for GPUs: Stream computing on graphics
hardware. ACM Trans. on Graphics (SIGGRAPH 2004), 23(3):777–786.

Burger, D., Keckler, S. W., McKinley, K. S., Dahlin, M., John, L. K., Lin, C.,
Moore, C. R., Burril, J., McDonald, R. G., and Yoder, W. (2004). Scaling to
the end of silicon with EDGE architectures. IEEE Computer, 37(7):44–55.

Carmean, S. H. G. F. B. D. M. and Hall, J. C. (2001). Managing the impact
of increasing microprocessor power consumption. Intel Technology Journal,
5(1).

Consel, C., Hamdi, H., Reveillere, L., Singaravelu, L., Yu, H., and Pu, C.
(2003). Spidle: A DSL approach to specifying streaming applications. In
Proc. of the 2nd Int’l Conf. on Generative Programming and Component
Engineering, pages 1–17. Springer-Verlag New York, Inc.

Dally, W. J. (1990). Performance analysis of k-ary n-cube interconnection
networks. IEEE Trans. on Computers, 39(6):775–785.

Das, A., Mattson, P., Kapasi, U., Owens, J., , and Rixner, S. (2004). Imagine
programming system user’s guide. cva.stanford.edu/projects/imagine.

Demmel, J., Dongarra, J., Eijkhout, V., Fuentes, E., Petitet, A., Vuduc, R.,
Whaley, R., and Yelick, K. (2005). Self-adapting linear algebra algorithms
and software. Proc. of the IEEE, 93(2):293–312.

Bibliography 67

Duller, A., Panesar, G., and Towner, D. (2003). Parallel processing - the
picoChip way! In Proc. of Communicating Process Architectures, pages 125–
138, Enschede, Netherlands.

Eichenberger, A. E., O’Brien, K., O’Brien, K., Wu, P., Chen, T., Oden, P. H.,
Prener, D. A., Shepherd, J. C., So, B., Sura, Z., Wang, A., Zhang, T., Zhao,
P., and Gschwind, M. (2005). Optimizing compiler for the CELL processor.
In Proc. of the 14th Int’l Conf. on Parallel Architectures and Compilation
Techniques, pages 161–172, Washington, DC, USA. IEEE Computer Society.

Eker, J., Janneck, J., Lee, E. A., Liu, J., Liu, X., Ludvig, J., Neuendorffer,
S., Sachs, S. R., and Xiong, Y. (2003). Taming heterogeneity - the Ptolemy
approach. Proc. of the IEEE, Special Issue on Modeling and Design of Em-
bedded Software, 91(1):127–144.

El-Rewini, H., Ali, H., and Lewis, T. (1995). Task scheduling in multiprocessing
systems. IEEE Computer, 28(12):27–37.

Fatahalian, K., Knight, T. J., Houston, M., Erez, M., Horn, D. R., Leem, L.,
Park, J. Y., Ren, M., Aiken, A., Dally, W. J., and Hanrahan, P. (2006). Se-
quoia: Programming the memory hierarchy. In Proc. of the 2006 ACM/IEEE
Conf. on Supercomputing.

Frigo, M. and Johnson, S. G. (2005). The design and implementation of
FFTW3. Proc. of the IEEE, 93(2):216–231. Special issue on “Program
Generation, Optimization, and Platform Adaptation”.

Gaudiot, J.-L., Bohm, W., Najjar, W., DeBoni, T., Feo, J., and Miller, P.
(1997). The Sisal model of functional programming and its implementation.
In Proc. of the 2nd AIZU Int’l Symp. on Parallel Algorithms / Architecture
Synthesis, pages 112–123.

Gautier, T., Guernic, P. L., and Besnard, L. (1987). Signal: A declarative lan-
guage for synchronous programming of real-time systems. Technical Report
N761, INRIA, Campus de Beaulieu, 35042 Rennes Cdex, France.

Ghamarian, A., Geilen, M., Stuijk, S., Basten, T., Theelen, B., Mousavi, M.,
Moonen, A., and Bekooij, M. (2006). Throughput analysis of synchronous
data flow graphs. Proc. of Intl Conf. on Application of Concurrency to
System Design, pages 25–36.

Gordon, M. I., Thies, W., and Amarasinghe, S. (2006). Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs. In Proc.
of Twelfth Int’l. Conf. on Architectural Support for Programming Languages
and Operating Systems.

68 Bibliography

Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. (1991). The syn-
chronous dataflow programming language LUSTRE. In Proc. of IEEE, vol-
ume 79, pages 1305–1320.

Holma, H. and Toskala, A. (2004). WCDMA for UMTS: Radio Access for Third
Generation Mobile Communications. J. Wiley & Sons Ltd., 3’rd edition.

Johnsson, D., Åhlander, A., and Svensson, B. (2005). Analyszing the advan-
tages of run-time reconfiguration in radar signal processing. In Proc. of the
17th IASTED Int’l Conf. on Parallel and Distributed Computing Systems,
Phoenix, Az, USA.

Kahn, G. (1974). The semantics of a simple language for parallel programming.
In IFIP Congress 74, pages 471–475, Stockholm, Sweden. North-Holland
Publishing Company.

Kapasi, U. J., Rixner, S., Dally, W. J., Khailany, B., Ahn, J. H., Mattson, P.,
and Owens, J. D. (2003). Programmable stream processors. IEEE Computer,
36(8):54–62.

Kianzad, V. and Bhattacharyya, S. (2006). Efficient techniques for clustering
and scheduling onto embedded multiprocessors. IEEE Trans. on Parallel
and Distributed Systems, 17(7):667–680.

Kwok, Y.-K. and Ahmad, I. (1999). FASTEST: A practical Low-Complexity
Algorithm for Compile-Time Assignment of Parallel Programs to Multipro-
cessors. IEEE Trans. on Parallel and Distributed Systems, 10(2):147–159.

Landin, P. J. (1964). The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320.

Lee, E. and Ha, S. (1989). Scheduling strategies for multiprocessor real-time
DSP. In Proc of the IEEE Global Telecommunications Conference, 1989, and
Exhibition. Communications Technology for the 1990s and Beyond, pages
1279–1283 vol.2.

Lee, E. A. (2006). The problem with threads. IEEE Computer, 39(5):33–42.

Lee, E. A. and Messerschmitt, D. G. (1987). Static Scheduling of Synchronous
Data Flow Programs for Signal Processing. IEEE Trans. on Computers,
36(1):24–35.

Mangione-Smith, W. H., Hutchings, B., Andrews, D., DeHon, A., Ebeling, C.,
Hartenstein, R., Mencer, O., Morris, J., Palem, K., Prassana, V. K., and
Spaanenburg, H. A. E. (1997). Seeking solutions in configurable computing.
IEEE Computer, 30(12):38–43.

Bibliography 69

Mark, W. R., Steven, R., Glanville, R. S., Akeley, K., and Kilgard, M. J. (2003).
Cg: A system for programming graphics hardware in a c-like language. ACM
Transactions on Graphics, 22:896–907.

Moritz, C. A., Yeung, D., and Agarwal, A. (2001). SimpleFit: A framework
for analyzing design tradeoffs in Raw architectures. IEEE Trans. on Parallel
and Distributed Systems, 12(7):730 – 742.

Muller, H., May, D., Irwin, J., and Page, D. (1998). Novel caches for predictable
computing. Technical report, Department of Computer Science, Bristol, UK,
UK.

Najjar, W. A., Lee, E. A., and Gao, G. R. (1999). Advances in the dataflow
computational model. Parallel Computing, 25(13-14):1907–1929.

PACT (2005). Programming XPP-IIb Systems. www.pactcorp.com.

Parks, T. M. (1995). Bounded Scheduling of Process Networks. PhD thesis,
EECS Department, University of California, Berkeley, Berkeley, CA, USA.

Parks, T. M., Pino, J. L., and Lee, E. A. (1995). A comparison of synchronous
and cycle-static dataflow. In Proc. of the 29th Asilomar Conf. on Signals,
Systems and Computers, pages 204 – 210, Washington, DC, USA. IEEE
Computer Society.

Pino, J. L. and Lee, E. A. (1995). Hierarchical static scheduling of dataflow
graphs onto multiple processors. In Proc. of IEEE Int’l Conf. on Acoustics,
Speech, and Signal Processing, pages 2643–2646.

Proakis, J. G. and Manolakis, D. G. (1996). Digital Signal Processing: Princi-
ples, Algorithms and Applications. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA.

Püschel, M., Moura, J. M. F., Johnson, J., Padua, D., Veloso, M., Singer,
B., Xiong, J., Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., John-
son, R. W., and Rizzolo, N. (2005). SPIRAL: Code generation for DSP
transforms. Proc. of the IEEE, special issue on Program Generation, Opti-
mization, and Adaptation, 93(2):232– 275.

Ritz, S., Pankert, M., Zivojinovic, V., and Meyr, H. (1993). Optimum vector-
ization of scalable synchronous dataflow graphs. In Proc. of Int’l Conf. on
Application-Specific Array Processors, pages 285–296.

Sarkar, V. (1989). Partitioning and Scheduling Parallel Programs for Multipro-
cessors. MIT Press, Cambridge, MA, USA.

70 Bibliography

Sih, G. C. (1991). Multiprocessor Scheduling to Account for Interprocessor
Communication. PhD thesis, EECS Department, University of California,
Berkeley, Berkeley, CA, USA.

Solar-Lezama, A., Rabbah, R., Bod́ık, R. R., and Ebcioğlu, K. (2005). Pro-
gramming by sketching for bit-streaming programs. In Proc. of the 2005
ACM SIGPLAN Conf. on Programming language design and implementa-
tion, pages 281–294, New York, NY, USA. ACM Press.

Stephens, R. (1997). A survey of stream processing. Acta Informatica,
34(7):491–541.

Stuijk, S., Basten, T., Geilen, M., and Corporaal, H. (2007). Multiprocessor
resource allocation for throughput-constrained synchronous dataflow graphs.
In 44th ACM/IEEE Design Automation Conference, pages 777–782.

Taylor, M. B., Kim, J., Miller, J., Wentzlaff, D., Ghodrat, F., Greenwald, B.,
Hoffman, H., Johnson, P., Lee, J.-W., Lee, W., Ma, A., Saraf, A., Seneski,
M., Shnidman, N., Strumpen, V., Frank, M., Amarasinghe, S., and Agarwal,
A. (2002). The Raw microprocessor: A computational fabric for software
circuits and general-purpose programs. IEEE Micro, 22(2):25–35.

Taylor, M. B., Lee, W., Miller, J., Wentzlaff, D., Bratt, I., Greenwald, B.,
Hoffmann, H., Johnson, P., Kim, J., Psota, J., Saraf, A., Shnidman, N.,
Strumpen, V., Frank, M., Amarasinghe, S., , and Agarwal., A. (2004). Eval-
uation of the Raw microprocessor: An exposed-wire-delay architecture for
ILP and streams. In Proc. of Int’l. Symp. on Computer Architecture, pages
2–13, Munchen, Germany.

Thies, W., Karczmarek, M., and Amarasinghe, S. (2002). StreamIt: A language
for streaming applications. In Proc. of the 2002 Int’l Conf. on Compiler
Construction, Grenoble, France.

Wentzlaff, D. and Agarwal, A. (2004). A quantitative comparison of reconfig-
urable, tiled, and conventional architectures on bit-level computation. In 12th
IEEE Symp. on Field-Programmable Custom Computing Machines, pages
289–290, Napa, CA.

Yotov, K., Li, X., Ren, G., Cibulskis, M., DeJong, G., Garzaran, M., Padua, D.,
Pingali, K., Stodghill, P., and Wu, P. (2003). A comparison of empirical and
model-driven optimization. In Proc. of the ACM SIGPLAN 2003 Conf. on
Programming language design and implementation, pages 63–76, New York,
NY, USA. ACM.

Zhang, Z., Heiser, F., Lerzer, J., and Leuschner, H. (2003). Advanced baseband
technology in third-generation radio base stations. Ericsson Review, (1):32–
41.

List of Figures

2.1 A two level manycore hierarchy. Macro level nodes can be either
specialised cores, dsp or, as illustrated by the figure, a micro
level manycore structure. 14

2.2 The figure illustrates the XPP dataflow processing array, which
is a reconfigurable MISD type of manycore. 16

2.3 The figure illustrates the Raw micro processor, which is a MIMD
type of manycore array. 17

2.4 The block diagram to the left illustrates the implemented FFT
module. The diagram to the right shows the amount of cores
used for control flow and data flow respectively. Local memory
was needed to be used for both double buffering, in order to
relax synchronisation between FFT modules when mapped in
a pipelined fashion, as well as for storing pre-calculated FFT
constants . 19

3.1 Utran. 23

3.2 Abstract task graph describing the symbol rate function flow in
WCDMA downlink. The input of N user transport channels
is multiplexed (at f8 in the figure) and mapped to M physical
channels (at f10). 24

3.3 The transmission time interval (TTI) is always fixed during a
transmission. For transmission of single transport blocks (TB),
the length of transport blocks can be variable, as can be seen to
the left in the figure. For transmission of transport block sets,
all transport blocks must be of the same length, as can be seen
to the right. 26

4.1 Simple SDF graph illustrating rate and delay specifications, as
well as the use of feed-back loops. 35

5.1 A modular illustration of the code mapping framework. 43

72 List of Figures

5.2 Overview of the Raw processor, including the Raw memory con-
figuration used for our experiments. Four non-coherent shared
memory banks are located on the east side ports of the chip. . 51

5.3 Three different mappings of the 32 × 32 elements matrix mul-
tiplication using four cores. Square symbols represent memory
and circular symbols represent cores. 52

5.4 The graph to the left is a fully parallel mapping of the merge
sort (denoted Merge) and, in the graph to the right, leaf nodes
have been pair-wise clustered and mapped to the same core.
The smaller node denoted J, in cores 1 and 4, symbolise a join
operation performed on the output channels. 53

5.5 Comparison of predicted (Rawmm) and measured (Raw) end-to-
end latency for Merge and Merge fused. 55

5.6 Comparison of the modelling accuracy of the computation la-
tency of three different mappings of the parallel matrix multi-
plication. 56

List of Tables

2.1 Comparison of instruction level parallelism per area for Raw with
XPP and the scaled XPP. 17

2.2 Comparison of peak performance for Raw with XPP and the
scaled XPP. 18

3.1 The table lists the types of downlink functions corresponding to
the graph in Figure 3.2. These functions are described in [Paper
B]. 24

3.2 Transport format attribute options used to configure the base-
band functions at the sender and the receiver. 26

5.1 Merge steady state periodicity (clock cycles). 57
5.2 Matrix steady state periodicity in (clock cycles). 57

Paper A
Two-level Reconfigurable Architecture for High-performance

signal processing

Johnsson, D., Bengtsson, J. and Svensson, B. (2004). Two-level reconfig-

urable architecture for high-performance signal processing. In Proc. of Int’l
Conf. on Engineering of Reconfigurable Systems and Algorithms (ERSA’04),
pages 177-183, Las Vegas, USA.

Two-level Reconfigurable Architecture for High-Performance Signal Processing

Dennis Johnsson, Jerker Bengtsson, and Bertil Svensson
Centre for Research on Embedded Systems, Halmstad University,Halmstad, Sweden

Dennis.Johnsson@ide.hh.se, Jerker.Bengtsson@ide.hh.se, and Bertil.Svensson@ide.hh.se

Abstract

High speed signal processing is often performed as
a pipeline of functions on streams or blocks of data. In
order to obtain both flexibility and performance, par-
allel, reconfigurable array structures are suitable for
such processing. The array topology can be used both
on the micro and macro-levels, i.e. both when map-
ping a function on a fine-grained array structure and
when mapping a set of functions on different nodes in
a coarse-grained array. We outline an architecture on
the macro-level as well as explore the use of an exist-
ing, commercial, word level reconfigurable architec-
ture on the micro-level. We implement an FFT algo-
rithm in order to determine how much of the available
resources are needed for controlling the computa-
tions. Having no program memory and instruction
sequencing available, a large fraction, 70%, of the
used resources is used for controlling the computa-
tions, but this is still more efficient than having stati-
cally dedicated resources for control. Data can
stream through the array at maximum I/O rate, while
computing FFTs. The paper also shows how pipelin-
ing of the FFT algorithm over a two-level reconfigur-
able array of arrays can be done in various ways,
depending on the application demands.

Keywords: Signal processing, reconfigurable array,
dataflow

1. Introduction

Many advanced signal processing applications put
hard requirements on the embedded computer archi-
tecture. These requirements manifest themselves as
high compute requirements, limited power consump-
tion, small space, low cost, etc. This means that there
has to be efficient signal processing architectures. The
use of dedicated hardware is common in these applica-
tions, but more flexible solutions are sought for.
Rather than going for the acceleration of one specific
calculation one should identify domains of applica-
tions and design an architecture that supports this en-
tire domain. This enables building domain specific
architectures rather than application specific architec-
tures. Further, by the use of reconfigurable hardware it
is possible to accelerate larger parts of the algorithms

than with a fixed computer architecture.
In this paper we outline an architecture targeted for

multi-dimensional signal processing. It is character-
ized by its two abstraction levels: the macro-level and
the micro-level. In order to make efficient processing
possible in a dynamic way, reconfiguration of the
hardware is allowed on both levels. On the macro-
level, the architecture can take advantage of the avail-
able function and high-level pipeline parallelism in the
applications. On the micro-level, the massive, fine-
grained data parallelism allows efficient parallel and
pipelined computations of algorithms such as FFTs,
FIR filters, and matrix multiplications.

The micro-level is characterized by regular, highly
parallel dataflow and repeated calculations. Thus, in
structures for this level, it should be possible to allo-
cate most of the hardware resources to the parallel
data path and only minor parts to the control of the
computations. Since this division of tasks is applica-
tion dependent, it is interesting to study the use of
architectures where the same hardware resources can
be used both for data processing and for the control
flow. Therefore, in this paper, we study the implemen-
tation of an FFT on a reconfigurable array of arithme-
tic logic units (ALUs) that can be used for either of
these tasks. The goal is, of course, to use as much as
possible of the available resources for the data path.

The rest of the paper is organized as follows: First
we briefly describe the characteristics and demands of
multi-dimensional signal processing and argue that a
two-level architecture is an efficient way to achieve
the required flexibility and computational power. We
then discuss various micro-level structures and in par-
ticular the more coarse-grained, word-level recon-
figurable array architectures. We describe an imple-
mentation of an FFT on one such, commercially avail-
able array — the XPP. We find that, in our implemen-
tation, a larger portion of the array is actually used for
the flow control than for the actual butterfly opera-
tions in the FFT. Still, it can be argued that the array is
actually more area-efficient than a more conventional
solution. The work of the control part roughly corre-
sponds to the task of the program code and control
logic in a microprocessor or digital signal processor.
Whether the ratio between the two parts could be
changed by alterations to the architecture or by more
efficient mapping is still an open question.

We conclude the paper by illustrating how signal
processing applications can be mapped onto the archi-
tecture on the macro-level, including how an FFT
computation can be mapped onto a pipeline of proces-
sor arrays in order to exactly match the requirements
of the application.

2. Structures for high-performance em-
bedded signal processing

In high-performance embedded signal processing it

is crucial that the architecture exploits the available
parallelism in an efficient way. Parallelism exists on
different levels — from the macro-level function par-
allelism down to the micro-level, fine-grained data
parallelism. The applications considered here use
multi-dimensional signal processing on streaming
data. A typical example is phased array radar signal
processing. In these applications, functions such as
transformations and linear operations are applied on
the input data volume. The functions are performed in
succession, implying that a natural approach for paral-
lelization of the application is to arrange a pipeline of
function blocks. Since the applications considered
here are multi-dimensional it also means that, for each
dimension, the same sub-function is applied in parallel
to all elements in that dimension. Of course, this
makes it possible to execute the same function on dif-
ferent dimensions in parallel. The type of functions
could be matrix by vector multiplications, FIR filters,
FFTs, etc. These functions themselves have inherent
data parallelism. Figure 1 shows an example of a data
volume in a radar application. The transformations are
made on vectors along different dimensions of the
volume and after each other. The size and shape of the
volume can vary depending on the task performed by
the radar. Moreover, radar tasks — and hence data
volume shapes — may change during operation.

Samples/Range

C
ha

nn
el

s/
B

ea
m

s

Pulse
/Doppler

M
V

M
(2

)

FF
T(

2)

FFT(1)

1 2 3

Figure 1. A multi-dimensional signal processing example.
Functions are performed in different directions and in
succession.

The applications also have real-time demands, both
in terms of high throughput and in terms of latency.
As a consequence of the changes in radar tasks these
requirements also change. Different tasks have differ-
ent requirements on throughput and latency.

An efficient architecture for embedded high speed
signal processing is characterized by quantitative
measures such as high compute density, both regard-
ing space (operations/cm3) and power (operations/W).
Other, more fuzzy, metrics could be flexibility or how
much general-purpose the architecture is. The archi-
tecture should offer more flexibility than those built
with ASICs but it does not require the generality of a
system consisting of one or more general purpose
processors. The question is then what the required
flexibility is for a certain domain of applications. The
architecture needs to manage parallel data paths. The
control of these data paths could be made in different
ways. The most flexible — but least efficient — way
is to have one control program for each data path, as
in a microprocessor. Using one program for a group of
data paths, as in a SIMD processor, or a more static
mapping of the control, as found in configurable ar-
chitectures, offers significant efficiency gains. These
tradeoffs can be investigated by actual implementation
studies on different platforms. Another vital aspect,
not touched upon here, is how to develop applications
for an architecture, i.e., what tools there are to support
the application developer.

Demanding application domains, such as radar sig-
nal processing, need highly parallel architectures. Ad-
vanced radar systems may require computing 1012
arithmetic operations per second, with constraints on
both space and power usage [1]. These architectures
should be scaleable and support the computation of
applications with highly different characteristics, e.g.
different sizes and shapes of the data volume, and
different demands on throughput and latency. In order
to efficiently map the applications we envision map-
ping of functions onto a parallel architecture where,
for each function, a node or group of nodes are re-
sponsible for executing the function. The nodes
should then implement the calculations of the func-
tions in an efficient way. The architecture should pro-
vide for static mapping of the functions and the data-
flow, but also provide means to quickly, during run-
time, reconfigure the mapping and communication
pattern to adapt to a different scenario, e.g., changing
the data set shape and modifying the signal processing
functions.

Embedded high-performance signal processing ap-
plications often require complete systems consisting
of multiple interconnected chips and even boards. It is
therefore important that the architecture allows scal-
ing. In order to ease the integration the same structure

should be applied repeatedly. We believe a suitable
architecture is a two-level configurable architecture.
The first level, the macro-level, is the target for map-
ping of functions. The dataflow between nodes is con-
figured on this higher level, and functions are assigned
to one or a group of nodes depending on the require-
ments. System configuration on the macro-level
should support run-time re-allocation of nodes to
functions.

An efficient architecture could be built using a
mesh of nodes. A mesh architecture is scalable to lar-
ger structures and is also favorable from an implemen-
tation point of view. Functions could be mapped to the
mesh in different ways depending on the requirements
of the application. The nodes in the mesh should then,
on the micro-level, execute the functions as efficiently
as possible, meaning that the low-level data parallel-
ism within the functions should be exploited in the
most efficient way. Figure 2 illustrates this two-level
approach.

Figure 2 A two-level reconfigurable architecture.

3. Micro-level structures

The primary issue regarding the design of the mi-
cro-level architecture is to find a proper structure that
offers a sufficient degree of flexibility to exploit the
data parallelism found within the different functions.
Microprocessors and DSPs offer full flexibility but do
not have the performance obtainable with ASICs or
configurable architectures [2]. ASICs offer the best
performance regarding compute density and power
consumption and are often used for high-end signal
processing when DSPs fail to meet the requirements.
However, ASICs are usually highly adapted for a spe-
cific problem and therefore not very flexible. Another
technology that has evolved and, in recent years, ma-
tured to become a competitive alternative for applica-
tion specific solutions is the field-programmable gate
array (FPGA). FPGAs have been shown to be per-
formance effective; however, fine grained FPGA cir-
cuits tend to require large portions of logic to imple-
ment common operations like multiplication on word
length data. Major FPGA manufacturers such as Xil-

inx and Altera try to reduce this drawback by embed-
ding dedicated multiplication units within the fine
grained logic. Conclusively, our desire would be to
find a programmable micro-level architecture that
correlates well with algorithm requirements within the
domain of signal processing, and which is flexible
enough to exploit data parallelism within functions but
also allows swift reconfigurations between functions
within an application.

When choosing architecture for the micro-level
there are a number of aspects that have to be ad-
dressed. What are the functional requirements on the
nodes? Is it possible to take advantage of the limited
range of algorithms that need to be implemented? Is it
possible to do without a general microprocessor and,
if so, how will the control of the algorithms be imple-
mented? Coarse grained reconfigurable architectures
offer the possibility of implementing control flow
through run-time reconfiguration, or use static con-
figurations of the control flow when possible. If a
reconfigurable architecture is used there are questions
of how efficient the resource usage is, how the recon-
figuration is done and how fast it is.

Further, the I/O bandwidth is often an issue with all
signal processing architectures. The micro-level
should have a balanced architecture with I/O band-
width matching the compute performance. The mem-
ory requirement also has to be considered. What is the
proper balance between on-chip memory and comput-
ing resources?

Word-level reconfigurable architectures represent
one class of candidates for implementing high-
performance multidimensional signal processing. The
functional, control, I/O and memory issues of these
architectures need to be studied in relation to the ap-
plication domain.

3.1. Coarse-grained reconfigurable architec-

tures

Besides programmable solutions like FPGA, which

are considered fine-grained architectures, there are
many other configurable alternatives today. Many
companies and academic research groups have devel-
oped coarser grained, programmable processor con-
cepts. The processing elements in these span a quite
wide spectrum from simple ALUs [3][4] to pipelined
full scale processors [5][6][7]. Two instances of these
different coarse-grained paradigms are the XPP proc-
essor from PACT XPP Technologies and the RAW
processor developed at MIT.

The RAW processor is in principle a chip multi-
processor, constituting an array of 16 full scale MIPS-
like RISC processors called tiles. Characteristic for
RAW is the high I/O bandwidth distributed around the

chip edges and the dynamic and static networks that
tightly interconnect the processors, directly accessible
through read and write operations in the register file of
the processors. RAW has been implemented in a 0.15
μm process running at a worst case clock frequency
up to 225 MHz. The area is reported to be 256mm2
[7]. The RAW processor with its 16 tiles has a maxi-
mum peak performance of 3.6 GOPS. Large portions
of a RAW tile constitute instruction fetch and decode
units, a floating point unit and units for packet ori-
ented interconnection routing.

The XPP, on the other hand, constitutes a 2D array
of word oriented, single instruction-depth processing
elements. The processing elements in the XPP are
fixed-point ALU units without instruction or data
memory. This means that instructions are statically
mapped to processing elements and all control func-
tions must be implemented using these. The instruc-
tion sequencing as done in a microprocessor must be
performed by mapping instructions statically to the
XPP array and/or using dynamic reconfiguration of
the array. Unlike RAW, which have multiple, full-
fledged packet routed interconnection networks, XPP
ALUs are connected via statically switched networks.

The XPP core has been implemented in a 0.13 μm
process running at 64 MHz and the area requirement
was reported to be 32 mm2. This roughly corresponds
to a peak performance of 4.1 GOPS for the 64 ALU
XPP array [8]. We are not aiming at comparing the
two specific architectures. Rather, we see them as ex-
amples of two architecture classes: one chip multi-
processor with dedicated control and program se-
quencing circuitry (RAW), the other one an ALU ar-
ray (XPP) with resources only for pure dataflow proc-
essing. In the latter case, some of the processing re-
sources need to be used for control, and we are inter-
ested to see how large portion is needed.

