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Abstract

We adress the problem of waterjet inlet design optimization using computa-
tional fluid dynamics (CFD) techniques and direct search methods. The latter
are optimization methods that proceed without calculating derivatives. They
are particularly advantageous in this kind of engineering design problem where
the objective function depends on a costly computer simulation and therefore
does not provide explicit information about derivatives.

The inlet has been modelled as an s-duct. A simple parameterization con-
sisting of five parameters is used for varying the geometry. The CFD model
of the flow in the duct is based on the Reynolds equations with the Standard
k-e model. The equations are discretized by a single-block structured grid and
solved using the commercial software Fluent. The CFD model in Fluent is cali-
brated to give results in reasonable agreement with experimental data for flows
through an s-duct.

A variant of the Hooke and Jeeves algorithm called the Sherif-Boice algo-
rithm was used to optimize the parametric geometry for maximum static pres-
sure (minimum risk of cavitation) and minimal loss. To reduce the cost of each
evaluation of the objective we have considered surrogate functions (models of
the objective) based on coarse grid flow computations. The surrogates were less
costly to evaluate while capturing enough of the problem to be useful in the
optimization.

It was found that a range of geometries were near-optimal with respect
to both the cavitation and minimal loss objectives at the same time. One
reason for this is a dependency between the objective functions under the given
flow conditions. The optimal designs are characterized by a long, sweeping
lower bend and a contraction of the duct over the upper, sharper bend. The
analysis reveals interesting relationships between the optimal geometry and the
considerably improved hydrodynamic performance.

The parametric model has been used to investigate the relation between the
objective functions. Although they were dependent under the given conditions,
it is not a generally valid statement. This is shown by an example, which
also illustrates that cavitation-free performance should not be used as the only
design objective. The example is built on the fact that the minimum static
pressure may, for high enough inlet velocities, be attained at the inlet so that
the cavitation objective function ignores the downstream flow behaviour.

In addition to the inlet design problem, we discuss a well-known class of di-
rect methods called pattern search methods. The convergence analysis requires
the objective to be continuously differentiable. The necessity of this condition
is shown by an example of a Lipschitz continuous function for which coordinate
search with fixed step length converges to a non-stationary point. We also use
some basic theory of positive linear dependence to derive a few results about
positive bases and simplicies in connection to optimization.

Keywords: optimization, optimal design, direct search, pattern search, surro-
gate objective, CFD, fluid dynamics, waterjet inlet, parametric geometry
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Chapter 1

Introduction

1.1 Motivation and background

The work presented in this thesis has grown forth from considerations of the
following engineering design problem: optimize the shape of a waterjet inlet
duct for optimal hydrodynamic performance.

The problem was posed by Rolls-Royce AB in Kristinehamn', who manu-
factures waterjets and other systems for marine propulsion. They have been
involved in a project called SEABUS for the design of a high-speed hydrofoil
ferry, propelled by a waterjet propulsion unit with a so called ram-type inlet.
Rolls-Royce AB was interested in investigating the possibility of designing such
an inlet using computational fluid dynamics (CFD) techniques and formal op-
timization algorithms.

A waterjet propulsion unit with a ram-type inlet is shown in Fig. 1.1. Prin-
cipally, it consists of an inlet, a pump and a nozzle. Sea water enters the inlet
opening and is led by the inlet ducting to the pump. The pump adds energy
to the water. The momentum of the water is increased as the flow accelerates
through the converging nozzle, and the thrust that propells the ship is pro-
duced by the ejection of a jet of water rearward of the ship. Steering can be
accomplished by deflection of this jet.

The premises and objectives when solving the problem were as follows. In
order to focus the work on the investigation and solution of the problem it
was decided that the commercial software Fluent should be used for the flow
computations, and the commercial software Gambit for geometry representation
and mesh generation. The optimization was to be done for maximum static
pressure (minimum risk of cavitation?) and for minimum losses. If possible,
a compromise between these two objectives should be considered. To simplify
matters, only the flow inside the duct was taken into account. Rolls-Royce AB
suggested a uniform inlet velocity condition of 8 m/s to be set at the entrance
of the duct, corresponding to an “off-cruise” condition when the ship has to
negotiate a local maximum in its resistance curve. At such a condition, it is
required a high flow-rate in the inlet duct relative to the ship speed, which

1Former KAMEWA, Karlstads Mekaniska Werkstad.
2The flow is said to cavitate when the static pressure drops below the vapour pressure.
This must be avoided since it increases losses and erosion.
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Figure 1.1: A waterjet propulsion unit with ram-type inlet duct.

causes the water in front of the inlet opening to accelerate and contract into
the inlet. As a consequence, the pressure is decreased and the risk of cavitation
increased.

