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ABSTRACT

This thesis is devoted to adaptive hybrid finite element/finite difference
methods for an inverse scattering problem for the time-dependent acoustic wave
equation in 2D and 3D, where we seek to reconstruct an unknown sound ve-
locity ¢(x) from measured wave-reflection data.

To solve the inverse problem we use an optimal control approach, where we
seek to minimize a cost functional :

1 _
(1) Ep) =3 llp-pIP
depending on the state p, satisfying a differential equation of state
(2) Alp,0) = f,
by varying the coefficient ¢(x) representing the wave speed. Here, f is a given
function, p is observed data at a finite set of observation points and || . || is a

discrete Ly norm.

In the first of two papers, we reformulate the minimization problem as the
problem of finding a stationary point of a Lagrangian involving a forward wave
equation (the state equation), a backward wave equation (the adjoint equation),
and an equation expressing that the gradient with respect to the wave speed
¢ vanishes. We prove a posteriori error estimate underlying the adaptivity
and formulate an adaptive mesh refinement algorithm to improve the accu-
racy of the reconstruction and speed up the convergence of the quasi-Newton
method. We also present computational results for reconstruction in two and
three dimensions. In the second paper, we studied hybrid finite element /finite
difference simulation of the wave equation. The feasibility of the hybrid ap-
proach is illustrated by numerous wave equation simulations in two and three
space dimensions.
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ADAPTIVE HYBRID FEM/FDM METHODS FOR INVERSE
SCATTERING PROBLEMS

LARISA BEILINA

ABSTRACT. We apply an adaptive hybrid FEM/FDM method for an in-
verse scattering problem for the time-dependent acoustic wave equation
in 2D and 3D, where we seek to reconstruct an unknown sound velocity
¢(z) from measured wave-reflection data. Typically, this corresponds to
identifying an unknown object (scatterer) in a surrounding homogeneous
medium.

We use an optimal control approach where we seek a sound velocity
¢(z) which minimizes the difference between computed and measured out-
put data in a discrete Lz norm. We solve the optimization problem by
a quasi-Newton method where in each step we compute the gradient by
solving a forward (direct) and an backward (adjoint) wave propagation
problem.

To compute the backward and forward wave propagation problems
we use an adaptive hybrid finite element/finite difference method, where
we exploit the flexibility of mesh refinement and adaption of the finite
element method in a domain covering the object, and the efficiency of a
structured mesh finite difference method in the surrounding homogeneous
domain. The hybrid scheme can be viewed as a finite element scheme on
a partially unstructured mesh which gives a stable coupling of the two
methods.

We use an adaptive mesh refinement algorithm to improve the accu-
racy of the reconstruction and speed up the convergence of the quasi-
Newton method.

1. INTRODUCTION

This work is devoted to adaptive hybrid finite element/finite difference meth-
ods for an inverse scattering problem for the time-dependent acoustic wave
equation of the form of a parameter identification problem, where one seeks
to determine an unknown variable wave speed c¢(z) from measured wave re-
flection data. Typical applications concern nondestructive testing of materials,
shape reconstruction, ultrasound imaging, subsurface depth imaging of geolog-
ical structures and seismic prospectation.

To solve the inverse problem we use an optimal control approach, where we
seek to minimize a cost functional :

(11) Bp) = llp—5 17,
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depending on the state p, satisfying a differential equation of state

(1.2) Ap,c) =
by varying the coefficient ¢(z) representing the wave speed. Here, f is a given
function, p is observed data at a finite set of observation points and || . || is a

discrete Lo norm.

The minimization problem is reformulated as the problem of finding a sta-
tionary point of a Lagrangian involving a forward wave equation (the state
equation), a backward wave equation (the adjoint equation), and an equation
expressing that the gradient with respect to the wave speed ¢ vanishes. For
efficient implementation of the backward and forward wave propagation we use
a hybrid finite element/finite difference method, see [4]. We exploit the flexibil-
ity of mesh refinement and adaption of the finite element method in a domain
including the object, and the efficiency of a structured mesh finite difference
method in the surrounding homogeneous domain. The hybrid scheme can be
viewed as a finite element scheme on a partially unstructured mesh which gives
a stable coupling of the two methods.

The mesh adaptation is based on an a posteriori error estimate for the error
in the Lagrangian involving the residuals of the state, adjoint state equation
and the gradient with respect to c.

An outline of the work is following: in Section 2 we formulate the inverse
scattering problem for the wave equation, in Section 3 we formulate the finite
element method, in Section 4 we present a fully discrete version used in the
computations. In Section 6 we prove a posteriori error estimate underlying the
adaptivity, and in Section 9 we present computational results for reconstruc-
tions in 2 and 3 dimensions .

2. THE INVERSE SCATTERING PROBLEM

We consider the scalar wave equation modeling acoustic wave propagation
in a bounded domain Q C R%, d = 2,3, with boundary I':

10%p .
(21) ;W — Ap = f, in Q x (O,T),
(22) p(,O) = 07 %(70) = 07 in Q:
(2.3) plp = 0,onTx(0,T),

where p(zx,t) is the pressure, ¢(z) is the wave speed depending on z € , ¢ is
the time variable and T is a final time and f(z,t) is a given source function.
Our goal is to find the coefficient ¢(z) which minimizes the quantity

(2.4) / / (p — B)*6ops dadt,

where p is observed data at a finite set of observation points x5, p satisfies
(2.1) and thus depends on ¢, and dps = Y, (Zops) is a sum of delta-functions
corresponding to the observation points.

To approach this minimization problem, we introduce the Lagrangian

1 90X dp
(2.5) LA p,c) = / / Z5: 3¢ T VAVP— 1)) dadt,
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and search for a stationary point with respect to (A, p,c) satisfying for all
(A\,5,0)

(2.6) L'(\p,c)(A, p,¢) =0,

where L' is the gradient of L and we assume that A(-,7) = A(-,T) = 0 and

p(+,0) = p(-,0) = 0, together with homogeneous Dirichlet boundary conditions.
The equation (2.6) expresses that for all (A, p, ¢),

oL 19%0
@7 0=3(Ape / / S5 a’t’+v,\vp ) dadt,

(2.8) o=§—§<x,p,c)<p) - / / (b= B) B dops dodt +

T 10X dp _
‘/0 /Q (— 20t ot + V)\Vp) dzdt,

(2.9) 0= %(A,p’c)(é) :(,-23 T [ 9X(,t) Op(x,t)

The equation (2.7) is a weak form of the state equation (2.1 - 2.3), the equation
(2.8) is a weak form of the adjoint state equation

¢ dxdt, z € Q.

1 0%\ _
c_‘lﬁ_A/\ = —(p—P)oups, T€Q, 0<t < T,
(2.10) ANT) = —aAa(tT) =0,

A = 0onTx(0,7),

and (2.9) expresses stationarity with respect to c.

