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Abstract

We estimate the degree of polynomial solutions of the Bézout equation by
means of the Koszul complex, and find explicit solutions by means of integral
formulas. We also give an explicit proof of Briangon-Skoda’s theorem by
means of integral formulas. Next we construct integral formulas for sections
of the line bundles of P", which also gives rise to a Koppelman formula in
P". As an application we obtain some (known) vanishing theorems.

Acknowledgements

I want to thank my advisor Mats Andersson for his help and inspiration.
I also want to thank my roommate and fellow graduate student Elizabeth
Wulcan for interesting discussions. Thanks go also to Hakan Samuelsson,
who helped me with a lemma I needed.



Contents
1 Introduction 4
2 Integral formulas on C” 5

3 Estimating the degree of polynomial solutions of the Bézout

equation 11
3.1 Using the Koszul complex . . . .. .. .. ... ... ..... 11
3.2 Using integral formulas . . . . . . ... .. ... ... ... .. 19
4 Proving Briancon-Skoda’s theorem by means of integral for-
mulas 23
5 Integral formulas on P" 31
6 The Koppelman formula in C" 37

7 Koppelman’s formula on P" and solutions to the J-equation 40



1 Introduction

This work contains several seemingly unrelated parts, which are nevi%I;Cteh(%lgﬁom
connected by the use of integral representation formulas. Section }‘ZTeéW
integral formulas in C", beginning with a short history and ending with some
material from]fﬁ/ wl ich will be used in the following sections.

In Section %Tvpe_lﬁok at the problem of estimating the degrees of polyno-
mials which are solutions of a Bézout equation. We do this first by means of
the Koszul complex, and then proceed to find explicit solutions by the use of
integral formulas.

The next section looks at how to prove Briancon-Skoda’s theorem by
means of integral formulas. Like the previous section it also involves solving

a division prolEllIgeggérl?nurtl this time locally instead of globally.

In Section b we find integral formulas on the complex proj%%tive space P"
by taking inspiration from the procedure in . nLn Section 6 we construct

Koppelman formulas for C”, then in Section [7 we do the same for P", and
then as an application prove some (known) vanishing theorems.

The formalism we use is built on a foundation of diff; lrn(gcr%toilgumlI gorms, and
we assume a knowledge of these. We also, from Section 35 onwaras, assume
a basic knowledge of P™ (the complex projective space) and vector bundles.
Some remarks on notation: By f(z) < g(z) we mean that f(z) < Cg(z) for
some constant C. If « is a differential form, then we define a,, = a”/nl. By

gz\i we mean dz; A ...dzi_y Ndzigg A ... ANdz,.



integralform

2 Integral formulas on C"

The simplest example of an integral representation formula is the well-known
Cauchy integral formula in one complex variable, which says that

sy L[ o0

2w Jop C— 2

if ¢ is holomorphic and z € D. Note that the kernel is holomorphic outside
z, and that it works for any domain D. In several complex variables things
are more complicated, and one has much more freedom to construct different
kinds of kernels. We will begi szith a short history of the development of
integral formulas, taken from [I3]. Many of the kernels and formulas we
mention will occur later in the text.

We have the Bochner-Martinelli kernel (discovered in 1938 by Martinelli
and independently by Bochner in 1943), which works for any domain but is
not holomorphic. A more general kernel, the Cauchy-Fantappié-Leray ker-
nel, includes the Bochner-Martinelli kernel as a special case, but can also be
used e. g. to obtain a holomorphic kernel for convex domains. The kernel was
discovered by Leray in 1959, but in the name he honored Cauchy and Fan-
tappié as influential mathematicians in the field. Koppelman rediscovered
the same kernel in 1967, and shortly afterwards he introduced formulas to
represent forms of degree (0, q); the so-called Koppelman formulas. In 1969
another kernel was found by Henkin and independently by Ramirez, called
the Henkin-Ramirez kernel, which is important because it is a holomorphic
kernel on a strictly pseudoconvex domain. Since Henkin and Ramirez there
have been many further developments. Integral formulas have many appli-
cations, they have been used e. g. to find explicit solutions to the d-equation
or to solve the Levi problem.

I will now present the ideas for constructing integral formulas which are
contained in [T]. In the original article there are more illustrating examples,
but on the other hand I have more detailed proofs. These formulas will be
used in various contexts in the rest of the paper. First, let £, ,(U) denote the
space of smooth (p, ¢)-forms on the open set U C C". Then we define L™ (U)
to be B}k krm(U) for any m, and L (U) to be the corresponding space
of currents. If f € L™ and g € L¥, then f A g € L7HF,

Now, for a fixed z € C", let d._, be contraction with the vector field

a 9,

1

This contraction anticommutes with the 0 operator (it is easy to prove this
by checking on forms of the type f({)d{; Ad¢;). We now define V=V, _, =
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O¢—s — 0, which is an operator from £™ to £™*! for all m. In fact, VoV =0
so that

L= L™U) — LN U) — .. (1)

is a complex. Moreover, V obeys Leibniz’s rule, that is

V(fAg)=VfNng+(-1)"fAVyg

for f € L™. We also have Stokes’ theorem,

anz—/DVf,

if f € £7" and D has smooth boundary, which is seen by noting that [, d,f =
0 and using the ordinary Stokes’ theorem.
For a current T € L™ and a test form ¢ € L7™!, we define

V.6 = (~1)"T.V¢. 2)

This is a good definition since it holds if T" is given by a smooth form, which
is seen by applying Leibniz’s rule and Stokes’ formula.
We want to solve the equation

Veau(() =1 - [2] (3)

in £} (), where  is some open set containing z. Here [2] denotes the
Dirac measure at z, viewed as a current of degree (n,n). This is really a set

of equations, namely
Se—zur =1, .., Oc_pUpyr — Oup, =0, ..., Ou, =]z,

where uy, denotes the component of bidegree (k,k — 1). The equations are
to be understood in the current sense. If u is such a solution, we will call
it a Cauchy form. Now let D C Q be a set with smooth boundary such
that z € D. If u, is smooth, we can take it to be the kernel in our integral
formula, i. e.

¢(2) = - ¢(C)un (4)

lunglav
if ¢ is holomorphic in D. Later, in Proposition }‘ZTK,gW will see that it is
enough to find a smooth solution v to Vi_,u(¢) = 1in L71(U), w ere U s
a neighborhood of 9D not containing z; then u will in fact satisfy (4).
The following proposition gives us an example of a Cauchy form.
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Proposition 2.1. Let z € C" be fized and let

1 9[¢—=P

Then the form

— — _ a1 k—1
0= = =A@ g
ild
will satisfy (V§?5 wn C".

Proof. First we want to show that Vu = 1 when ¢ # 2. It is easy to see
that d._.b = 1; furthermore 5C_Z5b = —55<_Zb = 01 = 0. Using this, we get
Sc—sUupyr — Oug, = dc_,(b A (Ob)F) — (b A (Ob)F~1) = (9b)* — (9b)* = 0. As a
special case, we see that Ou, = 0 since Uptq = 0.

To see what happens over the singularity, we prove first that du, = [2].
It is well-known that this is so, since our u, is the well-known Bochner-
Martinelli kernel. To prove it, assume for simplicity that z = 0, and take a
test function ¢(¢). Then |u,| < [¢|72""! close to the origin, and thus u, is
integrable, so we have

3610 Ao =ty [ 30(0) (6)

I¢I>e

Since Ou,, = 0 outside the rilgcin, we can use Stokes’ theorem on the integral
. . o
on the right hand side of (%i, and get

() [ o
2mi) Sy €2 <) PP

For the next step, we note that in the integrand we can replace 9(9|¢|?/[¢]?)
with 99|(|?/|(|?, since the term containing 0|¢|* will vanish because there
already is one such factor in the integrand. We continue from ((i and get

1\"1 = n—
(55:) [ et0nolcr a @orcry -

211 IC|=e
- (i> . ( 36(C) A DI A (B01¢P)"
- 211 E2n I¢]<e

v [ en@apy). ®)



where we have used Stokes’ theorem. Now we have two integrals, and we
will show that the first one converges to zero and the other one to ¢(z) when
¢ — 0. The integrand of the first one is O(|(])), so we can estimate the
absolute value of that integral with Vol(B(0,€)) - O(e)/e*", which goes to
zero when € — 0. .

We note that n!-dV = (i09|¢|?/2)", so the second integral in (%o) i eaual
to

(55:) & [ o0 @orce) -

2mi cl<e

—\" 1 n (a8 ~12\"
_ (%) = /|< _(90)+0CH) A (1) (991P)

n!