It is probably easier to come close to the peak per-
formance in the chip multiprocessor. On the other
hand, the peak performance is much higher in the
ALU array. Therefore we are interested in the process-
ing efficiency of the XPP array and use RAW as a
reference. To make the comparison we need to nor-
malize the two architectures, which we do by estimat-
ing the area of the XPP array in the same process as
RAW. When normalizing the area of the XPP to the
0.15 μm process used for the RAW implementation,
one XPP array would be about 42mm2, which means
that an XPP array occupies about 17 % (42/256) of the
RAW area. Thus, 6 XPP arrays could be fitted on the
same area as one RAW array. When calculating peak
performance we assume the same clock frequencies as
reported for XPP and RAW, this corresponds to a
peak processing performance of 24.5GOPS (6 arrays
at 4 GOPS) for XPP compared to 3.6 GOPS for RAW,

using the same area. Using about 15 percent of the
peak performance for computations in an application
would still mean that the ALU array is competitive
compared to the more traditional chip multiprocessor
architecture. (However, it should be noted that
XPP64-A is a 24-bit architecture whilst RAW is a 32-
bit architecture). Theoretically this means that up to
85% of the ALU resources, can be used to implement
control functions for more complex algorithms, still
the ALU array could be more effective than a chip
multiprocessor, when comparing performance/area.

An obvious tradeoff is that, by making the process-
ing elements simpler there is also a requirement that
more ALU resources are used to implement the pro-
gram control flow. Since the XPP processing elements
have no instruction memory, the array needs to be
reconfigured if algorithms are too large to fit on the
array. This means that the designer first tries to stati-
cally map as large portion of the application, data and
control flow, as possible. If the complete algorithm
does not fit on the array it must be temporally divided
and the array is reconfigured during runtime when
executing the algorithm. Even if ALU arrays offer a
lot of parallelism, there is a great challenge to effi-
ciently make use of it.

4. Implementation study

We have chosen to study the XPP architecture as a
candidate for micro-level reconfigurability in our out-
lined architecture as shown in Figure 2. In the imple-
mentation study we address the control of the compu-
tations implemented on this coarse-grained recon-
figurable architecture. On this type of reconfigurable
array architecture both computations and control func-
tions have to be implemented using reconfigurable
elements and communication paths. Therefore, it is
interesting to see the relation between how much of
the resources are used for computations and how
much are used for control.

4.1. The XPP Architecture

The “extreme processing platform”, XPP, architec-
ture from PACT XPP Technologies, represents a
word-level reconfigurable architecture. A recent im-
plementation of this architecture, the XPP64-A, oper-
ates on 24-bit data.

The architecture consists of a number of parallel
processing array elements labeled PAEs. There are in
turn two types of PAEs, arithmetic and memory, la-
beled ALU-PAE and RAM-PAE respectively. The
PAEs are arranged in an array with both ALU-PAEs
and RAM-PAEs, as illustrated in Figure 3. The
XPP64-A has an 8x10 array, where the first and the

last columns are RAM-PAEs. Four I/O element ob-
jects are connected to each of the four corners of the
array. The I/O can be configured to read simple
streaming input as well as to access an external mem-
ory.

I/O I/O

I/OI/O

ALU

RAM

Configuration Manager

Figure 3 The XPP architecture. The highlighted
areas show an ALU-PAE and a RAM-PAE includ-
ing the vertical routing resources.

The array elements can be configured to execute

their operations when triggered by an event signal
indicating that new data is available at the input ports.
A new output can be produced every clock cycle and
the result constitutes a data output and an event signal
indicating that data is ready on the output port.

The ALU-PAE comprises a data path, with two in-
puts and two outputs, and two vertical routing re-
sources. The vertical routing resources can also per-
form some arithmetic and control operations. One of
the two is used for forward routing and the other for
backward routing. The forward routing resource, la-
beled FREG, is, besides for routing, also used for con-
trol operations such as merging or swapping two data
streams. The backward routing resource, BREG, can
be used both for routing and for some simple arithme-
tic operation between the two inputs. There are also
additional routing resources for event signals which
can be used to control PAE execution. The RAM-PAE
is exactly the same as the ALU-PAE except that the
data path is exchanged by a static RAM. The RAM-
PAE can be configured to act either as a dual-ported
memory or as a FIFO.

The design flow for the XPP technology constitutes
using either a vectorizing C-compiler or direct pro-
gramming in the native mapping language (NML),
which is the XPP-ISA assembly language.

4.2. Implementation of the FFT algorithm

FFT is one important class of the algorithms often
used in signal processing applications. Some of the
most common FFT algorithms are the well known

Radix FFT algorithms where the algorithm complexity
in computing the Fourier transformation can be re-
duced from N2 to N log N [8]. By inspecting the char-
acteristic Radix-2 pattern, which is illustrated in
Figure 4, it is easily seen that the algorithm can be
divided into logR N consecutive stages, where N is the
number of samples to be processed and R is the radix
of the FFT. The data in each stage is being processed
and rearranged according to the characteristic radix
pattern, often referred to as bit reversed order, while it
is propagated through the algorithm. The basic com-
putation performed at each stage is called a butterfly.
As can be seen in Figure 4, the complex sample b is
multiplied with a complex phase shift constant WN.
The output pair (A,B) is then formed by adding and
subtracting the complex sample a with bWN. In total,
N/R butterflies have to be computed in each FFT
stage. The FFT was chosen for the implementation
study since the radix pattern requires fairly complex
control functionality.

Stage1 Stage2 Stage3 Stage4
WN

A = a+bWN

B = a- bWN

a

b

Figure 4 A 16-point Radix-2 Decimation In Time
FFT communication pattern is shown to the left
and a butterfly computation to the right.

We have used available development tools for the
XPP reconfigurable architecture to implement and
simulate a pipelined Radix-2 FFT. Figure 5 shows the
functional schematic of an FFT module that can be
configured to compute one or several butterfly stages.
In this case, we use a double buffering technique be-
tween two consecutive stages in the FFT so that an
entire sample sequence can be read and written in par-
allel without conflicts in the address space.

Precalculated
FFT Constants

In

Out

Write

Read
Butterfly

Address
generator

Bitreverse

from
stage
N-1

to
stage
N+1

Sync buffer

Figure 5 Double buffered FFT stage.

Radix-2 address calculation is performed when
reading the data from the buffer and streaming it to the
butterfly. In order to prevent the input and output
streams from accessing the same address range con-

currently, the write and read address streams have to
be synchronized before the address counting is re-
started after each butterfly stage. The phase shift con-
stants that are multiplied with the input in the butterfly
computation are precalculated and stored internally
using RAM-PAEs. After the data has been streamed
and processed through the butterfly it is being passed
on to the consecutive stage. The RAM-PAEs can be
configured to form one or several larger RAM banks
dependent on the required size. We are using two
separate I/O channels to stream data into the array,
since we are using separate words for the real and the
imaginary parts of the complex valued input. There-
fore two double buffers are used to store the real and
imaginary data and two memory banks to store the
real and imaginary parts of the FFT constants. Figure
6 shows a block schematic of the implemented double
buffer.

Buffer

Bitreverse CounterCounter

Sync

In Out

Wr Rd

Butterfly input a

Butterfly input b
From stage N-1

Figure 6 Synchronized I/O buffers between two
consecutive FFT stages.

The buffer address space is divided into a lower
and an upper half and we use two separate counters to
generate addresses for reading and writing to the
buffer. The counter to the left in Figure 6 generates
write addresses in consecutive order for the input
stream. The counter to the right produces the read
address which then is bit reversed to generate the
characteristic Radix-2 address pattern. A counter can
be implemented by combining several FREG and
BREG instructions in a single PAE. The Radix-2 bit
reversal is implemented using a combination of PAEs
performing shifts and additions. When both counters
have reached the end of each sequence, a synchroniza-
tion signal is generated and fed back to the counters to
make them reset and start over.

4.3. Radix-2 Butterfly

Figure 7 shows the data operation that is performed
in the butterfly. Two samples are needed to compute
the output from each of the N/2 butterflies in each
stage. As could be seen in Figure 6, the sequential
stream of samples are alternatingly forwarded to the a
and b inputs in the butterfly through a PAE demux
instruction. Since the XPP is a fixed point arithmetic
architecture, the results from the arithmetic operations

have to be scaled to assure the output is kept within
the used integer range. After the data has propagated
through the butterfly, the resulting A and B samples
are merged into a serial stream and then fed through
the I/O channels to the next stage. This is imple-
mented using PAE merge instructions.

A=a+bWN

B=a-bWNInput WN

Butterfly

a

b

Figure 7 Data stream through the Radix-2

The implemented FFT configuration is capable of
processing a continuous stream of data with the speed
of one complex-valued word length sample per clock
cycle. All programming has been done using the NML
language. All PAE configurations have been placed
manually. This was made in order to achieve a func-
tionally correct and balanced dataflow through the
array.

Table 1 shows how large portion of the available
reconfigurable resources that have been used for the
FFT implementation. The available number of config-
urable objects of each kind on the array is marked
within the parentheses next to the name of each object.
This is shown to the left in the table. For each class,
the number of objects that have been configured for
the FFT implementation is listed in the middle. The
rightmost column shows the ratio, in percent, between
used objects of each kind through the available objects
of that kind.

Table 1. Array resource usage for the Radix-2
FFT.

Object Used Total share
ALUs (64) 12 19%
FREGs (80) 31 39%
BREGs (80) 44 55%
IOs (8) 4 50%

As can be concluded from the figures in the table,
we use less than half of the available array resources,
except for the BREGs. However, a portion of these
BREGs are used for vertical routing of data on the
array. We have not optimized the usage of routing
resources which would likely be possible to do with
more careful and strategic placement of the configured
PAEs on the array.

A considerable part of all the arithmetic operations
performed on the array are used for controlling the
dataflow on the array. In Table 2 we have listed how
many of the configured ALU operations in total that
are used for controlling the dataflow and how many

are used in the butterfly, where the signal output is
calculated. About 74 percent of the configured ALU
resources are used for dataflow control and 26 percent
are used for computing the butterfly outputs. A great
portion of the resources used for the dataflow control
is a consequence of using separate address counters
and control functions for each of the I/O streams. The
distribution of the figures may, at first look, be sur-
prising. However, one should bear in mind that, in
ordinary program code, many algorithms normally
require portions of the code to do address calculations,
incrementing and testing loop bound counters etc.

Table 2. Distribution of the total Arithmetic opera-
tions.
Functionality ALU ops Total share
Dataflow control ops 34 74%
Butterfly ops 12 26%

Out of the 12 ALU instructions used for the butter-
fly configuration, two are used for fixed point scaling.
The 34 ALU instructions implementing the dataflow
control functionality are used for address counters, bit
reverse and data path switching operations across the
array. What proved to be difficult was the implemen-
tation of the dataflow control structures while main-
taining a balanced dataflow within the entire algo-
rithm. Even though the XPP has automatic dataflow
synchronization, it required time consuming, low-
level engineering to balance the dataflow through all
parts of the FFT and keep up a high throughput rate.
Algorithms like the FFT that contain address calcula-
tions, loop control and memory synchronization tend
to require much of the resources to be spent on im-
plementing the dataflow control in the algorithms. It
might be possible to optimize the FFT implementation
so that fewer configurable objects would be needed.
However, solutions using long pipeline data paths
tend to be complex to implement and balance on the
XPP array. Therefore, in order to reduce complexity
with synchronization and dataflow balance, we used
separate flow control for each of the two I/O streams
which resulted in the presented area tradeoff.

Still, referring back to the coarse area comparison
between an array of ALUs and a chip multi processor,
one could argue that, for the computation studied, the
ALU array makes more efficient use of the silicon
area. Even if the majority of the resources were used
for control purposes, the performance achieved in our
implementation is well beyond the peak performance
of the more coarse-grained multi processor width
dedicated control resources.

4.4. Macro-level mapping

The implemented FFT module could be used as a
building block for FFTs of variable size. The perform-
ance could be adapted for different requirements, by
pipelining FFT modules using several nodes, which is
illustrated in Figure 8. The highest configuration level
— the macro level — constitutes a higher abstraction
level for efficient mapping of pipeline parallelism
within an algorithm, like the implemented FFT, or
between different kinds of functions in a signal proc-
essing chain, like in the earlier described radar signal
processing application. Figure 9 illustrates the general
situation. Different functions in the graph should be
allocated to either a single node or a group of nodes
depending on resource and performance requirements.
The mapping onto the macro level should try to ex-
ploit pipeline parallelism as well as parallelism stem-
ming from multiple inputs.

FFT

Stage
1

FFT
Stage

2

FFT
Stage

3

FFT
Stage

4

FFT
Stage

8

FFT
Stage

7

FFT
Stage

6

FFT
Stage

5

Idle Idle Idle Idle

FFT
Stage

1-3

FFT
Stage

4-6

FFT
Stage

7-9

FFT
Stage
10-12

Figure 8 Pipelined FFT computations mapped onto
the macro-level.

To support dynamic mapping, the macro level archi-
tecture needs to support reconfigurable interconnec-
tion between the nodes. Further studies of how to best
implement this, as well as how to control the configu-
ration flow at the macro level and the control of data-
flow between nodes, will be needed. These studies
must be made using more and realistic applications to
capture the characteristics of the application domain.

F1 F2 F3

F1 F2 F3

Input 0

Input 1

Output 0

Output 1

Figure 9 Functions that should map onto the
macro-level structure.

5. Discussion and Conclusions

We have outlined a two-level configurable archi-

tecture, intended for embedded high-performance sig-
nal processing. The coarse-grained macro-level con-
sists of nodes interconnected in a mesh. For the micro-
level we believe reconfigurable hardware could be
used for efficient implementation of the signal proc-
essing functions.

We described an implementation mapping an FFT
algorithm onto a coarse-grained reconfigurable
architecture. With this implementation study we
quantified the resource usage in the FFT algorithm.
The main focus of the study was to find out how the
architectural resources were allocated to different
parts of the algorithm, in particular the amount of
resources needed to feed the main computational core
with data. This would roughly correspond to the
program code and control logic in a microprocessor.

The implementation study shows that a consider-
able part of the resources are used for implementing
the control structures in the FFT implementation. By
implementing these structures in parallel the data can
be kept streaming through the nodes continuously at
maximum I/O speed. The needed allocation of re-
sources for control is not surprising since, in this ar-
chitecture, there are no dedicated functional units for
control purpose. Many algorithms in signal processing
require less control than the FFT. It is possible to map
these with good efficiency. Other algorithms will need
reconfiguration of the array during run-time. This im-
plies efficient reuse of hardware, but may have nega-
tive impact on performance.

The FFT implementation has also been used to
show different ways of mapping a pipelined algorithm
onto several nodes of configurable arrays.

Further studies must be made to analyze the re-
quirements on the interface to the micro-level nodes.
On the macro-level the requirements on the communi-
cation and configuration must be analyzed for differ-
ent, realistic applications.

6. Acknowledgments

This research has been financed by a grant from the
Knowledge Foundation. We are also grateful to PACT
XPP Technologies for making their development tools
available to us.

7. References

[1] W. Liu and V. Prasanna, “Utilizing the Power of High-
Performance Computing”, IEEE Sig. Proc. Mag., Sept.
1998, pp. 85-100.

[2] A. DeHon, The Density Advantage of Configurable
Computing, IEEE Computer, Vol. 33, No. 4, April 2000, pp
41-49.
[3] Elixent, “Changing the electronic landscape”,
http://www.elixent.com.
[4] V. Baumgarte, F. May, M. Vorbach, and M. Weinhardt,
"PACT XPP – A Self-Reconfigurable Data Processing Ar-
chitecture," Int’l. Conf. on Engineering of Reconfigurable
Systems and Algorithms ERSA 2001, Proc., CSREA Press,
2001.
[5] R. Baines and D. Pulley, “A Total Cost Approach to
Evaluating Different Reconfigurable Architectures for
Baseband Processing in Wireless Receivers”, IEEE Com-
munications Magazine, vol. 41,no. 1, Jan. 2003, pp. 105-
113.
[6] Paul Masters, “A look into QuickSilver’s ACM architec-
ture”, EETimes,
http://www.eetimes.com/story/OEG20020911S0070
[7] M. B. Taylor, et. al., ”The Raw Microprocessor: A
Computational Fabric for Software Circuits and General
Purpose Programs”, IEEE Micro, Mar/Apr 2002, pp. 25-35.
[8] J. G. Proakis, D. G. Manolakis, Digital Signal Process-
ing – Principles, Algorithms, and Applications, 3rd ed., Pren-
tice-Hall International, UK (1996)

Paper B
Baseband Processing in 3G UMTS Radio Base Stations

Bengtsson, J. (2006). Baseband Processing in 3G UMTS Radio Base Sta-

tions. Technical report IDE0629, School of Information Science, Computer

and Electrical Engineering, Halmstad University, Halmstad, Sweden, Feb.

2006.

Baseband Processing in 3G UMTS

Radio Base Stations

Technical Report IDE0629

Jerker Bengtsson

Centre for Research on Embedded Systems
School of Information Science, Computer and Electrical Engineering
Halmstad University
Halmstad, Sweden

 2

 3

Abstract
This report presents a study of functionality, service dataflows, computation charac-
teristics and processing parameters for baseband processing in radio base stations. The
study has been performed with the objective to develop a programming model that is
natural and efficient to use for baseband programming and which can be efficiently
compiled to parallel computing structures. In order to achieve this objective it is
necessary to analyse and understand the logical architecture of the application in order to
be able to define processing characteristics and thereby requirements on languages as
well as on physical system architectures. Moreover, to be able to test and verify
programming and mapping of functions it is necessary to have realistic but still
manageable test cases.

The study is focused on the third generation partnership project (3GPP) standard
specifications for 3G radio base stations. The specifications cover the complete 3G
network-architecture and are quite extensive and complex. To make experiments
manageable, it is necessary to abstract system functionality that is not directly relevant
for the RBS baseband processing. Moreover, the standard specifications only describe the
required processing functionality on an abstract logical level. In this report, the
functionality of the baseband functions is explained and also described using illustrations
of dataflows and abstract mapping of two 3G service cases.

The results of the study constitute a comprehensive description of the processing flow
and the mapping of user data channels in 3G radio base stations – spanning data and
control input from layer 2 to physical channel output from layer 1. Data dependencies
between functions are illustrated with figures and it is concluded that these dependencies
are of producer/consumer type. It is discussed how different functions can be mapped in
MIMD and SIMD fashion with regard to the data dependencies, the data stream lengths
and the control operations required to handle bit stream processing on word-length
processor architectures.

 4

 5

Table of contents

1. Introduction... 7
2. The UTRAN architecture.. 8

2.1 Node B .. 8
2.2 The UTRAN interfaces ... 9

3. Transport channel multiplexing in Node B... 9
4. Code spreading and processing rates .. 11
5. Service mapping.. 12

5.1 AMR voice.. 12
5.2 High bit-rate data transmission ... 13

6. Downlink processing functions... 13
6.1 CRC attachment .. 13
6.2 Transport block concatenation and code block segmentation 16
6.3 Channel coding ... 17
6.4 Rate matching ... 21
6.5 First Insertion of discontinuous transmission (DTX) indication bits.................. 25
6.6 First Interleaving... 27
6.7 Radio frame segmentation .. 29
6.8 Transport channel (Trch) multiplexing... 31
6.9 2’nd Insertion of discontinuous transmission (DTX) indication bits.................. 32
6.10 Physical channel segmentation ... 34
6.11 Second Interleaving .. 35
6.12 Physical channel mapping... 37

7. Summary ... 38
Appendix A: Glossary... 39
References... 40

 6

 7

1. Introduction

This report concludes a study of functionality, dataflows as well as computation
characteristics and processing parameters for baseband processing in Universal Mobile
Telecommunication Standard (UMTS) radio base stations (RBS). The study is part of a
research project where the objective is to investigate programming models and efficient
mapping techniques for parallel and reconfigurable processing platforms. Efficient
parallel mapping requires a programming model that is natural to use for application
programming and which can be efficiently compiled to parallel structures. Thus, it should
be possible to express parallelism and application-characteristic dataflows, which can be
analysed and exploited at compile-time. Moreover, such a programming model should
also be portable to different architectures. In order to achieve this objective it is required
to analyse and understand the application, to be able to define requirements on a language
and to be able to conduct realistic implementation experiments.

There are two main purposes with this study. First, the standard specifications for third
generation (3G) networks are quite extensive and complex and quite difficult to grasp. To
make experiments manageable, it is necessary to abstract system details that are not
directly relevant for the RBS data processing. The second purpose is to characterise the
baseband functions, the computations and the dataflows to understand what kind of
operations and logical functionality that must be expressed in a programming language.

There are several 3G-enabling radio technologies, such as EDGE, CDMA 2000 (also
called CDMA 2K) and WCDMA. WCDMA is an abbreviation for wideband code
division multiple access and it is the radio technology chosen by the 3GPP organisation
for UMTS networks [1]. Unlike earlier generations, 3G systems have been designed to
support high bandwidth multimedia services and to support multiple simultaneous
services, multiplexed on a single user channel [2].

In an RBS, the term downlink denotes the transmitting part of a communication link
and the receiver link is called uplink. FDD is an abbreviation for Frequency Division
Duplex, in which separate frequency bands are used for uplink and downlink carriers.
There is also a standard for Time Division Duplex (TDD) in UMTS, but the FDD
standard is the technology used in existing telecommunication systems. This study is
focused on the WCDMA FDD standard and the downlink processing in an RBS. The
technical specification in the study document has been compiled from release 5 of the
3GPP standard specifications [1].

 This report is organized as follows. Section 2 describes the logical network
architecture and how the RBS relates to the network. The RBS data input format,
configuration parameters and the logical function flow for the baseband processing are
presented in Section 3. In section 4, the WCDMA code spreading technique and
processing rates are discussed. Section 5 discuses two service examples used to describe
data- and function-flows. The technical specifications of the studied baseband functions
are presented in Section 6 which is the main section of the report. We explain the purpose
the functions and illustrate dataflows and mapping characteristics using the service
examples from Section 5. Finally, the study is summarised in Section 7.

 8

2. The UTRAN architecture

This section presents an overview of the modular UMTS network architecture. The logic
modules and interfaces in the network architecture are briefly described to explain the
role of an RBS in an UMTS network. The WCDMA baseband technology constitutes the
core of the UMTS terrestrial radio access network (UTRAN) architecture [2]. The
UTRAN architecture is a standardised, logical architecture comprising one or several
radio network subsystems (RNS), see Figure 1. An RNS is in turn a sub-network
comprising a radio network controller (RNC) and one or several Node Bs. Node B is the
terminology used for an RBS by the 3GPP.

Node B

Node B

RNC

Node B

Node B

RNC

Core
Network

(CN)

User
Equipment

(UE)

Air Interface
(Uu) Circuit Switched

IUCS

Packet Switched
IUPS

Iur

Iub

Iub

UTRAN

Figure 1 The UTRAN architecture

The RNC controls the Node B radio access resources within an RNS, i.e. the lowest

layer of the network layers – the physical layer (L1) – and the radio. The RNC is
responsible for setting up physical radio links via the radio access resources – so called
radio access bearers (RAB) – on user service requests. The RNC also manages
congestion control and load balancing of the allocated channels and it constitutes the
termination point between the RNS and the core network. This is illustrated with the CN
interface in Figure 1.

2.1 Node B
The functionality of Node B can in general terms be described as a mapping procedure,
between logical channels from higher layers (L2 and above) and the physical channels
(L1). In the downlink, data frames from higher layer transport channels are encoded,
grouped and modulated before being transmitted through the antenna. In the uplink,
physical channels are demodulated, decoded and mapped onto higher layer data frames.

 9

 The transport channels comprise channels of both dedicated and common type. The
dedicated channels (DCH) are allocated for single users while the common channels are
shared for several users. Several transport channels can be allocated for a single user and
these are multiplexed into one coded composite transport channel (CCTRCH). Multiple
transport channels can be allocated for one service and/or for multiple services running in
parallel. For example, a user could be downloading e-mails in the background while
speaking in the phone at the same time. In release 5 of the 3GPP standard, which is the
standard release used for this report, it is only possible to allocate one CCTRCH for a
single mobile user equipment (UE).

2.2 The UTRAN interfaces
There are two RNC interfaces to the core network (CN) ⎯ the IUPS interface for packet
switched communication and the IUCS interface for circuit switched communication.
The UTRAN CN interface is designed to be logically compatible with the GSM network
infrastructure.

The IUR interface is an interface for communication between RNCs of different
RNSs. It is used for network relaying, or hand-over, of radio links when a mobile UE has
relocated geographically in the network. The RNC that initiates a radio access link is
denoted the serving RNC (SRNC). The SRNC is the owner of the link. When a mobile
UE relocates to a different RNS, the RNC in the RNS to which the mobile has relocated
to becomes a drift RNC (DRNC). The DRNC relays the radio link to the SRNC and no
L2 processing is performed at the DRNC.

The IUB interface is the L2 to L1 interface between a Node B and the RNC. This
interface is the termination point for the RBS managed resources. The Uu interface is the
WCDMA air interface between Node B and mobile UEs. The physical layer processing
in the RBS is encapsulated between the Iub and the Uu interfaces.

3. Transport channel multiplexing in Node B

This section presents the L1 downlink logical function flow in the RBS and the frame
format of input data from L2. Service payload is mapped on dedicated transport channels
(DCH) and a transport block is the smallest data unit for input payload. Several transport
blocks can be mapped on one transport channel and new blocks of data arrive by a
deterministic time interval, Figure 2. This time interval is denoted as the transmission
time interval (TTI).

TB TB TB TB TB
TB
TB

TB
TB

TB

TTI A TTI B
Figure 2 Examples of Transport block combinations

 10

Transport blocks that are grouped within a TTI and belong to the same service constitute
a transport block set [5]. A new transport block set is processed every TTI and the TTI is
always a multiple of the 10 ms radio frame (10, 20, 40 or 80 ms). Transport blocks in
different TTIs can have variable bit lengths (illustrated to the left in Figure 2), but within
a transport block set, all blocks must be of equal length (illustrated to the right in Figure
2).

CRC encoding

Transport block concatenation and
Codeblock segmentation

Channel Coding

Rate Matching

1'st DTX insertion

First Interleaving

Radio Frame Segmentation

Transport Channel Multiplexing

2'nd DTX insertion

Physical Channel Segmentation

Second Interleaving

Physical Channel Mapping

1
2

N

1
2

M

Symbol Rate

Chip Rate

P
arallel D

C
H

 TR
C

H
s

C
C

TR
C

H

Figure 3 DCH frame format. The horizontal
axis is graded in bytes and the vertical axis by
byte octets

Header CRC FT

CFN

TFI of first DCHSPARE

TFI of last DCHSPARE

First TB of first DCH

First TB of first DCH (contnd.) PAD

07

Payload CRC

Payload CRC (contnd.)

Last TB of first DCH

Last TB of first DCH (contnd.) PAD

First TB of last DCH

First TB of last DCH (contnd.) PAD

Last TB of last DCH

Last TB of last DCH (contnd.) PAD

Spare extension

Payload

Header

Optional

Header
Payload

Pad
Optional

Figure 4 Downlink processing functions

There are two L2 frame format types for the DCHs – data frames and control frames
[3]. All frames have a header field and a field for payload. The structure of a data frame
can be seen in Figure 3.The baseband processing in Node B constitutes a pipelined
sequence of functions, as shown in Figure 4. The figure shows N parallel DCH transport
channels, which are multiplexed to form a CCTRCH, and later, depending on the
bandwidth requirements, de-multiplexed on M physical channels. The processing mode
of the baseband functions is configured using a set of service parameters. These
processing parameters must also be set at the receiver side. Different methods can be
used to configure the processing mode parameters in the receiver – TFCI based detection,
blind transport format detection or guided detection [4]. The mapping examples,
described later in Section 5, assume TFCI based detection.