To solve the minimization problem we shall use a discrete form of the follow-
ing steepest descent or gradient method starting from an initial guess ¢’ and
computing a sequence ¢” in the following steps:

(1) Compute the solution p™ of the forward problem (2.1) with ¢ = ¢
(2) Compute the solution A™ of the adjoint problem (2.11).
(3) Update the velocity according to

2 T aan(x,t) Op™(x,t) dt
(en(x))3 J, ot ot ’
where the step length o™ is computed using the one-dimensional search algo-
rithm given in [20].

More precisely, we will consider a quasi-Newton method with limited storage
with the gradient method being a special case.

(2.11) "(z) = c"(z) —a”

3. FINITE ELEMENT DISCRETIZATION.

We now formulate a finite element method for (2.6) based on using continu-
ous piecewise linear functions in space and time. We discretize 2 x (0, T) in the
usual way denoting by Kj = {K} a partition of the domain 2 into elements
K (triangles in R? and tetrahedra in R® with h = h(z) being a mesh function
representing the local diameter of the elements), and we let J, = {J} be a
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partition of the time interval (0,7") into time intervals J = (¢_1, ] of uniform
length 7 =t —tg_1. In fully discrete form the resulting method corresponds to
a centered finite difference approximation for the second order time derivative
and a usual finite element approximation of the Laplacian.

To formulate the finite element method for (2.6) we introduce the finite
element spaces Vi, W} and W,f‘ defined by :

(3.1) Vh = {v€Ly(Q):ve RK)VK e K},

(3.2) WP = {pe H'(QxJ):p(-,0) =0,p|r = 0},

(3.3) W* = {AeH'(QxJ):A-T)=0,\r =0},

(34) WP = {veWP:v|gxs € Pi(K)x P (J),VK € Kp,VJ € Ji},
(3.5) Wh = {veW:v|gxs € P(K) x P\(J),VK € Ki,,VJ € J;},

where Py (K) and P;(J) are the set of linear functions on K and J, respectively.
The finite element method now reads: Find ¢, € Vi, A\ € W,f‘, pr € W,f ,
such that

(3.6) L'(An, Py cn) (N, P, €) =0 Ve € Vi, A € W, p e WP.

4. FULLY DISCRETE SCHEME

Expanding p, A and ¢ in terms of the standard continuous piecewise linear
functions ¢;(z) in space and ¥;(t) in time and substituting this into (2.7 - 2.8),
the following system of linear equations is obtained:

1 2, 1
(4.1) M(p**! = 2p" + p*7) = PFF - K (Ep" T + 2" + P,

1 2 1
(42 (N =20+ X = =288 — P2 (AR 4 2R+ 2aFH,
with initial conditions :
(4.3) p(0) =0, p(0) =0,
(4.4) A(T) =0, \T) =~ 0.
Here, M is the mass matrix in space, K is the stiffness matrix, k = 1,2,3...
denotes the time level, F*, S* are the load vectors, p is the unknown discrete
field values of p, A is the unknown discrete field values of A and 7 is the time
step.

The explicit formulas for the entries in system (4.1 - 4.2) at the element level
can be given as:

1
(4 5) Mze,] = (_2(10i7(10j)€7
(4.6) Kz'e,j = (Vi V@J)e;
(4.7) Fje,m = (f, ‘Pﬂpm)exh
(48) S;,m = (p =P, @j¢m)exJ;

where (.,.)e denotes the Ls(e) scalar product. The matrix M, is the contri-
bution from element e to the global assembled matrix in space M, K€ is the
contribution from element e to the global assembled matrix K, F® and S¢ are
the contributions from element e to the assembled source vectors F' and vector
of the right hand side of (2.11), correspondingly .
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To obtain an explicit scheme we approximate M with the lumped mass
matrix M’ the diagonal approximation obtained by taking the row sum of M,
see e.g. [13]. By multiplying (4.1) - (4.2) with (M%)~! and replacing the terms
1ph=t 4 Zpk 4 1pk+l and IA*1 4 ZA% + LA*H! by pF and ¥, respectively,
we obtain an efficient explicit formulation:

49 p = A(MY)TIFR 4 2ph — (M) T K" - pt T,
(410) A= A (ME) TSR 420k — (M) TERR - AT
The discrete version of (2.9) takes the form:
oL 2 (T [ 9\ Opn
4.11 =—(A c) = =« —— ——c¢ dzdt,Ve .
( ) 0 60( h>Ph,Ch)(C) 6’31/0 /Q BN 6tc xdt,Ve € Vi,

5. OPTIMIZATION BY QUASI-NEWTON

5.1. quasi-Newton with limited storage. To solve the discrete problem
(3.6), we use a quasi-Newton method, where we compute a sequence cfb, k=
0,1, ..., of approximations of ¢; with nodal values ¢ given by

(5.1) Cer1 = cx — ¥ HF gy,
where gj, are the nodal values of
2 T ok (x,t) Opk (x, 1)
9 k(o) — r\Ts h\T)
0

where pf and Af solve the discrete analogs of (2.1-2.3) and (2.11), the H* are
given by the usual BFGS update formula of the Hessian (see [19])

(5.3) H* = (I — psiyi )H* (I — pyksi) + psksi ,

where p =1/(y[ s) and

(5.4) Sk = Ch1— Ck,

(5.5) Ye = Gk+1— Gk

and the step length o is given by a one dimensional search algorithm.

We now describe a special BEGS with limited storage, where we only store a
finite number m of corrections. For example, suppose that we have performed
3 iterations, allowing m = 2 corrections to be stored. Assuming Hy = I and
writing

pi = 1/ylsi,
(5.6) vi = (I—pwyis]),
the usual BFGS update (5.3) gives
Hi = vl Hyvo + pososq,
Hy, = vaOTHovovl + vlTpososoTvl + plslslT,

while the special BFGS with m = 2 stored corrections is given by
(5.7) Hy = vl Hyvy + p15157,
and thus

(5.8) H; = vg’vi‘rHovva + Ug’plslsfvg + p2323g’.
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In the general case, if kK + 1 < m, we have the usual BFGS update
(59) Hk+1 = v,{v{_l...ngovo...vk,lvk

T T T
+ v ..-V1 PoSoSy V1---Vk

+ VR Vp_1Pr—2Sk—25}_oUk—1Uk
+ UkTpk_lsk_lskalvk
+ pksksz.

If K +1 > m we have the special BFGS update

(5.10) Hpyr = v,{v,{_l...v{_m+1H0vk_m+1...vk_lfuk

T T T
+ Ui - V—mt2Pk—m+28k—m+1Sk—m+1Vk—m+2---Vk

+ Uf pro1Sk_155 Uk
+ pksksf.
Note that instead of explicitely computing the Hessian H* in (5.1), we com-
pute the product product H*+1g* from (5.3) to get:
(5.11)
((I = psy™)H*(I — pys™) + pss™)g* = (I — psy")H* (¢* — pys” ¢*) + pss” g*,

involving only scalar products of a vectors and computing H*g* similarly. The
gradient method is a special case of the quasi-Newton method, with m = 0.