The thesis has been done as the second part of a two-stage project. The first
part was done by Sara Agren [40]. In her master thesis, she considered, among
other things, the geometric aspects of the problem, as well as the possibility to
speed up the flow calculations in an optimization process by initializing each
calculation with a mapping of a previously obtained solution. We have used her
code, written in C++, for the automatic generation of computational grids in
Gambit.

We note that our design problem deals with the geometric shape of the inlet
ducting, which extends from the inlet opening to the entrance of the pump.
This constitutes just a part of the water propulsion system design, which in
turn is an integrated part of the total ship design. Moreover, we have restricted
our attention to internal aspects of the duct shape, ignoring important external
aspects such as cavitation and losses associated with the flow entering the duct,
as well as external drag when the duct ploughs through the sea. It is thus clear
that the results of optimizing the inlet ducting itself can not be directly appli-
cable in reality. However, the optimization can give valuable information about
the relation between the inlet hydrodynamic performance and its geometry.

1.2 Design optimization

Computer simulations are increasingly important and popular tools for solving
engineering design problems such as the one considered in this thesis. Whereas
earlier computer resources were used for the analysis of a single design, the
accelerating development of hardware and software has made it possible to an-
alyze a large number of designs in order to choose the best one. This possibility
leads to an optimization problem in which the objective function, because of the
inherent computer simulation, is computationally expensive to evaluate, has an
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almost completely unknown structure and gives no explicit information about
derivatives.

Such problems can be solved by direct search methods which are optimization
methods that do not make explicit use of derivatives but proceed simply by
evaluating the objective function itself. Examples of direct search methods
include such classical algorithms as the Nelder-Mead algorithm [29], the simplex
method [16] and the Hooke and Jeeves algorithm [19].

A useful concept for solving these kind of problems is surrogate functions,
which are approximations of the objective function that are less time-consuming
to evaluate. Engineering practise has been to evaluate the function at scattered
points in the variable space and use these samples together with algebraic inter-
polation or approximation techniques to construct the surrogate function. The
optimization is then performed on the surrogate, which in this case is compar-
atively much less expensive and also provides explicit derivatives. The main
question has been what to do if the optimum of the surrogate function turns
out to be an unsatisfactory design when evaluated with the actual objective
function.

Lately there has been much research done on direct search methods as well as
on how to handle surrogate functions in the optimization process. In [36], Vir-
ginia Torczon developed a general pattern search method which included many
of the classical direct search methods. Dennis and Torczon [14] combined the
general pattern search method with ideas from trust-region methods to suggest
a framework for handling surrogate functions. There is no explicit discussion of
the choice of surrogate function in [14] but it is indicated that such a function
could depend on the mesh size in a pde code, an idea that will be investigated
in this report. Other frameworks based on pattern search are found in [38, 5].
The objective function is regarded as the outcome of a stochastic process which
enables the construction of algebraic approximation models from samples using
statistical tools. In [5], some of the function evaluations are done in order to
update the model, a procedure referred to as a balanced search. A different
approach, not based on pattern search, is found in [8], where quadratic models
are used in a trust-region framework. A balanced search is done and the search
for points to update the model are governed by considering strict geometric
properties of the set of model-building points. In [2], a framework is given for
handling surrogates that are subject to certain mild analytic conditions.

Seil [34] considered a problem very similar to ours. Seil successfully used
CFD and the Sherif-Boice algorithm (SBA) [35] to investigate and optimize
a waterjet inlet of flush-type. He found that the SBA produced a marked
improvement in the objective function value within only a few iterations, and
could thus conclude that the algorithm works well on this kind of problem
provided that the number of variables is low (5-10). The problem-solving part
of our work has to a large extent been guided by [34].

The articles [5] and [9] present numerical results from applying different
optimization algorithms to a helicopter test problem with 31 design variables.
Among the best methods was a pattern-search-based method that uses surro-
gates constructed by interpolating samples of the objective function. It gave
considerably improved designs after about 100 — 200 function evaluations. The
worst result was obtained with a genetic algorithm tested in [5] that, even though
it used many more evaluations, gave a more moderate decrease in the objective.