The transport blocks transmitted within a transport channel in the same radio frame
interval are combined with a transport format indicator (TFI). A transport format
combination indicator (TFCI) combines the TFIs for the services that are multiplexed on
a single CCTRCH. The TFCI is encoded and transmitted over the physical channel
together with the DCHs which are multiplexed to form a CCTRCH. If several DCHs are
used, only one TFCI is sent with one of the DCHs. At the receiver side, the TFCI can be
decoded and the function parameters are then configured so that the data frames can be
processed correctly.

The TFI has two parts – a dynamic part and a semi-static part. The dynamic
parameters can be altered each TTI, while the semi-static are configured once when a
service is set up. The TFI parameters are listed in Table 1 below.

Table 1 Transport Format Attribute options

Dynamic
Part

Transport
Block Size

0 to 5000 bit

 Transport
Block Set Size

0 to 200000 bit

Semi-
Static Part

Transmission
Time Interval

10, 20, 40, 80 ms

 Channel
Coding Type

No coding,
Convolution coding,

Turbo coding

 Code Rates
(Convolution)

1/2 or 1/3

 CRC size 0, 8, 12, 16, 24

4. Code spreading and processing rates

The L1 processing is performed with different processing rates at different stages. These
rates are categorised as symbol rate processing and chip rate processing. Symbol rate

 12

corresponds to the rate of the information bits. That is, each bit processed in the physical
layer corresponds to one information symbol (e.g. 1 or 0) in the payload. The WCDMA
technology uses code spreading to enable transmission of multiple channels on the same
frequency band. Symbols are spread using orthogonal channel codes. A channel code is a
finite sequence of 1’s and 0’s, which are denoted chips, and these sequences are selected
so that they are orthogonal to each other. Each symbol is spread to a sequence of chips
and the processing rate is higher after this spreading, since each logical symbol now is
represented by a longer chip-sequence. This rate is referred to as chip rate.

In the downlink, all baseband functions from the CRC attachment through the
physical channel mapping are processed at symbol rate. The spreading operation is
performed after physical channel mapping and the output after spreading are chip rate. In
the uplink, parts of the RAKE1 receiver and the preceding functions are processed at chip
rate. Functions proceeding to the RAKE receiver are processed at symbol rate.

The chip rate on a physical channel in UMTS is 3.84 Mchips and this rate is constant.
A radio frame is transmitted during a 10 ms interval and this corresponds to a length of
38400 chips. Each radio frame is divided into 15 slots and each slot corresponds to 2560
chips. The length of the spread factor (SF) determines the rate with which symbols are
mapped on the physical channels. The spread factor is always a multiple of 2 and in the
downlink the SF can vary between 4 and 512. Dynamic bit rates can be allocated through
configuration of the spread factor length and by using multiple channel codes.

5. Service mapping

This section presents two 3G service examples which are used to reason about mapping
of data streams and about processing characteristics of the baseband functions in Node B.
The first example is derived on a standard service for voice transmission. The second
example is a more general case for high-bit rate services. Only mapping and processing
on DCH transport channels are considered and it is assumed that the required service
RABs have been setup by the RNC.

5.1 AMR voice
Adaptive Multi Rate (AMR) is a technique used for coding and decoding of dynamic rate
speech services in UMTS [5]. The bit rate can be altered by the radio network during the
service session, hence the name Adaptive Multi Rate2. There are two standard AMR
codecs included in the 3GPP specification – narrowband AMR [6] [7] and wideband
AMR [8]. The wideband AMR is specified in release 5 of the 3GPP technical
specifications. The main difference is that the wideband AMR coder offers higher voice
quality by means of an increased sample rate (16 kHz for wideband compared to 8 kHz
when using narrowband).

Nine data rates between 6.60 kbps and 23.85 kbps are available in the wideband AMR
standard. The narrowband AMR codec offers 8 data rates between 4.75 kbps and 12.2
kbps, where some of these codec rates are compatible with the AMR codec used for the

1 The RAKE receiver is used in the uplink to decode the channel codes
2 Current networks have been deployed with AMR that uses fixed bit-rates

 13

GSM system. The radio access network can adaptively control the bit rate and for the
narrowband AMR service the bit rate can be changed for each TTI.

When the AMR encoder encodes data, the bits are arranged in different classes
according to how important they are for speech quality. The encoded bits are categorized
into three classes - A, B and C - where A are the most important bits and C the least
important. Stronger coding and CRC attachment can be applied on the class A bits
separately, while the less important bits can be transmitted using less coding strength and
without CRC attachment.

5.2 High bit-rate data transmission
The standard specifies a set of UE classes with different radio access capabilities. These
capability classes define what data rates and services that must be supported for a UE of a
specific class. We have used parameters required for UEs of the highest capability class,
which can handle bit rates up to 2048 kbps [9]. The maximum number of simultaneous
transport channels for the 2048 kbps class is 16. It is assumed that all transport channels
can be of DCH type. One CCTRCH using up to 3 physical channel codes can be received
by a UE of this class. The maximum number of transport blocks within a TTI is 96 and
the maximum number of bits that can be received within a 10 ms radio frame interval is
57600.

6. Downlink processing functions

In this section we explain and discuss the baseband functions (shown in Figure 4) with
focus on the downlink data channel processing in the RBS. We illustrate processing and
mapping of services to these functions using the two cases of service transmissions that
were presented in Section 5. The mapping is based on the logical specifications given by
the 3GPP standard documents and test implementations that have been made for a sub set
of these functions [1]. We use figure abstractions in connection to each of the described
functions to abstractly reason about computations, potential parallelism and dataflow
mapping. The mapping has been kept on an abstract level for each function separately
and the specific services are discussed under the paragraphs AMR service and High bit-
rate data service in connection to each function sub-section.

In first hand, we are interested in identifying data dependencies, potential parallelism
and typical computations in order to define different function implementations which
desirably should be possible express in a programming language.

6.1 CRC attachment
Cyclic Redundancy Check (CRC) is a function used to detect bit errors after
transmission. At the sender side, a checksum is calculated and appended to the data to be
transmitted, Figure 5. In the figure, Ai represents the length of the transport block before
CRC attachment and Li the length of the checksum. At reception, the checksum is
recalculated and if no errors have been introduced, this checksum will match the
appended checksum. The CRC checksum is calculated using polynomial division [10].
The dividend corresponds to the bits in a transport block and the divisor is a specified
generator poly-nomial, known both by the sender and the receiver. This polynomial

 14

division results in a rest term - the checksum. The generator polynomials used for CRC in
UMTS are of length 24, 26, 12, 8 or 0 bits. The generator polynomial to be used for a
specific transport channel is signalled to the physical layer from higher layers in the TFIs.

CRCTransport Block

Transport Block with CRC attached0 Ai+Li

Transport Block

0 Ai

Figure 5 A CRC checksum is appended to each transport block

The polynomial arithmetic is performed in GF(2), where GF is an abbreviation for

Galois Field and 2 represents a number field of width 2. In practice this means that
addition and subtraction are performed modulo 2. (i.e. no carry is propagated) [11]. Thus,
addition and subtraction can be implemented using simple XOR arithmetic. The
following generator polynomials are specified for usage in the 3GPP UMTS standard

GCRC24(D) = D24 + D23 + D6 + D5 + D +1
GCRC16(D) = D16 + D12 + D5 + D +1
GCRC12(D) = D12 + D11 + D3 + D2 + D +1
GCRC8(D) = D8 + D7 + D4 + D3 + D +1

In GF(2) each Di term represents a ‘1’ at position i in the binary number format and the
others are ‘0’. For example, the polynomial GCRC8 corresponds to the binary number
110011011.

Transport blocks are padded with a number of zeros, as many as the length of the
generator polynomial. That is, if GCRC16 is used, 16 zeros shall be appended to the
transport block. After zero padding, the entire transport block (the dividend), is divided
by the generator polynomial (the divisor). If there are no transport blocks on the input, no
checksum is calculated. If the input transport block size is of zero length, a checksum is
still calculated (all checksum bits will be zero).

AMR service
The AMR bit classes are mapped using three RAB sub-flows; one transport block for
each bit class, mapped on three separate DCH transport channels. CRC attachment is
only applied for the class-A sub-flow using the CRC12 polynomial. Thus, one transport
block per user must be processed each TTI, see Figure 6. A possibility for exploitation of
SIMD parallelism is to combine AMR class A channel streams from several users.
However, efficient SIMD parallelization of the CRC function for AMR services will
require that the channels are computed using the same CRC polynomial. This is because
that many efficient CRC algorithms require that the input must be sliced according to the
polynomial length [10]. Also, it will require that all users are using the same AMR data

 15

rate encoding modes to ensure that all bit streams are equal in length. Input slicing and
stream alignment require control operations. These control operations must be the same
for all streams to be able to SIMD vectorize efficiently.

DCH A DCH B DCH C CRC input

After CRC

42 - 81 53 - 103 0 - 60

12 0 - 6042 - 81 53 - 103
Figure 6 Transport block lengths can take 8 different discrete values within the given bounds. Each
value corresponds to a certain AMR bit-rate.

High bit-rate data service
Data can be mapped using multiple transport blocks distributed on several transport
channels. All transport blocks within a transport channel are of equal length (n in Figure
7) and the CRC polynomial is the same for all blocks. Since there are no data
dependencies between transport blocks, it is possible to SIMD vectorize several blocks
within a channel.

Like in the AMR case, efficient SIMD vectorization of data from several transport
channels will require that the transport block lengths and CRC polynomial are the same
for these channels. Otherwise, more coarse-grained parallelism can be exploited by
mapping the channel streams in a MIMD parallel fashion.

For the 2048 kbps class, at most 96 transport blocks can be mapped to 16 DCH
streams, as shown in the figure. The maximum sum of bits that can be received within a
TTI (all DCH:s included) is 57600 (channelsii nnm ××).

DCH 1

CRC input of

After CRC
0-24 bits attached

0 - n1

0-240 - n1

DCH 2

0 - n2

0 - n2

DCH 16

0 - ni

0 - ni0-24 0-24

DCH 1 DCH 2 DCH 16

mi blocks of size ni
where i is 0 - 16

channels

1

m

Figure 7 Transport blocks are mapped on 0-16 channel streams. A CRC checksum of length 0 - 24
bits is attached to each block

 16

6.2 Transport block concatenation and code block segmentation
Transport blocks mapped within a transport channel during the same TTI are
concatenated to larger code blocks. If the resulting code block is larger than a maximum
code block size, it will be segmented into several code blocks. The purpose with code
block concatenation and segmentation is to build code blocks with a size that yields better
coding performance of the channel [2]. Small blocks are concatenated to form blocks that
yield lower coding overhead, and code blocks that are too large are segmented into
smaller blocks to reduce coding complexities. The maximum code block size is
dependent of the type of forward error coding (FEC) function that will be used in the
following channel coding operation.

Transport block Concatenation
A transport block set is a finite bit sequence bim1, bim2, bim3, …, bimBi , where i is the
transport channel, m is the transport block number and Bi is the number of bits in each
transport block, including the previously appended CRC code, see Figure 8. The number
of transport blocks on channel i is denoted Mi and the bit sequence after block
concatenation is xi1, xi2, xi3, …, xiXi, where Xi = MiBi.

CRCTransport Block

Code Block

Bi0

0 Xi

Mi1i 2i ...

Figure 8 Transport blocks are concatenated to code blocks

Code block segmentation
The maximum size of a code block for channel coding is denoted Z. For turbo coded
channels Z = 5114 and for convolution coded channels Z = 504. Segmentation is
performed only if Xi exceeds Z. If turbo coding is to be applied and the size of the block
is less than 40 bits (Xi is < 40), the initial part of the code block must be padded with
zeros so that the code block length equals 40 bits. All code blocks that are segmented are
segmented to equal size. The number of code blocks after segmentation is denoted Ci,
where Ci = ⎡ ⎤ZX i / . The input Xi must be padded with zeros, in the beginning of the
sequence, if Xi is not a multiple of Z.

C1

Code block

C3 C4

0 Ci*Z

C2

Z
Figure 9 First code block padded with zeros if the input length is not a multiple of Z

 17

AMR service
Block concatenation is not required for AMR transport channels; only one transport block
is mapped on each channel, see Figure 10. Convolution coding is applied for all channels
and, since each transport block is less than 504 bits, no segmentation is required either.
Thus, no concatenation or segmentation processing is required for the AMR service.

DCH A DCH B DCH C

After concatenation
and segmentation

54 - 93 53 - 103 0 - 60

Input from CRC

54 - 93 53 - 103 0 - 60
Figure 10 No concatenation or segmentation performed on AMR data

High bit-rate data service
The maximum number of transport blocks that can be transmitted within a TTI for the
highest UE capability class is 96. These blocks can be mapped using at most 16 allocated
transport channels, see Figure 11 Concatenation and segmentation is performed for up to
16 channels (transport block streams). Like in the previous CRC function, SIMD
vectorization can be performed by arrangement of transport blocks within each channel in
parallel. Multiple transport channels can be mapped and processed MIMD parallel,
assuming that the channels contain transport blocks with different lengths. Thus, less
consideration have to be taken of control operations required for alignment of different
transport block lengths between channels.

DCH
1

Input after CRC

After concatenation

0 - n1

Stream of m blocks of
size n where i is 0 - 16

channels

DCH
1

TB 1 TB 2 TB m1

DCH
2

0 - n2

DCH
2

TB 1 TB 2 TB m2

DCH
i

0 - ni

DCH
i

TB 1 TB 2 TB mi

CB 1 CB k1 CB 1 CB k2 CB 1 CB ki
After

segmentation

Z k1*Z Z k2*Z Z ki*Z
Figure 11 Concatenation and segmentation is performed for up to 16 channels (transport block
streams)

6.3 Channel coding
The CRC operation can be used to detect bit errors but it is not possible to identify
erroneous bit positions and thus be able to correct them. Forward error correction (FEC)
is a coding technique that can be applied in order to, at some extent, restore distorted bits.

 18

Redundancy bits are added to the transmitted bit sequence so that it is possible, to a
certain degree, to correct bit errors when decoding the message in the receiver [12].

There are two types of coding techniques that can be used for FEC in UMTS; turbo
coding and convolution coding. The coding rate is the main parameter that can be
alternated when using these coding techniques. The coding rate corresponds to the bit
redundancy ratio after the encoding procedure; i.e. the number of encoded bits inserted
per original bit. Thus, with 1/2 rate coding each input bit is associated with two redundant
bits and with 1/3 rate coding each bit is associated with three redundant bits.

6.3.1 Convolution coding
Two different coding rates can be applied for convolution coding in UMTS; 1/2 and 1/3
ratio. The coding procedure is logically represented by an 8-stage shift register and a
sequence of XOR operations. The 1/2 rate encoder is shown in Figure 12, and the 1/3 rate
encoder is shown in Figure 13. When applying 1/2 rate coding, two redundant bits are
produced for each bit fed into the register. When coding with 1/3 rate, three redundant
bits are produced instead of two. The bits in the shift register must be set to zeros in all
positions before the encoding of a new sequence is started.

D D D D D D D D
Bit-serial

input

Output 1

Output 0

Figure 12 Convolution coding with 1/2 coding rate

D D D D D D D DBit-serial

input

Output 1

Output 0

Output 2
Figure 13 Convolution coding with 1/3 coding rate

The output sequence from the 1/2 rate encoder is: output 0, output 1, output 0, output 1,
…

The output sequence from the 1/3 rate encoder is: output 0, output 1, output 2, output 0,
output 1, output 2, …

The shift register is one byte wide and each output bit is dependent on the input bit and
specific bit positions in the register. The encoding procedure ends when the last bit has
been passed through the register. When using 1/3 rate, the length of the encoded sequence
will be 243 +× iX bits, and for 1/2 it will be 162 +× iX bits, where Xi is the length of
the bit sequence before encoding. The 24 bits correspond to 3 bits times the length of the

 19

shift register for the 1/3 rate coding, and the 16 bits correspond to 2 times the length of
the shift register for the 1/2 rate coding.

6.3.2 Turbo coding
Turbo coding is performed using two parallel, concatenated convolution coders (PCCC),
see Figure 14. The input sequence is interleaved before the second encoder encodes it.
The purpose with the interleaving procedure is to spread the coding dependencies over
longer bit sequences rather than using only adjacent bits, as is the case with a single
convolution coder.

D D D

D D D

Interleaver
1'st encoder

2'nd encoder

Xk

X’k

Xk

Zk

Z’k

X’k

Figure 14 Turbo encoder for UMTS

The output sequence from the encoder is the sequence described in Eq 1.

Eq 1 X1, Z'1, Z1, X2, Z'2, Z2, X3, Z'3, Z3, ..., Xn, Z'n, Zn

6.3.4 Trellis termination
The turbo-coded output is ended with a termination sequence. The termination sequence
constitutes the sequence that is produced when shifting out the bits present in the shift
register, after closing the feedback loop, as can be seen in Figure 14. This procedure is
called Trellis termination and the termination sequence, described by Eq 2, is appended
to the encoded bit sequence, described by Eq 1.

Eq 2 X1, Z1, X2, Z2, X3, Z3, X'1, Z'1, X'2, Z'2, X'3, Z'3

6.3.5 The Turbo Code interleaver
The input bit sequence is arranged according to a matrix pattern before the interleaving
procedure. The bit matrix is interleaved through an intra-row bit permutation and then by
an inter-row permutation. The length of the input sequence determines the size of the
matrix. A logical algorithm to perform the interleaving procedure and the arrangement of
the matrix size is described in [4].

 20

AMR service
The three transport channels used for the AMR service require convolution encoding,
where the class A bit stream is encoded using 1/3 rate and class B and C bit streams are
encoded using 1/2 encoder rate. The relation between the input data streams and the
output after convolution coding is shown in Figure 15. SIMD vectorization is
complicated by the fact that the lengths of the input streams are different for each channel
and channels are encoded using different parameters. A possibility is to, like in the CRC
function, SIMD vectorize according to groups of class A, class B or class C streams from
different composite user channels. Thus, it is possible to take advantage of parameter and
stream length equality. Another possibility is to map and process the transport channels
simultaneously in MIMD parallel fashion.

DCH A DCH B DCH C

After convolution coding

53-103 0-60

0-303 0-333 0-132

Input after concatenation

54 -93

Figure 15 Convolution coding for AMR channels

High bit-rate data service
In the high bit-rate service example, at most 16 parallel input streams, each carrying mi
code blocks of size ni must be processed. The input and output relations for convolution
and turbo coded streams are shown in Figure 16. Like in the previous functions, SIMD
vectorization can be performed by grouping code blocks within a single transport channel
since there are no data dependencies between blocks. Like in the AMR example,
assuming that code block lengths and processing parameters can be unequal for the
transport channels complicates SIMD vectorization through grouping of code blocks
from several transport channels. A possibility is to process multiple in channels in MIMD
parallel fashion.

DCH
1

After channel coding

0 - n1

Input of mi blocks with
size ni where i is 0 -

16 channels

DCH
1

DCH
2

0 - n2

DCH
2

DCH
i

0 - ni

DCH
i

Conv.: 0 - (3*n1 + tail)
Turbo: 0 - (3*n1 + 12)

Conv.: 0 - (2*n2 + tail)
Turbo: 0 - (3*n2 + 12)

Conv.: 0 - (2*ni + tail)
Turbo: 0 - (3*ni + 12)

0

m

Figure 16 Output after convolution or turbo coding. The tail variable takes the value 16 or 24
depending on the coding rate

 21

6.4 Rate matching
Rate matching is performed to match the input data length with the available radio frame
bits. The rate match pattern has to be calculated with regard to the input rates of all the
channels, which are to be multiplexed to form a user CCTRCH. Bits are either repeated
or punctured according to this rate-match pattern.
 Rate matching is performed differently depending on whether a channel is transmitted
using compressed or normal mode, and whether fixed or flexible positions are used (in
this study only rate-matching for fixed positions are considered). Compressed mode is a
technique that can be applied to perform channel measurements in UEs. Channel
compression is used to create transmission gaps (transmission free slots), which can be
used by the UE to perform measurements [13]. There are different compression
techniques for the downlink transmissions; spread-factor reduction, bit puncturing and
higher-layer scheduling. With spread-factor reduction, the spread-factor is reduced so
that the number of chips per symbol is decreased. In compressed mode by puncturing,
bits are either punctured or repeated. Compression can also be handled through higher-
layer scheduling; only a sub-set of the possible transport format combinations can be
transmitted during the compressed interval [4]. That is, in order to make room for gaps
the input data rate is decreased through scheduling. In all compressed modes, a rate-
matching attribute that is used to calculate the number of bits that shall be repeated or
punctured, is assigned by higher layers.

6.4.1 Bit separation and bit collection
In Turbo coded channels, only the parity bits and some bits from the trellis termination
sequence are rate matched, as shown in Figure 17. This means that no puncturing or
repetition is performed on the systematic bits plus some of the trellis bits (see [4] and Eq
6 in the previous channel coding section). These bits are passed through without any rate
matching. For convolution-encoded channels all bits are rate matched, as seen in Figure
18.

Channel
Coding

DTX
Insertion

Rate
matching

Bit
separation

Bit
collection

Rate
matching

Rate matching stage

kiX ,,1

kiX ,,2

kiX ,,3

kiY ,,1

kiY ,,2

kiY ,,3

ikE ikf

Figure 17 Rate matching for turbo coded channels

 22

The variable iE describes the number of input bits to the rate-matching function after
channel coding. The relations between the number of input and output bits for turbo-
coded channels are

3/,,3,2,11)1(3,,,1 iiikiki EXXkCX === +− K
3/,,3,2,12)1(3,,,2 iiikiki EXXkCX === +− K
3/,,3,2,13)1(3,,,3 iiikiki EXXkCX === +− K

For convolution coded channels and turbo coded channels using repetition the relation is

iiikiki EXXkCX === ,,3,2,1,,,1 K

Channel
Coding

DTX
Insertion

Bit
separation

Bit
collection

Rate
Matching
Algorithm

Rate matching stage

Ci,k Xi,k Yi,k Zi,k

Figure 18 Rate matching for convolution coded channels

The bits are collected into a single output sequence after the rate matching. The bit
positions that are punctured during the rate matching are marked with a third value, δ,
where δ∉{0,1}. The δ bits can be removed directly after bit collection. For turbo encoded
channels with puncturing the output sequence is

ikik YkYZ ,,3,2,1,,11)1(3,1 K==+−

ikik YkYZ ,,3,2,1,,22)1(3,1 K==+−

ikik YkYZ ,,3,2,1,,33)1(3,1 K==+−

For convolution encoded channels and turbo encoded channels using repetition the
relation is

ikik YkYZ ,,3,2,1,,1,1 K==

 23

6.4.2 Calculation of rate matching parameters for fixed positions
The rate matching parameters are used to compute puncture and repetition patterns. The
pattern is computed as described by an algorithm, presented in sub-section 4.2.7.5 in [4],
where also the equations required for calculation of intermediate variables (Eq 3 to Eq 6
shown below) can be found. The number of available data bits within a CCTRCH is
denoted jdataN , , where j is the transport format combination used. This variable is
dependant on the number of physical channels and the spread factor used for the specific
user CCTRCH. The number of physical channels is denoted by P. The total number of
bits available for a user CCTRCH can be calculated as ()21,* 15 datadatadata NNPN +××= ,
where 1dataN and 1dataN depend on the slot format used. These slot formats are specified in
Table 11 in [14].

Eq 3
()

⎟
⎠
⎞⎜

⎝
⎛×=

∈

TTI
liiTFSl

i
i N

F
N ,,* max1

Eq 4

⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢

⎣

⎢

×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×⎟
⎠

⎞
⎜
⎝

⎛
×

=

∑

∑

=

=

i

m
jmm

jdata

i

m
jmm

ji

NRM

NNRM
Z

1
,

,
1

,

, Ii L1=∀

Eq 5 jijijiji NZZN ,,1,, −−=Δ − Ii L1=∀

Eq 6 ,*max, iii NFN Δ×=Δ

6.4.3 Parameters for normal mode and compressed mode by spread factor reduction
The number of bits to be punctured or repeated per TTI is denoted TTI

liN ,Δ , where i is the

transport channel and l the transport format. A negative value of TTI
liN ,Δ corresponds to

the number of bits to be punctured and a positive number corresponds to the number of
bits to be repeated. The output data rate is equal to the input data rate if 0max, =Δ iN for
TRCH i. Thus, the rate-matching algorithm, as specified in [4], shall not be executed.
This means that the number of bits for all transport channels to be repeated or punctured
is 0, as described by Eq 6.

Eq 6 0, =Δ TTI
liN)(iTFSl ∈∀ .

The rate-matching algorithm shall be executed if 0max, ≠Δ iN , after calculation of the vari-
ables eini, eplus and eminus.

Parameters for compressed mode by puncturing
The variables ,*iN and ,*iNΔ are calculated in the same way as in the compressed mode
by spread factor reduction, i.e. using Eq 3 to Eq 5.

Eq 7 ,*max, ii
m
i NFN Δ×=Δ

 24

The number of bits to be removed on TRCH i (to create the gap for compressed mode
and to compensate for reduction of bits in the slot format compared to normal slot
format), is denoted n

iNp max, . The value of n
iNp max, is calculated for each radio frame n of the

TTI and ()1max, −−= ii
n
i ZZNp for i=1 to I

Eq 8
[] ()()

⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢

⎣

⎢

×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+×⎟

⎠

⎞
⎜
⎝

⎛
×

=

∑

∑

=

=

i

m
jmm

datadataTGL

i

m
jmm

ji

NRM

NNNNNRM
Z

1
,

,*,*
1

,

,

'

The variable NTGL is the number of bits in each radio frame corresponding to the gap. The
number of empty slots is denoted TGL and the first empty slot in the gap is denoted Nfirst.

()
⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>+×
−−

>+×
−

≤+×

=

15'
15
15

15'
15

15

15'
15

,*

,*

,*

TGLNifframeradiofollowinginN
NTGL

TGLNifgaptheofframeradiofirstinN
N

TGLNifNTGL

N

firstdata
first

firstdata
first

firstdata

TGL

The total number of bits in the gaps when applying compressed mode is calculated as
()

∑
−×+=

×=

=
11

max,
,

max,

i

i

Fmn

Fmn

n
i

mTTI
i NpNp

AMR service
Input and output data flows for rate matching of the AMR service, using the highest
AMR data rate, are illustrated in Figure 19. The rate matching function is one of the more
problematic functions in the baseband because the data streams must be manipulated on
single bit level (puncturing and repetition of bits) according to the channel specific rate
matching pattern. There is no obvious way to vectorize the matching computation since
the bit stream lengths and rate match patterns are different for each transport channel.
More obvious is that each transport channel stream can be calculated in MIMD fashion.

After rate matching

333 132

326 338 176

Input after
convolution coding

DCH A DCH B DCH C

303

Figure 19 AMR output after rate matching

The following fixed parameters can be used for implementation of the rate matching
function for AMR

 25

• Static rate matching parameter for 180 DCH A, 170 for DCH B and 215 for DCH C
• Compression parameters used for punctured normal/punctured channels

o Normal mode, bits per CCTRCH is ()226151,* +××=dataN
o Compressed mode, bits per CCTRCH is ()4012151,* +××=dataN

• Compression parameters for normal/spread factor reduction channels
o Normal mode, bits per CCTRCH is ()226151,* +××=dataN
o Compressed mode, bits per CCTRCH is ()4412151,* +××=dataN

High bit-rate data service
Like with the AMR data streams, there is no obvious way to vectorize computation of the
data streams but the rate matching function be mapped in a MIMD parallel fashion. A bit-
rate of 2048 kbps requires a channel spread factor of length 4. Compressed mode by
spread factor reduction is not supported for spread factors of length 4, which means that
only normal mode, higher layer scheduling and compressed mode by puncturing can be
applied. The input constitutes 0 to 16 parallel channel streams, each with sM code blocks
of length maxN , where ,*max datas NNM ≤× . (,*dataN can maximally be 248 + 992 when
using SF of length 4).