S /IC 0+ ol (9)

n 62n

baka
But the volume of B(0, €) in C" is equal to 72" /n!, and then we see that (b‘?ﬁ
converges to ¢(0), since the term containing O(|(]) will go to zero as € — 0.
To conclude the proof, we also need to prove that dcupy1 = Ouy, in the
current sense, for £ < n. To this end, take a test form ¢. Then we have

/(%k/\qb:/uk/\é(b:lim up A\ Op =

=0 Ji¢[>e
= lim Oug A —i—/u/\). 10) [nipsippa
HO( e ’ = ’ 1o

The second integral in (nl 0y wi Iago to zero as € — 0, since Vol({|(]| = €}) =
O(e® 1) and ugx A ¢ = O(|¢|72#T1), and the first one is equal to

lim 5uk A\ ¢ = lim (5<uk+1 A ¢ = /(5§uk+1 VAN ¢,

=0 JSi¢l>e =0 Ji¢l>e

where the last equality is true since w1 = O(|¢|"®*V) and Seupyy =

O(I¢I7*"). O

complex
We observe that since u is a Cauchy form, the complex (h’)_itﬁ(act if
z € U. This is because if we take f € £™ such that Vf = 0, then uAf € L™}
and V(u A f) = f.
The following proposition tells us how to find other Cauchy forms (it is
Proposition 2.2 on page 6 of [I]).



Proposition 2.2. Suppose u € L71(Q\ {z}) solves Vu =1 in Q\ {z}, and
that Jug| S |¢— 2|73 =Y. Then u satisfies Vi_u=1—[2] in Q.

f\"altsippa
Proof. Let u! be the form in Proposition 2.1, and fot u2 be a form satisfying
the conditions in the proposition. For simplicity, assume again that z = 0.

Then u' A u? = O(|¢|~?"?) near the origin, and V(u! A u?) = u? — u!

pointwise outside the origin. We want to show that V(u' A u?) = u? — ¢!

T
holds in the current sense. Take a test form ¢ € £1(Q). Then in light of (ZOEVS1 *
we want to show that

- [ nyave= [ - no. (11)

Using firstly that L/}{}LOQS is integrable, and secondly Stokes’ theorem, the
right hand side of (i 1y is equal to

— lim (u' ANu®) AV =
I¢>e

= lim ut AU A D+ V(u' Au?) A ) 12 __mikrosko
0 </<| ’ CI>e ( s (12) :

i k
The first of the integrals in (Hl%o to zero when € — 0, since u! A u? =
O([¢|72"2) and Vol({[¢] = €}) = O(e>"1). As for the first integral, we get

lim V(u' Au?) A ¢ =lim (ul—u2)/\¢:/(u1—u2)/\¢

=0 J|¢[>e =0 Ji¢l>e

using the fact that u' — u? is integrable. Thus, we know that V(u! A u?) =
u? — u' as currents. It follows that Vu! = Vu?, and since u! is a Cauchy

form, u? must be one too. O

We are now ready for the following proposition (Proposition 2.1 on page
5 of wl%)

Proposition 2.3. Suppose that z € D and z ¢ U D 9D. Ifu € L, (U)
and Ve_,u = 1, then Ou, = 0, and all such u, define the same Dolbeault

cohomology class we—. in U and any representative for w¢_, occurs in this
way. If u, is smooth and ¢ € O(D), then

P(2) = [ ¢(Qun. (13)

oD



Proof. Obviously if V._,u = 1, then Ou, = 0. Now we take v/, to be the
top-degree term of «', where Vu' = 1. We must prove that u/ is in the same
cohomology class as u,. But V(u — u') = 0, and since z ¢ U we can find a
solution w to Vw = u — /. Then v/, = u,, + dw,, which is what we wanted
to prove.

To prove the other direction, let u/, = u,, + O, where ¥ is an (n,n — 2)
form, be another representative of the cohomology class. Then v = u — V)
solves Vu' =1, and w;, is in fact the top-degree term of such a solution. Let

u be the Bochner-Martinelli form; then wu, satisfies (I[3)." If we use Stokes’
theorem on the boun ar gIEV@D, which is empty, it follows that |, op 0V =0,
and thus v, satisfies (I3). O

This proposition shows that one can see the kernel itself as just the top-
degree term in a larger form, and that all kernels occur in such a way. This
approach has advantages for example when we construct weighted formulas.

Definition 1. A smooth form g € £° such that Vg = 0 and go(z) = 1 is a
weight.

The main example of a weight is 1 + V¢, where ¢ ~1. Now we have the
following proposition (Proposition 3.1 on page 7 in [I])

Proposition 2.4. If g is a weight in 2, D CC (), and u solves Vu =1 in a
neighborhood of 0D, then

o) = [ olOungh+ /D bdn

if o € O(D).

Proof. We have V(uAg) = VuAg = (1—[2])Ag = g—[z]. Then d(uAg), =
gn — [2], and the proposition follows. ]

intsect
We will make use of this proposition in Section %.2.
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3 Estimating the degree of polynomial solutions
of the Bézout equation

| |
We propose to use methods from complex analysis to make estimates of the

degree of polynomials which are related to the division problem in Hilbert’s
Nullstellensatz. The setup is as follows: We suppose that f(2) = (fi(2), ..., fm(2))
is a tuple of polynomials which have no common zeroes in C", and such that
deg (f;) < d. Now we want to find polynomials p(z) = (p1(2), ..., pm(z)) such
that f-p = 1. We know that this is possible by Hilbert’s Nullstellensatz, but
we also want to get an upper bound on their degree.

The first break-through in this problem was by Brownawell in the 1987
paper [8]. The main part of his paper was to obtain the inequality

1) € [ (14)

by algebraic means with M = (n — 1)d* — 1, where p = min(m,n). Using
this inegnality it was proven that deg(p;) < p(d*+d), by means of a result of
Skoda [T5] based on Hormander’s work on L2-estimates and the d-equation.
An improvement on this was given in 1988 by Kollar [T1], where the estim fies
were improved to deg(f;p;) < d* in the case of d > 2. In 1997, Sombra %’7]
proved that deg (f;p;) < 2d* with no restrictions on d. Their proofs were
algebraic.
The result of Skoda that Brownawell used was

Theorem 3.1. Let f(2) = (f1(2), ..., fm(2)) be a tuple of polynomials such
that deg (f;) < d, |f(2)] > 0 in C", and 1/|f(2)| < |2|™. Then there exist

p() = (B1(2),. .- Dm(2)) such that f -p = 1 and deg (ps) < u(M +d) — d,
where p = min(m,n + 1). The result is true for M > —d, and if m > n we
have the additional requirement that (n + 1)M > —n.

This result can be sharpened by the use of residue currents, as ciiraldﬁf
where the same estimate is obtained with pu = igém 17115) In Section B—m
will show that it is i%%ssilgé% to obtain Theorem E%l by means of the Koszul
complex. In Section ;3.2 we will obtain an explicit solution p(z) by means of
integral formulas, Wi%lgtafli .eusstimate of deg p which is only slightly worse than
the one in Theorem B.T.

3.1 Using the Koszul complex
-dadlar

The Koszul complex method has been widely used in complex analysis since
Hoérmander first used it this context in . We let E be a trivial vector
bundle over C™ with the global frame {e;}, and let E* with frame e} be the

11



dual bundle. We then regard f(z) = > " fi(2)el as a section of E*, and
define the operation ¢y on sections of £ as contraction with f. In other
words, if s = Y"]" s;e; is a section of E, then d(s) = > 7" s;fi. The operation
is extended to sections of /\ E by Leibniz’ rule. We introduce the operator

V =y — 0 and aim to solve the equation Vu = 1. To this end, we define

i,
Ui

and set u =0 /Vo = oA o (90)F, in a similar way as in (%‘f.g’s%hen Vu =1,
using a "telescoping sum” argument. But in fact, the sum is not endless —
we have du, = 0 where g = min(m,n + 1). It is obvious that du,; = 0
since 1,4, is a (0,n)-form. On the other hand, du,, = §fu,, 1 = 0 since the
degree of u,,,1 in A\ E is too high. We can rewrite Vu = 1 as the system of
equations

m m
O':EO'Z‘:
1

1

ou, = 0
dpu, = 5“#—1
(5fU2 = 51&1
(5fu1 = 1

From these equations we see that it is possible to solve the system of equations

ow, = u,

5“’#—1 = U1+ 05w,

5101 == u1+5fw2. (15)

We want to obtain a holomorphic solution 9 to fi = 1; actually we can use
¥ = u; + dyw,. The problem then is to estimate the degree of ¢. This can
be done by first obtaining an L?-estimate of u,, then w,, then w, 1, etc,
working through the equations all the way down to v by using the following
theorem.

Theorem 3.2. Let g be a smooth (0,q + 1)-form on C", with g = 0 and

/ s < (16)
([ <
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where k < —2n if g=n—1, and k € Z for other q. Then there is a smooth
(0, q)-form u which solves du = g, such that

Juf?
(14 |C[2)k+1+nte < 0.