Dadone and Grossman [11] present a very interesting surrogate approach,
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which they term progressive optimization, for the solution of compressible fluid
flow design problems. They use premature termination of the flow solver as well
as coarse grids to simplify the flow computations. They have developed an ad
hoc method for how to progressively increase the accuracy of the flow compu-
tations as the optimization proceeds by successively increasing the number of
iterations in the flow solver during each flow calculation, and using progressively
refined grids. The method was found to be very efficient and robust. The draw-
back is the lack of generality. The main difference between their problem and
ours is that they could compute the gradient of the objective function by solving
an adjoint problem. Hence, they used a gradient-based method. However, it
should be possible to generalize their idea of a continuous interaction between
the optimization process and the underlying physical simulation, and their tools
for constructing the surrogates.

In this work we will not apply methods that make use of surrogates con-
structed from samples of the objective. We considered it more exciting and
interesting to investigate the structure of this particular problem by construct-
ing surrogates by manipulations of the turbulent flow model underlying the
objective functions.

1.3 Outline of the report

The rest of the report consists of four chapters and two appendices.

In Chapter 2 we discuss a general direct search method called the positive
basis pattern search algorithm. It has been developed by Torczon [36], and Lewis
and Torczon [22]. We define the algorithm and discuss some of its properties.
We state the general convergence theorem and establish the necessity of the ob-
jective function to be continuously differentiable by means of a counterexample.
We give some examples of pattern search methods and show that the Sherif-
Boice algorithm [35] (slightly modified) is an instance of the general pattern
search algorithm. We also discuss the role of the positive basis that provides
the search directions in pattern search, and, finally, the concept of surrogates
and how it can be used in the framework of pattern search.

Chapter 3 gives a brief introduction to the theory of fluid dynamics. We
derive the Navier-Stokes equations and discuss the modelling of turbulence and
turbulent boundary layers.

In Chapter 4 we present and discuss an implemented model of the waterjet
inlet duct. In order to prepare for the optimization of the inlet duct, we param-
eterize the inlet geometry so that it can be varied. We present the CFD model
used for the flow computations, and validate it against experimental data. Fi-
nally, we discuss the two criteria of the inlet hydrodynamic performance that
have been used.

In Chapter 5 we optimize the model presented in the previous chapter. We
discuss how the optimization and the CFD model are, and can be, related to
each other. We investigate the possibility of constructing surrogate functions
from coarse grid flow simulations. Numerical optimization results are presented
and analyzed. Finally, we summarize with conclusions and suggestions for future
research.

Appendix A has been written quite separately from the rest of the report.
Inspired by a few questions arising in connection to optimization we apply some
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theory of positive linear dependence to regular simplices and minimal positive
bases. We solve a problem that concerns the approximation ability of the mini-
mal positive basis consisting of a regular simplex. We also construct a bounded
infinite sequence of distinct regular simplices of constant size, thereby answer-
ing a question of Powell in [32]. Moreover, it shows that the iterates generated
by the classical simplex method [16] do not have the same favourable algebraic
structure as those generated by pattern search methods.

Appendix B, finally, contains some basic theory of non-rational uniform B-
spline curves (NURBs), followed by three example applications. In general,
NURBs provide an excellent tool for the representation and local control of
geometric shapes. They have been used in this thesis to represent the piecewise
defined curves that define the duct geometry.
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Chapter 2

Optimization without
calculating derivatives

2.1 Introduction

In this chapter we consider the unconstrained finite-dimensional optimization
problem

min f(2), (2.1)

when f has the following properties:
i) the derivatives of f, even if they do exist, are not available,
ii) f is time-consuming to evaluate,

iii) the idealized function f can only be computed to low accuracy, and is
contaminated with high-frequency, low-amplitude distortions.

Such objective functions are typical in the kind of engineering design problem
considered in this work, where f is based on the outcome of a complicated
computer simulation. Property iii) is caused by small variations and numerical
errors in this simulation.

Most optimization algorithms make use of derivative information, but such
methods are not suitable for this problem because of i). Of course, we still have
the possibility of computing some numerical approximation to the gradient, but
this is not a good idea because of iii): if ¢ is the error in f and h the step
length, the error in such an approximation is proportional to d/h. Errors in f
are blown up in the gradient which may cause gradient methods, relying only
on the gradient search direction, to deteriorate. On the other hand, even if the
effect of iii) is small we still have an argument against gradient methods: since
they use only one search direction (the negative of the gradient in the case of
minimization) at each iteration, the optimization may easily get stuck in local
minima.