DCH 1

0 - n1

DCH 1

After rate matching
rm bits added

mi blocks of size 0 - ni
where i is 0 - 16

channels
DCH 2

0 - n2

DCH 2

DCH i

0 - ni

DCH i

0 0 0 ni + rmn2 + rmn1 + rm
Figure 20 Rate matching on data streams

6.5 First insertion of discontinuous transmission (DTX) indication bits
Unused bits in the radio frames are filled with DTX bits. The DTX bits are never
transmitted over the air, they are used just to mark when transmission should be turned
off. This first DTX insertion is performed only if fixed channel positions in the radio
frames are used, see Figure 21. With fixed positions it means that a fixed number of bits
are reserved for each transport channel in the radio frames. If bits were punctured in the
rate-matching, the space required for the punctured bits should be reserved for later
insertion of p bits.

 26

TFCI TRCH A TPC TRCH B PILOTDTX

TFCI TRCH A TPC TRCH B PILOT

Downlink transmission using 2 DCHs

Full rate

DCH A Half rate

Figure 21 Fixed channel slots with variable rate and insertion of DTX bits

For radio frames in which flexible positions are used, the DTX insertion is performed

after the multiplexing of the transport channels. The decision of using fixed or flexible
positions is controlled from higher layers in the UTRAN. The bit output after the DTX
insertion is three-valued {0, 1, δ}.

The bits after rate matching are denoted
iiGiii gggg ,,,, 321 K , where Gi is the number

of bits in one TTI of Trch i. The number of bits available for a radio frame in Trch i is
denoted Hi and the number of radio frames per TTI for Trch i is Fi. The total number of
bits after DTX insertion is denoted Di. If no compression or compressed mode by spread
factor reduction is performed, then iii HFD ×= . If compressed mode by puncturing is
used, space for the bits that were punctured in the rate matching function should be
reserved. This space will be used for insertion of p bits in the proceeding interleave
function. For compressed mode by puncturing, DTX bits should be inserted until

mTTI
iiii NpHFD ,

max,−×= and ,*,* iii NNH Δ+= . The variables ,,*iN ,*iNΔ and mTTI
iNp ,

max, were
defined for the rate matching function. The bits after DTX insertion are denoted

iiDiii hhhh ,,,, 321 K . The input and output relation after DTX insertion is:

ikik gh = for iGk ,,3,2,1 K=
δ=ikh for iiii DGGGk ,,3,2,1 K+++=

AMR service
In this specific case for the AMR service it is assumed that processing is performed in
normal mode. Bit repetition is performed in the previous rate matching function to fill up
the radio frames. Therefore no DTX insertion is required in this case. The output after
DTX insertion are represented by two bits, thus, the output data size is doubled. Each bit
after DTX insertion is three-valued and therefore each symbol is represented by two bits.

After DTX insertion

338 176

2*326 2*338 2*176

Input after rate matchingDCH A DCH B DCH C

326

Figure 22 Output after DTX insertion. Each symbol is three-valued {0, 1, δ} and represented using
two bits

 27

High bit-rate data service
The inputs for DTX insertion comprise 0 to 16 rate matched channel streams, each of
length 0 to maxni , as can be seen in Figure 23. The channel number is denoted by i and

maxni is the maximal length that can be processed within a transport channel during a
TTI. The DTX insertion function should be performed if compressed mode by puncturing
is used. DTX bits are inserted on the last positions in the data bit sequence. Thus, DTX
bit insertion in the data streams can to some extent be SIMD vectorized. Some operations
are likely required to handle different start indexes, because of different channel data
lengths and space reserved for p bits. Like earlier stages, the channels can also be
processed in MIMD fashion since there are no dependencies between the channels.

0 - n1max

DCH 1

P After DTX
insertion

0 - n2max
0 - nimax

0 2*n1max 0 2*n2max 0 2*nimax

D
T
X

DCH 2

P
D
T
X

DCH i

P
D
T
X

Input from Rate
matching

Figure 23 Output after DTX insertion. Each three valued symbol {0, 1, δ} is represented using two
bits

6.6 First Interleaving
To reduce the effect of bit error bursts the bits are interleaved before transmission. After
de-interleaving in the receiver, possible error bursts will be distributed throughout the
frame. If compressed mode is applied, a fourth symbol value, p, is inserted at this stage to
mark any bits used for creation of transmission gaps (if bits were punctured in the rate
matching function). The p-bits are always inserted at the first bit positions in the radio
frames. The bits after the interleaving procedure can take any of the four values {0, 1, δ,
p}.

6.6.1 Insertion of transmission gap bits
This p-bit insertion should only be applied to radio frames that are compressed by
puncturing. No p-bit insertion is performed for other frames. The punctured input
sequence to the block interleaver is Xi = Zi + Np where Zi is the input data sequence after
the previous DTX function and Np is the number of bits to be punctured.

6.6.2 Column-wise block interleaving
The block interleaving is performed only when TTI:s span over 20, 40 or 80 ms. The
input bits to the block interleaver, Xi, are arranged in a matrix of size 11 RC × , where 1C is
the number of bit columns. The number of columns is decided by the TTI as described in

Table 2 below. The variable 1R is the number of bit rows in the matrix. At this stage, the
input bit length is always a multiple of the physical radio frame size, and 1R can be

 28

calculated as
i

i

C
X

R =1 . The input bits are arranged row wise in sequential order as shown

in Figure 24.

() () () ()

()() ()() ()() ()() () ⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

×+×−+×−+×−+×−

×+++

11,4111,3111,2111,1111,

12,21,21,11,

1,3,2,1,

...............

...

CRiCRiCRiCRiCRi

CiCiCiCi

Ciiii

XXXXX

XXXX
XXXX

Figure 24 Bit input arrangement before interleaving

The bit matrix shall be interleaved column-wise. The permutation pattern that shall be
used for interleaving is described in

Table 2. The number sequence in the table corresponds to the original positions in the
input matrix from where the bits should be read. As can be seen in the table, no
interleaving is performed during TTIs of 10 ms. When the columns have been interleaved
the output bits should be read column-wise in sequential order, starting with the leftmost
column.

Table 2 Number of columns and permutation pattern for interleaving

TTI Number of columns (C1) Column-wise permutation pattern
() () ()111,...,11,01 111 −CPPP CCC

10 ms 1 0
20 ms 2 1,0
40 ms 4 3,1,2,0
80 ms 8 7,3,5,1,6,2,4,0

AMR service
The interleaving function is performed for all three channel streams that are used to map
the AMR data. The TTI is 20 ms and therefore, according to Table 2, the data must be
arranged in a two-column bit matrix. The output after interleaving will be four-valued
symbols ∈ {0, 1, δ, p}, which require two bits to represent each symbol, as illustrated in
Figure 25. The column interleaving pattern is the same for three used transport channels
and it is possible to SIMD vectorize parts of the interleaving function. Alternatively, the
streams can be processed in MIMD fashion like the earlier functions.

 29

After First Interleaving

2 * 338 2 * 176

Input after DTX insertionDCH A DCH B DCH C

2 * 326

2 * 338 2 * 1762 * 326
Figure 25 After first interleaving. Each four-valued symbol {0, 1, δ, p} is encoded using two bits

High bit-rate data servcie
The interleaving function is performed on 0 to 16 channel streams, each of length 0 to ni .
The output stream constitute four-valued symbols ∈ {0, 1, δ, p}, which require two bits
to represent each symbol as can be seen in Figure 26. Like for the AMR service, it is
possible to SIMD vectorize parts of the processing since the interleaving pattern is the
same for all transport channels. The transport channels can also be processed in MIMD
fashion.

DCH 1 After First Interleaving

Input after DTX insertionDCH 1

DCH 2

DCH 2

DCH i

DCH i

0 - n1 0 - n2 0 - ni

Figure 26 Output after first interleaving. Each four-valued symbol {0, 1, δ, p} is represented by two
bits

6.7 Radio frame segmentation
The bit streams must be sliced in segments when TTIs longer than 10 ms are used. Fi
denotes the required number of consecutive radio frames. Data for one radio frame is
sliced in segments each 10 ms interval in order to fill one radio frame of data after
transport channel multiplexing.

The input bit sequence is denoted xi1, xi2, xi3, …, xiX, where i is the transport channel and
Xi is the number of bits. This input bit sequence is divided into Fi output bit sequences
denoted yi,ni,1, yi,ni,2, yi,ni,3, …, yi, i, where ni is the radio frame number during the current
TTI and ()iii FXY /= is the number of bits per segment.

The relation between input and output bits is:

()() kYniknii ii
xy +×−= 1,,, , ni = 1…Fi, k=1…Yi

 30

AMR service
The AMR input for the frame segmentation comprise 3 channel streams and the TTI is 20
ms. Thus, the streams will be sliced in two segments which are distributed over two radio
frames, as shown in Figure 27. The first segment comprises the bits 1 to 163 in DCH A,
bits 1 to 169 in DCH B and bits 1 to 88 in DCH C. The second segment comprises the
bits 164 to 326 in DCH A, is bits 170 to 338 in DCH B and is bits 89 to 176 in DCH C.
The transport channels with a composite user channel (DCH A, DCH B and DCH C)
comprise bit streams of different lengths. However, segmentation can be more efficiently
SIMD vectorized by grouping channels from several user channels in groups of class A
bits channels, class B bits channels and class C bits channels, i.e. DCH A channels from
several users are combined and SIMD vectorized. Alternatively, the channels can be
processed in MIMD fashion since there are no data dependencies between transport
channels in the frame segmentation function.

After frame
segmentation

Input after first
interleaving

DCH A DCH B DCH C

Fra-
me 1

Fra-
me 2Frame 1 Frame 2 Frame 1 Frame 2

326 338 176

1 163 164 326 1 169 170 338 1 88 89 176
Figure 27 After frame segmentation {0, 1, δ, p}

High bit-rate data service
The input which is mapped on 0 to 16 channel streams for the high bit-rate data service
will be sliced in segments dependently on the TTI and the number of physical radio
frames used. At maximum, three physical channels can be used for a single user. Each

channel data stream will be sliced in m frame segments, where m is
10

TTI (10 ms multiple

of the TTI). The frames are sliced in blocks of equal lengths, which makes it possible to
SIMD vectorize the slicing operation. Like earlier functions, it is also possible to perform
the slicing operation in MIMD fashion since there are no data dependencies between the
channels.

After frame
segmentation

Input after first
interleaving

where i is 0 to 16
channels

DCH 1

Frame
1

Frame
2

n1

Frame
m

DCH i

Frame
1

Frame
2

nI

Frame
m

DCH 2

Frame
1

Frame
2

n2

Frame
m

Figure 28 After frame segmentation {0, 1, δ, p}

 31

6.8 Transport channel (Trch) multiplexing
Radio frame segments are delivered to the multiplexer function with a 10 ms interval,
corresponding to the radio frame transmission frame rate. These frame segments from
different transport channels are multiplexed to form a single user CCTRCH stream (only
one CCTRCH is possible for one UE). The CCTRCH will later be mapped on one or
several physical channels. The transport channels that are to be multiplexed to the same
CCTRCH must use the same spreading factor. The input bits are denoted fi1, fi2, fi3,… fiVi
where Vi is the number of bits for transport channel i. The number of transport channels is
I. The bit output after channel multiplexing is s1, s2, s3,… sS where S is the number of bits
corresponding to the number of physical radio frames used, ∑=

i
iVS

AMR service
The multiplexing function constitutes a synchronization stage in the function pipeline.
The input constitutes one segment from each of the three used transport channels for the
AMR service. These are multiplexed into a single output stream, as shown in Figure 29.
The TTI for AMR is 20 ms which means that multiplexing is performed twice during a
TTI to fill two consecutive radio frames. If the previous functions were processed in
MIMD fashion, the multiplex function will comprise a merge of multiple channel input
streams. If the previsous functions were processed by SIMD vectorizarion, the multiplex
function will comprise rearrangement and merging of vectorized data, dependently on
how the streams were SIMD vectorized.

One single
CCTRCH stream
after multiplexing

After Frame
segmentation

420420

DCH
C

DCH
CDCH A DCH ADCH B DCH B

DCH A DCH B DCH
CDCH A DCH B DCH

C

10 ms 10 ms

First radio
frame

Second radio
frame

Figure 29 Before and after transport channel multiplexing in AMR processing

High bit-rate data service
The input constitutes I segments, one from each of I channel streams, and which are
multiplexed into a single output stream, as shown in Figure 30. Like with the AMR
processing, the multiplexing constitutes a synchronization stage in the function flow. If
the previous functions were processed by SIMD vectorizarion, the multiplex function will
comprise rearrangement and merging of vectorized data, dependently on how the streams
were SIMD vectorized. If the previous functions were processed in MIMD fashion, the
multiplex function will comprise a merge of multiple channel input streams.

 32

DCH 1 DCH 2 DCH iDCH 1 DCH 2 DCH i

Single CCTRCH stream
after multiplexing

After Frame
segmentation

where i is 0 to 16
channels

Radio
frame 1

Radio
frame m

10 ms 10 ms

DCH 1 DCH 2 DCH i DCH 1 DCH 2 DCH i

Figure 30 Before and after transport channel multiplexing in high bit-rate processing

6.9 Second insertion of discontinuous transmission (DTX) indication bits
The second DTX insertion is not performed on transport channels using fixed positions or
compression by puncturing. The DTX bit insertion at this stage is applied for transport
channels using flexible positions and the DTX bits will be inserted at the end of the
multiplexed frames. The output bits are denoted w1, w2, w3, …, wPR, where P is the
number of physical channels used and R is the amount of available bits in the radio frame
format used. The input bits are denoted S1, S2, S3, …, SS, where S is the number of bits
after transport channel multiplexing. Thus the number of DTX bits to insert
is () SRP −× . The R variable is calculated differently depending on if frames are non-
compressed or compressed by spreading factor reduction or higher layer scheduling.

For non compressed frames, ()21
,* 15 DataData

Data NN
P

N
R +×== . The variables 1DataN

and 2DataN constitute the number of data bits available for payload in each slot. The
possible values are listed in Table 11 in [14].

For compressed frames, ()21,* ''15' DataDatadata NNPN +××= , where 1'DataN and 2'DataN are
specific slot formats used for spreading factor reduction and higher layer scheduling
respectively. The possible slot formats can be found in table 11 in [14]. Thus, ,*'DataN is
the number of data bits plus the bit space required for the transmission gap. The number

of available data bits for transport channel multiplexing is
P

N
R

cm
data,*= . For compression

by spread factor reduction,
2

' ,*
,*

datacm
data

N
N = , and for compression by higher layer

scheduling, TGLdata
cm
data NNN −= ,*,* ' . The variable TGLN represents the number of

consecutive idle slots used to create the transmission gap. TGL and Nfirst are defined in
section 4.4 in [4].

 33

()
⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>+×
−−

>+×
−

≤+×

=

15sec,'
15
15

15,'
15

15

15,'
15

,*

,*

,*

TGLNifframeondinN
NTGL

TGLNifframefirstinN
N

TGLNifNTGL

N

firstdata
first

firstdata
first

firstdata

TGL

The relation between the input bits and output bits is:

Sksw kk ...,,3,2,1==
RPSSSkwk ×+++== ...,,3,2,1δ

DTX indication bits are denoted by δ { }p,1,0∉ and non DTX bits Sk { }p,1,0∈ .

AMR service
The AMR input constitutes a single stream of data segmented into two radio frames, see
Figure 31. In the AMR service it was assumed that fixed frame positions are used and
therefore no DTX insertion is required at this stage.

After 2'nd DTX insertion

CCTRCH Multplexing

420420

First radio frame Second radio frame

Frame 1 Frame 2

Frame 1 Frame 2

Figure 31 After second DTX insertion

High bit-rate data service
The input constitutes a single stream of data segmented into n frames, where n is a 10 ms
multiple of the TTI, see Figure 32. Fixed frame positions are assumed to be used, so no
DTX insertion is required at this stage.

After 2'nd DTX insertion

CCTRCH Multplexing

First radio
frame

Frame 1

Frame 1

Second radio
frame

Frame 2

Frame 2

Third radio
frame

Frame 3

Frame 3

n'th radio frame

Frame n

Frame n

Figure 32 Output after second DTX insertion.

 34

6.10 Physical channel segmentation
When several physical channels are used, the input must be segmented in blocks, as many
as the number of physical channels used for the user CCTRCH. If compressed mode by
puncturing is used, the p-bits inserted earlier, during the interleaving procedure, are
removed before they are mapped on physical channels. For all other modes, all bits are
mapped onto the physical channels. 1-8 simultaneous DPCH codes can be received
simultaneously [4]. The input bits are denoted x1, x2, x3, …, xM, where M is the total
number of bits before physical channel segmentation. The bits after channel segmentation
are denoted U and the number of physical channels P. For all modes, except compressed

mode by puncturing, the relation is
P
XU = . For compressed mode by puncturing, the

relation is ()() PNNNXU datadataTGL /' ,*,* −−−= . The variables are explained above in
subsection 6.9.

AMR service
Only one physical channel is required for the AMR service and therefore no physical
channel segmentation is required. Thus, the channel stream is unmodified at this stage, as
shown in Figure 33.

After Physical Channel
Segmentation

After 2'nd DTX insertion

420420

First radio frame in CCTRCH Second radio frame in
CCTRCH

Frame 1 Frame 2

Frame 1 Frame 2

Figure 33 After physical channel segmentation

High bit-rate data service
The maximum number of physical channels that can be used for the studied UE class is
limited to three. See Figure 34 for an illustration of the physical channel segmentation.

After Physical Channel
Segmentation

First radio frame in CCTRCH Second radio frame in CCTRCH

Phy 1 Phy 2 Phy 3

Frame 2

Frame 1

Frame n

Third radio frame in CCTRCH
Figure 34 Frames are segmented on separate on maximum 3 physical channels

 35

The segments can either be distributed in MIMD fashion, into separate data streams for
each channel, or kept in a single stream in order to process the data using SIMD
vectorization in the following functions.

6.11 Second Interleaving
Before radio frames are mapped onto physical channels, a second interleaving procedure
is performed. This interleaving is performed for each physical channel, if multiple
physical channels are used. The bits in the radio frames are arranged in a bit matrix. The
number of columns in the matrix, denoted C2, is always constant. Thus, the number of
rows in the matrix is determined by the input length. If the number of input bits is not
equal to the minimum possible matrix size, bits with zeros or ones are padded to the bit
positions which correspond to the end of the frame. These pad bits will be removed after
the interleaving. The interleaving is then performed by swapping whole columns in the
matrix according to a constant interleaving pattern. After the interleaving, the bits are
read in a transposed matrix order (i.e. column-wise instead of row-wise).

Interleaving Algorithm

I. The number of columns are numbered 0, 1, 2, …, C2-1, where C2 always is 30

and the order is from left to right.

II. The number of rows in the bit matrix, denoted R2, is determined by finding the

minimum R2 such that 22 RCU ×≤ , where U is the number of input bits on the
physical channel p. The rows are numbered 0, 1, 2, …, R2-1, from the top to the
bottom.

III. The input bit sequence up,1, up,2, up,3, …, up,U is written in sequential order, row-

wise into the bit matrix starting at column 0, row 0:

 () () () ()

()() ()() ()() () ⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

×+×−+×−+×−

×+++

22,3212,2212,1212,

22,32,22,12,

2,3,2,1,

CRpCRpCRpCRp

CpCpCpCp

Cpppp

yyyy

yyyy
yyyy

L

MLMMM

L

L

IV. The bit matrix shall be permuted according to the pattern ()

}12,...,1,0{
2

−∈ Cj
jP where

j is the original column position. The permutation pattern is shown in Table 3,
where)(2 jP is the value at the original position j, and the column position after
interleaving is determined by the corresponding index in the sequence in Table 3
(on row 2).

 36

Table 3 Inter-column permutation pattern for second interleaving

Number of columns (C2) Permutation pattern)12(2),...,1(2),0(2 −CPPP

30

〉
〈

17,27,22,7,2,12,29,9,19,24,14,4,26,16,6
,21,11,1,28,18,8,23,13,3,25,15,5,10,20,0

V. The output after block interleaving should be read column-wise from the bit

matrix. After the interleaving, bits in the 22 RC × bit matrix are denoted kpy ,' .

 () () () ()

()() ()() ()() () ⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

×+×−+×−+×−

×+++

22,3212,2212,1212,

22,32,22,12,

2,3,2,1,

CRpCRpCRpCRp

CpCpCpCp

Cpppp

yyyy

yyyy
yyyy

L

MLMMM

L

L

The pad bits that were added in order to compensate the size if 22 RCU ×< should be
deleted before the interleaved bits are mapped on the physical channels.

AMR service
The input constitutes one single channel stream of new radio frame data each 10 ms, two
radio frames per TTI as shown in Figure 35. It is possible to perform parts of the
interleaving procedure in SIMD vectorized fashion, depending on how the input data is
arranged and how the output data must be arranged for the following function.

After 2'nd Interleaving

After Physicial Channel
Segmentation

Phy Frame 1

Phy Frame 1

Phy Frame 2

Phy Frame 2

Figure 35 After second interleaving

High bit-rate data service
The input comprises one single channel stream of maximum three radio frames, or three
separate streams (one frame mapped on each stream), delivered for each 10 ms interval
dependent on how data was arranged after the segmentation function, see Figure 36.

After 2'nd Interleaving

After Physicial Channel
Segmentation

Phy Frame 1

Phy Frame 1

Phy Frame 2

Phy Frame 2

Phy Frame 3

Phy Frame 3

Figure 36 After second interleaving

 37

Like with the AMR service, parts of the interleaving function can be performed in SIMD
parallel fashion depending on the arrangement on the input data and how the data is
required to be arranged for the following function.

6.12 Physical channel mapping
After the second interleaving, the bits are ready to be mapped on the physical

channels [14]. The input bits for physical channel mapping are denoted Uppp vvv ,2,1, ,...,, ,
where p is the number of physical channels used and U is the number of bits to be
transmitted in one radio frame (for each physical channel). The bits are mapped so that
they are transmitted in ascending order via the air interface. Not all bits are necessarily
sent over the air. Bits that have values { }1,0, ∉kpv correspond to DTX indicators or p-bits.
The DTX indicators are mapped on the frames but the transmission is turned off. When
compressed mode is applied, certain slots will be empty, i.e. no bits are mapped to those
slots (the p-bits inserted in the interleaving function). If 15<+TGLN first , all empty slots
are mapped within a single frame. When 15>+TGLN first , the empty slots are mapped
over two consecutive frames. If the TGL span over two frames, the empty slots in the first
frame should be 14,,, ,...21 ++ firstfirstfirst NNN . In the second frame the empty slots shall
be lastN,...,2,1,0 . When compressed mode by spread factor reduction is used, bits are
mapped only using 7.5 slots.

AMR service
One composite input stream; one radio frame per 10 ms is mapped on 15 physical slots,
see Figure 37.

After Physical Mapping

After 2'nd Interleaving

15 radio frame slots

First radio frame in
CCTRCH

Second radio frame in
CCTRCH

Frame 1 Frame 2

15 radio frame slots
Figure 37 After AMR physical channel mapping

High bit-rate data service
The input comprise of up to 3 channel streams depending on the bit-rate requirements;
one frame for each 10 ms interval is mapped using 15 slots, for each physical channel,
see Figur 38.

 38

After 2'nd Interleaving

15 radio frame slots
Phy channel 1

Phy Frame 1 Phy Frame n

15 radio frame slots
Phy channel n

Figur 38 After data physical channel mapping

7. Summary

This report concluded a study performed of required baseband processing in 3G UMTS
radio base stations. The study is focused on the processing required for certain
transmission modes in the RBS downlink using downlink dedicated transport channels
(DCH:s). Two examples of user services – an AMR voice call service and a generalised
case of high bit-rate data transmissions – have been used to abstractly describe and
discuss processing characteristics and different ways of mapping the dataflows and
dependencies through the baseband function flow. The service examples can be used as
test cases for evaluation and mapping of software implemented baseband functions.
 The functions are logically arranged in a pipelined sequence, operating on periodic
input and output bit streams of user data. The 3G network standard is designed to support
simultaneous service transmission by allocation of multiple parallel transport channels for
a single mobile user. It was illustrated through abstract mapping of the two presented
service examples that the function interdependencies are of producer/consumer type.
Moreover, it was discussed how different kinds of parallelism can be exploited in the
functions, with respect to the data stream-lengths, the number of transport blocks and
allocated channels, as well as requirements for control operations to map bit stream data
processing on word-length architectures. Thus it was concluded that several functions has
the potential to be mapped in parallel; both in the time and the spatial domain, through
exploitation of SIMD or MIMD parallelism.

Transport channels are multiplexed in the function pipeline to form a single composite
transport channel. Depending on bandwidth requirements, it was illustrated that the
composite channels are segmented and mapped on multiple physical channels. These
multiplex, de-multiplex functions require synchronisation of data streams at several
processing stages.

The operations performed by the baseband functions (in the down link), are of logical
rather than arithmetical nature. Seen from an abstract functional level, the required data
operations are dominated by shuffling, padding and logical manipulation on bit-field
data. To be able to efficiently implement and compile the baseband functions to an
architecture abstraction, based on parallel and reconfigurable processor architectures, it
must be possible express the application characteristic properties in the supported
programming model. Desirably, it should be possible to express bit field data types and
operations as well as data and instruction parallelism on several granularity levels;
function- and instruction-level parallelism.

 39

Appendix A: Glossary

3GPP 3G Partnership Project
AMR Adaptive Multi Rate
ASIC Application Specific Integrated Circuit
CCH Control Channel
CCTRCH Coded Composite Transport CHannel
CDMA Code Division Multiple Access
CN Core Network
DCH Dedicated Channel
DSP Digital Signal Processor
DTX Discontinuous Transmission bits
EDGE Enhanced Data rate for GSM Evolution
FACH Forward Access Channel
FDD Frequency Division Duplex
FEC Forward Error Correction
FPGA Field Programmable Gate Array
MAC Medium Access Control
MIMD Multiple Instruction Multiple Data
PCH Physical Channel
RAB Radio Access Bearer
RACH Random Access Channel
RNC Radio Network Controller
RNS Radio Network Sub system
RRC Radio Resource Control
SF Spreading Factor
SIMD Single Instruction Multiple Data
TDD Time Division Duplex
TFCI Transport Format Combination Indicator
TFI Transport Format Indicator
TFS Transport Format Set
TGL Transmission Gap Length
TTI Transmission Time Interval
UE User Equipment
UMTS Universal Mobile Telecommunication Standard
UTRAN UMTS Terrestrial Radio Access Network
WCDMA Wideband Code Division Multiple Access

 40

References

[1] www.3gpp.org
[2] H. Holma and A. Toskala, WCDMA for UMTS, 3rd edition, 2004, Wiley & sons
[3] 3GPP, ”UTRAN Iur/Iub interface user plane protocol for DCH data streams”, TS

25.427, www.3gpp.org, Release 5
[4] 3GPP, ”Multiplexing and channel coding (FDD)”, TS 25.212, www.3gpp.org, Release

5
[5] 3GPP, ”Services provided by the physical layer”, TS 25.302, www.3gpp.org, Release

5
[6] 3GPP, ”Adaptive Multi-Rate (AMR) speech codec frame structure”, TS 26.101,

www.3gpp.org, Release 5
[7] 3GPP, ”Adaptive Multi-Rate (AMR) speech codec; Interface Iu, Uu and Nb”, TS

26.102, www.3gpp.org,, Release 5
[8] 3GPP, ”AMR Wideband Speech Codec; Frame structure ”, TS 26.201,

www.3gpp.org, Release 5
[9] 3GPP, ”UE Radio Access capabilities”, TS 25.306, www.3gpp.org, Release 5
[10] T. V. Ramabadran and S. S. Gaitonde, ”A Tutorial on {CRC} Computations”, IEEE-

MICRO, vol 8, no.4, aug, 1998, pp. 62-75
[11] Knuth, D., Art of Computer Programming, Volume 2: Semi numerical Algorithms,

3rd Edition , Addison Wesley, November 4, 1997
[12] E. Guizzo, “Closing in on the perfect code”, IEEE Spectrum, March 2004, pp. 28-34
[13] M. Gustafsson, K. Jamal, E. Dahlman, ”Compressed Mode Techniques for Inter-

frequency Measurements in a Wide-band DS-CDMA System”, The 8th IEEE Int.
Symp. on Personal, Indoor and Mobile Radio Communications, 1997, vol.1, pp. 231-
235

[14] 3GPP, ”Physical channels and mapping of transport channels onto
physical channels (FDD)”, TS 25.211, www.3gpp.org, Release 5

Paper C
A Configurable Framework for Stream Programming

Exploration in Baseband Applications

Bengtsson, J. and Svensson, B. (2006). A Configurable Framework for

Stream Programming Exploration in Baseband Applications. In Proc. of
11th Int’l Workshop on High-Level Parallel Programming Models and Sup-
portive Environments in conjunction with Int’l Parallel and Distributed Pro-
cessing Symp. (IPDPS 2006), Rhodes, Greece.