5.2. The complexity of the quasi-Newton method. In this section we
analyze the complexity of the quasi-Newton method with limited storage. To
compute the product v;¢g* in BFEGS-method:

(5.12) vig* = (I — piyist )g" = g* — piyist g*,
we need

0. 2n — 1 operations to compute s g*,

1. n operations to multiply the obtained constant on step 0 by vector y*,

2. n operations to compute product of the obtained vector in step 1 by
const pt,

3. 2n — 1 4+ n operations to compute constant p’,

4. n operations to compute the difference g* — p;y;s7 g*.

It follows, that complete number of operations to compute v;g* is 8n—2. The
maximal number of such multiplications is equal to 2m, where m is number of
stored corrections. Taking sum in BFGS formula we have number of operations
equal to 8n-2m+8n-2(m—1)+8n-2(m—2)+...4+8n-2 =8n-(2m+2(m —
1)+ 2(m—2)+..+2) = 8m - (m + 1). Then the total complexity of the
quasi-Newton method is 8nm(m + 1), where n is the number of nodes in the
grid and m is the number of stored corrections.



ADAPTIVE HYBRID FEM/FDM METHODS FOR INVERSE SCATTERING PROBLEMSi

6. AN A POSTERIORI ERROR ESTIMATE FOR THE LAGRANGIAN AND
ADAPTIVE ALGORITHM

We shall now indicate a proof an a posteriori error estimate for the La-
grangian. By C we denote various constants of moderate size. We start by
writing an equation for the error e in the Lagrangian as

e = L(\p,c) = L(An,pn,cn)
1
(61) = ELI()‘haphach)(()‘apa C) - ()‘haphach)) + R
1
= §L'()\h,Ph,6h)()\—)\h,P—Ph,C—Ch)‘*'R,

where R denotes (a small) second order term. For full details of the arguments
we refer to [3] and [10]. Using the Galerkin orthogonality (3.6) and the splitting
A=dn = (A= M)+ L= M), p—pn = (p—pL) + (0L — pn), c—cn = (c—ch)+
(¢} —cn), where (M, pl, cl) denotes an interpolant of (A, p,c) € W x WP x Vj,
and neglecting the term R, we get:

1 1
(6.2) er EL'()\h,ph,ch)()\ - )\{L,p—p{”c— c{t) = 5(11 + I + I3),

where

6.3) I

1 6 A= )\I) aph I
[ [=220520% 0 - \pvm

—f(A— AI)) dxdt,

64) L = /0 /Q(Ph—f))(;n—p;’,) Sobs dzdt
N EC -

¢ ot ot
65 I, = / / mh (2,7) aphgf ) (e — I dudt.

To estimate (6.3) we integrate by parts in the first and second terms to get:

102
|/ /( agh (A=) = APh(A—Ai)—f(A—A{L)) dwdt
Opn I
+ (A= AL) dsdt
Z/ /(-)K 3”1{ ) 5
- Z/ 1 3ph )\ /\h () dx|

where the terms g”h and [ ph] appear during the integration by parts and
denote the derivative of py in the outward normal direction ng of the boundary
OK of element K, and the jump of the derivative of py in time, respectively.
In the second term of the (6.6) we sum over the element boundaries, and each
internal side S € S}, occurs twice. Denoting by 9,py, the derivative of a function

(6.4Y: |
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pp, in one of the normal directions of each side S, we can write
Opn I / I
6.7 E A=Ap) ds = E on] (A — AL ds,
(6.7) /BK BnK °T ph 2

where [0spy] is jump in the derivative 8sph computed from the two triangles
sharing S. We distribute each jump equally to the two sharing triangles and
return to a sum over elements edges 0K :

© ¥ JACEORCEEY ds:;%h;g | il A s

We formally set dz = hids and replace the integrals over the element bound-
aries K by integrals over the elements K, to get:
(6.9)

1
;5hK/M [95p] (A = AR) c ds| < C max i /| dspn] [|(A = Ap)| d,

where [0spn] |, = maxscok [Ospn]| -
In a similar way we can estimate the third term in (6.6):

QCh [6Ph ]()\ M) (ty) doe| < Z QCh -1 Haa?;h( )H |()\ A (t | Tdz
< /Jk/ =77 |[Ophy, || - [(A = AR)| dedt
= c/ /9—27 [[0pnre]| - [(A = AR)| dzdt,

where
(6.10) omne] = mpx (| B 0]« | B )
(6.11) [Ophi] = [OPhy,] o0 Ji-

Substituting both above expressions for the second and third terms in (6.6),
we get:

(6.121) |

1 %pn
Q Ch 6t2

IA

~ Apr— )\ = M) dedt

+ C/ / max h; ! 8sph]|-|(/\—/\£)|dxdt

SCOK

+ / / [[0pni]| - |(A = AR)| dedt
182ph )\
SC/O/chatQ—h—f‘<
T
+ C/ Qgg}ﬁh |[83ph]|-<

CSf Lo (2

62

+h2|D2)\|) drdt

62)\
92

+h2|D2A|> dzdt

+h2|D2/\|) dudt,
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where we used standard interpolation estimates for A — )\’1“ and C denotes
2

interpolation constants. Next, the terms aat’;h and Apy, disappears in the first

integral in (6.13) (pp, is continuous piecewise linear function). We estimate

AN aX
‘g; ~ [Tih] and D2\ ~ [‘9—7}1] to get:

On
(6J13) < C/ /|f| ( +h2 [‘C’;L]>dxdt
+ C’/ max k' [8,pn]] - | T2 2 + h? [8‘9_] dxdt
o Scok K sbh T h
[228] [2]
+ / / 77| [Opny] | < ot]| | e | Lo D dadt.
T h

We estimate I similarly:

( 1 8\

14614 0= 2h) = AN = ) = (o = D)o = 5D )| o

+ C/ /.SI'ICI%X hit 8)\h]|-|(p—pﬂ)|dwdt

+ / / 3)\ht |(p oL | dzdt

1 EDYS
c otz

IN

- A —(pr—D )‘ \(p — pt)| dedt

+ C/ /maxh 8)\;1]|-|(p—p£)|dwdt

SCOK

+ / / 8/\ht |(p —p,Iz)| dxdt

1 82\, , |8%p
(Ch pTe = AN = (pn —P))‘ (T el

+h*|Dip |) dzdt

T
+ c/ max  hi' - |[0:An] | ( 2w D2 |) dxdt
q SCOK

; // (23] (Tg 12| D2 |> drdi

< c//m) ( [%] +h2@)dm~dt

+ c/ /Sncl%x Bt [0aM] |- (72 @ +h2@> dudt
e & f [t (| L e B




xiv LARISA BEILINA

To estimate I3 we use a standard approximation estimate of the form c—ci ~
hDgc to get:

6)\h (z,t) Opn(z,t)

(6.15) |I3] < o ‘-h- |Dyc| dedt
< mh 2.0 @t o) g,
ot h
An(z,1) t
< 6 h z,t) Opnlz, )‘ - |[en]| dadt.
ch ot
Defining the residuals
1 B 1 _
B = |1l B =y e 1[0 By = 5 o0
1 1
R/\1 = 5 Sn&%}}({ hk |8/\h | R)\s :ﬁT 1|[6/\ht]|;
_ 2 O\ 3ph
R = ot | | ot
and interpolamon errors in the form
oA, OAp
1 =
(616) n = o5+ 50
_ 8ph 6
(6.17) op, = Ct [67?] +ChH(9n] )
(6.18) oo = Cllen]|s

we obtain the following a posteriori estimate

1 T T T
(fel9)< = / / Ry, 0y dzdt + / / Ry, dzdt + / / Ry,0o\ dzdt +

2 0 Q 0 Q 0 Q

T T T
/ / Ry, 0, dxdt + / / Ry, 0, dzdt + / / Ry, 0, dxdt

0 Q 0 Q 0 Q

T

/ / R.o. dzdt).