A proof of this theorem is given in yf\B'B] The first problem, then, is to
estimate the absolute value of

u, =o A (Do) =0 N Z dor N ey,
[ I|=p—1

where do; = Joy, A ... A ?Uikl- There is a crude way of doing this, where
we simply observe that |0a| < |0f]/|f]? < |2|*YT4!, which would imply
that |u,| < [z[2ME-DFMHw=DE-D  We can do better than this, but then
we need some background on positive differential forms. The concept of an
(n,n)-form being positive is well-defined, since complex manifolds have a
well-defined orientation. For a (p, p)-form, positivity can be defined in two
equivalent ways:

Definition 2. Let « be a (p,p)-form. Then a > 0if a Aiyy A3 A ... A
iVn—p N Yn—p > 0 for all (1,0)-forms ~q,...,7,—,. Equivalently, a > 0 if the
restriction to every subspace of dimension p is positive.

Proposition 3.3. Let a = E].’k ajridz; N dzZy, be a (1,1)-form. Then o> 0

if and only if & — ij a; 1€k 1S a positive semi-definite Hermitian form.
From this it follows that i00v > 0 if v is a plurisubharmonic function.

Proposition 3.4. If ay,...,ar are positive (1,1)-forms, then ay A ... A ag
15 also positive.

The form 3 = £99|¢|? is a positive (1, 1)-form, and 3, = dV/, where dV is
the volume form of C" with the ordinary Lebesgue measure. We also have:

Proposition 3.5. If ay and ay are (p,0)-forms, then {(aq,a)dV = caq A
a2 A Bn_p, where ¢ = (—1)PP=H/2(j/2)P.

We return to our goal — to estimate wu,. To do this, we try to find the
infimum of all » such that

/ _wl (17)
(L + [¢[*)rtn '

One can think of r as approximating the polynomial degree of u,. Now, we
have
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w,?dV < |o> Y |doy[*aV. (18)
H|=p—1

scal
We use Proposition b.S to rewrite our integrand:

Z ’50’[’26“/:6 Z 85'[/\501/\6”,“+1:

[I|=p—1 [|=p—1
- 95 A Do 95 A Do <
= C i00;, N Doy N ... NidG;, N Doy, N PBn_pr1 S
Hl=p—1

pn—1

< (Z i06; \ aaj> A By (19)
J

Observe that ¢ must be a positive number, since the sums on line two and

on the left hand, side of l{ e gne are both positive forms (as is the form on
amarie SO

line three). By (uzs ) and (19) we get

|uu‘2
- = <
/ e =
pn—1

1 r+n o _
5 / (TKP) |O'|2 (; zaaj N 80']‘> A ﬁn—u—i—l' (20)

To proceed, we need a lemma. We will only indicate the proof, as it is
mostly raw calculations. Also see page 94 of

Lemma 3.6. Let f be as before. Then

R 4 i00| f|°
: <= .
Xj:zao—j No; < G e (21)
Proof. We first prove that
AL12 A D £]2
W < i00|f|?. (22)

by expanding the expression i90log|f|> > 0, which holds because log | f|?
is a plurisubharmonic functio TQ prove the statement in the lemma, first
expand the left hand side of (% ) and get

namarie



Then we show that
i00| f)? 4 i00| f|°
[f1t T e[S
by expanding i00|f|¢ = i0(0( QQ)ﬁf{i)tthVhiCh is a positive form since |f|¢ is
plurisubharmonic. Then use (22). O

. . in .
Now, if we start with (b(); and use the lemma we just proved, we get

—1
1 r+n . 3 H
/ lo|? (TKP) (Z i05; N 8aj> A Bn—p1 <
J

) 1\ [iod)fl\"
S /"" (1+|<|2) (|f|2+€> A O

Note that the last estimate is gained at the price of getting a large con-
stant depending on € in front of the integral. But since all we care about
is the polynS 'gmtlnggowth of the integrand, this is not important. Using our
hypothesis (ﬁ%the estimate |o| < 1/|f] <M, we get

1\ fiod]f\" !
J ot (1_+ |<|2) ( e ) Mooy X

1 (p—1)M—M+n—(pu—1)Me/2 B L
< - 00| f1)" A Ba s

Now we want to use integration by parts. To this end, we take a smooth
cutoff function xy = x(|¢|*) such that

_ 1<t
10 €] >2.

Then let xr(¢) = x(¢{/R). We will integrate

1 r—puM+n—(p—1)Me/2 o el
/XR (TICIQ) (1001 £1)" " A Bu—pin

by parts, and then let R — oco. To simplify the notation, first set

1 r—uM+n—(u—1)Me/2
o= (15c8) . 23)

L+ [¢?

15



We want to move 90 on the first | f|° to the other factors. This will not affect
(D] f|)*®s or By_,t1, since they are closed, but only o and y. We have:

/ xra A idd| f|° A (i08] £1) 2 A Bupir =
_ / 109k Al FI° (193] F)" 2 A Buoyss +
+ / i A Do A f1 (100111 A Bueyss +
+ /i@a A Dxr A FIE (10D FI) ™2 A By +

4 [ xwida AT (0011 A o

= L+L+ L+, (24)

Now, we want to examine each of these four integrals. Note that the
integrands of the first three ones have support on {R < |¢| < 2R}; we will
choose an r such that these integrals vanish when R — oo. We first consider
1, Wh{'challll%gksaupport on {|¢| < R}, and to do that we have to look at 100«

(cf. BR

Lemma 3.7. We have the estimate

o 1 k 1 k+1
Zaa(mc\?) S%(‘”ch\?) &

Proof. We have:

o1 N\
288<1+|<|2) -
= k(L ¢ (k4 VAN ADICE — (L4 [CPOBICR) . (25)

Since i00|(|? is a positive form, we can just omit the last term when we make
an estimate. Also, £0|¢|* A 9|¢|* < |¢|*5, which can be seen by choosing ¢ =

(¢1,0,...,0), since the forms in o] etset&on are unchanged by unitary mappings.
Thus the lemma follows from (bgi O

We can see now that

1 r—uM+n+1—(u—1)Me/2 )
€ [ apa) e\MH—
]4§/X<1+|C|2) /\|f‘ A (iaa|f’ ) /\611—#4-27

16



i. e. we have one more factor 3 and one less factor i99|f|° compared with
what we had before the integration by parts. We make the estimate |f|© <
(1 4+ [¢]?)%/?, which gives us

1 r—pM+n+1—(u—1)Me/2—de/2 )
a9 ple\H—
-[4 5 /X (1 + |<—|2) A (laa|f‘ ) /\ﬁn—u-‘rQ‘

Now we integrate this by parts again. This will give rise to three new "bound-
ary integrals” (we will look closer at these later) and another integral which,
like I, has support on {|(| < R}. We then repeat the procedure until we are

down to
1 r—puM+4n+pu—1—(p—1)Me/2—d(pn—1)e/2
XD (—) :
(e

This integral is convergent if

r>pM —(p—1)+e(p—1)(M+d)/2, (26)

so the integral I, also converges for this 7.

We also have to make sure that the integrals I, Io and I3 go to zero
as R — oo. Take I;, for example, which contains the (1,1)-form 99y g.
Looking closer at this form, we see that

TN (ﬁ) _ ( &) O AP ( @) 00l

R? R? R4 R? R?
1f
Using the same idea as in the proof of Lemma 3 ,awe can make the estimate
= 1
i00xr < Zo0n(CP/ R0,

where ¢, is some positive rotation-invariant function that has support on the

annulus 1 < |¢] <2 and ¢1(¢) > x"(¢) + X' (¢).
Now we can say that

= 1 b € (A rle\H—2
[1 = /Z88XR/\ (TKP) |f| (288|f| ) /\ﬁn—u-i-l S

1

k—de/2 - 72
1+yq2) (1001 F1)" " A Buepga- (27)

1 2 2
oo/

This looks like what we had before the integration by parts, except that the
cutoff function has support on {R < [(| < 2R} instead, and that we one
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more (3 and one less i00|f|°. And, of course, that we have an extra 1/R? to
help with the convergence. Now, we can just repeat the integration by parts,
if we check that I; and I3 will behave nicely as well.

I5 contains the form

. a 1 k
iOX (PR A (k) =
] 1 & k+1 _
— i (IC12/B) 0lCP A () OICP S

k
S 0alCP/R) (i) (28)

where ¢, is a positive function that has support on the annulus 1 < |(] < 2
and ¢o(|C?/R?) > X' (|¢|*/R?). Just as with I;, we have got one more (3,
one less i90| f|°, and an extra 1/R%. Now we repeat the integration by parts.
The integral I3 is in fact identical to Is.