Instead, problem 2.1 demands for direct search, or derivative-free, methods
that proceed without making explicit use of the gradient.
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In [25], a distinction is made between these two terms. The term “direct
search” is reserved for methods that neither require nor estimate derivatives,
but proceed just by considering the ranking of different objective function val-
ues, and not quantitative differences. Such a method may accept every new
iterate that leads to a decrease in the objective function value. Consequently,
they are often easy to understand and to implement. Examples include such
classical algorithms as the Nelder-Mead algorithm [29], the simplex method by
Hext, Himsworth and Spendley[16], the Hooke and Jeeves algorithm [19] etc.
A derivative-free method, on the other hand, may still use some kind of ap-
proximation of the function in order to estimate derivatives, as in the classical
response surface method by Box [7]. Thus any direct search method is also a
derivative-free method. Since approximation functions can be used in conjunc-
tion with true direct search methods, we will not keep the strict distinction
between the two terms.

In the following section we present a brief overview of direct search methods.
The rest of the chapter focuses on a class of direct methods called pattern search
methods. In Section 2.3 we define the general pattern search algorithm and
discuss some properties of it. Some well-known examples that are instances
of the general algorithm are given in Section 2.4. In Section 2.5, we discuss
the positive basis that provides the search directions. We investigate how the
size of the basis may affect the efficiency of the search. Finally, we discuss the
concept of surrogates and how to use them in conjunction with the pattern
search method.

2.2 Brief overview of available methods

Following Powell [32], we may distinguish at least six different kinds of direct
search (or derivative-free) methods: approximation methods, simplex methods,
random methods, discrete grid or pattern search methods, line search methods
and conjugate direction methods. We now briefly discuss the first four of them.

Approximation methods use algebraic approximations of the objective func-
tion. The approximations may, for example, be linear as in [31] or quadratic as
in [8]. The purpose of using algebraic approximations is to make careful and
systematic use of all available information about f, which consists of the values
of f at previously visited points. Thus these methods seem very well suited for
our problem. A drawback, however, is the lack of a general convergence theory.

Among the simplex methods we find contributions from the early develop-
ers of the field, such as the classical simplex method [16] and the Nelder and
Mead algorithm. These methods often use only rank order information (and
not quantitative differences in function values at different points) to find the
next iterate and could therefore be suspected to be less efficient than the ap-
proximation methods just mentioned. The convergence properties are either
not well known or known not to be desirable as is the case for the Nelder-Mead
algorithm. McKinnon [28] showed how the Nelder-Mead algorithm converges to
a nonstationary point in a case when the objective is convex and continuously
differentiable.

Simulated annealing and genetic algorithms are methods that introduce a
random element in the optimization procedure. They are often easy to imple-
ment, do not get stuck in local minima and may sometimes be shown to have
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a kind of convergence to a global minimum. It clearly seems, though, that one
may have to pay for this in the number of function evaluations, see for example
[6]. Intuitively, it is not appealing to evaluate randomly chosen points if the
objective function is very expensive.

In discrete grid or pattern search methods the search is done on a fixed grid
of points, such as a lattice. Reducing the step length means proceeding the
search on a scaled version of the original lattice. Powell [32] explains how the
restriction of the search to a discrete grid may lead to an inefficiency in the
optimization. This inefficiency depends on how the optimum is related to the
lattice, in combination with other properties of the objective function under
consideration. Apart from this, pattern search methods have many desirable
properties. Because they investigate more than one search direction in each
iteration (in contrast to gradient methods), they are not as likely to get stuck in
local minima. They include the classical coordinate search and the algorithm by
Hooke and Jeeves [19], are easy to understand and implement and have recently
been given a general form by Torczon in [36], where she also presents a general
convergence theory.

Torczon’s general formulation of pattern search methods gives great flex-
ibility in the design of specific algorithms. This can be used to incorporate
approximation functions, surrogates, into the optimization process. Surrogates
built from interpolation or approximation of samples of the objective function
has been used for a long time for solving engineering problems [4]. The problem
has been the lack of a general strategy for a continuous interaction between
the surrogate and the “real” function as the optimization proceeds. General
pattern-search-based frameworks for handling surrogate optimization have been
proposed in [5, 14, 38].

We consider this to be enough motivation for a more detailed presentation
and study of pattern search algorithms.

2.3 The general positive basis pattern search al-
gorithm

In the following we present a simplified version of the general positive basis
pattern search algorithm given in [22]. It is a class of direct search algorithms
developed for the unconstrained problem (2.1). In [24] they are extended to
linearly constrained problems. The positive basis pattern search algorithms are
natural extensions of those in [36] because the search directions in the so called
pattern matrix do not have to consist of an entire basis {v;}}, for R* together
with the opposites {—v;}™,, but just a positive basis (see Appendix A). It
leads to a possible decrease in the maximal number of function evaluations per
iteration, which might be desirable if f is very costly to evaluate (property ii)
mentioned in the introduction to this chapter).