0 Q

In the computations below we use the following variant of the gradient
method with adaptive mesh selection:
1. Choose an initial mesh K} and an initial time partition Ji of the time
interval (0,7).
2. Compute the solution p on K} and Ji of the forward problem (2.1)

with ¢ = ¢(™ .
3. Compute the solution A of the adjoint problem
1 6%\ _
C—QW —AX= —(p—p)(sobs, x € Q,O <t<T
on K and Jg.

4. Update the velocity on Kj and Ji according to

(D) () = o) () — oM 2 2 / ON(z, ) 8p59t t) g
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Make steps 1 — 4 as long the gradient quickly decreases.

5. Refine all elements, where R.o. > tol and construct a new mesh Kj,
and a new time partition Ji. Here tol is a tolerance chosen by the user.
Return to 1.

7. AN A PRIORI ERROR ESTIMATE FOR THE WAVE EQUATION.

In this section we prove an a priori error estimate for the wave equation
approximation(4.9) in the simplified case with ¢ = 1:

p .
(7.1) o2 Ap = f,inQx(0,7T),
(7.2) p(-,0) = 0, %(-,0) =0, in Q,
(7.3) p|F = 0, onTx(0,7T).

We thus consider the corresponding discrete problem: Find pj! € W}, for n =
1,..., N such that

(7.4) (87 PR, v) + (VPR wv) = (f™,0) Yv € W,
where
n+1 n n—1
n -2 +
(7.5) Oppi, = Ph——Br

and pY = 0,p} = 0. For simplicity we assume that h is constant.
For w € H} () we define the elliptic projection mw € Vj 1, where Vj, 1 :=
{ve H} :ve P (k),VK € K} by

(7.6) (Vrw, vv) = (Vw, Vo) Yo € Vi1
We shall estimate the difference between the discrete solution pj! € W} and
the elliptic projection mp™ € Wy, and we define

(7.7) O" = pjt — .
Using the definition (7.6) and (7.1) - (7.3), we obtain:

(@ (mp™),v) + (v (mp"), ) = (8 (p"),v) + (Vp", V)

(7.8) = (p"v) + (f"0) Vv e WY,

where p" = 02 (mp") — %(tn) and p" = p(.,t,).
Subtracting (7.8) from (7.4) and using (7.7), we get the following error equa-

tion:

(7.9) (870™,v) + (VO", wv) = —(p",v) Vv € W},
where
(7.10) o™l < C(?|I(Dip)"|| + h*||(D3Dip)™||).

‘We now choose

1 @n—}-l —_en on — @n—l
(7.11) v=—( + )
2 T T

and use the fact that
n+1l _ 20m n—1 1 n+l _ Qn n _ @Qn—1
6tz@n:® e" +06 :_(6 er e"-0 )

T2 T

T T
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to get
1 (_)n—i—l —_ " (_)n_@nfl @n—}-l —_en @n_@nfl 1 n N e
(P I T+ el e
1
_ ([ n n+l n—1
- 2T(p 7® @ )J
which reduces to
(7.13)
@n—i—l_(_)n 2 @n_@n—l 2 B n n "
(” = || _ || ~ || )+(v®n7v((_)n+l_®n 1)) :(p 7@ +1_@ 1)_

Summing over n in the first term of (7.13) we get :

NZ_I [o™+ —en]2  [|om —en|2 _ ||eN — eN-1|2

(7.14)

Pt 72 72 72 ’
and in the second term of (7.13) :

N-1
(7.15) > (ver, v (0™ —em)) = (vor,ver ),

n=1

and thus we have:
”@N _ (_)N—1”2 N-1

N N—-1\ __ n n+1 n—1
(7.16) ~ +(veN,ve )—nzzjl(p,@ —-om ).
Using an inverse estimate and assuming - <1 we have
(v, vo ) = (voV,vel) - (v -V ), ver)
ver-ev )
> ||y N 7l ———- |y O]
cr (6N —N-1)
> VO - —ll=———l-[Iv e
1 1, (N —eN-1)
> Z N2 _ -\ M) 2‘
> SlIveV|E -l
We conclude that
. N-1
||(_)N _ @Nflllz N2 n ®n+1 _ (_)nfl
. _— < _— .
(7.17) ~ +1l v oM _2r; T
Using the definition of p and (7.10), we get:
N-1 @+l _ @n-1 N-1
(T18) Y (0" ————)~ > (l(Dip)"|| + p*||(D; D7p)"||)0,©.
n=1 n

=1
We substitute this expression into (7.17) to get:

T T
12.0]P+vON|P < 2r ( | ot | ||<DiD§p)"||dt> max| 0,07,

which gives the following a priori estimate for O:

(7.20) max (11 %511+ 117 ©°1F) < 0% + 1)
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Using the fact that

(7.21) max(||0;(p — 7p)"[| + || v (p = 7p)"[]) < C1(7 + h),
we get finally

(7.22) max(]|0:(p = pn)"|l + 1| v (0 = pr)"|) < Ci(7 + h),
Integrating (7.22) we can also obtain

(7.23) max([|(p = pr)"|| + 1 v (p = pr)"[)) < C(7 + h).

8. IMPLEMENTATION ISSUES

We have chosen C++ as the implementation language. It allows us to im-
plement the problem and the algorithms on a high level of abstraction without
much loss of efficiency. We have implemented important notions such as grid,
boundary, operator, and grid function as C++ classes. The software package
PETSc [2] is used for matrix vector computations. See [4] for more information
about implementation of the hybrid method.