We have shown that for each extra 3, we get an extra factor 1/R?. When
we have done partial integrations until no 99| f|¢ remains, the integrand will
be (except for a cutoff-function)

Y

1 1 T_HM+TZ—E(/.L—1)(M+d)/2
o (e7ee)

which we can just as well write as
1 r—uM+n+p—1—e(p—1)(M+d)/2
()

If we choose > uM — (n— 1)+ e(pu —1)(M +d) /2, as above, we see that all
the integrals with cutoff functions that have support on R < |¢| < 2R will go
to zero, which is what we wanted to prove. To sum up, we have determined
that

/( Wl o (29)

T+ 1gP)y+

for r > pM — (p— 1), where € = e(u — 1)(M + d)/2 is chosen to he smaller
than 1. We will continue by working b %lé itshrgugh the equations ( o get

an estimate for ). We apply Theorem 8.2 to dw, = u, and get

|wu|2 < o0
(P <™
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Next we want to estimate w,_;. We know that 5w#,1 = Uy—1 + 05w, and
since u,_1 grows much less than u, and the application of §; amounts to
multiplying with a polynomial of degree d, we see that

|aw/rl| <
(1 + |C|2)r+n+1+d+e’ 0.

di
By Theorem }%02 3t follows that

|wy—1] < 00
(1 + |C|2)r+n+2+d+e’ ’

Then we continue in the same way until we get

i .
(14 [C[2)r+n+m=D+du-1)+¢

for ¢ = uy + dpwsy, where r > puM — (u — 1). But since ¢ is a holomorphic
function, it follows from Liouville’s theorem that it must be a polynomial of
degree at most

r+(pu—1)+dpu—1)+=puM—(u—1)+p—-1)+du—1)+¢ =
= u(M+d)—d+¢€. (30)

Since € can be chosen arbitrarily small, we conclude that degt is at most
w(M +d) —d.
Let us discuss how small M can be for this to be true. First, we rewrite

(s%'o;élos
I
(L4 [zD* ™ (L4 |z|)M+

Since f is a tuple of polynomials with no common zeroes jtr% (C” we have
M+d>0,s0o M > 1 ?he other Condltlon in Theorem E% I arlses because
when we use Theorem ﬁ&we need to have r > —2n, which means
that uM — (p—1) > —2n. We need only make sure that this condition holds
if m > n, though, since otherwise the form u, is not of degree (0,7). In this
case the condition is (n+ 1)M —n > —2n or (n +1)M > —n.

3.2 Using integral formulas

It is also possible to get an explicit sglution to the division problem by using
the integral formulas of Berndtsson [6]. We can then reuse some of the esti-
mates in the section on the Koszul complex section to obtain an estimate of
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the degree of the solutions which is only slightly worse. First some prelimi-
naries. We regard f again as a tuple, not as a section of a vector bundle. Let
o= (f/If1% - fu/If]?), p =min(n+1,m), and let h(¢,2) = (hy, ..., hm)
be a vector of holomorphic (1, 0)-forms such that d._.h; = f;(¢) — f;(2). The
h; are called Hefer forms, and can be explicitly constructed since the f;’s
are polynomials. Note that the coefficients of the Hefer forms will then be
polynomials of degree d — 1 in both z and (. We have the theorem

Theorem 3.8. Let f(z) = (f1(2), ..., fm(2)) be a tuple of polynomials such
that deg (f;) < d, |f(¢)] > 0 4n C", and 1/|f(2)| < |2|M. Then

K _ . d n—k _ 1 o r—n-+k

where ¢, = (") (¥). We also have the estimate degp; < p(M +d) — d +
(d—1)(up —1). The result is true for M > —d, and if m > n we have the

additional requirement that (n + 1)M > —n.

viktint
Proof. From Proposition }Z.ZI we know that if g((, z) is a weight, then

1:/ (u/\g)n’n_qu/ Gnn- (31)
oD D

The indices indicate the bidegree, u is the Bochner-Martinelli kernel, and in
our application, D = B(0, R). We want to use a weight g such that the first
integral disappears when R — oo, and such that f(z) is a factor in g. We
will then estimate the degree of the rest of the second term, which will be
our p(z). Consider

(142 C S CdC N, S CdcY
"= (1+|<12“31+\<|2) ‘(1 v1+|<|>

g = (f(z)-c+h-00)"=(1—-V(h-o)) (32)

which are weights. Now let ¢ = g1 A go. Then g will be our desired weight
for some value of r, as g; will make the boundary integral go to zero, and
f(2) is a factor in gy since (Jo)* = 0, just as in the section on th . Koszul
complex. The idea now is to find an r such that the first integral in (T?I')Ws
to zero, and the second converges, as R — oo. Then the degree of p(z) must
be r —n+d(p—1).

We start by looking at the second integral. Writing it explicitly, we see
that it is equal to
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/(f(z)-a—h-aaw(llj—l'éw)r. 33

Note that w = idC - d¢/(1 + [¢]?) = i90log(1 + |¢|?), which is the second
term in g, is a strictly positive (1, 1)-form. It gives rise in a natural way to
a Hermitian metric on 7} o, which induces a Riemannian metric, dependent
on 1)” wy. The term in the integrand

gy f(fr which the volume form is dV = (5
of (B3) which has the largest polynomial growth is

B - 1 +Z'C r—n+pu—1
J(h : 00)“ ! A (TKP) Wn—p+1-

Sfcgsie use the scalar product induced by w instead of 3, then by Proposition
b we have

(h : 50‘)“_1 A Wn—p+1 = Z hi1 VAN 50'7;1 VANIRAN tha VAN 50’@71 A Wn—p+1 =

[1|=p
= =+ Z hi1 /\-"/\hi;‘,1 ...50’2‘1 /\.../\50’,‘#71 /\wn_,LH =
[Tl=p—1
= £ > (b, do1)dV. (34)
Hl=p—1

Thus, our integral converges if

142 5 r—n+p—1 B
/ o (TMP) > (h1,001)u| dV < . (35)

[I|=p

To simplify our formulas, we observe that

< 1
17 1¢]

14+2-C
1+ |¢]?

T
We use first the triangle inequality on (EB%, and then the Cauchy-Schwarz
inequality three times in a row — first on the scalar product inside the sum,
then on the sum itself, and finally on the whole integral:

2

1 r—n+p—1 B
/ (o} <r|€|> Z<h1,80'1>w av S

1]
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1 r—n+p—1 3
) > [(hr, dop)uldV | <

1]

1 r—n+p—1 B
hiloldorlodV | <
()Xo

(VAN
—
S

VAN
—
S

1]

1 r—n+p—1 —
hrl? dor|2dV
1+!C!) \/Z| I|“’\/Z| 71l

AN

IN
—
S

B 1 r—n+upu—1—k
< [P0t (1570) v (36)

We need to determine what & must be for the first integral in the product to
converge. We rewrite the integrand as

1\ _
(1+’<’2) chhl/\hf/\wn—u—i-la

1

where the ¢; are constants. Each h; is a (1,0)-form with polynomial degree
d—1. Also

B
SR nree (37)

so to compensate, k = (d — 1){g <. 1) = (n — p + 1) +n = d(p - 1)., The
7y in

second integral in the product (B6) is almost the same integral as ( he
Sr,(cevi'ce)us section. The main difference is that we have w instead of 3. Using
(B7], we see that

ﬁn—/ﬁ-l
n— < Y
S ey

andsor—n+upu—1—F .g)l(i—/L—I—lzuM—(p—l)—i-e%—n, where we get
the right hand side from (26). That is, r = uM +n+ (d —1)(p — 1) + ¢, so
degp<r—n+dp—1)=pM+d)—d+(d—1)(p—1). O
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4 Proving Briancon-Skoda’s theorem by means
of integral formulas

We can use the same integral mulas as in the previous section to prove
Briangon-Skoda’s theorem (see

Theorem 4.1. Let f1,..., f, ® be germs of holomorphic functions at 0 €
C", and assume that

o] S 1, (38)
where 1 = min(m,n). Then ¢ belongs to the ideal (f)".

By ¢ € (f) we mean that there exists a tuple p(z) of holomorphic func-
tions such that ¢ = f-p, and (f)" is then the ideal generated by all products

of r elements of (f).

_ The original statement of Briangon-Skoda is that mM+T_1 C (f)". Here

(f) is the integral closure of (f), and ¢ € (f) is equivalent with |¢| < |f].
The original theorem follows from our theorem in the following way: take
¢ € (f)HT ' Then ¢ is generated by elements of the type ¢ - ... ¢puir_1,
where ¢; € g@ meaning that |¢| < |f]. So we get |¢| < |f|#H7~ 1, Which by
Theorem h._l—lﬁplies that ¢ € (f)".