2.3.1 Definition of the general algorithm

The main ingredients in the general pattern search algorithm are a pattern
matriz P, € R**P* (the index k indicates that it may depend on the iteration),
whose columns constitute the possible search directions, an exploratory moves
algorithm that suggests a step and an algorithm for updating the pattern and
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the step length. Given a step length Ay, a step s is defined as any column
of ApP;. To indicate that a vector s is a column of a matrix P, we use the
notation s € P. The general pattern search algorithm can be defined as:

Algorithm 1. The general positive pattern search algorithm for unconstrained
optimization.
Given g € R and Ay.
Fork=0,1,--- do
1. Compute f(xy).
2. Use the exploratory moves algorithm to determine a step s € ApPy.
3. If f(xp + sx) < f(zk), let Tpr1 = xp + s. Otherwise, let xp11 = .
4. Update the pattern Py and the step length Ay.

To construct a specific pattern search algorithm, one has to define
1. a specific pattern Py,
2. an exploratory moves algorithm,
3. and how to update the pattern and the step length.

We now give sufficient conditions for how this should be done in order to guar-
antee convergence according to Theorem 2.

Conditions on the pattern. The pattern Py is the matrix product of
a basis matrix B and a generating matriz Cy. We require B € R**" to be
invertible and C}, € Z™*P* p; > n + 1. The columns of C}, are partitioned as

Cr =[T Ly 0],

where T is required to be a positive basis for R” and 0 means a column of zeros.
We call BT the core pattern.

Conditions on the exploratory moves algorithm. s; € AP, and if
there exists a core pattern step y € AgBT such that f(zr +y) < f(zx) then
f(zx + sk) < f(xr). This can also be expressed as follows: before giving up the
search for a better point, the algorithm must try all steps in the core pattern.

Conditions on the updating algorithms. There are no other conditions
for how the pattern should be updated than those already given for the pattern
itself. Concerning the step length, we either leave it unchanged or half it. In
[22] the step length is allowed to vary more freely. The condition for reducing
the step length is “no decrease in the objective function during the iteration”.
From the condition on the exploratory moves algorithm, it follows that the step
length can only be reduced when all the steps in the core pattern has been
checked.

Algorithm 2. The algorithm for updating the step length.
If f(.’ll'k + Sk) > f((l]'k) then Agy1 = %Ak. Otherwise, Ap1 = Ay.
2.3.2 Some properties of the general algorithm

The general pattern search algorithm is a gradient-related adaptive grid method

which only requires simple decrease in the objective function. It also has nice

convergence properties. In the following, we denote by {z;}%, a sequence of
iterates generated by Algorithm 1 applied to problem (2.1).
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The simple decrease condition means that a step sy is accepted if and only if
f(zg + sg) < f(zg) (see 3. in Algorithm 1). It should be considered in contrast
to sufficient decrease, which is usually required for the convergence analysis of
gradient-related methods.

The condition s € APy on the exploratory moves algorithm ensures ([36])
that the iterates xp lay on differently scaled versions of the lattice (or grid)
generated by the columns of B and translated by xg. The scaled lattices are
nested in the sense that finer lattices contain coarser ones. More precisely, the
search for zp4; is done on the lattice

L, = {:L'k + ZziAkbi;z,- S Z},

i=1

where b’ denotes the columns of the basis matrix B. L is generated by A B and
translated by x. Since the step length is either halved or unchanged, we have
Ly C Lgy1. In this sense pattern search methods are adaptive grid methods.
Let us consider the following example in R2:

1 -1 00

B = I (the identity matrix), Ci=[I —I10], C:= 10 -1 0l

The corresponding patterns are illustrated in Fig. 2.1. It can be seen how the
basis matrix and the generating matrix interacts to define the possible steps in
the iteration. ApB generates the lattice and C' determines the possible steps
(indicated by arrows) to take on that lattice.

We note that the only condition on the part Lj of the generating matrix is
to have integer entries. We have been quite restrictive with the possible steps
from the current iterate in our example. However, Ly might have arbitrarily
many columns. For example, if its columns are all vectors in Z", then any step
on the lattice generated by AxB will be included in the pattern and the next
iterate can be any point on L.

The adaptive grid property of general pattern search methods is used in the
convergence analysis to ensure that the step length tends to zero.