The run program to implement reconstruction algorithm for solving inverse
problem is written in perl and has following form:

$FILE = $ARGV[O];
$data = $ARGV[1];
$rc=0;
# return code of step4 controls the loop
# 0 means continue, 1 -- the fixpoint is reached, OxFF -internal error
$iter = 0;
$1=1;
$codel = 0;
$code2 = 0;

# compute exact solution of the problem
‘stepl_3d_4w $FILE $data‘;

while ($rc==0)
{

$iter++;
$it = $iter;

print"\n\n#########H#E#EEE iteration $it #####H\n";
# compute solution of the forward problem

‘step2_4waves $FILE $data‘;
# compute solution of the adjoint problem
print ‘step3_3d_4w adjref2_ubot.dat $data‘;

$code2 = 0;
# alfa-optimization algorithm
while ( $code2 == 0)
{
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$codel = 0;

while ($codel == 0 )

{
print ‘step4_alfa_3d $FILE $data‘;
‘alfa_4w $FILE alfa2.m $data‘; # solve problem with parameter alfa2
‘alfa_4w $FILE alfa.m $data‘; # solve problem with parameter alfa
print ‘find_alfa2 3d $FILE $data‘; # returns codel
$codel = $7 >> 8;

}

‘alfa_4w $FILE alfal.m $data‘; # solve problem with parameter alfal

print ‘find_alfal_3d $FILE $data‘; # returns code2
$code2 = $7 >> 8;
print"\n\n after find_alfal 3d : code2 is $code2.\n";

print"\n\n===== works step4 ---> compute new velocity \n ";
print ‘step4_3d $FILE $data ©;

‘cp New_Vel.m ref2_4w_$it.m*;
‘cp vel.inp ref2_4w_$it.inp‘;

print"return code = $rc \n";

}

print $rc==1 7 "fixpoint reached after $iter iterations \n"
"there was an internal error\n";

9. NUMERICAL EXAMPLES

In this section we present computational results for our adaptive method for
two and three dimensional inverse scattering problems.

In all the examples we solve the model problem (2.1) in the domain Q =
[0,1]?, d = 2,3, with a combination of Dirichlet and absorbing boundary condi-
tions, and with the initial conditions u = %—1; = 0. The domain 2 is decomposed
into two domains Qrgar and Qppas in such a way that their meshes overlap
in two layers of nodes, see [4]. In Qppy domain we effectively use a FDM
with a combination of Dirichlet and absorbing boundary conditions. The space
mesh for finite element method in in Qg consists of triangles, and in the

three dimensional examples of tetrahedra. For the reconstruction we use plane
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waves initialized at a boundary of 2. A plane wave, moving in the positive
direction, has the form

0.1sin(k (t—21) —7/2)+0.1 f0<t—z <2,
U(@";t):{ 0 (ke Vo else, o

and is initialized for 21 = 0 by using a Dirichlet condition.

We choose k£ = 25,100, 200, corresponding to increasingly sharp waves. In
one experiment we use one plane wave moving from left to right side. In other
experiments we use several plane waves, moving from left to right, from right
to left or from top to bottom or bottom to top.

For all computational tests we choose a time step to respect the CFL crite-
rion:

h
01) r< o
where h is the minimal local mesh size of the elements, and a is a constant.

We choose the observation points outside in Qppps close to Qppa giving
somewhat better reconstruction.

First, we present a model applications of reconstructing one or two elliptic
scatterers in two dimensions. Next, we present three dimensional reconstruc-
tions of a one or two scatterers. In all the examples we apply the adaptive
mesh refinement algorithm described in Section 6.

9.1. Two dimensional numerical examples. In this section we describe the
experiments with one and two plane waves and one or two elliptical scatterers.
Appropriate initial values of the parameters in both experiments in the one
dimensional optimization algorithm are a = 0.001 and 8 = 0.001. In the
experiments with one plane wave, the wave is initialized at the left boundary
21 = 0 of Q2 and goes through the Qg to the right boundary z; = 1 during
the time interval [0,¢], ¢ < T. We use absorbing boundary conditions on the
other boundaries. As the observation points we choose eleven nodes near the
right boundary at = = 0.88.

We obtain the data for the reconstruction by solving the direct problem with
¢ = 1.3, 1.5 in the scaterrer, depending on the experiment, and ¢ = 1 outside.
The solution is presented in Fig. 6-a. The observation time is 0.5 and the time
step is 0.002.

In Fig.(6-c - 6-d) we present reconstructions of a single elliptic scatterer. We
start running the reconstruction algorithm with ¢ = 1.0 in the whole domain
and continue until the stopping condition || 4[|z, < 0.001 is achieved.

To improve the reconstruction and achieve better convergence we use the
adaptive algorithm, described in Section 6.

The mesh refinement algorithm is as follows(we call two elements neighbours
if they have a common edge):

(1) Mark all elements to be refined with code 1, neighbors of these elements
with a common edge - mark with code 2, and neighbors of the elements
with code 2 - mark with code 3.

(2) Check condition: if neighbors of the element with code 2 have code 2 -
mark both elements with code 3.
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(3) If the element with code 2 has two neighbour elements with code 1, we
mark these elements with code 1 and go to the step 1.

(4) Refine elements with code 1 into 4 triangles, using the middle points
of the edges.

(5) Refine elements with code 2 into 3 triangles. When refining by three
triangles, we take the largest side of the triangle and find middle point
of this side.

(6) Triangulate elements with code 3 into 2 triangles in the following way :
make connections between added new nodes and nodes in the elements
from the coarse grid.

To illustrate the effect of the adaptively refined meshes we present recon-
structions of one and two ellipses. The exact scatterer is shown in Fig. 2-a. In
Fig. 3 we present a sequence of adaptively refined meshes for reconstruction
this scatterer.

We make experiments with two plane waves: the one plane wave is initialized
at the left boundary z; = 0 of Q and goes through the Qpgp to the right
boundary z; = 1, and a second plane wave is initialized at the right boundary
1 = 1 of Qrppuy and goes through the Qrgar to the left boundary 21 = 0
during the time interval [0,t], ¢ < T'. We use absorbing boundary conditions
on the other boundaries.

The observation points are located at both the left and right sides of the
object, as described in Section 9, using a total of 22 observation points. The
maximal computational time is 1.0 and the number of the time steps is 500 for
the exact type of material equal to 1.3, and 1000 for the exact type of material
equal to 2.0 inside the scatterer. The computations have been performed on
three different locally adaptive refined meshes. See Fig. 10 for the exact type
of material equal to 2.0, and Fig. 11-13 for the exact type of material equal to
1.3. In Fig. 5-a we present an exact solution of the problem (2.1) at the time
0.18, and at Fig. 5 - b,c,d we present the solution of the forward problem for
different meshes at the same moment of time.

Another example is a reconstruction of two ellipses with the exact type
of material equal to 1.3 inside the scatterers. The computer simulations are
presented in Fig. 14 — 15. The exact scatterers are shown in Fig. 2-b .

The Tables 1 and 2 show that we can gain a significant reduction of the num-
ber of iterations steps in the reconstruction algorithm by using appropriately
refined meshes.

9.2. Three dimensional numerical examples. In this section we describe
the experiments to reconstruct three dimensional objects. We use the adaptive
algorithm for computation of the parameter ¢ described in Section 6. We
perform experiments with 2,4 and 6 plane waves. Appropriate initial values
of the parameters in both experiments in the one dimensional optimization
algorithm are a = 0.01 and 8 = 0.01. The adaptive method is as follows:

(1) Choose an initial mesh K} and an initial time partition Jj, of the time
interval [0, T.