A Configurable Framework for Stream Programming
Exploration in Baseband Applications

Jerker Bengtsson and Bertil Svensson

Centre for Research on Embedded Systems
Halmstad University

PO Box 823, SE-301 18 Halmstad, Sweden
{Jerker.Bengtsson, Bertil.Svensson}@ide.hh.se

Abstract

This paper presents a configurable framework to be
used for rapid prototyping of stream based languages.
The framework is based on a set of design patterns
defining the elementary structure of a domain spe-
cific language for high-performance signal processing.
A stream language prototype for baseband processing
has been implemented using the framework. We in-
troduce language constructs to efficiently handle dy-
namic reconfiguration of distributed processing param-
eters. It is also demonstrated how new language spe-
cific primitive data types and operators can be used to
efficiently and machine independently express compu-
tations on bit-fields and data-parallel vectors. These
types and operators yield code that is readable, compact
and amenable to a stricter type checking than is com-
mon practice. They make it possible for a program-
mer to explicitly express parallelism to be exploited by
a compiler. In short, they provide a programming style
that is less error prone and has the potential to lead
to more efficient implementations.

1. Introduction

Advanced embedded high-performance applica-
tions put very high requirements on computer sys-
tems design. Some examples are modern radar sys-
tems and baseband processing in radio base stations
(RBS). Although the specific requirements are some-
what different, the computational characteristics are
quite similar. Traditionally this kind of applications
have required development of ASICs and special pur-
pose hardware to cope with the requirements. Par-
allel architectures for high-performance applications
has been a topic of research during many years. In re-
cent years, results of this research and the advances in
silicon process technology have opened up for a com-

modity market of highly parallel and reconfigurable
architectures spanning from tens to several hundreds
of processors on a single die [1, 2, 3].

Compiler technology and language development, on
the other hand, have not kept pace with the advances
in processor architecture. New approaches are re-
quired in order to exploit the vast amount of exposed
parallelism and communication structures. On the
one hand, languages must offer constructs and opera-
tions that allow a programmer to express parallelism
and computations that are characteristic for a certain
application domain. On the other hand, to enable ef-
ficient compilation, languages must be structured for
a machine abstraction that correlates well with the
target architectures. These arguments speak in favor
of a domain specific approach rather than a general
purpose programming approach.

The goal of our research is to investigate and
develop a stringent programming and compilation
framework for domain specific high-performance ap-
plications, targeting parallel and reconfigurable pro-
cessors. In order to investigate what primitive lan-
guage constructs, data types and operators are needed
in an efficient programming language, our approach is
to perform implementation experiments using realis-
tic applications and experimental tools which can be
used to quickly implement executable language proto-
types. The application used for implementation stud-
ies in this work is baseband processing performed in
3G WCDMA radio base stations. An experimental
framework has been implemented in Java to be able
to perform quick prototype development and emula-
tion of domain specific programming languages.

This paper is organized as follows. A background
and motivation for the work is given in Section 2.
The configurable framework that has been developed
for implementation experiments is presented in Sec-
tion 3. In Section 4, the language StreamBits which
has been implemented for baseband processing is pre-

sented. Section 5 shows experiments that were con-
ducted to demonstrate the applicability of the lan-
guage. Finally, the paper is summarized with conclu-
sions and future work in Section 6.

2. Background

The baseband provides the modem functionality in
a wireless communication system and constitutes the
core in the 3G WCDMA technology. A radio base
station provides a set of full duplex physical data and
control channels, which are used to map higher layer
data packets to physical radio frames. [4]. The base-
band resources of an RBS are managed by a higher
layer Radio Network Controller (RNC), which is re-
sponsible for traffic scheduling on the physical user
channels provided by the baseband. The computa-
tions performed in the RBS mainly constitute data
flows of bit-intensive protocol and signal processing,
where the processing is controlled by service parame-
ters given by the RNC. A baseband processing board
is a complex unit, for which many design parameters
have to be considered. Besides meeting the hard re-
quirements in performance, it must provide scalability
and be sustainable for evolutions in standards. At the
same time, customers want low-cost RBS product so-
lutions [5]. The life cycle of an RBS is measured in
several decades, not years. To decrease initial product
development costs it is an advantage if COTS compo-
nents can be used to as large an extent as possible.
Even if in-house ASIC solutions are hard to compete
with in terms of performance and energy efficiency,
they require large volumes in order to be a cost effi-
cient solution. Also, considering the life cycle of an
RBS, it is desirable not to encapsulate more function-
ality than necessary into ASICs at early product gen-
erations. New standard network functionalities are
constantly released and it must be possible to incorpo-
rate these in existing platforms with minimal changes
in hardware.

To meet these kinds of requirements in system de-
sign, the trend is that more of the baseband function-
alities are implemented using programmable solutions.
One approach to support hardware flexibility is to ab-
stract the baseband implementation through defini-
tion of an application programming interface (API).
Thus, the physical implementation of the baseband
processing components can be disregarded by the pro-
grammer, and the functionality of the components can
be implemented in either software or hardware.

2.1 Parallel and reconfigurable proces-
sors

Of specific interest for the addressed application
domain are the array structured parallel and recon-

figurable processors. Most of these architectures have
been developed for the purpose of compute and data
intensive applications such as baseband processing. In
this paper the term processor is used for the entire
parallel processor on a chip, whereas we refer to the
constituent processing elements as PEs. This specific
category of processors offers parallelism on different
granularity levels, which provides a highly formable
program mapping space. The PEs of the array are in
general tightly coupled, using low-latency communi-
cation networks controlled by the instruction set. The
exposed details of the low-latency interconnect struc-
tures, combined with the high degree of parallelism,
makes it possible to enhance performance by arrang-
ing parallel computations as streams.

Parallel and reconfigurable architectures can be
grouped into three categories after granularity and
processing principle. The more coarse-grained are
usually designed after the MIMD principle [6, 2]. The
second category can be characterized as SIMD/vector
machines, constituting clusters of vector or SIMD
units, orchestrated by one or several single instruc-
tion stream controllers [7, 8]. Finally the third cate-
gory are what can be called semi-static configurable
arrays [3]. These are more fine-grained architectures;
they resemble FPGAs, but the PEs are of word-level
ALU type instead of bit-level type. What is common
for these architectural categories is that they expose
a lower than usual level of the hardware for configu-
ration by the compiler.

A general principle for these architectures is that
they have no hardware-implemented cache logic and
that most are designed with distributed private mem-
ory. Thus, complex cache and coherence mechanisms
can be removed in favor of more computation-oriented
logic. Instead, the data access arrangement needs to
be expressed and configured by the programmer and
the compiler.

2.2 Stream programming and compila-
tion

The flexibility and parallelism offered by parallel
and reconfigurable architectures have increased the
complexity for both the programmers and the com-
piler tools. Most current architectures are accompa-
nied with a specific approach for programming and
compiling, and many of these approaches are based
on the language C. This is done through either some
machine specific extensions to the C syntax [8, 9] or
as a combination with another machine specific lan-
guage [2, 10]. This is not an optimal approach – nei-
ther from the perspective of application programming,
nor for compilation efficiency. First of all, the C lan-
guage and compilers have originally been developed
and optimized for general purpose programming, to

be compiled for a von Neumann based machine ab-
straction with a single instruction stream and global-
memory abstraction. Thus, there is no support in the
language to explicitly express application parallelism.
Data-parallel operations usually have to be extracted
from serial loop iterations [11]. The C language also
imposes very liberal programming of memory usage,
allowing global pointers, recursive function calls and
dynamic memory allocation. Since the targeted paral-
lel architectures have distributed memory and no au-
tomatic caching and coherence mechanisms, it is very
hard – or perhaps even impossible – to produce per-
formance efficient code based on this kind of program-
ming.

One purpose with the baseband API is to be able to
choose hardware components from several suppliers.
Thus, the program code must be portable. Without
a general programming language, which can be effi-
ciently compiled to other architectures, a large amount
of reimplementations would be required. For exam-
ple, when a processor is programmed using an archi-
tecture specific combination of C (for function imple-
mentation) and a subset of VHDL (for the intercon-
nect structures), porting programs to another archi-
tecture would most likely require changing program-
ming paradigm as well as putting large efforts in code
rewriting.

From the application point of view, one of the more
interesting approaches taken is the stream program-
ming paradigm. A stream program has the structure
of a dataflow graph, constituting synchronous flows
of data streaming through a pipelined set of func-
tions [12, 9]. This is a natural way of expressing sig-
nal processing applications, which usually constitute
pipelined execution of compute intensive filter kernels.
Stream programming allows a programmer to explic-
itly express function parallelism and data locality in
the program. The function dependencies in a stream
program are limited to input and output streams be-
tween the functions in the flow graph; global data is
not allowed to be expressed in a stream program. This
deterministic flow description exposes information of
function parallelism and data locality to a compiler.

One of the more interesting stream programming
languages is StreamIt [12]. It is developed to be a
portable programming language for array structured
processors and, unlike other stream languages, both
functions and program flow graphs are expressed us-
ing one language. The syntax is Java-like and it does
not allow such things as global data allocation and
function calls, as most C based languages do. The
flow graphs are described using pipeline constructs,
and functions are implemented as filters. An applica-
tion can be expressed as an abstract component graph,
using pipeline constructs, and the concrete API com-
ponents can be defined by filter constructs. The filter

construct provides a natural interface for autonomous
stream functions in an API, which could as well be
linked to a hardware defined component in the com-
piler process.

3. Experimental framework for stream
programming

In this section we present a programming frame-
work that has been developed for experiments with
stream programming. Specifically, we are interested in
experimenting with new language types and structures
currently not supported in StreamIt. There are two
important aspects that need to be addressed. First,
the language must provide program structures that are
natural to use for definition of abstract components.
Second, it must offer primitive types and operators
that allow a programmer to efficiently express appli-
cation characteristic computations. With the experi-
mental framework, it is possible to quickly set up pro-
gramming experiments with StreamIt language exten-
sions without the need for laboursome compiler mod-
ifications.

Our implementation studies of the WCDMA base-
band standard show that the baseband functions re-
quire a high degree of low-level data manipulation on
bit-fields, and also that many computations can be ex-
ecuted in data-parallel fashion [13]. When traditional
high-level primitives, such as integers and bytes are
used, low-level bit operations cannot be naturally ex-
pressed. Implementation of bit operations normally
have to take machine-specific details, such as regis-
ter word-length, into consideration. Furthermore, this
kind of low-level programming is quite error prone and
it would be desirable to perform compile-time type
checks on such primitive operations.

With our framework it is possible to investigate
how bit-level and data-parallel operations can be ex-
pressed more efficiently without considering machine-
specific details when implementing algorithms. It is
also possible to define type check rules. The frame-
work is implemented in Java and it is based on a set
of design patterns, which define the elementary struc-
ture of a stream language. This elementary structure
is, to a large extent based, on the StreamIt language
structure, but it is not identical. New data primitives
and stream constructs can rapidly be implemented by
making extensions to the framework. In the next sub-
section we discuss the predefined basic language struc-
tures of the framework, highlighting new features not
offered by the StreamIt language. Then we discuss the
implementation of these structures in the framework.
Finally, we discuss the implementation of primitive
types and operators.

3.1 Basic language constructs

A stream program is constructed using Filter and
Pipeline components, which form a network of func-
tions and data streams, see Figure 1. The Filter is
the basic construct in which instructions are grouped
to perform a computation. The Pipeline construct is
used to organize stream components into a composite
network. A component is added to a pipeline by the
add(component) command.

The Filter and Pipeline components are con-
nected with I/O tapes which constitute the data
streams flowing through the network. A tape is imple-
mented by a FIFO buffer of homogeneous data types.
In StreamIt, Filter and Pipeline components can
only be attached to a single stream. In our frame-
work, we support implementation of dual tapes – one
for data streams and one for streams of configuration
parameters. The data tape constitutes the stream on
which a filter performs its computation. The configu-
ration tape is used to stream reconfiguration parame-
ters to filters throughout the distributed network.

A Filter has three execution modes – init, work
and configure. Transitions between these modes are
mapped automatically at compilation time and the
programmer only needs to define the functionality
within each mode. The init mode is executed once,
before the first firing of the filter, to initialize variables
and parameters. The work mode implements the com-
putations performed when a filter is working in steady
state. The configure mode is a new language feature
not supported in StreamIt. It is executed once before
each execution of the work mode. The configure
mode has been implemented to support more flex-
ible programming of parameter configuration of the
baseband algorithms (recall the configuration param-
eters signalled from the RNC), which must be per-
formed periodically during program execution. With
a configure mode and a separate configuration tape,
configuration programming can be defined and modi-
fied without any changes in the work mode.

As in StreamIt, the I/O streams are accessed by
peek(), pop() and push() operators. The pop() op-
erator reads and removes an item from the stream,
while peek() reads the item but does not remove it
from the stream. In our framework, popD(), peekD()
and pushD() are used for data streams and popC(),
peekC() and pushC() for configuration streams.

The framework is designed for stream programs
with static stream rates only. That is, input and out-
put stream rates must be defined constant by the pro-
grammer when implementing a filter. A reason for this
restriction is to make it possible to, at compile time,
check and assert stream rate compatibility between
filters in the network.

Filter Pipeline

Stream
Program

Stream
Component Tape

f1 f2 f3

Pipeline Filter

10
10 5 5 15

15

Stream rate

Config
Tape

Data
Tape

3 3 2 2 0

Figure 1. The framework structure

3.2 Implementation of the basic language
constructs

In this subsection we discuss how the basic language
constructs are implemented in the Java-based frame-
work. This includes Tape, Filter and Pipeline com-
ponents, and it is shown how they are put together to
form a stream network. The framework is structured
using a set of design patterns in combination with type
generics in Java 5.0 SDK [14].

The StreamComponent is a type-generic interface
that defines the contractual functionality that a com-
ponent must implement to be executable in a stream
program. A StreamComponent must be attached to
both data and configuration I/O tapes, where each
tape can be a stream of different data type. This is
handled elegantly by usage of generics in Java. The
interface is parameterized using four generic types,
for data and configuration streams respectively. The
generic data types are instantiated by the class that
implements the interface.

There are currently two basic components in the
framework which implement the StreamComponent in-
terface – Filter and Pipeline. The Filter is a
generic component that defines the basic structure of
a filter construct in a stream language. The abstract
parts of the Filter component constitute methods
for work, init and configure, which must be im-
plemented by a programmer to define the execution
in these modes. The configure and work modes are
called automatically in a deterministic order.

The Pipeline defines how StreamComponents are
ordered to form a stream subnetwork. Since a
Pipeline is a StreamComponent itself, it is pos-
sible to construct hierarchical pipelines. When a
StreamComponent is attached to a pipeline with the
add(component) operation, the stream rate compat-

ibility with the preceding and the following compo-
nents is checked. Both the Pipeline and the Filter
templates are defined with type-generics for input and
output streams. These types are defined by the pro-
grammer when instantiating a Filter or Pipeline
using the Filter and Pipeline component templates.

Tapes are defined by a generic Tape component.
The buffer data type is defined when a program-
mer makes an add(component) operation. The buffer
size is determined at compilation time using the I/O
stream rate directives that must be specified by the
stream programmer when instantiating a component
using Pipeline and Filter component templates.

The StreamProgram component is the top-level
pipeline in a stream program. The programmer
adds components to the program by using the
add(component) directive in the method streamPro-
gram, which is the main function called automatically
at program execution. Besides adding components to
the main pipeline, the programmer must also define
the I/O stream types for both data and configuration
streams.

3.3 Stream data types and operators

We now discuss the implementation of components
for type definition and type operators. One of the
main goals with the framework is to be able to elabo-
rate with primitive stream data types for baseband ap-
plications. The framework allows strong type checking
definitions on operations with primitive types. Since
the framework is implemented using Java, some of the
type checking must be done during run-time. How-
ever, in a real compiler implementation these type
checks would be performed at compile time.

The StreamType is a generic interface for imple-
mentation of stream data primitives. This interface
defines a common subset of abstract arithmetic, logic,
relational and typecast operators. The StreamType
interface must be implemented when defining a new
stream data type, which in turn requires the common
operations to be defined by the implementing type.
Operators defined by StreamType (that are not value-
less) take a generic type as input and return a value
of generic type.

A major strength is that type checking rules can
be defined for each data type that implements the
StreamType pattern. All primitive stream types are
implemented as abstract data types in Java.

4. Implementation of StreamBits

The framework has been used to implement Stream-
Bits, which is a prototype language for baseband API
development. The baseband input consists of bit-
serial data streams that must be processed within hard

Table 1. StreamBits types compared with C
StreamBits type C type

bitvecST (n) int, byte
is a bit field type for each
value of n

vecST (e0w, e1w, e2w, e3w) int[4], byte[4]
is a type for parallel vectors scalar array of int
with elements en of width w or byte

real-time intervals. Currently, we have focused on the
primitive type system and operators suitable for ef-
ficient implementation of bit-field manipulations and
data-parallel operations. In this section we present
these new types and operators. To demonstrate the
advantages with our approach, we compare these
types and operators with C-based expressions.

When a traditional C-programming approach is
used, computations on bit-streams require a large
amount of assembly-like machine-dependent expres-
sions based on bit masks and shifts. This normally
results in source code that is very hard to read and un-
derstand. Also, this kind of operations requires care-
ful implementation by the programmer, since C-like
languages lack type notions for bit field computations
and therefore can not provide type safety. Further-
more, it results in machine dependent code, since the
programmer must pack bits and calculate masks and
shifts that are bound to fixed-length machine registers.

StreamBits has been implemented with types for
bit-field and data-parallel operations. The definitions
of these types are presented in Table 1. The Stream-
Bits primitives are listed in the first column of the ta-
ble and the corresponding type expressions in C prim-
itives in the second.

Types for bit-fields. bitvecST is the type for
declaration of bit-fields of length n. Thus, it is pos-
sible to define a set of n distinct bit-field types t(n).
In comparison, since in C, there is no primitive type
notion for bit-fields, such data quantities must be ex-
pressed using integer or byte types. Therefore, type-
correct operations on integers are also type-correct for
bit-fields of arbitrary length. This type-mismatched
bit mapping is quite error prone and not desirable.

Data-parallel type. vecST is a type that allow
fine-grained data-parallel operations to be expressed
explicitly within a Filter, see row 2 in Table 1. The
vecST type is defined as a vector of four elements, each
of 32-bit width. Note that the definition of the vector
type is parameterized by the number of elements en

and the bit-field width w. Since there is no parallel
notation in C, vector data are usually expressed using
array constructs which are accessed scalar-wise.

Bit-field operations. A sub-field in bitvecST
types is accessed using bitslice operators. Bit-fields

Table 2. StreamBits compared with C
bitvecST oper. Corresponding C expr.

bitslice(m : n) (t & wm:0)

bitsliceL(m : n) (t & wm:0) � (w −m)

bitsliceR(m : n) (t & wm:0) � n

bitslicePack(m : n) N/A

lmerge(k : l, m : n) if l <= (m− n) :

((t & wk:l) � C1) | ((s & wm:n) � n)

if l > (m− n) :

((t & wk:l) � C2) | ((s & wm:n) � n)

of bitvecST type can also be merged using the lmerge
operator. In Table 2, we list these operators and, for
comparison, the corresponding C expressions. Bit-
field upper and lower boundaries are annotated with
k, m and l, n respectively. w is used for machine word-
length, and bit masks of machine register length are
annotated with wm:0, where m represents the upper
boundary of the bit mask.

The bitslice operator is currently defined for two
cases – unaligned and aligned bit-slicing. Unaligned
bit-slicing is performed with the bitslice("m:n")
operator, row 1 in the table. The operator bit-
slice("m:n") produces a bitvecST with the same
length as the operand, where bits m through n are
copied from the corresponding bit-field in the operand,
and the rest are set to 0.

Aligned bit-slicing is performed by the oper-
ators bitsliceL("m:n"), bitsliceR("m:n") and
bitslicePack("m:n") listed on rows 2 through 4.
The bitsliceL("m:n") operator produces a bit-field
copy, like bitslice("m:n"), but the copied bit-field is
aligned to the bitvecST(n) upper bound n. Similarly,
the bitsliceR("m:n") operator produces a bit-field
copy aligned to the lower bound. The correspond-
ing expressions in C, on rows 2 and 3, require logi-
cal AND and a SHIFT operations. In comparison,
the bitsliceL and bitsliceR operators allow this
operation to be more compactly expressed than the
required C expression. Also, in the C expression for
left-aligned masking on row 2, it is assumed that the
upper bound is equal to the word length. But, since
the bitvecST(n) type is defined for bit-fields of length
n, this is generally not the case. The alignment of
bitsliceL and bitsliceR values in StreamBits can
be handled automatically at compile time.

The bitslicePack produces a left-aligned bit-field
copy, just like the bitsliceL operator, but the result
is packed into a bitvecST(s) where the field length s
is equal to the length of the copied bit-field (m− n).

The lmerge operator is used to merge two
bitvecST bit-fields. The result is a bitvecST(s)
where the length s is the sum of the two merged bit-
field lengths (k − l + m − n). The first operand is
aligned to the left of the second operand. A right-
aligned merge can be achieved by simply switching the

Table 3. Operator comparison vecST
StreamBits oper. Corresponding C expression

vecslice(m : n) for i = 0 to 4{t[ei] & wm:n}
vecsliceL(m : n) for i = 0 to 4{t[ei] & wm:n � (w −m)}
vecsliceR(m : n) for i = 0 to 4{t[ei] & wm:n � n}
lmerge(k : l, m : n) for i = 0 to 4{

if l <= (m− n) :

(t[ei] & wk:l) � C1 | (s[ei] & wm:0) � n

if l > (m− n) :

(t[ei] & wk:l) � C2 | (s[ei] & wm:0) � n

order of the operands. The corresponding C expres-
sion requires at most 5 operations. The first operand
should be aligned to the left of the second, which re-
quires either a left or a right shift, depending on if the
masked bit-fields are overlapping or not (l <= (m−n)
or l > (m − n)). This alignment is a shift constant
specified by the programmer (C1 and C2). Thus, the
if cases are used only to mark two separate alignment
cases.

Data-parallel operations. Besides the basic
arithmetic and logical operations, the vecST type
also supports bit-field operations, such as lmerge,
vecslice, vecsliceL and vecsliceR, see Table 3.
The lmerge operation is defined precisely as lmerge
for bitvecST types. The merge is performed in par-
allel for each of the vector elements and the result is
of type vecST. In StreamBits, the maximum length of
an element merge is w.

The vecslice(m:n), vecsliceL(m:n) and vec-
sliceR(m:n) operators are vector-parallel versions of
bitslice operators. Since there is no correspond-
ing parallel notation in C, parallelism must be trans-
formed into sequential expressions, typically using
loop constructs and scalar data arrays. This is illus-
trated in the right part of Table 3. Few will argue that
it is a natural way of expressing application parallelism
– to use sequential scalar constructs, which are then
to be parallelized by a compiler that is only aware of
the sequential constructs given by the programmer.

Some computations require scalar processing of
vecST elements. Scalar elements in vecST are accessed
by getElement(ei) and setElement(ei, val) opera-
tors, where ei is the element index of the vector and
val is the value.

5. Experiments with 3G UMTS base-
band functions

In order to demonstrate and evaluate the applica-
bility of the StreamBits language, we have conducted
experiments with baseband functions. In this paper
two different implementation examples of one base-
band function are presented – cyclic redundancy check
(CRC) processing for a voice call service and for high

for(intST cnt;cnt.lt(len);cnt.Assign(cnt.incr())){
1. if(cnt.mod(new intST(4)).eq(new intST(0))){
2. out.Assign(temp);
3. temp.Assign(peekD());
4. r_tmp.Assign(temp);
5. pushD(popD());
6. }
7. t.Assign(r.bitsliceR("31:24"));
8. r.Assign(r.lmerge("23:0", r_tmp.bitsliceR("31:24")));
9. r.Assign(r.XOR(table[crc_poly.getVal()][t.getVal()]));
10. r_tmp = r_tmp.lshift(8);
}

Figure 2. CRC implemented in StreamBits

bit-rate data services [13].
CRC processing for voice services. Voice calls

are coded using an adaptive multi rate codec (AMR).
The baseband data input constitutes three AMR en-
coded bit-streams mapped onto separate transport
channels, A, B and C. Each stream constitutes coded
speech data of different importance to the quality of
a voice channel; the A bits are the most important
and the C bits the least. The channels are processed
with different baseband parameters; only the A chan-
nel bits are transmitted with a CRC computed check-
sum. The CRC implementation, shown in figure 2, is
a table-driven algorithm which encodes a single trans-
port channel (Note that this is a selected part and
not the complete CRC baseband function). The vari-
ables, except for the loop counter, are all of bitvecST
type. In each loop iteration, this algorithm encodes
eight-bit long fields of the input stream. The input
bits are packed into a stream of bitvecST data type.
Each bitvecST is 32 bits long, thus four iterations are
required to process each bitvecST that is read from
the input stream. Defined by the code within the if
clause, every fourth iteration a new bitvecST value
is read into a temporary input register (r tmp), while
the previous one is pushed to the output stream.

On line 7, the next 8-bit field to be encoded is read
from the encoder register r using the bitsliceR op-
erator. On line 8, the MSB from the temporary input
register r tmp is shifted into the LSB of the encoder
register r using bitslice and lmerge.

Finally, the lookup value is read from the table to
be XOR:ed (the division), with the encoder register,
and the next 8-bit input in the temporary register is
aligned to the MSB position for the next iteration.

CRC processing for high bit-rate data. Data
transmissions can be mapped using multiple transport
blocks of equal size, mapped on multiple transport
channels. Since there are no data dependencies be-
tween the transport blocks, multiple blocks can be
processed in parallel using SIMD control.