The pattern search method is gradient-related in the sense that there always
exists a search direction that captures a certain part of the direction of steepest
descent. The reason is that I" is a positive basis and therefore guarantees the
existence of an upper bound on the angle between the direction of steepest
descent and the best search direction. This is the content of the following
proposition, the proof of which can be found in [22].

Proposition 1. For a positive basis pattern search method in R™ there exists a
constant ¢ > 0, depending only on T, such that for any k, there is a core pattern
step s € AR BT for which

—Vf(zr) e s S 1
(IVf(ze)llllskll = ny/n

The bound in this theorem indicates a loss of efficiency for the pattern search
algorithms with increasing dimension. If I' = [I — I], we have from [36] that
the sharp bound for (2.2) is 1/4/n. In Theorem 10 in Chapter A we show that
when I is the minimal positive basis consisting of a regular simplex, the sharp
bound is 1/n.

(2.2)
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Xk

Figure 2.1: The dashed lines represent the lattice generated by Az B when B = I. The
generating matrix C' determines the possible steps from the current iterate xy.

The positive basis pattern search algorithm has nice convergence properties,
as stated by the following theorem taken from [22].

Theorem 2. Suppose that L(zg) := {x € R" : f(z) < f(z)} is compact and
that f € C*(Q) for some open set Q D L(xg). Then

lim inf ||V £ (z4)]| = 0.
k—o0

Under stronger conditions (see [22]) on the general algorithm the liminf in
this theorem can be replaced by lim. The stated result means that the pattern
search algorithm behaves nicely. For example, there always exists a subsequence
of the sequence of iterates {z}>% that converges to a stationary point.

To see the necessity of the condition on f to be continuously differentiable,
we consider the function

n—1 n
@) = 2P+ 3 s — aoga| + Y.
i=1 i=1

We get
2

n
f(@) 2 lloll* = nllzll 2 =

By the first inequality, f tends to infinity with ||z|| and by the second f has
a lower bound. Since f is also continuous, L(xp) is compact. Moreover, f is
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Lipschitz continuous over any ball with radius R since

n—1 n
1£@) = F@) =]Ul=l” = 1wl1?) +2 Y (2 = wapa] = lyi — gira ) + Y (i — i)
i=1 i=1
<[llzll = llyll |zl + [ly[) +
n—1 n

+22|$i—$i+1—yi+yi+1|+2|~"ﬂi—yz’|

=1 =1

n
<2R|lz —yll+5) |z —vil

i=1

<R+ 5n)llz —yl|

Now, let e’ be the unit vectors, i.e, €5 = d;; where d;; is the Kronecker delta
function. We have f(0) = 0 and

ety = [ EEF2AM AR, ifi=1n
T W +4h+h >8R], fi=2,- n—1

so that f(he!) > 0 = f(0),Vh # 0,i = 1,---n. Hence a search along the
coordinate directions from x = 0 will not result in a lower function value. Note
also that (—=1,—-1,...,—1) is a direction of descent since

f(=h,--+,—h)=nh®*—nh=nh(h—1) <0, 0<h< 1.

This means that if for example simple coordinate search, which in [36] is shown
to be an instance of the general pattern search algorithm, starts off from the
origin it will stay there in spite the existence of a descent direction.

2.3.3 Bound constraints

The shape optimization problem motivating this thesis is, by its nature, con-
strained (see Section 5.2). We therefore note the extension made in [23] of
pattern search algorithms to bound constrained problems,

 min f(z), (2.3)

where f is real-valued as before, I, u,z € R” and [ < u. (The vector inequalities
are to be understood coordinate-wise). Denote by B the bound constrained
domain defined by [ and u and let P be the projection onto B. Define

q9(z) = Pz = Vf(z)) - 2.

This is the appropriate “gradient” to consider in the case of constrained prob-
lems since ¢(z) = 0 if and only if z is a constrained stationary point for (2.3),
see [23]. In order to make sure that the pattern always contains search direc-
tions along the boundary of B, the core pattern should contain a nonsingular
diagonal matrix and its negative. This is the only additional restriction required
to obtain the same convergence result as in Theorem 2 but with V f replaced
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by ¢ and L(z) replaced by Lg(z¢) = {z € B : f(z) < f(x¢)}. They also note
that the extended pattern search gives exactly the same sequence of iterates as
does the unconstrained pattern search presented above applied to the function

F(m):{ f(z), ifz€B,

0, otherwise.

Hence, under the restriction that the core pattern contains a diagonal matrix
and its negative, the class of pattern search methods presented in this chapter
can be applied to the problem (2.3).