(2) Compute the solution p on Kj and Ji of the forward problem (2.1)
with ¢ = ¢(™ .
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(3) Compute the solution A of the adjoint problem

1 9%\ _
(92) C—zw—A)\:—(p—p)6obs, .'L'EQ,O<t<T,
on Kh and Jk.
(4) Update the velocity on Kp, and J, according to
OA(z,t) Op(x,t)
. (m41) () = () t.
03) @) = a0 2o [T DB

(5) Compute a posteriori error estimate for ¢ defined in (6.19).

(6) Refine all tetrahedra, where R.o. > ¢, € is a desired tolerance. Each
tetrahedron can be divided into 2, to 8 new tetrahedra. We present
different ways of the refinement, of the one tetrahedra in Fig. 4.

(7) Construct a new mesh Kj: we connect a refined grid with the previous
one, to maintain the consistence of the grid.

9.2.1. Ezample 1. In this test we use four plane waves from the left right,top
and bot boundaries. To get data for the reconstruction we solve the wave
equation with four plane waves of the form (9) with & = 100. The time interval
is [0,0.4] and is divided into four phases, 0.1 each: first, one plane wave starts
at the left boundary x; = 0 of  and goes through the Qrgas to the right
boundary z; = 1, then at time 0.1 a second wave starts at the right boundary
z7 = 1 of  and goes to the left, and the third and fourth plane waves begin
at time 0.2 and 0.3 at the top/bottom boundaries of Qrpar, respectively, and
goes to the bottom/top boundaries. We use absorbing boundary conditions on
the other boundaries. The observation points are placed around the object.

We obtain the data for the reconstruction by solving the direct problem
(2.1)-(2.3) with ¢ = 2 in the scatterer and ¢ = 1 outside.

In Fig. 16 we present the computed exact solution of the problem (2.1) — (2.3)
inside Qrgar with four plane waves and absorbing boundary conditions at all
the boundaries. The computer simulations of the reconstructed scatterer on the
adaptive refined meshes are shown in Fig. 20. First, we compute parameter ¢
using the reconstruction algorithm on the coarse grid. Then we refine the coarse
grid by using the estimate (6.19), and interpolate the previously computed
parameter ¢ into a new refined mesh. This value is used as starting value
for computations on the new mesh. Next, we perform all the steps of the
reconstruction algorithm and repeat the previously described procedure of the
interpolation of the computed parameter ¢ into the refined mesh, until the
desired tolerance is achieved.

9.2.2. Example2. Reconstruction using quasi-Newton method. We recall that
we update the coefficient ¢ by
(9.4) M =k + ok HF (m) gk,

where H¥(m) is a quasi-Newton matrix and m is the number of the stored
correction pairs (s, yx), defined by

(9.5) Sk = Ck41 — Ck,
(9.6) Yr = Gkt+1 — Gk
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Here, ¢ and g are the stored vectors of the computed parameters and the
gradients at the iteration k.

Instead of forming the Hessian H(m), we can store scalars p; and vectors
(siyyi),i = k—1,...,k — m, which determine the matrices V;, defined as (5.6).
The advantage of the recursive formula (5.3) is that we can compute the product
H*(m) - g* without matrix vector multiplications. In the numerical examples
we choose m = 0,5, 7, which corresponds to the number of stored vector pairs
(sk,yr) equal to 1,6,8. Note, that when m = 0 we have the usual steepest
descent method. To perform quasi Newton computations, we define the first m
approximations of the Hessian H*(m) using BFGS update formula, until the
storage is full. Then we delete the oldest correction pair from the set (sg,y)
and add a new one . Then the new Hessian approximation is defined again
by (5.3), using the newly added set pair. This process is repeated during all
iterations of the optimization algorithm.

We performed different experiments with m = 0,5,7 on adaptively refined
meshes. First we present reconstruction of a cube inside Qrgpr. The exact
scatterer is shown in Fig. 2-e. The computational mesh inside Qpgp is un-
structured and was generated using a quality tetrahedral mesh generator, which
can be obtained from http://www.weboo.com/sh. The meshes for computing
the data are presented in Fig. 1. In the Fig. 28-a we present computed L2-norms
% of the gradient for different adaptively refined meshes. Here, the number
of stored corrections is m = 5. The number of the nodes and elements in the
adaptively refined meshes are presented in the Table 5. We restart the quasi-
Newton method on a new mesh interpolating the computed approximation on
the previous mesh into the new mesh.

Second example is a reconstruction of star-shaped scatterer presented in
Fig. 2-d. In Fig. 28 - b we present computed L2-norms of the gradient for
different adaptive refined meshes. The number of stored corrections is m = 5.
The number of the nodes and elements in the adaptively refined meshes are
presented in the Table 4. In the Table 4 we present the effectiveness of the quasi-
Newton iteration, compared with a steepest descent method. We note that
increasing the storage beyond 5 corrections will not have a very big effect: the
time, which is required to compute the Hessian, will increase with no increase
in accuracy.

The reconstructed objects in both examples can be viewed in Fig. 21 and
Fig. 25.

9.2.3. Ezxample 3. Reconstruction with reflected waves. In order to get a better
reconstruction of the object we tested a focusing technique, letting the incoming
wave be equal to a reflected non-plane measured wave. It seems to be helpful
to make tests with reflected waves from the boundaries of Qrpas. We hope
that with such kind of tests we can get more information about the nature of
the object.

Tests with non-plane incoming waves from the left and the right side of
Qrpm.

We modulate problem in the following steps:
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0. A plane wave (9) is initialized at the left boundary of Qppys during
the time interval [0, ZT”] We use absorbing boundary conditions on the
other boundaries.

1. Values at the observation points of the incoming wave are registered
during the time interval [0, T].

2. Values of the incoming wave are registered at time T at the right bound-
ary of QFDM-

3. A non-plane wave is initialized at the right boundary of Qrpas during
the time interval [T, T + 2%, using the values of 2.

4. Values at the observation points are registered during the time interval
[T, 2T for the new incoming wave.

5. Values of the incoming wave are registered at time 27" at the left bound-
ary of QFDM-

6. A new incoming non-plane wave is initialized at the left boundary of
Qrpy during time interval [2T, 2T + 2F], using the values of 5.

7. Values at the observation points are registered during the time interval
[2T, 3T for incoming wave.

8. Values of the incoming wave are registered at time 37 at the right
boundary of Qppyy.

Steps 3 — 8 can be performed many times. We have tested with waves being
reflected 2 and 4 times. The observation points are placed in Qrpys at the
left and right side of Qpgy. In our examples we have used 76 observation
points, 38 at the left and 38 at the right side of Qrpgy. To illustrate the
strategy with reflected waves, we try to reconstruct the object given in Fig. 23-
a. The reconstructed object is presented in Fig. 23-b using a 5 — 6 times
adaptively refined mesh. In the optimization algorithm we have used quasi-
Newton method with m = 0,5,11. We present the computed Ls-norm of the
gradient for different adaptive refined meshes in Fig. 27-23-c,d. We see, that
the best reconstruction is obtained with a 4 times refined mesh. If we refine 5
or 6 times, the Ly-norm of the computed gradient increases. This is because we
use a 5 — 6 times refinement to compute the data. We see a significantly better
convergence, when we use 5 or more stored corrections in the quasi-Newton
method than in the obvious steepest descent method, what corresponds to
m =0.