The StreamBits code in Figure 3 represents a SIMD
parallel implementation of the same encoding algo-
rithm previously demonstrated for the AMR service.

for(intST cnt;cnt.lt(len);cnt.Assign(cnt.incr())){
1: if(cnt.mod(new intST(4)).eq(new intST(0))){
2: out.Assign(temp);
3: temp.Assign(peekD());
4: r_tmp.Assign(temp);
5: pushD(popD());
6: }
7: t.Assign(r.vecslice("31:24"));
8: r.Assign(r.lmerge("23:0", r_tmp, "31:24"));
9: v0.Assign(table[poly.val()][t.getElement(0).val()]);
10: v1.Assign(table[poly.val()][t.getElement(1).val()]);
11: v2.Assign(table[poly.val()][t.getElement(2).val()]);
12: v3.Assign(table[poly.val()][t.getElement(3).val()]);
13: r.Assign(r.XOR(new vecST(v0, v1, v2, v3)));
14: r_tmp.Assign(r_tmp.lshift(8));
}

Figure 3. CRC processing for DATA

The cnt and v0-v3 variables are scalar variables of
intST type, and the other are of vecST type. Like in
the AMR example, the parallel encoder encodes 8 bits
of the input stream per iteration.

Each data item in the I/O streams constitutes a
32-bit field of four simultaneous transport block in-
put streams; one transport block stream per vector
element. The parallel vecslice operator on line 7
copies the next 8 bits of each vector element in the
encoder register r, and stores them aligned with the
lsb positions in the t vector. Each element in t consti-
tutes the next lookup index for each bit-stream being
processed. On line 8, new input bits are shifted into
the encoding register by copying the MSB of the in-
put vector register r tmp, which are merged with the
remaining bits in the encoder register. Like for the
bitslice operators, no machine dependent masking
and shifting needs to be expressed in the code.

The table look-ups performed on lines 9 through
12 have to be expressed with scalar operations; one
look-up for each element. This is because the input
bit-fields in register t constitute arbitrary values from
the four transport blocks and therefore it is not possi-
ble to vectorize the look-up operation. However, this
does not mean that this portion of the code cannot
be executed in parallel. Finally, the scalar values with
the look-up values are vectorized and XOR:ed with
the encoder register on line 13, and the next input
bits to be shifted into the encoder register are shifted
to the msb positions in the temporary input register,
r tmp.

6 Conclusions and future work

We have described a configurable framework to be
used for experiments with stream programming devel-
opment targeting embedded high-performance appli-
cations, such as baseband processing in radio base sta-
tions. A domain specific language prototype for base-
band processing, called StreamBits, was implemented
to demonstrate the use of the framework and to per-

form implementation experiments. We introduced
stream constructs to be able to efficiently program
dynamic reconfiguration of distributed processing pa-
rameters. It was shown that the language has the po-
tential to lead to more compact and efficient codes for
bit-field and data-parallel computations, compared to
when typical von Neumann based languages, such as
C are used. The primitive types in the language im-
pose a programmer to explicitly express functions with
inherent, fine-grained data parallelism. Moreover, it
was demonstrated how the primitive data-parallel vec-
tor and bit-vector data types and operations can be
used without exposing machine specific details such
as register word lengths. Another advantage with the
introduced primitive data types is the opportunity to
perform strong type checking on low-level bit opera-
tions.

Future work will be focused on the definition of a
tailored stream processing language for baseband API
development. This will be based on extended proto-
type experiments using the configurable framework.
The development will include the implementation of
a compiler framework for a parallel machine abstrac-
tion, which can be applied for efficient mapping on
parallel and reconfigurable, array structured proces-
sors. To support efficiency, the language should offer
parallel expressions. To support portability, the syn-
tax should not allow machine-specific details in the
code.

Acknowledgment

The authors would like to thank Dr. Anders Wass
at Ericsson AB and Dr. Veronica Gaspes at Halmstad
University for valuable advice and suggestions. This
work has been funded by research grants from Ericsson
AB and the Knowledge Foundation.

References

[1] Freescale Semiconductor. MRC6011: Re-
configurable Compute Fabric (RCF) Device.
www.freescale.com, Oct. 2004.

[2] G. Panesar A. Duller and D. Towner. Parallel
Processing - the picoChip way! In Proc. of Com-
municating Process Architectures, pages 125–138,
2003.

[3] PACT XPP Technologies. XPP-IIb Core
Overview. www.pactcorp.com, Sept. 2005.

[4] H. Holma and A. Toskala. WCDMA for UMTS:
Radio Access for Third Generation Mobile Com-
munications. Addison-Wesley, third edition,
2004.

[5] J. Lerzer Z. Zhang, F. Heiser and H. Leuschner.
Advanced baseband technology in third-
generation radio base stations. Ericsson Review,
(01):32–41, 2003.

[6] M. B. Taylor et al. Evaluation of the Raw Micro-
processor: An Exposed-Wire-Delay Architecture
for ILP and Streams. In Proc. of Int. Symposium
on Computer Architecture, pages 2–13, 2004.

[7] J. H. Ahn et al. Evaluating the Imagine Stream
Architecture. In Proc. of Int. Symposium on
Computer Architecture, pages 14–25, 2004.

[8] A. E. Eichenberger et al. Optimizing Compiler
for a CELL Processor. In Proc. of Int. Conf.
on Parallel Architectures and Compiation Tech-
niques, pages 161–172, 2005.

[9] A. Das et al. Imagine Programming System
User’s Guide. www.cva.stanford.edu/imagine,
April 2004.

[10] PACT XPP Technologies. Programming XPP-
IIb Systems. www.pactcorp.com, Sept. 2005.

[11] S. V. Rajopadhye. Dependence Analysis and Par-
allelizing Transformations. In The Compiler De-
sign Handbook, pages 329–372. CRC Press, 2002.

[12] M. I. Gordon et al. A Stream Compiler for
Communication-Exposed Architectures. In Proc.
of Int. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems,
pages 291–303, 2002.

[13] J. Bengtsson. Baseband Processing in 3G UMTS
Radio Base Stations. Technical Report IDE0629,
Halmstad University, 2006.

[14] E. Gamma. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-
Wesley professional computing series. Addison-
Wesley, 1995.

Paper D
A Domain-specific Approach for Software Development on

Manycore Platforms

Bengtsson, J. and Svensson, B. (2008). A domain-specific approach for soft-

ware development on manycore platforms. In ACM Computer Architecture
News, Special Issue: MCC08 - Multicore Computing 2008, 39(6):2-10.

A Domain-specific Approach for Software Development on Manycore Platforms

Jerker Bengtsson and Bertil Svensson
Centre for Research on Embedded Systems

Halmstad University
PO Box 823, SE-301 18 Halmstad, Sweden

Jerker.Bengtsson@hh.se

Abstract

The programming complexity of increasingly parallel
processors calls for new tools that assist programmers in
utilising the parallel hardware resources. In this paper we
present a set of models that we have developed as part of a
tool for mapping dataflow graphs onto manycores. One of
the models captures the essentials of manycores identified
as suitable for signal processing, and which we use as tar-
get for our algorithms. As an intermediate representation
we introduce timed configuration graphs, which describe
the mapping of a model of an application onto a machine
model. Moreover, we show how a timed configuration graph
by very simple means can be evaluated using an abstract
interpretation to obtain performance feedback. This infor-
mation can be used by our tool and by the programmer in
order to discover improved mappings.

1. Introduction

To be able to handle the rapidly increasing programming
complexity of manycore processors, we argue thatdomain
specific development tools are needed. The signal process-
ing required in radio base stations (RBS), see figure 1, is
naturally highly parallel and described by computations on
streams of data [9]. Each module in the figure encapsulates
a set of functions, further exposing more pipeline-, data-
and task level parallelism as a function of the number of
connected users. Many radio channels have to be processed
concurrently, each including fast and adaptive coding and
decoding of digital signals. Hard real-time constraints im-
ply that parallel hardware, including processors and accel-
erators is a prerequisite for coping with these tasks in a sat-
isfactory manner.

One candidate technology for building baseband plat-
forms is manycores. However, there are many issues that
have to be solved regarding development of complex signal
processing software for manycore hardware. One such is

Radio RX
Receiver

filter
AGC

Remove
prefix

FFT
Extract
user #1

Extract
user #2

Extract
user #2

Extract
user #N

Demodulate Decode

Demodulate

Demodulate

Demodulate

Decode

Decode

Decode

User data

User data

User data

User data

Scheduler

Figure 1. A simplified modular view of the
principal functions of the baseband receiver
in long term evolution (LTE) RBS.

the need for tools that reduce the programming complexity
and abstract the hardware details of a particular manycore
processor. We believe that if industry is to adopt manycore
technologythe application software, the tools and the pro-
gramming models need to be portable.

Research has produced efficient compiler heuristics for
programming languages based on streaming models of
computation (MoC), achieving good speedup and high
throughput for parallel benchmarks [3]. However, even
though a compiler can generate optimized code the pro-
grammer is left with very little control of how the source
program is transformed and mapped on the cores. This
means that if the resulting code output does not comply
with the system timing requirements, the only choice is to
try to restructure the source program. We argue thatexperi-
enced application programmers must be able to direct and
specialize the parallel mapping strategy by giving directive
tool input.

For complex real-time systems, such as baseband
processing platforms, we see a need for tunable code
parallelization- and mapping tools, allowing programmers
to take the system’s real-time properties into account dur-
ing the optimization process. Therefore, complementary to

fully automatized parallel compilers, we are proposing an
iterative code parallelization- and mapping tool flow that
allows the programmer to tune mapping by:

• analyzing the result of a parallel code map using per-
formance feedback

• giving timing constraints, clustering and core alloca-
tion directives as input to the tool

In our work we address the design and construction
of one such tool. We focus on suitable well defined
dataflow models of computation for modeling applications
and manycore targets, as well as the base for our intermedi-
ate representation for manycore code-generation. One such
model, synchronous dataflow (SDF), is very suitable for de-
scribing signal processing flows. It is also a good source for
code-generation, given that it has a natural form of paral-
lelism that is a good match to manycores. The goal of our
work is a tool chain that allows the software developer to
specify a manycore architecture (using ourmachine model),
to describe the application (using SDF) and to obtain a gen-
erated mapping that can be evaluated (using ourtimed con-
figuration graph). Such a tool allows the programmer to
explore the run time behaviour of the system and to find
successively better mappings. We believe that this iterative,
machine assisted, workflow, is good in order to keep the ap-
plication portable while being able to make trade-offs con-
cerning throughput, latency and compliance with real-time
constraint on different platforms.

In this paper we present our set of models and show how
we can analyze the mapping of an application onto a many-
core. More specifically, the contributions of this paper are
as follows:

• A parallel machine model usable for modelling array-
structured, tightly coupled manycore processors. The
model is presented in Section 2, and in Section 3 we
demonstrate modeling of one target processor.

• A graph-based intermediate representation (IR), used
to describe a mapping of an application on a particu-
lar manycore in the form of a (a timed configuration
graph). The use of this IR is twofold. We can perform
an abstract interpretation that gives us feedback about
the dynamic behaviour of the system. Also, we can use
it to generate target code. We present the IR in Section
4.

• We show in Section 5 how parallel performance can be
evaluated through abstract interpretation of the timed
configuration graph. As a proof of concept we have
implemented our interpreter in the Ptolemy II software
framework using dataflow process networks.

We conclude our paper with a discussion of our achieve-
ments and future work.

2 Model Set

In this section we present the model set for constructing
timed configuration graphs. First we discuss the application
model, which describes the application processing require-
ments, and then the machine model, which is used to de-
scribe computational resources and performance of many-
core targets.

2.1 Application Model

We model an application using SDF, which is a special
case of a computation graph [5]. An SDF graph constitutes
a network of actors - atomic or composite of variable gran-
ularity - which asynchronously compute on data distributed
via synchronous uni-directional channels. By definition, ac-
tors in an SDF graph fire (compute) in parallel when there
are enough tokens available on the input channels. An SDF
graph is computable if there exists at least one static rep-
etition schedule. A repetition schedule specifies in which
order and how many times each actor is fired. If a repeti-
tion schedule exists, buffer boundedness and deadlock free
execution is guaranteed. A more detailed description of the
properties of SDF and how repetition schedules are calcu-
lated can be found in [6].

The Ptolemy II modelling software provides an excel-
lent framework for implementing SDF evaluation- and code
generator tools [1]. We can very well consider an applica-
tion model as an executable specification. For our work, it
is not the correctness of the implementation that is in focus.
We are interested in analyzing the dynamic, non-functional
behaviour of the system. For this we rely on measures like
worst case execution time, size of dataflows, memory re-
quirements etc. We assume that these data have been col-
lected for each of the actors in the SDF graph and are given
as a tuple

< rp, rm, Rs, Rr >

where

• rp is the worst case computation time, in number of
operations.

• rm is the requirement on local data allocation, in
words.

• Rs = [rs1
, rs2

, ..., rsn
] is a sequence wherersi

is the
number of words produced on channeli each firing.

• Rr = [rr1
, rr2

, ..., rrm
] is a sequencerrj

is the number
of words consumed on channelj each firing.

2.2 Machine Model

One of the early, reasonably realistic, models for dis-
tributed memory multiprocessors, is the LogP model [2].
Work has been done to to refine this model, for example
taking into account hardware support for long messaging,
and to capture memory hierarchies. A more recent paral-
lel machine model for multicores, which considers different
core granularities and requirements on on-chip and off-chip
communication is Simplefit [7]. However, this model was
derived with the purpose of exploring optimal grain size and
balance between memory, processing, communication and
global I/O, given a VLSI budget and a set of computation
problems. Since it is not intended for modeling dynamic
behaviour of a program, it does not include a fine-granular
model of the communication. Taylor et al. propose a tax-
onomy (AsTrO) for comparison of scalar operand networks
[11]. They also provide a tuple based model for comparing
and evaluating performance sensitivity of on-chip network
properties.

We propose a manycore machine model based on Sim-
plefit and the AsTrO taxonomy, which allows a fairly fine-
grained modeling of parallel computation performance in-
cluding the overhead of operations associated with commu-
nication. The machine model comprises a set of parameters
describing the computational resources and a set of abstract
performance functions, which describe the computational
performance of computations, communication and memory
transactions. We will later show in Section 5 how we can
can model dynamic, non-functional behavior of a dataflow
graph mapped on a manycore target, by incorporating the
machine model in a dataflow process network.

2.2.1 Machine Specification

We assume that cores are connected in a mesh structured
network. Further that each core has individual instruction
decoding capability and software managed memory load
and store functionality, to replace the contents of core lo-
cal memory. We describe the resources of such a manycore
architecture using two tuples,M andF . M consists of a set
of parameters describing the processors resources:

M =< (x, y), p, bg, gw, gr, o, so, sl, c, hl, rl, ro >

where

• (x, y) is the number of rows and columns of cores.

• p is the processing power (instruction throughput) of
each core, inoperations per clock cycle.

• bg is global memory bandwidth, inwords per clock
cycle

• gw is the penalty for global memory write, inwords
per clock cycle

• gr is the penalty for global memory read, inwords per
clock cycle

• o is software overhead for initiation of a network trans-
fer, in clock cycles

• so is core send occupancy, inclock cycles, when send-
ing a message.

• sl is the latency for a sent message to reach the net-
work, in clock cycles

• c is the bandwidth of each interconnection link, in
words per clock cycle.

• hl is network hop latency, inclock cycles.

• rl is the latency from network to receiving core, in
clock cycles.

• ro is core receive occupancy, inclock cycles, when re-
ceiving a message

F is a set of abstract functions describing the performance
of computations, global memory transactions and local
communication:

F (M) =< tp, ts, tr, tc, tgw, tgr >

where

• tp is a function evaluating the time to compute a list of
instructions

• ts is a function evaluating the core occupancy when
sending a data stream

• tr is a function evaluating the core occupancy when
receiving a data stream

• tc is a function evaluating network propagation delay
for a data stream

• tgw is a function evaluating the time for writing a
stream to global memory

• tgr is a function evaluating the time for reading a
stream from global memory

A specifc manycore processor is modeled by giving val-
ues to the parameters ofM and by defining the functions
F (M).

3 Modeling the RAW Processor

In this section we demonstrate how we configure our ma-
chine model in order to model the RAW processor [10].
RAW is a tiled, moderately parallel MIMD architecture
with 16 programmable tiles, which are tightly connected
via two different types of communication networks: two
statically- and two dynamically routed. Each tile has a
MIPS-type pipeline and is equipped with 32 KB of data and
96 KB instruction caches.

3.1 Parameter Settings

We are assuming a RAW setup with non-coherent
off-chip global memory (four concurrently accessible
DRAM banks), and that software managed cache mode
is used. Furthermore, we concentrate on modeling usage
of the dynamic networks, which are dimension-ordered,
wormhole-routed, message-passing type of networks. The
parameters ofM for RAW with this configuration are as
follows:

M =< (x, y) = (4, 4),
p = 1,

bg = 1,

gw = 1,

gr = 6,

o = 2,

so = 1,

sl = 1,

c = 1,

hl = 1,

rl = 1,

ro = 1 >

In our model, we assume a core instruction throughput of
p operations per clock cycle. Each RAW tile has an eight-
stage, single-issue, in-order RISC pipeline. Thus, we set
p = 1. An uncertainty here is that in our current analyses,
we cannot account for pipeline stalls due to dependencies
between instructions having non-equal instruction latencies.
We need to make further practical experiments, but we be-
lieve that this in general will be averaged out equally on
cores and thereby not have too large effects on the estimated
parallel performance.

There are four shared off-chip DRAMs connected to the
four east-side I/O ports on the chip. The DRAMs can be
accessed in parallel, each having a bandwidth ofbg = 1
words per clock cycle per DRAM. The penalty for a DRAM
write is gw = 1 cycle and correspondingly for read opera-
tion gr = 6 cycles.

Since the communication patterns for dataflow graphs
are known at compile time, message headers can be pre-
computed when generating the communication code. The

overhead includes sending the header and possibly an ad-
dress (when addressing off-chip memory). We therefore set
o = 2 for header and address overhead when initiating a
message.

The networks on RAW are mapped to the core’s register
files, meaning that after a header has been sent, the network
can be treated as destination or source operand of an instruc-
tion. Ideally, this means that the receive and send occupancy
is zero. In practice, when multiple input and output dataflow
channels are merged and physically mapped on a single net-
work link, data needs to be buffered locally. Therefore we
model send and receive occupancy – for each word to be
sent or received – byso = 1 andro = 1 respectively. The
network hop-latency ishl = 1 cycles per hop and the link
bandwidth isc = 1. Furthermore, the send and receive la-
tency is one clock cycle when injecting and extracting data
to and from the network:sl = 1 andrl = 1 respectively.

3.2 Performance Functions

We have derived the performance functions by studying
the hardware specification and by making small comparable
experiments on RAW. We will now show how the perfor-
mance functions for RAW are defined.

Compute The time required to process the fire code of an
actor on a core is expressed as

tp(rp, p) =

⌈

rp

p

⌉

which is a function of the requested number of operations
rp and core processing powerp. To rp we count all in-
structions except those related to network send- and receive
operations.

Send The time required for a core to issue a network send
operation is expressed as

ts(Rs, o, so) =

⌈

Rs

framesize

⌉

× o + Rs × so

Send is a function of the requested amount of words to be
sent,Rs, the software overheado ∈ M when initiating a
network transfer, and a possible send occupancyso ∈ M .
Theframesize is a RAW specific parameter. The dynamic
networks allow message frames of length within the interval
[0, 31] words. For global memory read and write operations,
we use RAWs cache line protocol withframesize = 8
words per message. Thus, the first term ofts captures the
software overhead for the number of messages required to
send the complete stream of data. For connected actors that
are mapped on the same core, we can choose to map chan-
nels in local memory. In that case we setts to o zero time.

Receive The time required for a core to issue a network
receive operation is expressed as

tr(Rr, o, ro) =

⌈

Rr

framesize

⌉

× o + Rr × ro

The receive overhead is calculated in a similar way as the
send overhead, except that parameters of the receiving core
replace the parameters of the sending core.

Network Propagation Time Modeling shared resources
accurately with respect to contention effects is very difficult.
Currently, we assume that SDF graphs are mapped so that
the communication will suffer from no or a minimum of
contention. In the network propagation time, we consider
a possible network injection- and extraction latency at the
source and destination as well as the link propagation time.
The propagation time is expressed as

tc(Rs, d, sl, hl, rl) = sl + d × hl + nturns + rl

Network injection- and extraction latency is captured by
sl andrl respectively. Further, the propagation time is de-
pendent on the network hop latencyhl and the number of
network hopsd, which are determined from the source and
destination coordinates as|xs − xd| + |ys − yd|. Routing
turns add an extra cost of one clock cycle. This is captured
by the value ofnturns which, similar tod, is calculated us-
ing the source and destination coordinates.

Streamed Global Memory Read Reading from global
memory on the RAW machine requires first one send op-
eration (the core overhead which is captured byts), in or-
der to configure the DRAM controller and set the address of
memory to be read. The second step is to issue a receive op-
eration to receive the memory contents on that address. The
propagation time when streaming data from global memory
to the receiving core is expressed as

tgr = rl + d × hl + nturns

Note that memory read penalty is not included in this
expression. This is accounted for in the memory model in-
cluded in the IR. This is further discussed in Section 4

Streamed Global Memory Write Similarly to the mem-
ory read operation, writing to global memory require two
send operations: one for configuring the DRAM controller
(set write mode and address) and one for sending the data
to be stored. The time required for streaming data from the
sending core to global memory is evaluated by

tgw = sl + d × hl + nturns

Like in stream memory read, the memory write penalty
is accounted for in the memory model.

4 Timed Configuration Graphs

In this section we describe our manycore intermediate
representation (IR). We call the IR atimed configuration
graphbecause the usage of the IR is twofold:

• Firstly, the IR is a graph representing an SDF applica-
tion graph, after it has been clustered and partitioned
for a specific manycore target. We can use the IR as
input to a code generator, in order to configure each
core as well as the interconnection network and plan
global memory usage of a specific manycore target.

• Secondly, by introducing the notion of time in the
graph, we can use the same IR as input to an abstract
interpreter, in order to evaluate the dynamic behaviour
of the application when executed on a specific many-
core target. The output of the evaluator can be used ei-
ther directly by the programmer or to extract informa-
tion feedback to the tool for suggesting a better map-
ping.

4.1 Relations Between Models and Con-
figuration Graphs

A configuration graphGA
M (V, E) describes an applica-

tion A mapped on the abstract machineM . The set of ver-
ticesV = P∪B consists of coresp ∈ P and global memory
buffersb ∈ B. Edgese ∈ E represent dataflow channels
mapped onto the interconnection network. To obtain aGA

M ,
the SDF forA is partitioned into subgraphs and each sub-
graph is assigned to a core inM . The edges of the SDF that
end up in one subgraph are implemented using local mem-
ory in the core, so they do not appear as edges inGA

M . The
edges of the SDF that reach between subgraphs can be dealt
with in two different ways:

1. A network connection between the two cores is used
and this appears as an edge inGA

M

2. Global memory is used as a buffer. In this case, a ver-
tex b (and associated input- and output edges) is intro-
duced between the two cores inGA

M .

WhenGA
M has been constructed, eachv ∈ V ande ∈ E

has been assigned computation times and communication
delays, calculated using the parameters ofM and the per-
formance functionsF (M) introduced in Section 2.2. These
annotations reflect the performance when computing the ap-
plicationA on the machineM . We will now discuss how
we useA andM to configure the vertices, edges and then
computational delays ofGA

M .

4.1.1 Vertices.

We distinguish between two types of vertices inGA
M : mem-

ory vertices andcorevertices. Introducingmemoryvertices
allows us to represent global memory. Amemoryvertex can
be specified by the programmer, for example to store ini-
tial data. More typically,memoryvertices are automatically
generated when mapping channel buffers in global memory.

For core vertices, we abstract the firing of an actor by
means of a sequenceS of abstractreceive, computeand
sendoperations:

S = tr1
, tr2

. . . trn
, tp, ts1

, ts2
, . . . , tsm

Thereceiveoperation has a delay corresponding to the tim-
ing expressiontr, representing the time for an actor to re-
ceive data through a channel. The delay of acomputeoper-
ation corresponds to the timing expressiontp, representing
the time required to execute the computations of an actor
when it fires. Finally, thesendoperation has a delay corre-
sponding to the timing expressionts, representing the time
for an actor to send data through a channel.

For amemorytype of vertex, we assign delays specified
by gr andgw in the machine model to account for memory
read- and write latencies respectively.

When buildingGA
M , multiple channels sharing the same

source and destination can be merged and represented by
a single edge, treating them as a single block or stream of
data. Thus, there is always only one edgeei,j connecting
the pair(vi, vj). We add onereceiveoperation and onesend
operation to the sequenceS for each input and output edge
respectively.

4.1.2 Edges.

Edges represent dataflow channels mapped onto the inter-
connection network. The weightw of an edgeei,j corre-
sponds to the communication delay between vertexvi and
vertexvj . The weightw depends on whether we map the
channel as a point-to-point data stream over the network, or
in shared memory using amemoryvertex.

In the first case we assign the edge a weight correspond-
ing totc. When a channel buffer is placed in global memory,
we substitute the edge inA by a pair of input- and output
edges connected to amemoryactor. We illustrate this by
Figure 2. We assign a delay oftgr andtgw to the input and
output edges of thememoryvertex.

Figure 3 shows an example of a simpleA transformed
to one possibleGA

M . A repetition schedule forA in this
example is3(2ABCD)E. The repetition schedule should
be interpreted as: actorA fires 6 times, actorsB, C and
D fire 3 times, and actorE 1 time. The firing ofA is re-
peated indefinitly by this schedule. We use dashed lines for
actors ofA mapped and translated toS inside each core ver-
tex of GA

M . The feedback channel from C to B is mapped

A B

B
M

gw gr
A

e
1

e
2

e
3

w=tgw w=tgr

ts
tr

Figure 2. The lower graph (GA
M) in the fig-

ure illustrates how the unmapped channel e1,
connecting actor A and actor B, in the up-
per graph (A), has been transformed and re-
placed by a global memory actor and edges
e2 and e3.

A

B C

E

2

D

20

4

40

1 1

20 20

3

9

15

5

6A 3B 3C

E3D

12 12

120

120

9 9

15

15

120

120

Figure 3. The graph to the right is one possi-
ble GA

M for the graph A to the left.

in local memory. The edge from A to D is mapped via a
global buffer and the others are mapped as point-to-point
data streams. The integer values represent the send and
receive rates of the channels (rs andrr), before and after
A has been clustered and transformed toGA

M , respectively.
Note that these values inGA

M are the values inA multiplied
by the number of the repetition schedule.

5 Interpretation of Timed Configuration
Graphs

In this section we show how we can make an abstract
interpretation of the IR and how an interpreter can be im-
plemented by very simple means on top of a dataflow pro-
cess network. We have implemented such an interpreter us-
ing the dataflow process networks (PN) domain in Ptolemy.
The PN domain in Ptolemy is a super set of the SDF do-
main. The main difference in PN, compared to SDF, is that
PN processes fire asynchronously. If a process tries to read
from an empty channel, it will block until there is new data
available. The PN domain implemented in Ptolemy is a spe-
cial case of Kahn process networks [4]. Unlike in a Kahn
process network, PN channels have bounded buffer capac-
ity, which implies that a process also temporarily blocks

when attempting to write to a buffer that is full [8]. This
property makes it possible to easily model link occupancy
on the network. Conclusively, a dataflow process network
model perfectly mimics the behavior of the types of parallel
hardware we are studying. Thus, a PN model is a highly
suitable base for an intermediate abstraction for the proces-
sor we are targetting.

5.1 Parallel Interpretation using Process
Networks

Each of the core and memory vertices ofGA
M is assigned

to its own process. Each of the core and memory processes
has a local clock,t, which iteratively maps the absolute start
and stop time, as well as periods of blocking, to each oper-
ation in the sequenceS.

A core process evaluates a vertex by means of a state ma-
chine. In each clock step, the currentstateis evaluated and
then stored in thehistory. Thehistory is a chronologically
ordered list describing thestateevolution from timet = 0.