2.4 Examples of pattern search algorithms

We now give examples of two instances of the general pattern search algorithm.
The first is coordinate search with fixed step length and the second is a variant
of the Hooke and Jeeves algorithm [19], called the Sherif-Boice algorithm [35],
or SBA.

2.4.1 Coordinate search with fixed step length

This algorithm searches through each coordinate direction in turn. Let e; denote
the standard unit vectors in R™. The basis matrix is the identity, B = I. The
generating matrix C.s is fixed and has 3" columns that contains all possible
combinations of {—1,0,1}. For n = 2 we have

C_lO—l 01 1 -1 -1 0
101 0O -1 1 -1 -1 1 0

We note that C.s; contains a positive basis, namely I'.s = [I — I]. Thus,
BI'.s =T's is a core pattern for coordinate search.

Algorithm 3. The exploratory moves algorithm for coordinate search.
Given xy, Ay and f(xy).
Set s =0 and min = f(zy).
Fori=1,---,n do
st = s + Age;
If f(zp + si) < min
min = f(zy, + si)
sk = st
else
82 = S — Akei
If f(zp + si) < min
min = f(zy + si)
S = S}c
Return sy, f(xr + sk)-

We denote this algorithm by (s, f(zr + sk)) = cs(zk, f(2r), Ax). Unless
a successful step sy is found, the algorithm examines all 2n core pattern steps
y € A BT'.s. We may conclude that coordinate search with fixed step length
is an instance of the general positive basis pattern search algorithm.
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Figure 2.2: Flowchart of the SBA.

2.4.2 The SBA

The SBA [35] is a variant of the Hooke and Jeeves algorithm [18]. It alternately
performs coordinate searches and pattern steps, which are attempts to further
investigate promising directions built up by a preceding coordinate search. Also,
some of the currently best points are set as base points. We say that a search or
step succeeds if it leads to a lower function value and otherwise that it fails. As
we will show, the SBA is an instance of the general pattern search algorithm.
It is also a true direct search method (see the discussion in the introduction to
this chapter): it uses only rank information about the objective function.

First, the initial point is evaluated and set as a base point. Then a coordinate
search is performed and the resulting best point is set as a base point. If the
coordinate search succeeds, a pattern step is performed. The pattern step has
the same direction and magnitude as the step between the current and the
previous base points. Then the algorithm starts all over again from the currently
best point, i.e., a coordinate search is performed from the result of the pattern
step if it was successful and otherwise from the result of the previous performed
coordinate search. Every time a coordinate search fails, the step length is halved,
and every time it succeeds a new base point is marked. See the flowchart in
Figure 2.2.

The SBA is less opportunistic than the Hooke and Jeeves algorithm. While
the latter always performs a coordinate search from the result of a pattern step,
the former only does it if the pattern step was succesful.

The formulation above differs from the original one in [35] because it reduces
the step length also when a failed coordinate search follows after a successful
pattern step. Otherwise it could happen that we search through the same points
once more when we start the next iteration with a coordinate search.

We now formulate the SBA as an instance of the general algorithm. The
basis matrix is the identity matrix, B = I. In coordinate search, the generating
matrix, which we denote by C.;, was fixed. For the SBA, we allow the generating
matrix C}, to change from iteration to iteration in order to capture the effect of
the pattern step. If the pattern step fails in the SBA, the result of one iteration
is to perform a coordinate search step sf. Hence, C.; must be included in
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Ck. On the other hand, if the pattern step s} succeeds, an examination of the
flowchart in Fig. 2.2 reveals that it then is the sum of s} and the pattern step
from the previous iteration s§_; (which possibly is zero), i.e. si = s§ +s,_;.
The step produced by the iteration then becomes

Sk = S5, + sk =285, +sh_,. (2.4)

Now, denote the columns of Cy by ¢ and its last column by cf. We let ¢}
represent the previous pattern step, i.e. Agch = si_,, and define ¢§ = 0. It is
then clear from Eq. (2.4) and the preceding discussion that

Ck = [Ccs 2Ccs + ci]a

where the addition is to be understood columnwise. Hence, C}, consists of 2% 3"
columns.

Only the last 3" columns of C, are updated from iteration to iteration. This
is done with the following algorithm. (Recall that s, is the entire step produced
by the iteration and s¢ the step of the coordinate search performed during the
iteration.)

Algorithm 4. Updating of the generating matriz for the SBA.
Fori=3"+1,...,2-3"

Ch1 = Ch = + (sk — 58)/ Ak
Return.