Tests with reflected wave from the left side of Qrpr-

We perform a similar experiments with reflected waves. The observation
points are placed at the left boundary of Qrpas. We modulate the problem in
following steps:

0. A plane wave (9) is initialized at the left boundary of Qppys during
the time interval [0, 27”] We use absorbing boundary conditions on all
boundaries.

1. Values at the observation points are registered during the time interval
[0,T] for the reflected wave.

2. Values of the reflected wave are registered at time T at the left boundary
of QFDM-

3. A new incoming non-plane wave is initialized at the left boundary of
Qppum during the time interval [T, T + QT’T]
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Type of the mesh | No. of nod. | Rate of the convergence, n.r it. | eps
coarse 624 85 0.001
1 time ref. 719 43 0.001
2 times ref. 852 16 0.001

Table 1: 2D reconstruction. Rate of convergence to reconstruct one ellipse.

4. Values at the observation points are registered during the time interval
[T, 2T for incoming wave.

5. Values of the reflected wave are registered at time 2T at the left bound-
ary of QFDM .

Steps 3 — 5 can be repeated. We have tested with 2 and 3 times reflected
waves. The observation points are placed as in the previous example. To test
this model, we reconstructed the object, given in Fig. 23-a. We performed
computations of the inverse problem on a 5 times adaptive refined meshes. In
the optimization algorithm we have used quasi-Newton method with different
numbers of the stored corrections equal to m = 0,5,11. We present the com-
puted Ls-norm of the gradient for different adaptive refined meshes in Fig. 29.
As we see from the computed norm, these model gives worse result than the
previous model with reflected waves from the left and the right side of Qppys.

9.3. Performance comparisons. We demonstrate the performance compari-
son of the adaptive mesh refinement procedure on the computer implementation
of the reconstruction algorithm. The benchmarks were run on Intel 600 Mhz
processor with 192800Mb memory, 512992Mb in swap, 274280Mb used and
234780MB free memory. Table 1 presents the rate of the convergence to re-
construct an ellipse. Inside an ellipse the wave distribution speed parameter
¢ = 1.3 and in the rest of the domain ¢ = 1.0. In the Table 2is presented the rate
of the convergence to reconstruct two ellipses. Computational grids in these
tables are generated by the adaptive procedure. All tests have been performed
for the time interval [0, 1] with time step satisfying the CFL-criterion.

In the Table 3 we present performance of the computing for the forward and
adjoint solutions of the two dimensional reconstruction in the terms of the mem-
ory and cpu time. The forward and adjoint solutions have been computed for
a time interval [0, 1] with the time step computed satisfying the CFL-criterion.
We choose time step 7 = 0.002 in all the tests for all grids to compare mem-
ory consumption and time performance for different grids. In the Table 4 we
present performance of the computing for the forward and adjoint solutions of
the three dimensional reconstruction in the terms of the memory and cpu time.
The forward and adjoint solutions have been computed for the time interval
[0,4] with time step 7 = 0.0002. The tests have been performed with 6 plane
waves, going from the 6 sides of the outer cubic domain.
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Type of the mesh, 2D | No. of nodes | Rate of the convergence, n.r it. | eps
coarse 1039 120 0.001

1 time ref. 1322 49 0.001

2 time ref. 1506 35 0.001

Table 2: Rate of convergence to reconstruct two ellipses.

No. of | No. of | Forward problem | Adjoint problem

nodes | elements | mem | time, sec | mem | time,sec
466 834 19 5 36.0 6
624 1150 20.5 5.5 38.3 7
719 1340 21.1 7 39.3 9
852 1606 22 7.2 40.2 11
1160 2222 24 8 43.6 13
1296 2494 25 10 44.9 15

Table 3: Performance for the Forward and the Adjoint problems

No. of | No. of | Forward problem | Adjoint problem
nodes | elements | mem | time, min | mem | time,min
466 1908 15 0.23 50.7 1.05
683 2852 17 1.02 51.2 1.56
1097 5410 18 1.34 51.8 2.28
1396 7248 19 2.02 52.3 3.02
2041 10006 20.5 2.30 54 3.28
2565 12096 21 2.41 55 3.31
2812 13578 22 2.2 57 3.49
3376 16008 25 3.54 58 4.50
4342 21854 28 4.50 60 6.36
7270 39602 30 5.76 70 8.38

Table 4: Performance for the Forward and the Adjoint problems in the three dimen-
sional reconstruction of the star shaped object.

No. of | No. of | Forward problem | Adjoint problem

nodes | elements | mem | time, min | mem | time,min
1430 5981 17.1 1.34 50 2.02
1559 6621 18.8 1.40 58 2.30
1813 8097 24.6 1.80 65 3.15
2117 9789 25 2.2 68 3.40

Table 5: Performance for the Forward and the Adjoint problems in the three dimen-
sional reconstruction of the cubic object.
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Figure 1: a) Coarse mesh constructed using a quality tetrahedral mesh generator, see
http://www.weboo.com/sh. b) Refined mesh for computations of the exact solution
of the wave equation. c) Coarse mesh. d) Refined mesh for computations of the exact
solution of the wave equation.

VAVIAW
B

IIAﬂI
A A

VIAVIAVIAVI
e A2
e




ADAPTIVE HYBRID FEM/FDM METHODS FOR INVERSE SCATTERING PROBLEMSii
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Figure 2: Exact scatterers in two and three dimensions.
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tetrahedron into 3 tetrahedra.
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Figure 8: Reconstruction of one ellipse. The mesh consist of 1160 nodes.
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Figure 11: Reconstruction of a single elliptic scatterer on coarse mesh which consists
of 624 nodes.
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Figure 12: Reconstruction of a single elliptic scatterer on a mesh with 719 nodes.
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Figure 13: Reconstruction of a single elliptic scatterer on a mesh with 852 nodes.
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Figure 14: Reconstruction of two ellipses on a mesh with 1322 nodes.
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Figure 15: Reconstruction of two ellipses on a mesh with 1506 nodes.
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time is 0.05 time is 0.1

time is 0.08 time is 0.11

time is 0.09 time is 0.12

Figure 16: Exact solution of the problem (2.1) - (2.3) with one scatterer inside
of Qrpam with ¢c=2 in the scatterer. At the boundary Qrpay we apply absorbing
boundary conditions. We present also the location of the isosurface with value 0.04
at the different time moments, when the plane wave goes from the left to the right
side.
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time is 0.105 time is 0.3