In the proof of the theorem we wish to use the same type of integral
formulas as in the previous section. The difference is that there we wished to
solve a global division problem without common zeroes, and the problem was
the behavior at infinity. Now, we wish to solve a local division problem with
zeroes, and we want to use the same ideas as in the previous section. We
cannot use the same weight g as before (see (%‘;%7 since it has singularities
where f(¢) = 0. So we start by finding a replacement to it. If we first define

RO
") = TR v
and then

€

g;(CVZ) = f(Z) ’ UE(C) + h(C7 Z) ’ 506(C) + Wv

then g5 will be a weight. This is so because it is equal to 1 — V(h - 09),
which is shown by an easy calculation. Note that when € — 0, then g5 —
f(2) -0+ h-00 = g, where () # 0.

We also need to construct a weight with compact support. To do this,
let u be a Cauchy form, that is Vu = 1 — [0], and take a cut-off function
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with compact support x that is 1 in a neighborhood of the origin. Then
g1 =1—V(u— xu) is a weight whose compact support includes 0, since

G=1—(1—[0)—0xAu+x(1-[0])=x—0xAu.

. L. viktint
According to Proposition 2.4, we have

o) = [ (@8 Ao no=
_ (”7“) /<f(z)-a€)TA(gg)lAglA¢+

.
r—1 l"—T’ ok . c I+r—k
+/]§( k )(f(Z)-J) (h-aa +|f|2+6) AgiAd. (39)

Note that the boundary integral disappears since g; has compact support
and that the first integral in the right hand side is an element in (f)" (if it
converges). To prove the theorem, we look at the cases m Eol%éi I?knd m<n

separately. The first case will be proved by taking [ = n in ( ) dand proving
tiautﬁthe‘secondl %ntegral goes t(l)D 0 thar.l € —étgs(igg(s)pos?lon 2), a}rlld that
EF e first 1n§egra is Conve(i’gent ( r3p0s1t101} El.fi affgr we E%(:T_tor (;)%t the f (z)

olle ng(f?n, case 18 prove. n a similar Way n : roposition 4.4 and Proposition
E.B iSy taking [ =m — 1 in (39). We begin with the case m > n.

1b th
Proposition 4.2. If (e38 ?erﬁeélds and m > n, then

/ki: <n ;: r) (f(2) - o) (h - 9ot + Wﬁyﬁuk AgiAé  (40)

converges to zero when € — 0.

Proof. Since the zero set of f might be complicated, we use Hironaka’s theo-
rem on resolution of singularities to obtain a zero set with normal crossings.
More precisely, according to Hironaka’s theorem, if we take a small enough
neighborhood U of the origin, there exists an n-dimensional manifold U; and
a proper analytic map Il : U; — U, with the following properties: if we let
Y={2:fi(2) ... fu(2) =0} and Y; =TI (YV), then I, : U\Y — U; \ Y
is biholomorphic and‘YI has (ﬁnit.ely ma.ny) normal c&o&&ggg in \gﬁihien

If g, has support in U and K is the integrand of (40}, then (M0] 1s equal
to the integral fUl w7 K. Since there might be many crossings, we take a
partition of unity {p;} such that the support of each p; contains only one
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crossing. The partition of unity is finite, so we choose one of the integrals
fUl p;m1 K and check if it converges to zero. In the support of p; we can find
local coordinates 75, such that we can write II]f; = a;u;, where the a; are
non-vanishing and the p; are monomials in 7.

We can simplify the problem even more, since given a finite number of
monomials fi, ..., i, defined in supp(p;), there exists a toric manifold U,
and a proper holomorphic map Il : Uy — supp(p;), such that II, is biholo-
morphic outside the coordinate axes, and locally it is true that for some 4,
IT5; will divide all the other II51;. Also the II5u;’s will still be monomials.
(For more on these techniques, see ﬁ) So we get

[omir = [ womE).
Uz

Then we find another partition of unity {p;}, where the support of each p
is such that some II5u; divides all the others. The partition of unity is finite
since U, is compact. We choose some pj, and look at

| dmstomin). (41)
Uz

If this integral goes to zero, then we will be done. What it boils down to is
that we can assume that f, after the pullbacks and partitions of unity, can

be replaced with fof’, where f' = (fi,..., f!.) has no common zeroes in the
nelghborhood Where we integrate. We can also assume othat fo is a monomial,
i.e. fo=2zM-... -2k Now look at the integrand of (hl % both ), and 75 (,0])

are just smooth functions. But each term in 75 (7} K) we can write as

fof * e oy 5 Jof € n+r_f .
(f(z) |fof’|2+€) (77 (mih) -0 fof' |2+ € + |fof’|2+e) N o7y (Pg1)-

l} forrH 75 (mih) is a holomorphic (1,0)-form if A is, and ¢ o 7y o my satisfies
does. The form 737} g; is also smooth, so the only important thing
that has changed is that we can replace f with fyf’ - it does not really
matter which smooth forms are involved, since we are anyway integrating
over a compact set. To avoid a complicated notation, we will proceed with
the original integral, with f replaced with fyf’.
First observe that

(h-00)""" =0 (42) [seseli]

for degree reasons. For k < n we have
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(h00)" = (6‘ {L-(h-ﬁ})k = (—fU )km-af')u
[folPLf' I + € oIS/ +e

f 7 k—1
+k0 <|f0|2|jcf?|2 —I—e) <|f0|2|;(,]|2 +e) A(h-fYN(h-df )t (43) [ne;

Since fj is a monomial, we have |fo| < |dfo| close to the origin. Then we can
show (we omit some calculations) that

| < DRI

~ ([ fol? + €)F ,
. Quthien seseli |

Recall that we want to look at the integral (20). With (42) In mind, we can

show that the term in the integrand with the worst singularity is

‘(h . Jo¢ (44)

€

o1 A (f(2) - o) (h- Do )" - TE+e (45)

celebrian tinuviel
By (hzﬂ we can estimate the integral over the absolute value of (hB; with a

constant times
£ |2n+2r—3 5 r
6/ |f0’ 5 ’n_"_fq‘f)|, (46)
<1 ([fol? +€)

if we assufy ;cllg}:‘% the support of the weight g; is the unit ball and use the
estimate (?8%7

Recall that we can assume that fo = 28" - ... zf». We will look at the
term of |0 fy| containing the first of the partial derivatives, which is equal to

ki(2n+2r—2)—1 | . kn(2n+42r—2)
z|<1

(|2’1|2k1 - |Zn|2kn + E)n—i-r

. . lalaith
We will use the dominated convergence theorem to show that (h?i converges
to zero when ¢ — 0. First,

T P L €

<1 d <1
(|11 2|20 4 €) = an

(el el )

Y

celebrian

so the integrand of I can be estimated with |2,|~! which is integrable. M O ien
(gUt):

over, when ¢ — 0, the integrand goes to zero pointwis, so the integral
goes to zero. ]

bofink .
We have now shown that the second term of ()‘395 vanishes if m > n, so
we look at the same problem in }(1) cgsem < n, and postpone the discussion
of whether the first integral in (39) is convergent. First we have a lemma:
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Lemma 4.3. We have
(h-0f)"

R To i K S A
(h-00)" = {17+ i

(48)

Proof. We first make the calculation

ey (20T (DAY
2oy = (e~ ey o)

(LA 371

/1P +e (177 + e
% (h-OF(1f12 +€) = m(h- )IIFI?)

(h-0n" _ (h-OD"™ " gr( 42+ )—mih - POIFP). (49)

U T

miniel

1le
We must show that the second term of (hQi is zero. But we have

m
— -

(h-0f)™ ' = (m—=1)!Y h; ADf;

1
and then the second term will be equal to

(m—1)! (Z(h Of)" P =m Y fifi(h af>m> = 0.

1

]

bofink
Going back to our integrals, we look at the second integral in (39) 1n the

case [ =m — 1.

elbereth
sus| Proposition 4.4. If (138) holds and m < n, then

r—1 mar — 1 . - i m+r—1—k
/Z L (f(Z)O') haO' +W /\gl/\¢
k=0

converges to zero when € — 0.

Proof. Like in the previous proof, we can replace f with fyf’. The worst
term in the integrand is
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(f(z) - ) (R 505)7” ANgiNo =
() F)y " fo (h-0f)™
(IFP? + 6)’"*’” ’

lingon . L. ida
where we have used Lemma h.3. As in the prTgoaﬁ g{ Proposition h.?, we can

estimate the integral of the absolute value of (b0) with

| fol2m =310 |
/<| (fol2+ertm

The rest follows as in the proof of Proposition h‘Z n

= €q A (50)

g\g styrn to the next proposition, which will show that the first integral
in }'395 18 convergent when [ = m — 1, if we first factor out the f(z)’s

elbereth
Proposition 4.5. Assume that (38) holds and that m < mn. Then

2‘71 (95)™" " AL A, (51)

[|=r

€ __ € €
where 07 = 0§, ... 0}

ir?

converges to an integrable function when e — 0.