5.2 Local Clocks

The clockt is process local and stepped by means of
(not equal) time segments. The length of a time segment
corresponds to the delay bound to a certain operation or the
blocking time of a send or receive operation. The execution
of send and receive operations inS is dependent on when
data is available for reading or when a channel is free for
writing, respectively.

5.3 States

For each vertex, we record during what segments of time
computations and communication operations were issued,
as well as periods where a core has been stalled due to send-
and receive blocking. For each process, ahistory list maps
to a statetype ∈ Stateset, a start timetstart and a stop
time tstop. Thestate of a vertex is a tuple

state =< type, tstart, tstop >

TheStateSetdefines the set of possible state types:

StateSet = {receive, compute, send,

blockedreceive, blockedsend}

5.4 Clock Synchronisation

Send and receive are blocking operations. A read opera-
tion blocks until data is available on the edge and a write

receive(treceive)
tavailable = get next send event from source vertex
if(treceive >= tavailable)

tread = treceive+1

tblocked = 0
else

tread = tavailable+1

tblocked = tavailable − treceive

end if
put read event with timetread to source vertex
return tblocked

end

Figure 4. Pseudo-code of the receive func-
tion. The get and put operations block if the
event queue of the edge is empty or full, re-
spectively.

operation blocks until the edge is free for writing. Dur-
ing a time segment only one message can be sent over an
edge. Clock synchronisation between communicating pro-
cesses is managed by means ofevents. Send and receive op-
erations generate aneventcarrying a time stamp. An edge
in GA

M is implemented using channels having buffer size1
(forcing write attempts on an occupied link to block), and a
simple delay actor. It should be noted that each edge inA

needs to be represented by a pair of opposite directed edges
in GA

M to manage synchronization.

5.4.1 Synchronised Receive

Figure 4 lists pseudo code of the blockingreceivefunc-
tion. The value of the inputtreceive is the present time
at which a receiving process issues areceiveoperation.
The return value,tblocked, is the potential blocking time.
The time stamptavailable, is the time at which the mes-
sage is available at the receiving core. Iftreceive is later
or equal totavailable, the core immediately processes the
receive operation and setstblocked to 0. The receivefunc-
tion acknowledges by sending a read event to the sender,
with the time stamptread+1. Note that a channel is free
for writing as soon as the reciver has begun receiving the
previous message. Also note that blocking time, due to un-
balanced production and consumption rates, has been ac-
counted for when analysing the timing expression forsend
andreceiveoperations,Ts andTr, as was discussed in Sec-
tion 2.2. If treceive is earlier thantavailable, the receiving
core will block a number of clock cycles corresponding to
tblocked = tavailable − treceive.

5.4.2 Synchronised Send

Figure 5 lists pseudo code for the blockingsendfunction.
The value oftsend is the time at which thesendoperation
was issued. The time stamp of the read eventtavailable cor-
responds to the time at which the receiving vertex reads the
previous message and thereby also when the edge is avail-
able for sending next message. Iftsend < tavailable, asend
operation will block fortblocked = tavailable − tsend clock
cycles. Otherwisetblocked is set to0. Note that all edges
carrying receive events in theconfiguration graphmust be
initialised with a read event, otherwise interpretation will
deadlock.

send(tsend)
tavailable = get read event from sink vertex
if(tsend < tavailable)

tblocked = tavailable − tsend

else
tblocked = 0

end if
put send eventtsend + ∆e + tblocked to sink vertex
return tblocked

end

Figure 5. Pseudo-code of the send function.
The value of ∆e corresponds to the delay of
the edge.

5.5 Vertex Interpretation

Figure 6 lists the pseudo code for interpretation of a
vertex inGA

M . It should be noted that, for space reasons,
we have omitted to include the state code for global read
and write operations. The functioninterpretV ertex() is
finitely iterated by each process and the number of itera-
tions, iterations, is equally set for all vertices when pro-
cesses are initated. Each process has a local clockt and an
operation counterop cnt, both initially set to0. The opera-
tions sequenceS is a process local data structure, obtained
from the vertex to be interpreted. Furthermore, each pro-
cess has a listhistory which initially is empty. Also, each
process has a variablecurr oper which holds the currently
processed operation inS.

The vertex interpreter makes state transitions depending
on the current operationcurr oper, the associated delay
and whethersendandreceiveoperations block or not. As
discussed in Section 5.4.1, thesendand receivefunctions
are the only blocking functions that can halt the interpre-
tation in order to synchronise the clocks of the processes.

The value oftblocked is set to the return value ofsendand
receivewhen interpreting send and receive operations, re-
spectively. The value oftblocked corresponds to the length of
time asendor receiveoperation was blocked. Iftblocked has
a value> 0, a state of typeblockedsendor blockedreceive
is computed and added to thehistory.

interpretVertex()
if (list S has elements)

while(iterations > 0)
get elementop cnt in S and put incurr oper

incrementop cnt

if(curr op is a Receive operation)
settblocked = value ofreceive(t)
if(tblocked > 0)

add state ReceiveBlocked(t, tblocked) to hist.

sett = t + tblocked

end if
add state Receiving(t, ∆ of curr oper)

end if

else if(curr op is a Compute operation)
add state Computing(t, ∆ of curr oper)

end if

else if(curr op is a Send operation)
settblocked = value ofsend(t)
if(tblocked > 0)

add state SendBlocked(t, tblocked) to hist.

sett = t + tblocked

end if
add state Sending(t, ∆ of curr oper)

end if

if(op cnt reached last index ofS)
setop cnt = 0
decrementiterations

add stateEnd(t) to history

end if
sett = t + ∆ of curr oper + 1

end while
end if

end

Figure 6. Pseudo-code of the interpretVertex
function.

5.6 Model Calibration

We have implemented the abstract interpreter in the
Ptolemy software modeling framework [1]. Currently, we
have verified the correctness of the interpreter using a set
of simple parallel computation problems from the literature.
Regarding the accuracy of the model set, we have so far only
compared the performance functions separately against cor-
responding operations on RAW. However, to evaluate and
possibly tune the model for higher accuracy we need to do
further experimental tests with different relevant signalpro-
cessing benchmarks, especially including some more com-
plex communication- and memory access patterns.

6 Discussion

We believe that tools supporting iterative mapping and
tuning of parallel programs on manycore processors will
play a crucial role in order to maximise application per-
formance for different optimization criteria, as well as to
reduce the parallel programming complexity. We also be-
lieve that using well defined parallel models of computa-
tion, matching the application, is of high importance in this
matter.

In this paper we have presented our achievements to-
wards the building of an iterative manycore code generation
tool. We have proposed a machine model, which abstracts
the hardware details of a specific manycore and provides
a fine-grained instrument for evaluation of parallel perfor-
mance. Furthermore, we have introduced and described
an intermediate representation calledtimed configuration
graph. Such a graph is annotated with computational delays
that reflect the performance when the graph is executed on
the manycore target. We have demonstrated how we com-
pute these delays using the performance functions included
in the machine model and the computational requirements
captured in the application model. Moreover, we have in
detail demonstrated how performance of atimed configura-
tion graphcan be evaluated using abstract interpretation.

As part of future work, we need to perform further
benchmarking experiments in order to better determine the
accuracy of our machine model compared to chosen target
processors. Also, we have so far builttimed configuration
graphs by hand. We are especially interested in exploring
tuning methods, using feedback information from the eval-
uator to set constraints in order to direct and improve the
mapping of application graphs. Currently we are working
on automatising the generation of thetimed configuration
graphs in our tool-chain, implemented in the Ptolemy II
software modelling framework.

Acknowledgment

The authors would like to thank Henrik Sahlin and Peter
Brauer at the Baseband Research group at Ericsson AB, Dr.
Veronica Gaspes at Halmstad University, and Prof. Edward
A. Lee and the Ptolemy group at UC Berkeley for valu-
able input and suggestions. This work has been funded by
research grants from the Knowledge Foundation under the
CERES contract.

References

[1] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and
H. Zheng. Heterogeneous Concurrent Modeling and De-
sign in Java (Volume 1: Introduction to Ptolemy II). Techni-
cal Report UCB/EECS-2008-28, EECS Dept., University of
California, Berkeley, Apr 2008.

[2] D. Culler, R. Karp, and D. Patterson. LogP: Towards a Real-
istic Model of Parallel Computation. InProc. of ACM SIG-
PLAN Symposium on Principles and Practices of Parallel
programming, May 1993.

[3] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploit-
ing Coarse-Grained Task, Data, and Pipeline Parallelism in
stream programs. InProc. of Twelfth Int’l. Conf. on Archi-
tectural Support for Programming Languages and Operat-
ing Systems, 2006.

[4] G. Kahn. The Semantics of a Simple Language for Paral-
lel Programming. In J. L. Rosenfeld, editor,IFIP Congress
74, pages 471–475, Stockholm, Sweden, August 5-10 1974.
North-Holland Publishing Company.

[5] R. M. Karp and R. E. Miller. Properties of a Model for Par-
allel Computations:Determinancy, Termination, Queueing.
SIAM Journal of Applied Mathematics, 14(6):1390–1411,
November 1966.

[6] E. A. Lee and D. G. Messerschmitt. Static Scheduling of
Synchronous Data Flow Programs for Signal Processing.
IEEE Trans. on Computers, January 1987.

[7] C. A. Moritz, D. Yeung, and A. Agarwal. SimpleFit: A
Framework for Analyzing Design Tradeoffs in Raw Archi-
tectures.IEEE Trans. on Parallel and Distributed Systems,
12(6), June 2001.

[8] T. M. Parks. Bounded Scheduling of Process Networks.
PhD thesis, EECS Dept., University of California, Berkeley,
Berkeley, CA, USA, 1995.

[9] H. Sahlin. Introduction and overview of LTE Baseband
Algorithms. Powerpoint presentation, Baseband research
group, Ericsson AB, February 2007.

[10] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat,
B. Greenwald, H. Hoffman, P. Johnson, J.-W. Lee, W. Lee,
A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal. The Raw Mi-
croprocessor: A Computational Fabric for Software Circuits
and General-Purpose Programs.IEEE Micro, 22(2):25–35,
2002.

[11] M. B. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal.
Scalar Operand Networks.IEEE Trans. on Parallel and Dis-
tributed Systems, 16(2):145–162, 2005.

Paper E
Manycore Performance Analysis using Timed Configuration

Graphs

Bengtsson, J. and Svensson, B. (2009). Manycore performance analysis us-

ing timed configuration graphs. To appear in Proc of. Int’l Symp. on Sys-
tems, Architectures, Modeling and Simulation (SAMOS IX 2009), Samos,

Greece.

Manycore Performance Analysis using Timed
Configuration Graphs

Jerker Bengtsson
Centre for Research on Embedded Systems

Halmstad University
Halmstad, Sweden

Email: jerker.bengtsson@hh.se

Bertil Svensson
Centre for Research on Embedded Systems

Halmstad University
Halmstad, Sweden

Email: bertil.svensson@hh.se

Abstract—The programming complexity of increasingly par-
allel processors calls for new tools to assist programmers in
utilising the parallel hardware resources. In this paper we present
a set of models that we have developed to form part of a tool
which is intended for iteratively tuning the mapping of dataflow
graphs onto manycores. One of the models is used for capturing
the essentials of manycores that are identified as suitable for
signal processing and which we use as target architectures.
Another model is the intermediate representation in the form
of a timed configuration graph, describing the mapping of a
dataflow graph onto a machine model. Moreover, this IR can be
used for performance evaluation using abstract interpretation.
We demonstrate how the models can be configured and applied
in order to map applications on the Raw processor. Furthermore,
we report promising results on the accuracy of performance
predictions produced by our tool. It is also demonstrated that
the tool can be used to rank different mappings with respect to
optimisation on throughput and end-to-end latency.

I. INTRODUCTION

For efficient handling of the programming complexity of
manycore processors, domain specific development tools are
needed. One concrete example is the signal processing re-
quired in radio base stations (RBS), which is naturally highly
parallel and described by computations on streams of data [1].
Many user channels have to be processed concurrently, each
including fast and adaptive coding and decoding of digital
signals. Hard real-time constraints imply that parallel hard-
ware, including processors and accelerators is a prerequisite
for coping with these tasks in a satisfactory manner.

One candidate technology for building flexible high-
performance processing platforms is manycores. However,
there are many issues regarding development of complex
signal processing software for manycore hardware. One such is
the need for tools that reduce the programming complexity and
abstract hardware details of a particular manycore processor.
We believe that, if industry is to adopt commercial-off-the-
shelf (COTS) manycore technology, the application software,
the tools and the programming models need to a high degree
be portable.

Research has produced specialised compiler techniques for
programming languages based on streaming models of com-
putation, achieving good speedup and high throughput for
parallel benchmarks [2]. However, even though a compiler can
generate optimised code, the programmer is typically left with

very little control of how the source program is transformed
and mapped on the cores. This means that, if the code output
does not meet the non- functional requirements of the system,
the only choice is to try to restructure the source program. We
argue that in order to increase performance gain experienced
application programmers must be able to control the parallel
mapping strategy.

We are developing an iterative code mapping tool that
allows the programmer to tune a mapping by:

• analysing the result of a parallel mapping using inter-
preted performance feedback

• giving timing, clustering and core allocation constraints
as input to the tool

Figure 1 outlines the modular architecture of our tool.
The tool is designed for using well defined dataflow models
of computation. One special case of dataflow, synchronous
dataflow (SDF), is very suitable for describing signal process-
ing flows [3]. It is also a good source for code generation to
parallel hardware, because it has a natural form of parallelism
that is a good match to manycores. The programmer provides
a manycore machine specification (using our machine model)
and the program (using SDF) as input to the tool. During
the model analysis stage, the tool will analyse the processing
requirements of the SDF model. As the second stage, we
compute a static dataflow schedule for the SDF graph (given
that the SDF model is consistent). The scheduled graph
is then passed through a model transformation. During the
model transformation, the tool generates a timed intermediate
representation, which represents an abstract mapping of the
application on a specific target processor. We call our inter-
mediate representation a timed configuration graph.

In this paper we present our achievements on the models
and the timed intermediate representation used by the tool to
compute performance feedback to the user. The interpreted
performance feedback enables a programmer to, early in the
development process, explore the run time performance of the
software and to find successively better mappings. We believe
that this iterative, machine assisted workflow, is advantageous
in order to keep the application portable while being able to
make trade-offs concerning throughput, latency and compli-
ance with real-time constraint on different platforms. More

Model Analysis

Dataflow
Scheduling

Model
Transformation

Abstract
Interpretation

Code
Generation

User
feedback

Machine
specification SDF

Manycore
configuration

(Timed IR)

Fig. 1. Outline of the manycore code mapping tool.

specifically, the contributions of this paper are as follows:
• A parallel machine model usable for modelling array-

structured, tightly coupled manycore processors. The
model is presented in Section III, and in Section V we
demonstrate the configuration of it for modelling the Raw
processor[4].

• An intermediate representation (IR), used to describe a
mapping of an application on a particular manycore in
the form of a timed configuration graph. The use of this
IR is twofold: We can perform an abstract interpretation
that gives us feedback of performance during execution
of the system. Also, we can use it to generate target code.
We present the IR in Section IV.

• We make an evaluation of the accuracy and the usefulness
of our tool in Section VI. It is shown that our tool is able
to correctly rank different mappings of a graph by highest
throughput or shortest end-to-end latency.

We conclude the paper with a discussion of the results of the
evaluation and we point to improvements in order to increase
the accuracy of some of the predictions.

II. RELATED WORK

The problem of mapping task graphs in the form of acyclic
precedence graphs (APG) to a parallel processor has been a
widely addressed problem. Heuristic solutions are required
since this is for a long time known to be an NP complete
problem [5]. Sarkar introduced the two step mapping method,
where clustering is performed in a first step independently
from the second step of scheduling and processor allocation,
which can be applied at compile time [6]. A number of leading
algorithms, for both single step and two step clustering and
merging, with objectives of transforming and mapping task
graphs for multiprocessor systems are reviewed in [7].

The dynamic level scheduling algorithm proposed by Sih
and Lee is an heuristic taking inter-processor communication
overhead into account during clustering. Similar to our work,
this scheduling algorithm can be used to produce feedback
to the programmer for iterative refining of the task graph
and the architecture [8]. However, it has been demonstrated

by Kianzad and Bhattacharyya that two step methods tend to
produce more qualitative schedules than single step methods
[7]. Unfortunately, expanding an SDF graph to an acyclic
precedence graph – which are the assumed representation for
many scheduling and mapping algorithms – can lead to an
explosion of nodes. This problem can partly be reduced using
clustering techniques before the SDF graph is transformed to
an APG [9]. However, we are interested in techniques for
analysis and mapping of SDF graphs without conversion to
an APG

The StreamIt language implements a restricted set of SDF.
The StreamIt compiler implements a two phase mapping
(dataflow scheduling and clustering, followed by core al-
location) using direct representation of SDF graphs [2][4].
However, the StreamIt compiler uses a static and location inde-
pendent cost model for clustering and core allocation. Further,
neither the language nor the compiler provides any means to
express non-functional constraints or other application specific
optimisation criteria to tune the parallel mapping and code
generation. Programs have to be restructured in attempts to
improve a mapping.

Throughput is one important non-functional requirement in
the real-time applications we are addressing. Ghamarian et al.
provide methods for throughput using state space analysis on
direct representation of multi-rate SDF graphs [10]. Further,
Stuijk et al. have developed a multiprocessor resource alloca-
tion strategy for throughput constrained SDF graphs [11]. We
are addressing techniques that allow combinations of timing
constraints and show how to use them to direct the mapping
process.

Bambha and Battacharyya provide a good review of dif-
ferent intermediate representations for different objectives on
optimisation and synthesis for self-timed execution of SDF
programs to multiprocessor DSP systems [12]. They assume
homogenous representation of SDF graphs, which exposes a
higher degree of task parallelism based on the rate signatures.
Our work is similar, but we are mainly interested intermediate
representations on multi-rate SDF and in minimising transfor-
mation between different representations during the mapping
process.

III. MODEL SET

In this section we present the model set for constructing
timed configuration graphs. First we discuss the application
model, which describes the application processing require-
ments, and then the machine model, which is used to describe
computational resources and performance of manycore targets.

A. Application Model

We model an application using multi-rate SDF. An SDF
graph constitutes a network of actors – atomic or composite
of variable granularity – which compute on data distributed via
synchronous unidirectional channels. Each channel input and
output of an actor has an a priori specified token consumption
and production rate. By definition, memory and computations
in an SDF graph are distributed, and actors fire (compute)

in parallel when there are enough tokens available on the
input channels. An SDF graph is computable if there exists at
least one periodical repetition schedule. A periodical repetition
schedule specifies in which order and how many times each
actor fires. If a repetition schedule exists, buffer boundedness
and deadlock free execution is guaranteed. One significant
advantage with SDF is that the execution order can be de-
termined at compile-time. This enables generation of compact
code and elimination of run-time scheduling overhead [13].
The properties of SDF and the formal theory for scheduling
of SFD graphs are in detail described in [3].

The Ptolemy modelling framework provides an excellent
basis for implementing SDF analysis and code generation
tools [14]. Besides serving as input to a code generator, the
application model is an executable specification. However, for
our work it is not the correctness or the functional properties of
the application that is in focus. We are interested in techniques
for analysing the non-functional properties of the system. For
this we rely on measures like worst case execution time,
communication and memory requirements. We assume that
these data have been analysed and that each actor is associated
with a tuple

< rp, rm, Rs, Rr >

where
• rp is the worst case execution time, in number of opera-

tions.
• rm is the requirement on memory allocation, in words.
• Rs = [rs1 , rs2 , ..., rsn

] is a sequence where rsi
is the

number of words produced on channel i each firing.
• Rr = [rr1 , rr2 , ..., rrm

] is a sequence where rrj
is the

number of words consumed on channel j each firing.

B. Machine Model

Scheduling and core allocation algorithms need to take
inter processor (core) communication into account to provide
realistic cost measures. These costs in general comprise a
static cost for sending and receiving and a dynamic cost
determined by the resource location and/or the amount of
data to be communicated. However, for reasonably near clock-
cycle accurate modelling of dynamic network behaviour it is
necessary to use a fine grained cost model for communication.
We discuss this further in conjunction with our experimental
results in Section VI.

One well-studied and reasonably realistic model for dis-
tributed memory multiprocessors is LogP [15]. During the
past, much work has been done to refine this model, for exam-
ple taking into account hardware support for long messaging
[16], and capturing network contention [17]. A more recent
parallel machine model targeting fine-grained and large scale
multicores is developed as a part of the SimpleFit framework
[18]. SimpleFit considers variable core granularities and re-
quirements on on-chip and off-chip communication. However,
it was derived with the purpose of exploring optimal grain
size and balance between memory, processing, communication

and global I/O, given a VLSI budget and a set of computation
problems. Since it is not intended for modelling the dynamic
behaviour of a program, it does not include a fine-granular
model of the communication. Taylor et al. propose a taxonomy
(AsTrO) for comparison of scalar operand networks [19]. This
taxonomy includes a five parameter tuple for comparing and
evaluating performance sensitivity of on-chip scalar operand
networks.

We propose a manycore machine model based on SimpleFit
and the AsTrO five parameter tuple. This model allows a fairly
fine-grained modelling of performance, including the overhead
of operations associated with communication and off-chip
resources. The machine model comprises a set of parameters
describing the computational resources and a set of abstract
performance functions, which describe the performance of
computations, communication and memory transactions.

We assume that cores are tightly coupled via a mesh
network. Further that each core has individual instruction se-
quencing capability and that transactions between core private
and shared memory is software managed. The resources of
such an abstract manycore architecture are described using two
tuples, M and F . M consists of a set of parameters describing
the resources:

M =< (x, y), p, bg, gw, gr, o, so, sl, c, hl, rl, ro >

where
• (x, y) is the number of rows and columns of cores.
• p is the processing power (instruction throughput) of each

core, in operations per clock cycle.
• bg is global memory bandwidth, in words per clock cycle
• gw is the penalty for global memory write, in words per

clock cycle
• gr is the penalty for global memory read, in words per

clock cycle
• o is software overhead for initiation of a network transfer,

in clock cycles
• so is core send occupancy, in clock cycles, when sending

a message.
• sl is the latency for a sent message to reach the network,

in clock cycles
• c is the bandwidth of each interconnection link, in words

per clock cycle.
• hl is network hop latency, in clock cycles.
• rl is the latency from network to receiving core, in clock

cycles.
• ro is core receive occupancy, in clock cycles, when

receiving a message
F is a set of abstract common functions describing the
performance of computations, global memory transactions and
local communication as functions of M :

F (M) =< tp, ts, tr, tc, tgw, tgr >

where

• tp is a function evaluating the time to compute a sequence
of instructions

• ts is a function evaluating the core occupancy when
sending a data stream

• tr is a function evaluating the core occupancy when
receiving a data stream

• tc is a function evaluating network propagation delay for
a data stream

• tgw is a function evaluating the time for writing a stream
to global memory

• tgr is a function evaluating the time for reading a stream
from global memory

A specific manycore processor is modelled by giving values
to the parameters of M and by defining the functions F (M).

IV. MANYCORE INTERMEDIATE REPRESENTATION

In this section we describe the manycore intermediate
representation (IR). We call the IR a timed configuration graph
because the usage of the IR is twofold:

• Firstly, the IR is a graph representing an SDF pro-
gram that is transformed and partitioned for a specific
manycore target. We can use the IR as input to a code
generator, in order to configure each core as well as the
interconnection network and plan global memory usage
of a specific manycore target.

• Secondly, by introducing the notion of time in the graph,
we can use the same IR as input to an abstract interpreter,
in order to predict performance and evaluate the dynamic
behaviour of the application when executed on a specific
manycore target. The output of the evaluator can be used
either directly by the programmer or by an auto-tuner for
suggesting a better mapping.

A. Relations Between Models and Configuration Graphs

A timed configuration graph GA
M (V,E) describes a single

connected SDF graph A, transformed and mapped on the
abstract machine described by the pair of tuples (M,F). The
set of vertices is a union V = P∪B|P∩B = ∅, where P is the
set of cores and B is the set of off-chip shared memories. We
use vp to denote a vertex of core type and vb to denote a vertex
of memory type. Edges e ∈ E are dataflow channels mapped
onto the interconnection network of (M, F). To obtain a GA

M ,
the vertices of A are clustered with respect to the integrity
of the dataflow. Each cluster is assigned to a core in M . The
edges of the SDF that end up in one cluster are implemented
using local memory in the core, so they do not appear as edges
in GA

M . The edges of the SDF that reach between clusters can
be implemented in two different ways:

1) as network connection between the two cores. Such
connection is represented by an edge (vpi , vpj) in GA

M

2) as a buffer in global memory. In this case, a vertex vbk

is introduced. Further the edge (vpi
, vpj

) is replaced by
a pair of edges (vpi

, vbk
) and (vbk

, vpj
) between the two

cores in GA
M .

When GA
M has been constructed, each vp, vb ∈ V has been

assigned costs for computation and communication, calculated

using the machine description (M, F) described in Section
III-B. These costs reflect the relative costs for each specific
operation when computing A on (M,F). We will now discuss
how we use A and M to construct and assign costs to the
vertices, the edges and the computation costs of GA

M .
1) Vertices.: Memory vertices, B, allow us to represent a

set of buffers mapped in shared memory. A memory vertex can
be specified by the programmer, for example to store initial
data. Memory vertices can also be automatically generated.

For core vertices, P , we abstract the firing of an actor by
means of a sequence S of abstract receive, compute and send
operations:

S = tr1 , tr2 . . . trn
, tp, ts1 , ts2 , . . . , tsm

The cost for a receive operation depends on whether the source
is another core or a shared memory. Let the source vertex of
channel e be source(e). Then for each incoming edge of a
vertex p we add a receive operation with a cost bound to:

• tr ∈ F (M), if source(e) is of type vp

• tgr ∈ F (M), if source(e) is of type vb

The cost for a compute operation is calculated using the
performance function tp, which represents the time required
to execute the computations of an actor when it fires.

Finally, for each outgoing edge of a vertex p we add a send
operation. Let the sink vertex of channel e be sink(e). The
send operation has a cost bound to:

• ts ∈ F (M), if sink(e) is of type vp

• tgw ∈ F (M), if sink(e) is of type vb

Read and write requests on memory vertices are served by
the first come first served policy. For a vertex vb we assign
read and write costs calculated using gr ∈ M and gw ∈ M ,
to account for memory read- and write latencies when serving
an incoming request.

When constructing GA
M , multiple channels sharing the same

source and destination can be orderly merged and represented
by a single edge, treating them as a single stream of data.

2) Edges.: The weight w of an edge e(vi, vj) corresponds
to the link propagation. The value of the weight w corresponds
to the value of the function tc ∈ F (M). Further, edges in SDF
can be specified with a sample delay. Given an edge e(vi, vj),
a unit delay is defined to mean that the nth sample consumed
by vj corresponds to the (n−1)th sample produced by vertex
vi [3]. An edge delay is simply represented by a buffer offset
value, needing no further treatment when constructing GA

M .
Figure 2 shows an example of a simple SDF graph, A, after

it has been transformed to one possible GA
M . One static firing

schedule for A in this example is 3(2abcd)e. The schedule
should be interpreted as: actor a fires 6 times, actors b, c and
d fire 3 times, and actor e 1 time. The firing of A is repeated
indefinitely by this schedule. Thus, no runtime scheduling
supervision is required. The feedback channel from actor c
to actor b is buffered in core local memory. The edge from
actor a to actor d is a buffer in shared (off-chip) memory and
the others are mapped as point-to-point connections on the
network. The integer values represent the send and receive

a

b c

e

2

d
20

4

40

1 1

20 20

3
9

15
5

6a 3b 3c

1e3d

12 12

120
120

9 9

15
15

120
120

Fig. 2. The graph to the right is one possible graph GA
M for the application

graph A to the left.

rates of the channels (rs and rr), before and after A has been
clustered and transformed to GA

M , respectively. Note that these
values in GA

M are the values in A multiplied by the number
of times an actor fires, as given by the firing schedule.