Figure 17: Exact solution of the problem (2.1) - (2.3) with one star-shape scatterer
inside of Qrpy with ¢c=2 in the scatterer. Here we present the solution in Qrpas.
At the boundary Qrpar we apply absorbing boundary conditions. We present also
the location of different isosurfaces.
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Figure 18: Exact solution of the problem (2.1) - (2.3) with one star-shape scatterer
inside of Qp gy with c=2 in the scatterer. Here we present the solution in Qpgar. At

the boundary Qrpym we apply absorbing boundary conditions. We present also the
location of different isosurfaces.
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Figure 19: Reconstruction of the one scatterer in Fig. 2-c on adaptively refined
meshes: a) on a coarse mesh after 32 iterations, b) on a one time refined mesh after
9 iterations, c) on a two times refined mesh after 5 iterations d),e) on a three times
refined mesh after one and three iterations, f) on a four times refined mesh after 5
iterations of the steepest descent algorithm.
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a) b)

Figure 20: Reconstruction of the one scatterer on a five times adaptively refined
mesh from different views. The value of the showed isosurface is 1.98. In a) we
present another scatterer and in b) its reconstruction on a four times refined mesh.
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c) d)

Figure 21: Reconstruction of the second in Fig. 20 scatterer on adaptively refined
meshes: a) on a coarse mesh after 6 quasi-Newton iterations, b) on a 6 times refined
mesh after 4 quasi-Newton iterations, ¢) on a 5 times refined mesh after 4 quasi-
Newton iterations, d) on a 7 times refined mesh after 5 quasi-Newton iterations.
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a) b)

Figure 22: Reconstruction of the scatterer from Fig. 2-f on adaptively refined meshes:
a) on a 2 times refined mesh after 40 steepest descent method iterations, b) on a 3
times refined mesh after 7 steepest descent iterations.
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Figure 23: a),b) Exact and reconstructed scatterer on a five times refined mesh;
c)d) L2 norm of the computed gradient on the coarse, 2 and 4 times refined meshes
for different number of the stored corrections.
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c) d)

Figure 24: Reconstruction of the scatterer in Fig. 23 a) on adaptively refined meshes:
a) on a coarse mesh after 4 quasi-Newton iterations (m=7), b), ¢) on a 5 and 6
times refined mesh after 4 quasi-Newton iterations(m=7), d) after 60 quasi-Newton
iterations.



ADAPTIVE HYBRID FEM/FDM METHODS FOR INVERSE SCATTERING PROBLEMBx

a)after 2 QN it. b) after 5 QN it.

e) after 4 QN it. f) after 7 QN it.

Figure 25: Reconstruction of a cubic scatterer on the 3 times adaptive refined meshes
using the quasi-Newton method (QN).
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e) f)

Figure 26: Exact and reconstructed scatterers on adaptively refined meshes. We
performed computations of the inverse problem on a 4 times adaptive refined meshes.
In the optimization algorithm we have used quasi-Newton method with the number
of the stored corrections equal to m = 5.




ADAPTIVE HYBRID FEM/FDM METHODS FOR INVERSE SCATTERING PROBLEMSIi

L2 norm of the computed gradient , m=0
T T T

T
— coarse mesh
— — 1time refined
—— 2times refined
3 times refined
* 4 times refined
+ 5 times refined

04

a)

L2 norm of the computed gradient, m=5

05 T T T T T T T T

— coarse mesh
— - 1time refined
—— 2times refined
0.45[- - 3times refined []
*  4times refined
+ 5 times refined

04t + g
035} b
*
*
03 + b

0251 g

02F b
0151 1

01 . . . . . . . . .

0 2 4 6 8 10 12 14 16 18 20
L2 norm of the computed gradient, m=11
05 T T T T
— coarse mesh
+

— - 1time refined

—— 2times refined
0.45[- - 3times refined [
* 4 times refined
+ 5 times refined

04t + g
035} b
*
*
03 + b
025} s T 1
4
* +
02t * TE o+ 1

0 5 10 15 20 25

Figure 27: L, norm of the computed gradient for number of the stored corrections
m = 0,5 and 11 on adaptively refined meshes for the scatterer in Fig. 23.
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L2-norm of the computed gradient at the adaptive meshes in 3 dimensional reconatruction L2 norm of the computed gradient to reconstruct star-shaped object
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Figure 28: a) L2-norm of the computed gradient in the quasi-Newton algorithm
for different adaptive refined meshes for reconstruction of a cubic scatterer. The
number of stored corrections is m = 5. b) L2-norm of the computed gradient in
the quasi-Newton algorithm for different adaptively refined meshes for reconstruction
star-shaped scatterer. The number of stored corrections is m = 5.
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Figure 29: L2-norm of the computed gradient in the quasi-Newton algorithm for
different adaptively refined meshes for reconstruction of the scatterer in Fig. 23 .
Tests performed for reflected waves registered on the same side of the scatterer as the
incoming wave with: a) number of stored corrections is m = 0, b) number of stored
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APPENDIX A. OPTIMIZATION ALGORITHMS

A.1. The steepest descent with optimal step size. Let E(z) is functional
to be minimized, then method of steepest descent is following:

(1) Choose 2°,M,e. For m =0,..., M do

(2) Compute h™ = — 7 E(z™).

(3) Compute p™ = arg min E(z™ + ph™) Vp > 0.

(4) Set zm ¥l = zm 4 pmp™,

(5) If || v E(z")|| < e, stop.

A.2. Conjugate gradient. Algorithm:
(1) Choose z°,M,e. Set h™1 =0,g7! = — v E(2°). For m = 0,..., M do
2)

(A1) gt = —-vE@E™),
<gm—gml g™ >
(A.2) " - ;
[lgm—1||2
(A3 R = g™ 4 4mhmL

4) Set 2™t = 2™ 4 ph™.

)
(3) Compute p = arg min,sq E(z™ + ph™).
(
(5) If [lg™]| < &, stop.

A.3. Newtons method for the wave equation. We here present Newtons
method for the problem (2.1)-(2.3). Let us write this problem in the operator
form

(A.4) A(u) = f,
where u = (p, \,¢), A(u) is the differentional operator
2
L% ~ Ap
A(u) = C—QTW —AX—p
fo _%a_pa_dt
and f = (f,—p,0).
Newtons method takes the form:
(A.5) u™ =™ — A (W) A(u™),
where
1 92 2 8%p
, Zoe — O 0 —F
=1 R«
2020 2 9p 8 6 op ) g
—fy ERGd -y FRGa [ SRR
n

and involves the solution of the equation A'(u™) du = A(u

).

A.4. One-dimensional minimization. Let

(A.6) E(p) = BG:™ + ph™) — E(z"™)
and
(A7) %w) =< VE(E™), B >= — || v B

The one-dimensional minimization algorithm is following;:
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0. Choose p and set d = p > 0.
1. Set po=p+d,pr=p—d.
2. If E(p) > E(p2), then set p = p+d and go to step 1. If E(p1) < E(p),
then set p = p—d/2,d = d/2 and go to step 1; else go to step 3.
3. Compute the minimum of the parabola running through
the three pOintS P1, E(pl)J Ps E(p)a P2, E(p2)) i'e') set

p=ptg5lp- pl)E(pz) + E(p1) - 2E(p)’

4. If more precision is required go back to step 1, d = d/2.