Proof. As in the proof of Proposition Eﬁli we choose one of the integrals
resulting from the pullbacks and partitions of unity. The calculations are
again very similar to t hat sp1¥100f and we will only state that we can dominate
the absolute value of (;l with

| fol*™ 22101
(|f0|2 + E)r-l-m—l ’

(52)

faktura kr
This function is dominated by |2|~! in the same way as (hb’i is. Thus (52;

converges to an integrable function. Does it follow that the original function
converges to something integrable as well? To get the original integral back,
we must start with terms like pj 75 (p;77 K), where K is the original integral.
Each of these terms is integrable. Then we must apply (7). and (7). and
sum over j and k. But outside the sets where we have singularites, our
projections II; and I, are in fact biholomorphisms, which means that the
original integral will be integrable there. Note that the sets where we have
singularites are zero sets. Let s be the integrand that we want to show is
integrable, and let x4 /,, be cutoff functions with support in U\ Y that increase
pointwise to x with support in U. Then
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sup/|sxl/n| < 00

since the projections are biholomorphic in the support of every xi,,. Then
lim,, . [ |$X1/n| must exist and be equal to [ |sx| by the monotone conver-
gence theorem, which means that the original integral is integrable. ]

g\g Surn to the case m > n, where we have to show that the first term
of (b@%,iwith [ = n, converges when ¢ — 0. In this case the integrand will
not converge to an integrable function, but rather to a current operating on
¢. First we note that g, = vy — Ox A u, and dx = 0 close to 0, so the terms
containing Oy will be convergent. This means we only have to look at the
term containing x. Then we can say the following:

Proposition 4.6. If we assume that we can replace f with fof’, where |f'| >
0 close to the origin and fy is a monomial, we have

a /
iy | 37 n0 A (1007 = { +] 20 f]\f |§<T+”)

[|=r [|=r

FOF - Ky (7 1)
vl 2 X R o

where [1/ ””] denotes the principal value current of 1/f5H".

This proposition does not mean that the original integral is equal to these
currents, only that aélt_%r we do pullbacks and partitions of unity as in the
proof of Proposition 4.2, then one of the resulting integrals can be written
using the currents above. From this we can draw the conclusion that the
original integral converges to something, though the limit of the integrand is
not integrable. But actually, this is all we need, since the integral will depend
holomorphically on z, and' t'hus 1t ;Aé]illcefénlsh the proof of Briancon-Skoda’s
theorem. To prove Proposition E.B, we need the following lemma [T4]:

Lemma 4.7. If ¢ is a test form, fo is a holomorphic monomial and o is a
smooth non-zero function, then

: Jo ’ 1] e
it (|fo|2a+e> W‘[T’J o
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Proof. (of Proposition E_egafSBl;_e?&% we have
B o f() r+n
/ > oxoi A (h- o) = / > oxfidf Ah)" (WT) +

|I|=r [I|=r

Y n— 7! fO 7"+n—17 JEO "
s [ S onuor any Al Am(W) nopd (o)

[|=r

. HQ%E first ; . . ¢
(lg%ln&gelﬁma .7 we can see that the first integral on the rlggsfi h%gg551de 0

converges to the first integral on the right hand side of (b3). As for the
other integral, first we note that

) AO— = 5 :
|fI>+e IfI?+e r4+n \Uf]P+e€
and then another applicatw’ogl b%fs‘\chéallemma shows that the second integral

on the right gmlndssoir(lise of (h4) converges to the second integral on the right
hand side of (b3]. O
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5 Integral formulas on P”

Such formulas on P" have been considered before in where they were
constructed by using known formulas in C**!, and in [7], where they were
constructed directly on P". I will also construct formu’lanst éiilggﬁgémon P,
but by using an analogue to the method used in Section 2, which allows for
greater flexibility.

First we define  : C"*1\ {0} — P" by 7(¢) = [¢], where [(] denotes the
set of all non-zero multiples of (. P™ can be covered with a set of coordinate
neighborhoods {U;}, where for example Uy = {[(] : (o # 0}, and the local co-

ordinates in Uy are given by mo(Co, ..., Cn) = (C1/Cos -+ Cn/Co) = (¢1, -, ().
We want to characterize differential forms in P". Let us take a differential

(1,0)-form a(¢") = f((1,...,¢,)dC in Uy and look at mia(¢’). This will be a
differential form in C"*!:

T A O S R W DY
W@-f(co,...,go)d(go) f(CO,...,C[]) gg(godgl CiydCo)  (5D)

and similarly with (0, 1)-forms. The pullback of a form o degree (p,q) in P™
is given by the wedge product of factors like the one in (

We would like to find integral formulas on for sections F‘%ine bundles on P".

Definition 3. A projective form is a differential form in C*™! that arises
from the pullback of a differential form in P".

By d¢ and oz we mean contraction with the vector fields
"0 "0
i d imE
NI

Note that (5_45 = —06.. If Sca = 0, we have a = 6:3((), since we can take
B(¢) = (32 GdG/IC1?) A e

Proposition 5.1. Take a differential form «(¢) in C"™'. Then « is a pro-
jective form if and only if éca(¢) = 0, éz(¢) = 0 and « is zero-homogeneous

(i e a(cC) = a(C) for c€ C).

Proof. We begin by proving the proposition fo o%—forms. A projective form
of degree (1,0) is a sum of terms of the type (%5), which are homogeneous.
We also have d¢(¢od(;, — (i, dCy) = 0. The case with (0, 1)-forms is similar.
Conversely, take a (1,0)-form «(() such that dc(¢) = 0 and «(() is zero-
homogeneous. We want to show that «(() is projective. First we find a
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(2,0)-form $(¢) such that «(¢) = 6:6(¢). The form (({) consists of terms
of the type f({)d¢; A d(j; let us look at one of these terms. Clearly, if « is
zero-homogeneous, ( will be as well, which means that f is homogeneous of
degree —2. Then we have

6 f(Q)dG N dC = f(C)(GdC — ¢dG) =

o
é 7 (9 P C—") (GG — ), (56)

G G

which is the pullback under 7; of f((7,...,1,...,¢,)dC;. The case for (0,1)-
forms is similar. We have proved that the projective 1-forms are exactly the
ones that satisfy the conditions in the proposition. It follows that the exterior
algebra generated by the projective 1-forms must be exactly the forms that
satisfy the conditions. n

Differential forms can also take values in some line bundle over P". Let
a take values in L™ = O(m) (locally, sections in this line bundle correspond
to m-homogeneous functions). Then the pullback of o in C"*™! will be an
m-homogeneous form, and we will still have dca(¢) = 0 and dza(¢) = 0.

We want to find integral formulas for sections of the line bundles on P,
in a similar way as before. In C" we used the operator V = d;_, — 0, and in
P" we will replace d._. with J,,, which is contraction with the section

) )
=2Miz - = = 2W Y Zim—
! o ; o

where z is an fixed point of C"*1\ {0}. Note thaﬁ if [C] = [2], then 4, is zero
on all projective forms, according to Proposition b.T.

Proposition 5.2. The section n takes values in T(P&]) ® L[_C]l ® L[lz]- Ex-
pressed in the local coordinates in Uy, we have

_ . 20 - / / 0
n= 27”@ Z(Zz - Cz)a_g

1

By saying that 7 is a section of L[lzp we simply mean that n is 1-homogeneous

n z.

Proof. Without loss of generality, suppose that zy # 0. We want to know the
image (or push-forward) of 0/0¢; under my. Take a function F' on P". Then
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0 0 0

Wo(a@)F(C’) = GCZ-F om(¢) = a—CiF(gl/co, G/ Co)
Claag, (C’) if i £ 0
N (57)
if i =0

_; acf

using the complex chain rule and the fact that 5=
is, we have in local coordinates

(C]/Co) = 0 for all 7, 7. That

0 10
G

Substituting into 7, we get

27i2g (Z 2 a(z

T] - . .
= 2m— Z; — o8
2 Z( D Tk (58)
O
Set V = 4, — 0, where 6, will act in a natural way as a contraction

on differential forms on P"”. As in the previous section, we want to solve
Vu = 1—[[z]], where [[z]] is the Dirac measure at the point [z]. To find such
a u, we start with the form v = z - d{ = ) z,d(;, which has the property
that 0,0 = 2mi|z|*> # 0 when [¢(] = [z]. The problem is that v is just a
form on C"™! and may not be a projective form. To remedy that, we will
%ﬂect it onto the subspace of projective forms. According to Proposition

, a projective (1,0) form « is characterized by dca = 0. Thus, we can
describe the (1,0)-forms on C"™! at some point ¢ # 0 as the sum of the
space of projective forms and the span of ¢ - d¢ (which is a form such that

6¢C-d¢ = [¢|* # 0). The projection © of v onto the projective forms can then
be written as
~ <U7 C_ ’ d<> = Z- C s
p=p— D Code=z-dC—2Z3C.ac. 59
- &P <P )

If u=0/V0, we have
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Proposition 5.3. We have V,yu =1 —[[2]].