B. Interpretation of Timed Configuration Graphs

In order to implement and interpret timed configurations
graphs, we need a computational model and a notion of
time [20]. We have used dataflow process network (PN) to
implement interpretable timed configuration graphs [21]. A
process network very well mimics the behaviour of the types
of parallel hardware we are studying. The PN domain in
Ptolemy is a super set of the SDF domain. The main difference
in PN, compared to SDF, is that actors are processes which
fire asynchronously. If a process tries to read from an empty
channel, it will block until there is new data available. The
PN domain implemented in Ptolemy is a special case of Kahn
process networks [22]. But, unlike in a Kahn process network,
PN channels have bounded buffer capacity, which implies that
a process also temporarily blocks when attempting to write to
a buffer that is full. This property enables easy modelling of
link occupancy on the network.

Each of the core and memory vertices of GA
M is assigned

to its own process. Each of the processes has a local clock,
t, which iteratively maps the absolute start and stop time, as
well as periods of blocking, to each operation in the sequence
S.

Send and receive are blocking operations. A read operation
blocks until data is available on the edge and a write operation
blocks until the edge is free for writing. Currently, our machine
model does not allow modelling of link concurrency. All
cores experience the network as a collision free resource.
To minimise the risk of providing optimistic performance
predictions, we have taken a rather pessimistic approach; only
one message is allowed to be sent over an edge during a
segment of time, independently of the length of the messages
and the network’s buffer capacity.

There is no notion of global time in PN. We manage
clock synchronisation between the communicating processes
by means of communicating discrete events. Send and re-
ceive operations generate a discrete event bound to current
time. It should be noted that each edge in A needs to be
represented by a pair of oppositely directed edges in GA

M to
manage synchronisation. Further, edges in Ptolemy have no

ability to perform computations. For each edge, we generate
a delay actor, which adds a delay corresponding to the link
propagation time (w ∈ e ∈ E).

V. MODELLING THE RAW PROCESSOR

In this section we demonstrate how we configure the
machine model in order to model the Raw processor for
performance evaluation [4]. Raw is a tiled, moderately parallel
MIMD architecture with 16 (4× 4) programmable tiles. Each
tile has a MIPS core and is equipped with 32 KB of data and
96 KB instruction caches. The tiles are tightly interconnected
via two different types of communication networks: two
statically and two dynamically routed.

A. Parameter Settings

We assume a Raw set-up with four off-chip, non-coherent
shared memories, and that software managed cache mode is
used. Furthermore, we concentrate on modelling the usage of
one of the dynamic networks (which are dimension-ordered,
wormhole-routed, message-passing types of networks). The
parameters of M for Raw with this configuration are set as
follows:

M =< (4, 4), 1, 1, 1, 6, 2, 5, 1, 1, 1, 1, 3 >

In our model, we assume a core instruction throughput of p
operations per clock cycle. We set p = 1. The four shared off-
chip DRAMs are connected to four separate I/O ports located
on the east-side of the chip. Thus, the DRAMs can be accessed
in parallel, each having a bandwidth of bg = 1 words per clock
cycle. The latency penalty for a DRAM write is gw = 1 cycle
and for a read operation gr = 6 cycles.

The overhead for initiating communication includes sending
a header and possibly an address (when addressing any of the
off-chip memories). We set the overhead o = 2. The four on-
chip networks on Raw are mapped to the core’s register files,
meaning that after a header has been sent, the network can
be treated as destination or source operand of an instruction.
Ideally, this means that the receive and send occupancy is zero.
In practice, when multiple input and output dataflow channels
are merged and physically mapped on a single network link,
data needs to be buffered locally. We have measured and
estimated an average send and receive occupancy to be so = 5
and ro = 3 respectively. Note that we then also include the
overhead for reading and writing via buffers in local memory.
The network hop-latency on Raw is hl = 1 cycles per router
hop and the link bandwidth is c = 1. Furthermore, the send
and receive latency is one clock cycle when injecting and
extracting data to and from the network: sl = 1 and rl = 1.

B. Performance Functions

The performance functions have been formulated by study-
ing the specification of the Raw processor [23].

a) Compute: The time required to process the fire code
of an actor on a core is defined as

tp(rp, p) =
⌈

rp

p

⌉
which is a function of the requested number of operations rp

and core processing power p. To rp we count all instructions
except those related to network send and receive operations.

b) Send: The time required for a core to issue a network
send operation is defined as

ts(Rs, o, so) =
⌈

Rs

framesize

⌉
× o + Rs × so

Send is a function of the requested amount of words to be
sent, Rs, the software overhead o ∈ M when initiating a
network transfer, and a possible send occupancy so ∈M . The
framesize is a Raw specific parameter. The dynamic networks
allow message frames of length within the interval [0, 31]
words. For global memory read and write operations, we use
the Raw cache line protocol with framesize = 8 words
per message. Thus, the first term of ts captures the software
overhead for the number of messages required to send the
complete stream of data. For connected actors that are mapped
on the same core, we can choose to map channels in local
memory (if the local memory capacity is enough). In that case
we set ts to zero.

c) Receive: The time required for a core to issue a
network receive operation is defined as

tr(Rr, o, ro) =
⌈

Rr

framesize

⌉
× o + Rr × ro

d) Network Propagation: Providing means for modeling
communication accurately for an abstract parallel target is
difficult: high accuracy requires the use of a low machine
abstraction level. We chose the approach of modeling com-
munication as collision free.

In the network propagation time, we consider a possible
network injection and extraction latency at the source and
destination in addition to the link propagation time. The
network propagation time is defined as

tc(Rs, xs, ys, xd, yd, sl, hl, rl) =
sl + d(xs, ys, xd, yd)× hl + nturns(xs, ys, xd, yd) + rl

Network injection and extraction latency is captured by sl

and rl respectively. Further, the propagation time depends
on the network hop latency hl and the number of network
hops d(xs, ys, xd, yd), which is a distance function of the
source and destination coordinates. Routing turns add an extra
cost of one clock cycle. This is captured by the value of
nturns(xs, ys, xd, yd) which, similar to d, is a function of the
source and destination coordinates.

e) Streamed Global Memory Read: Reading from global
memory on the Raw machine requires first one send operation
(the core overhead which is captured by ts), in order to con-
figure the memory controller and set the address of memory
to be read. The second step is to issue a receive operation to
receive the memory contents on that address. The propagation
time when streaming data from global memory to the receiving
core is defined as

tgr(rl, xs, ys, xd, yd, hl) =
rl + d(xs, ys, xd, yd)× hl + nturns(xs, ys, xd, yd)

Note that memory read latency penalty is not included in
this expression. This is accounted for in the memory model
included in the IR (GA

M).
f) Streamed Global Memory Write: Like the memory

read operation, writing to global memory requires two send
operations: one for configuring the memory controller (set
write mode and address) and one for sending the data to be
stored. The time required for streaming data from the sending
core to global memory is evaluated by

tgw(sl, xs, ys, xd, yd, hl) =
sl + d(xs, ys, xd, yd)× hl + nturns(xs, ys, xd, yd)

Like in stream memory read, the memory write penalty is
accounted for in the memory model.

VI. EXPERIMENTAL EVALUATION

In this section we present an evaluation of our tool with
two purposes:

• to evaluate the accuracy of the tool’s performance pre-
dictions with respect to actual performance.

• to investigate whether the predictions can be used to rank
different mappings of an application with respect latency
and throughput.

We have selected two applications with different relations
between communication and computation demands to evaluate
the accuracy and sources of possible inaccuracy. For the Raw
implementations, we have used BEETLE, which is a cycle-
accurate Raw simulator.

A. Matrix Multiplication

Our first case study is matrix multiplication, which requires
fairly large amounts of data to be communicated over the
network. Furthermore, it provides an excellent case for testing
the tool on large amounts of communication between the cores
and global memory. The input matrices are partitioned into
overlapping sub-matrices and the computations are distributed
equally on four cores. Thus there is no exchange of data
between the cores. Both the input matrices and the result
are stored in off-chip memory. Figure 3 shows three different
mappings of a 32 × 32 matrix multiplication used in the
experiments. Note that we kept the algorithm the same in all
three cases.

1

3

4

2

1

3

4

2

1

3

4

2

Matrix1 Matrix2 Matrix3

Fig. 3. Three different mappings of the 32× 32 elements matrix multipli-
cation using four cores.

In Matrix1, all cores read their assigned input data from the
upper memory bank and store the result in the lower memory
bank. In Matrix2, we assume that the input data has been
arranged and distributed over four separate banks. Thus, in
this case, each core has collision-free access to the network
and off-chip memory. Finally, in Matrix3, input and output
data are all stored in the same memory bank.

We expect the performance prediction for Matrix2 to be
more accurate than the predictions for Matrix1 and Matrix3
since our model assumes a collision-free network. Further-
more, by comparing the predictions for Matrix1 with Matrix2
and Matrix3, we expect to get an indication of how sensitive
the prediction accuracy is to contention effects. The main
difference between Matrix1 and Matrix3 is that, in Matrix3,
all communication to the off-chip memory controller is using
the same network links. In short, we expect there to be
fewer collisions in Matrix1 compared with Matrix3, but the
performance should still be relatively close to the performance
of Matrix3. This further provides an interesting test case to
evaluate whether the tools predictions can be used to determine
which mapping performs better.

B. Parallel Merge Sort

Our second case study is merge sort. Compared to matrix
multiplication, the merge sort algorithm has very low require-
ments on computation and communication. Figure 4 shows
two different mappings of the merge sort algorithm using 7
and 5 cores, respectively. The computation and communication
load, for each vertex in the tree, increases with the level as the
tree narrows down. Each vertex in the tree consumes a sorted
sub-list from preceding nodes via two channels and produces
a merged sorted output. The input data is distributed over the
leaf vertices, and the result, a sorted list, is stored locally in the
root vertex. In the first of the mappings (called Merge) each of
the vertices is mapped to one core. This mapping is illustrated
to the left in Figure 4. In the second mapping (called Merge
fused, shown to the right in Figure 4), the four leaf vertices
have been pair-wise clustered in order to obtain an improved
load and communication balance compared to Merge.

C. Accuracy of Predicted Core Communication Costs

In the first experiment, we have studied the accuracy of
the predicted performance on send and receive operations.

1 2 3 4

6

J J
1 2 3 4

65 7

Merge Merge fused

Fig. 4. The graph to the left is a fully parallel mapping of the merge sort
(denoted Merge) and in the graph to the right, leaf nodes have been pair-wise
clustered and mapped to the same core. The smaller node denoted J, in core
1 and 4, symbolise a join operation performed on the output channels.

For the applications used in the experiments, the programs
generated for each core consist of a receive phase, followed
by a compute, and then a send phase. We use Rawmm to
denote predicted performance (using our tool) and Raw to
denote the performance measured on Raw. All predictions
and corresponding measurements are made during steady state
execution of the dataflow graphs.

Table I shows the predicted receive times, for each used
core, compared to the measured receive times for Matrix1,
Matrix2 and Matrix3 respectively. The receive time includes
possible read blocked time. For each of the three test cases
it can be seen that the predicted receive times are slightly
pessimistic (which is preferred compared to optimistic). The
differences between the predicted and the measured receive
times vary between +2, 3% and +12, 6%.

In Matrix1, cores 1 and 2 have shorter distance than 3 and
4 to the memory holding the input, which leads to lower
read blocking time in the Raw measurements. Because the
timed configuration graph views the network as a collision
free resource, the receive performance is evaluated more fairly
for all cores in Rawmm. Similarly, in Matrix3, cores 3 and 4
have shorter distance to off-chip memory than cores 1 and
2. However, in Matrix3 the unfairness in distance to memory
has less importance. Since both read and write request have
to compete for the same physical links on the network, the
read and write blocking becomes more fairly distributed on
the cores.

In the Matrix2 mapping there are no collisions. The main
reason for the pessimistic predictions (9,5%) is that we have
used averaged measures to configure the send and receive
occupancy for Raw. We can probably to some extent tune these
parameters to get slightly better accuracy. However, to get a
fully accurate prediction we would need to model execution
at instruction-level, which would be very costly in terms of
modelling performance.

Table II shows the predicted send times compared to the
measured send times for Matrix1, Matrix2 and Matrix3. As
can be seen, for all three mappings the predicted send time
using Rawmm is accurate compared to the measured send time
on Raw. The unfairness in distance from the off-chip input
memory forces a relative skew between cores during execution
(as later explained in section VI-D). Moreover, the send phase
comprises much fewer messages to be sent, compared to the
receive phase: there are simply no (or very few) collisions
during send.

TABLE I
MATRIX STEADY STATE RECEIVE TIME (CLOCK CYCLES)

Application Core ID Rawmm Raw diff.
Matrix1 1 1790 1589 +12,6%

2 1790 1589 +12,6%
3 1790 1750 +2,3%
4 1790 1750 +2,3%

Matrix2 1 1600 1461 +9,5%
2 1600 1461 +9,5%
3 1600 1461 +9,5%
4 1600 1461 +9,5%

Matrix3 1 1828 1701 +7,5%
2 1814 1626 +11,6%
3 1800 1716 +4,9%
4 1786 1716 +4,1%

TABLE II
MATRIX STEADY STATE SEND TIME (CLOCK CYCLES)

Application Core ID Rawmm Raw diff.
Matrix1 1 408 408 0%

2 408 408 0%
3 408 408 0%
4 408 408 0%

Matrix2 1 408 408 0%
2 408 408 0%
3 408 408 0%
4 408 408 0%

Matrix3 1 408 408 0%
2 408 408 0%
3 408 408 0%
4 408 408 0%

We will now discuss our corresponding experiment on send
and receive times for the merge sort application. In this
experiment only core-to-core communication is utilised and
the communication consists of very small messages (1 to 4
words). Furthermore, we have deliberately designed one of the
mappings (Merge) to force unbalanced core communication
and computation loads. This experiment is expected to give an
indication on how accurately Rawmm models short messaging
and unbalanced communication. The predicted send times
compared to the measured ones can be seen in Table III. For
Merge, the predicted times are exact or very accurate. Cores
1,2,4, and 7 compute the leaf vertices, which also generate the
input in the parallel merge tree. Thus, no receive operations are
issued by these cores. However, for Merge fused, we see that
Rawmm has evaluated the receive time 75% higher, compared
to the measurements on Raw for cores 2 and 3. The reason
is that the computation times for cores 2 and 3, after the
clustering, are now shorter than for the preceding leaf vertices.
Since Rawmm models communication pessimistically – in the
sense that we only allow one message at a time on a network
link – communication is tighter synchronised in our model.
This can introduce blocking times in communication between
cores with unbalanced workloads, which are not experienced
on Raw.

In Table IV we compare send times for the two different
mappings of the merge sort algorithm. As can be seen in the
table, the predicted send times are fairly close to the measured

TABLE III
MERGE STEADY STATE RECEIVE TIME (CLOCK CYCLES)

Application Core ID Rawmm Raw diff.
Merge 1 0 0 +0%

2 16 16 +0%
3 16 16 +0%
4 0 0 +0%
5 0 0 +0%
6 29 28 +3,6%
7 0 0 +0%

Merge fused 1 0 1461 +9,5%
2 42 24 +75%
3 42 24 +75%
4 0 0 +0%
5 0 0 +0%
6 29 28 +3,6%
7 0 0 +0%

times (the difference is 9,1% or less).

TABLE IV
MERGE STEADY STATE SEND TIME (CLOCK CYCLES)

Application Core ID Rawmm Raw diff.
Merge 1 85 79 +7,6%

2 22 22 +0%
3 22 22 +0%
4 85 79 +7,6%
5 85 79 +7,6%
6 0 0 +0%
7 85 79 +7,6%

Merge fused 1 24 22 +9,1%
2 22 22 +0%
3 22 22 +0%
4 24 22 +9,1%
5 0 0 +0%
6 0 0 +0%
7 0 0 +0%

D. Latency and Throughput Measurements

In the second part of the experiments, we have used the
same mappings to compare predicted and measured end-to-
end-latency and throughput. We also evaluate whether the
predictions, despite potential inaccuracy, can be used to rank
the mappings correctly with respect to shortest latency and
highest throughput.

The mappings are self-timed, meaning that synchronisation
is handled at run-time [24]. Initially, a self-timed graph exe-
cutes a non-steady state and later, after a number of iterations,
converges to a steady-state schedule.

Figure 5 illustrates the dynamic behaviour for the self-
timed mapping of the Merge application. Cores computing the
upstream actors in the dataflow graph with lower workload
finish faster and can proceed with the next iteration of the
schedule, as long as the network buffer is large enough to
store the produced data. As shown in the figure, core 1 has
started its fourth iteration when core 6 begins computing its
first iteration. When network buffers are full, a steady state
execution is naturally forced.

Figure 6 shows the predicted latencies (in clock cycles), for
Merge and Merge fused, compared to the measured latencies

1

1

1

1

2

3

4

5

6

7

2 3 4 5

2 3 4 5

2 3 4 5

t

Co
re

20 21 22

20 21 22

20 21 22

Fig. 5. Skewing experienced in the unbalanced Merge algorithm. The
numbers represent the firing count of each actor, and the distance in time
between the firings is dependent on the network buffer capacity.

Fig. 6. Comparison of predicted (Rawmm) and measured (Raw) end-to-end
latency for Merge and Merge fused.

as a function of the current iteration. The figure shows at
which iteration each of the mappings reaches a steady state of
execution, i.e. when the latency curve levels out. We see that,
for Merge, the measured latency is underestimated by a factor
of 2. This is explained by the fact that the machine model
is currently not able to model buffer capacity of the on-chip
network. Thus, the difference in iteration count between the
first upstream actor and the last actor in the graph is larger
on Raw than in the modelled execution of Raw. To tighten
the latency predictions for graphs with unbalanced communi-
cation, we need to account for network buffer capacity in the
machine model.

For Merge fused, we see that the latency has rather been
overestimated, but is closer to the measured latency. The
reason is that both the workload and the communication in
Merge fused is better balanced than in Merge (after clustering
core 1 with 5 and core 3 with 7), which forces Merge fused
to reach a steady state after fewer iterations.

If we rank the predicted latencies of Merge and Merge
fused, even if the predictions have varying accuracy, we still
see that an optimisation decision based on the predictions
would (for this case) correctly identify Merge fused as the
better mapping.

Figure 7 shows the predicted end-to-end latencies for

Fig. 7. Comparison of the modelling accuracy of the computation latency
of three different mappings of the parallel matrix multiplication.

Matrix1, Matrix2 and Matrix3, compared to the measured
latencies on Raw. We see that the different mappings of
the matrix multiplication converge to steady state at different
numbers of iterations. Unlike in the merge sort experiment, the
computation tasks distributed on the cores is naturally load
balanced. The reason that the different implementations of
the matrix multiplication reach steady state at different points
in time is that the cores used in the different mappings are
affected by different communication delays due to network
contention. Contention effects is a large contributing factor
causing an underestimate of the latencies for Matrix1 and
Matrix3. This can be verified by observing that the plot for
Matrix2 on Rawmm and Raw (which is a contention free
mapping), is fairly accurate compared to the predictions for
Matrix1 and Matrix3. However, if we rank the predicted steady
state latencies for all mappings, we see that an optimisation
decision based on latency minimisation would in this case
correctly suggest Matrix3 better than Matrix 1 and Matrix2
as the best alternative of the three.

Table V shows the predicted and the measured throughputs
for Merge (with 4,4% difference) and Merge fused (with 10%
difference). The predictions are fairly close to the measure-
ments on Raw for both Merge and Merge fused. We also
see that both the predicted and the measured throughputs
show that Merge has a higher throughput than Merge fused.
When optimising for throughput, our predictions correctly rank
Merge better than Merge fused.

Finally, Table VI shows the corresponding comparisons for
Matrix1, Matrix2 and Matrix3. Note that, unlike in all the
other experiments, our model has predicted slightly optimistic
throughputs. However, if we rank both the predicted through-
puts and the measured throughputs, we see that the predictions
will be ranked in the same order as for the measured ones.
Thus, if using the predictions for throughput optimisation, our
tool finds the best cases for this example as well.

VII. CONCLUSION

In this paper we have presented our achievements on
building an iterative manycore code mapping tool. In order

TABLE V
MERGE STEADY STATE PERIODICITY (CLOCK CYCLES)

Application Rawmm Raw diff
Merge 119 104 +4,4%
Merge fused 132 120 +10%

TABLE VI
MATRIX STEADY STATE PERIODICITY IN (CLOCK CYCLES)

Application Rawmm Raw diff
Matrix1 19249 19434 -0,9%
Matrix2 19059 19143 -0,4%
Matrix3 19248 19401 -0,8%

to provide estimates of performance, we have developed a
machine model which abstracts a certain category of manycore
architectures. We model the applications using synchronous
dataflow, and the performance estimates are computed using
an executable intermediate representation called timed config-
uration graph.

We have presented an evaluation in terms of the prediction
accuracy of our tool and whether the predictions can be used
to identify a better mapping. It is shown that communication
times between cores are predicted slightly pessimistic, still
fairly close to measured performance, with respect to the high
level of modelling. Our comparisons indicate that, for the small
set of mappings so far explored in the experiments, the tool
can correctly rank different mappings with respect to highest
throughput or shortest latency. However, the comparisons also
reveal that the predictions of end-to-end latency for graphs
with unbalanced communication can be quite inaccurate. This
was demonstrated to mainly depend on the high abstraction
level of on-chip communication implemented by the IR,
which currently does not capture the buffer capacity or link
concurrency of the network.

To increase the accuracy and the reliability of end-to-
end latency measurements on dataflow graphs, we plan to
investigate inclusion of network buffer capacity and modelling
link concurrency in the intermediate representation. We are
especially interested in exploring automatised tuning methods,
using feedback information from the abstract interpreter, in
order to direct and improve the mapping of application graphs.

ACKNOWLEDGEMENT

The authors would like to thank Dr. Veronica Gaspes at
Halmstad University and the anonymous reviewers whose
comments helped improving this paper. This work has been
funded by research grants from the Knowledge Foundation
under the CERES contract.

REFERENCES

[1] E. Dahlman, S. Parkvall, J. Skold, and P. Beming, 3G Evolution: HSPA
and LTE for Mobile Broadband, 2nd ed. Academic Press, 2008.

[2] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting Coarse-
Grained Task, Data, and Pipeline Parallelism in Stream Programs,” in
Proc. of Twelfth Int’l. Conf. on Architectural Support for Programming
Languages and Operating Systems, 2006, pp. 152–162.

[3] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous
Data Flow Programs for Signal Processing,” IEEE Trans. on Computers,
vol. 36, no. 1, pp. 24–35, January 1987.

[4] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agar-
wal, “The Raw Microprocessor: A Computational Fabric for Software
Circuits and General-Purpose Programs,” IEEE Micro, vol. 22, no. 2,
pp. 25–35, 2002.

[5] H. El-Rewini, H. Ali, and T. Lewis, “Task Scheduling in Multiprocessing
Systems,” IEEE Computer, vol. 28, no. 12, pp. 27–37, Dec 1995.

[6] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multipro-
cessors. Cambridge, MA, USA: MIT Press, 1989.

[7] V. Kianzad and S. Bhattacharyya, “Efficient Techniques for Clustering
and Scheduling onto Embedded Multiprocessors,” IEEE Trans. on
Parallel and Distributed Systems, vol. 17, no. 7, pp. 667–680, July 2006.

[8] G. C. Sih, “Multiprocessor Scheduling to Account for Interprocessor
Communication,” Ph.D. dissertation, EECS Department, University of
California, Berkeley, CA 94720, USA, April 1991.

[9] J. L. Pino and E. A. Lee, “Hierarchical Static Scheduling of Dataflow
Graphs onto Multiple Processors,” in Proc. of IEEE Int’l Conf. on
Acoustics, Speech, and Signal Processing, 1995, pp. 2643–2646.

[10] A. Ghamarian, M. Geilen, S. Stuijk, T. Basten, B. Theelen, M. Mousavi,
A. Moonen, and M. Bekooij, “Throughput Analysis of Synchronous
Data Flow Graphs,” Proc. of Int’l Conf. on Application of Concurrency
to System Design, pp. 25–36, 2006.

[11] S. Stuijk, T. Basten, M. C. W. Geilen, and H. Corporaal, “Multiprocessor
Resource Allocation for Throughput-Constrained Synchronous Dataflow
Graphs,” in Proc. of the 44th annual conf. on Design automation. New
York, NY, USA: ACM, 2007, pp. 777–782.

[12] N. Bambha, “Intermediate Representations for Design Automation of
Multiprocessor DSP Systems,” in Design Automation for Embedded
Systems. Kluwer Academic Publishers, 2002, pp. 307–323.

[13] S. S. Battacharyya, “Optimization Trade-offs in the Synthesis of Soft-
ware for Embedded DSP,” in Workshop on Compiler and Architecture
Support for Embedded Systems, Washington, D.C, 1999.

[14] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng,
“Heterogeneous Concurrent Modeling and Design in Java (Volume 1:
Introduction to Ptolemy II),” EECS Dept., University of California,
Berkeley, Tech. Rep. UCB/EECS-2008-28, Apr 2008.

[15] D. Culler, R. Karp, and D. Patterson, “LogP: Towards a Realistic Model
of Parallel Computation,” in in Proc. of ACM SIGPLAN Symp. on
Principles and Practices of Parallel programming, May 1993, pp. 1–
12.

[16] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. J. Scheiman,
“LogGP: Incorporating Long Messages into the LogP Model - One
Step Closer Towards a Realistic Model for Parallel Computation.” in
Proc. of the seventh annual ACM Symp. on Parallel Algorithms and
Architectures, 1995, pp. 95–105.

[17] C. A. Moritz and M. I. Frank, “LoGPC: Modeling Network Contention
in Message-Passing Programs,” IEEE Trans. on Parallel and Distributed
Systems, vol. 12, no. 4, pp. 404–415, 2001.

[18] C. A. Moritz, D. Yeung, and A. Agarwal, “SimpleFit: A Framework
for Analyzing Design Tradeoffs in Raw Architectures,” IEEE Trans. on
Parallel and Distributed Systems, vol. 12, no. 6, pp. 730–742, June 2001.

[19] M. B. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal, “Scalar
Operand Networks,” IEEE Trans. on Parallel and Distributed Systems,
vol. 16, no. 2, pp. 145–162, 2005.

[20] J. Bengtsson, “A Set of Models for Manycore Performance Evaluation
Through Abstract Interpretation of Timed Configuration Graphs,” School
of IDE, Tech. Rep. IDE0856, 2008.

[21] T. M. Parks, “Bounded Scheduling of Process Networks,” Ph.D. disser-
tation, EECS Department, University of California, Berkeley, CA 94720,
USA, 1995.

[22] G. Kahn, “The Semantics of a Simple Language for Parallel Program-
ming,” in Proc. of IFIP Congress 74, J. L. Rosenfeld, Ed. Stockholm,
Sweden: North-Holland Publishing Company, August 5-10 1974, pp.
471–475.

[23] M. B. Taylor, “The Raw Processor Specification,” CSAIL, MIT, Cam-
bridge, MA, Tech. Rep., 2003.

[24] E. Lee and S. Ha, “Scheduling Strategies for Multiprocessor Real-time
DSP,” in Proc. of IEEE Glob’l. Telecomm. Conf., 1989, and Exhibition.
Communications Technology for the 1990s and Beyond., Nov 1989, pp.
1279–1283 vol.2.