Proof. We can assume that z = (1,0,...,0). The proposition will follow
o carex

from Proposition B.2, if we show that lug| < |¢'[72*+ close to ¢! = 0. We

have

Since 0(z) = 0 and v is smooth, we have |[0| < |¢'|. Furthermore, §,0 =

(I2PICP = 12 - /ISP = (1K1 = 1Gol*)/IS1* = ¢/ (1 + [¢'7) = [¢']?/2 close

to z, so we can make the estimate
oA (00)k1
(050)*

close to ¢’ = 0, which concludes the proof. O

5 ’CI|72k+1

It is interesting to compare our kernel with the Bochner-Martinelli kernel.
Obviously, they are not the same locally. On the other hand, our kernel u has
the property of being invariant under linear transformations that preserve
the metric, which is not the case for the Bochner-Martinelli kernel. More
precisely, we have:

Proposition 5.4. Let A be a unitary linear transformation on C"*. Then
u, expressed as a differential form on C"L, is invariant under pullback of A.

huichi
Proof. We look first at the pullback of v (see %59;;1% 5 equal to

Az AC -
A0 = Az - dA( — ———AC - dAC.
| ACJ?
Since dA( = Ad( (remember that d{ = (d(p, ...,d(,)) and A is orthogonal,
we have A*0 = 9. Then we recall that u = 9/V10, so one has to check that
A*6,0 = 0,0 and A*00 = 00, for example. This is easily done. n

We can use u to construct integral formulas for line bundles on P". Note
that w, is of bidegree (n,n—1), and takes values in the line bundle L, @ L 1"

To integrate with respect to ¢, we need to pair u, with a section ¢ in L[_C"7
so that their product will be a differential form on P" that takes values in
the trivial line bundle. Thus, if ¢ is holomorphic and [z] € D C P" we have

oD Puy, = /l)¢aun = ¢([Z])
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bl
by Stokes’ formula and Proposition %n.aB. =
However, this only gives us an integral formula for sections of L_C]” To
ggt one fqr s.ections. of g)rtl}élggclcine bundles, we need. to use weighted forrr}ulas
(like we did in Section b.Z in order to handle functions that grew too quickly
at infinity).

Definition 4. We say that g € £° is a weight if Vg = 0, go([2]) = 1 and
gr takes values in Lf]’ ® sz " for some i. Here gj, has bidegree (k,k) as a
differential form.

Just as before, the wedge product of two weights will again be a weight, and
we have V(g Au) = g — [[z]]. We will show that

ZC ¢ dC z- C
—2Mi0>—>
SE T T

is a weight, and then we can use o"*" to integrate sections of L". Note first
that z-(/|¢|? takes values in L[C] ® Ly, and that d(C-d¢/|¢]?) is a (1,1)-form
that takes values in the trivial bundle. Clearly, it is 0-homogeneous, and
further we have §:9¢ - d(/|¢|* = —05:C-d(/|¢|* = —01 = 0. Further, Va = 0
and «g([z]) = 1, thus « is indeed a weight.

For general weights, and for « in particular, we have the following propo-
sition:

+ 2mid0 log | ¢|?,

Proposition 5.5. Take a weight g such that g,, takes values in L[z{ ®

| (and gi takes values in L’f]r "® L, k”*”} If a section ¢ of L™ i
holomorphzc in Q, [z2] € D CcC Q, and K is such that V,K = g in a
netghborhood of 0D then

o= [ onk,+ /D b0,

So by using g = o™*", we now have integral formulas for sections of L"
where r > —n.

Example 1. If ¢ is a global section of L", then

o(lz]) = | dgn = <150/’+"
pr

What is this, explicitly? First, we know that
iy = mir (") (33 (01on(icR)”
’ n
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so we get

o) = mir (") [ (K—f) (90108 (1¢[)" o)

This formula is also obtained in Fﬁg
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6 The Koppelman formula in C"

We will now look at pelman formulas in C"; the account is inspired by

Section 9 JDage 16 in [T]. One can regard this section as a continuation of
] in aliorm . .

Section b Fho idea here is that while » has been a constant before, we now

want to regard it as a variable.

Let Q be a domain in C" and let n = z—(, where ((, z) € Qx €. Consider
the subbundle E* = {dn:,...,dn,} of the cotangent bundle 77, over Q x €.
Let £ be its dual bundle, with basis e;, and let d,, be contraction with the
section

2mi Y mye;, (60)
1
where {e;} is the dual basis to {dn;}. Now we look at

/\(E* D T(;k,l)a

and let £, , denote the space of sections of this bundle with degree p in E*
and degree ¢ in Tgy. Set L™ = P, Lypim and V =V, = §, — 9, where 9

acts on C" x ()” Then V will map L™ to L£mrt
. integralform .
In Section 2 we wanted to solve V _,u =1 — [z]. Note that z is the zero

set of ( —z in C". Now instead we look at the zero set of  in C" x C", which
is the diagonal A = {( = 2z} of 2 x Q. We want to solve V,u =1 —[A]. In
fact, we can use the Bochner-Martinelli kernel again: if

_ 1 ol

2mi nf?

b(¢, 2)

then we can set u = b/V,b.
Proposition 6.1. If u=u/V,b, then V,u =1— [A].

f\"altsi
Proof. This proof is quite similar to the proof of Proposition T We il
show one of the calculations required and leave the rest to the reader. Take
a test form ¢((, z) of bidegree (n,n) on  x 2. We want to show that

BU(C,2) A b A (Bb)" = /¢(z,z). (61)
(,z z

Since the integrand is integrable and (0b)™ = 0 outside [A], the left hand
side of (61) is equal to

lim Oy Ab A (Ob)"! =lim Y ADA(Ob)" (62)

=0 |p>e =0 |p|=e
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By using first the defi ition of b and then Stokes’ theorem, the integral on
the right hand side of (62]i is equal to

L ni 2 3 2\n—1
(QWi) emljﬁzew/\avn A (@0ln)! =

= (g3) @ ([ o n o0 2 @tapy -+ [ n @), 69

2mi In|<e In|<e

Th (f)iggt %f these integrals goes to zero in the same way as the first integral
in ((A%),_LLe;(Eept that we also need to use the fact that ¢ has compact support.
As for the second integral, if we make the change of coordinates (n,p) =
(z—=C, 2+ (), where we set 2/?(77, p) = ((, z), and then use Fubini’s theorem,
then we get

1
<2> n/ Wb (n, p)(00|n|*)" /¢0p /1/)22
Yix) € Inl<e
\u 1t
by using Proposition b [ aitsl ]

. . .. carex .
By a proof very similar to the proof of Proposition b.Z, we get the following
proposition:

Proposition 6.2. Suppose u € L7H(Q x Q\ A) solves V,u = 1, and that
lu < |n|~@=Y. Then V,u=1—[A].

Weights are defined as before:
Definition 5. A form g € £L°(2x Q) is a weight if g =1 on A and V,,g = 0.

If g is a weight, then we can solve V,v = g — [A] by setting v = g Au. If
K = (uAg), and P = g,, then 0K = [A] — P. Then we can prove

Proposition 6.3 (Koppelman’s formula). If D cC Q and ¢ € &,,(D)

we have

d(z) = (=1)P* gzﬁ ANK 4+ (-1 ”+q+1/ 0o NK +
T p+q8/¢AK+/¢/\P (64)
where the integrals are taken over the ( variable.
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Proof. First assume that ¢ has compact support in D, so that the the integral
over the boundary is zero. Take a test form v (z) in Q. Then we have

(—1)p+q/Z¢A(—/§8¢AK+82/C¢AK)+/ZC¢A¢APZ

= (—1)P* (— / Y Adp AN K + (—1)2 Pt / N K) +
¢ ¢

+ /wa:—/ dOA)NE+ | wAoAP=
z,C z,¢ z,¢

= L7<wA¢AdK+/27<wA¢AP:L¢A¢, (65)

where we use Stokes” theorem repeatedly, and also that the degree of ¢ must
be (n—p,n—q). If ¢ does not have compact support in D, we can make the
decomposition ¢ = ¢; + ¢o, where ¢; has compact support, and ¢,({) = 0
in a neighborhood of z. Take a test form v with support in that same
neighborhood. Then

/Ziﬁ/\/aD%/\K:/z’Cl/)/\dc(%/\K):
:/de(%AK)— WA d(¢2 AK) =

Z7C

= /z,cw/\d@/\K—i_(_l)pﬂ/

Zﬂ

= /Z¢A/<a¢2AK+(1)P+q+f/Z¢A/C¢2AP
- /quAaz/Cgbg/\K.

troll
This gives us a formula for ¢,. If we ¢ 1rrrlbsine it with the formula (%5; that
we already have for ¢, we will obtain (%ZU. O

z/;/\¢2/\dK+(—1)p+q/ dp ANy NK =
¢

If we can get the first and fourth terms of the right hand side of Kop-
pelman’s formula to disappear, then we can take a closed form ¢ and get a
solution of the d-problem for ¢. Of course, this cannot work for all domains
D, since the 0-problem is not solvable for all domains.
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7 Koppelman’s formula on P" and solutions to
the J-equation

Now that we have obtained Koppelman’s formula for C", we would like to
have a similar formula in P". We start by taking

0 _ 0
=2miz - — = 2m Zi— 66
U o ; o (66)

just as before, except that now it is a section over P" x P". We define
V =V, =4, — 0, where 0 acts on both variables. Then we want u = 9/V
to solve the equation Vu = 1 — [A]. The current w, will be of bidegree
(n,n — 1) as a form on P x P, but th > giﬁeoréasr;ctgals without bars on come
only from d¢;’s, since the vector field (%ﬁﬁ@ns no dz;. Compare this
with the vector field ( hat was used to construct Koppelman formulas on
C"™, which does contain dz;’s! On the other hand, u, will be a sum of terms
whose differentials with bars on are built out of every possible combination
of d(;’s and dz;’s (of degree n — 1), because O acts on both variables. When
we want to integrate a (n,n)-form ¢ against u,, then it cannot contain any
d¢;’s. We must prove the following:

Proposition 7.1. If the (n,n)-form ¢(C, z) takes values in LiJ" x Ly,) and
contains no d¢;’s, then we have

V.6 = (1— [A]).

In other words, in the right hand side we do not have the whole of [A], but
only the part of [A] that contains no dz;’s.

Proof. The proposition will follow from Proposition %Tszl,ésince the statement
is local. It is enough to show that |uz| < |n/~*=Y locally, meaning that
the coefficients of wy satisfy this esti nafe. 11The proof of this is essentially
identical to the proof of Proposition g.3, except that one has a general z
instead just z = (1,0,...,0). ]

To get formulas for sections of other line bundles, we can use the same
weight

z-C 15§~dc

o= -
IC)> 2w |¢?
. . intformpn . .
as in Section }5, if we consider it as a form on P x P". Then we get
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V(uAa"™) =a" A (1 —=[A]) =™ - [A] (67)

since (a"*)00(¢,¢) = 1. But note that (a™*")q is also a section of L™ ™ x
Lﬁ", which means that the current [A] on the right hand side of ( Mhust
now be paired with a section of L&] when we wish to integrate. If we set
K= (uNa"),n1 and P = (o), ,, then we have 0K = [A] — P. With
this, we can prove the following K(?ppelz%%li;s formula for sections of Lfd i
the same way as we proved Proposition

Proposition 7.2 (Koppelman’s formula). If D CC Q and ¢ € &,,(D)
takes values in L&], we have

p(z) = (—1)PHe ¢AK+(—1)p+q+1/5¢AK+
D

oD
+ <—1)”+q5Z/D¢AK+/D¢AP,

where the integrals are taken over the [C] variable.

Note that if we choose ¢ to be a global section and D = P", then the
boundary term will disappear. If we can also get P = 0, then we get a
solution formula for the d-equation. In the case when ¢ is a section of L[’d”,
for example, P is automatically zero since we do not need any weight .
This shows that the cohomology group of the bundle of (0, g)-forms in L[Cr
is trivial. As an application of Koppelman’s formula, we will now find which
of the cohomology groups for the bundles of (0, ¢)- and (n, ¢)-forms in qu
are trivial. Of coyrse, this is already well known, see for example Theorem
10.7 on p. 397 of [9], but this is a different way of proving it and also yields
explicit formulas for the solutions of the O-equation. We obtain the following:

Theorem 7.3. By using the Koppelman formula 261_{2) one can show that the
following cohomology groups are trivial:

a) HOQ(IP’” L’”) for0 < q<mn and all r;

b) H™(P" L") for 0 < q <n and all r;

¢) HOO(IP’”,L’) forr <0;

P* L") forr > —n;

)

" )
e) H"O(IP’”,LT) forr < n;
" )

2
This theorem was also proved by Berndtsson in Fﬁ“with essentially the
same u (though derived in a different way) and the same Koppelman formula.
Before the proof we need a lemma:
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Lemma 7.4. We have \" T (P") ~ L™"".

Proof. To prove the lemma, we observe that Z(—l)jzjcfz\j is a global non-
zero (n,0)-form that takes values in L™"!. This means that the line bundle
A" T, (P") @ L™ is trivial, which means that A" Tg, (P") ~ L™, O

chakobsa . L.
Proof. (of Theorem s noted before, H® q(IP’" L7™) is trivial for 0 < ¢ <

n since no weight is needed, and we have ¢ = (—1)7719 [ ¢ A u,,. Further, if
we let ¢ be a section of L", r > —n, be a 5—closed (0, g¢)-form where g # 0
then [¢ A P = 0 since if it were not, it would have bidegree (0,0) as a
section of L7, (because the integrand does not contain any dz’s or dz’s). But
remember that the left hand side of the Koppelman formula is just ¢(z),
which has bidegree (0,¢). Also, [ ¢ A P cannot be cancelled out by any
other term on the right hand side, since 0 J ¢ A K cannot contain anything
of bidegree (0,0). Thus [ ¢ A P = 0, which means that H%4(P", L") is trivial
for 0 < ¢ <nandr > —n. We also get the formula ¢(z) = (—1)7"10 [ A K.
The condition » > —n comes about because we cannot raise « to a negative
power. With ¢ = n, this proves d).

How, then, do we investigate the line bundles L" where r < —n? n
fact, if we look at the proof of the Koppelman formula in Proposition %T
we see that the roles of ¢(¢) and v (z) are in fact symmetrical, and we can
use this to get a Koppelman formula for ¢(z) instead of ¢(¢). Note that
then ¢ needs to have bidegree (n,q) where 0 < ¢ < n. If ¢ takes values in
L", 1 has to take values in L™", so that we can obtain results for L" with
r < n. The case for L™ mirrors the one for L=": we see that H™?(P", L")
is trivial for 0 < ¢ < n since no weight is needed, and we have ¥({) =
(=1)"*4H9 [ 4 A w,. If we take a section ¢ of L”, r < n, to be a -closed
(n, g)-form where ¢ # n then [t A P = 0 since there are not enough dz’s,
which shows that H™4(P™, L") is trivial for 0 < ¢ < n and r < n. Also we
get the formula (¢ 1)t [ A K. With ¢ = 0, this proves

Furthermore, b(y)LerrEma ﬁ%%hgvfave Eoq(P L) ~ &, (P, LT, )The
isomorphism is given by taking ¢(z) € & ,(P", L") and w(z) = Z(—l)jzjciz\j
and then simply taking the wedge product wA¢, which lies in &, ,(P", L™+,
Since we know that H%4(P", L") is trivial for 0 < ¢ < n and r > —n, it fol-
lows that H™9(P", L") is trivial for 0 < ¢ < n and r > 0. We can easily find
an explicit formula for the solution, since

WA ¢ = (-1 q+1w/\8/gz5/\K aw/\/qb/\K

If we combine this with the results of the previous paragraph, we see that
H™1(P™, L") is trivial for 0 < ¢ < n and all r, which proves b). Also, if we
let ¢ = n, we see that H™™(P", L") is trivial for > 0, which proves f).
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Finally, we apply the isomorphism & ,(P", L") ~ &, ,(P", L") the
other way around. Since we know that H™9(P™, L") is trivial for 0 < ¢ <n
and r < n, it follows that H%4(P" L") is trivial for 0 < ¢ < n and r < 0.
With ¢ = 0, we see that H®O(P", L") is trivial for r < 0, which proves c).
Note that these are precisely the line bundles that lack holomorphic sections
- quite naturally, since there is no way a section with bidegree (0,0) can be
O-exact. If we combine the results of this paragraph with those of the first
paragraph, we also see that H®¢(P", L") is trivial for 0 < ¢ < n and all r,
which proves a).

Finding explicit solutions after using the isomorphism & ,(P", L") ~
En (P, L") backwards is a little more difficult. We have on the one
hand ¥(¢) = w A ¢/, where ¢ is of bidegree (0,¢), and on the other hand
¢ = (—1)""19 [ 4 A K. In other words, we want to factor out w(¢) from
5fzz/1 A K. Since all the d(;’s are in K((, z), this means that we want to
write K = w A K’. To do this in practice, we observe that > ;/|(? Aw =
dCo A ...d¢,. Thus K’ equals the (0, q)-part of . G/[¢|? A K. ]
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