Since s /Ay, and s§/Ay are columns of Cy, and Cy € Z™*%3", an argument
by induction shows that the columns of C} consist of integers. Moreover, it
contains the matrix C.s; and therefore the same positive basis and the same core
pattern as coordinate search. We conclude that C} fulfils the conditions for
being a generating matrix.

The exploratory moves for the SBA is given below. Note that the notation
and logic differ from the original SBA and, in particular, from the Hooke and
Jeeves algorithm. In the latter algorithm, the pattern step is defined as the
difference between the current iterate and the previous iterate and hence only
contains information from the previous iteration. In our formulation, the pattern
step contains information both from the previous iteration (the previous pattern
step) and the current (the result of the coordinate search). We have used cs to
denote Algorithm 3.

Algorithm 5. Exploratory moves for the SBA.
Given xy, f(xg), Ag.
Set s, = 0,85 =0,s% | = Apch.
st = cs(wk, f(zr), Ax)
If f(zr + s3) < f(ax)

sp = s§,

sh=sh_, +s§

zP =z + s§ + s

If f(zp) < flay + )

sk = s§, + s,

Return sy, sf,.

Unless Algorithm 5 produces a successful step sg, a failed coordinate search
has been performed. Hence, all core pattern steps have been examined. We
conclude that the SBA, too, is an instance of the general positive basis algorithm.
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2.5 Minimal and maximal positive bases in pat-
tern search

In this section we will see how the general pattern search algorithm defined above
can be used to produce new algorithms by replacing a maximal positive basis
with a minimal. Since a smaller positive basis often gives a worse approximation
of the gradient we are led to the natural question of whether we should have a
maximal or a minimal positive basis. We analyze this in a simple case and find,
perhaps contrary to intuition, a maximal positive basis to be preferable.

2.5.1 A minimal positive basis search algorithm

In the coordinate search algorithm (Algorithm 3), a step is built up by con-
sidering, if necessary, 2n directions: each coordinate direction and its opposite,
which form a maximal positive basis. However, as soon as a better point is
found in some direction, that direction is not further considered, and so a step
is built up from at most n linearly independent “small steps”. These remarks
will now be used to construct an algorithm that mimic coordinate search but
only use a minimal positive basis pattern matrix.

Let I € Z"*("t1) be a minimal positive basis for R*. Then any n of the
vectors in T' form a basis for R” (Theorem 3 in Chapter A). We may therefore
modify the coordinate search to be a search along directions that form a minimal
positive basis in the following way (T'(¢) denotes the i:th column of T'):

Algorithm 6. Exploratory moves for a minimal positive basis search algorithm.
Given xg, f(zr), Ag.
Set s, = 0,min = f(xx),i =0, =0.
Whilei <n+1andj<n
st = s, + ApT(4)
If f(zk + si) < min
min = f(zy, + s%)

Skzs;‘c
j=j+1
t=1t+1

Return sy, f(z + si).

In this way we reduce the highest number of evaluations per iteration from
2n to n + 1. If we replace the ordinary coordinate search with the new one we
get variants of Hooke and Jeeves and SBA that use a minimal positive basis
core pattern.

2.5.2 How large should the positive basis be?

Often the maximal number of evaluations per iteration with a pattern search
method is the number of vectors in the positive basis, or a multiple of it. The
argument for using a minimal positive basis is then that it reduces the highest
number of evaluations per iteration. On the other hand, a maximal positive
basis better approximates the gradient. The question is if the advantages with
a minimal positive basis outweighs that of a maximal. To investigate this, we
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Figure 2.3: Ilustration of how a positive basis I' approximates an arbitrary vector. The
basis to the left is maximal and the basis on the right is minimal. § is the angle
between some vector and the closest vector in the basis. In the middle and to
the left is seen a vector that is furthest possible from any vector in the basis.

consider the following simple optimization algorithm. Given a positive basis T’
and a current iterate x; we compute

s, =arg min f (zr +y) (2:5)

and if f(zg + sk) < f(zr) we accept the step, otherwise we reduce the step
length. Whether one should use a maximal or minimal basis in this algorithm
is to ask whether it is worth the effort to check many points around the current
iterate before deciding on a step, or if it is better to take a step as soon as
possible (with preserved convergence properties).

In order to determine how well we can approximate an arbitrary vector x
we are interested in the smallest angle between 2 and any of the vectors in the
positive basis, i.e. the angle defined by

. T(i)ex
05O = e
This angle can be seen to the left in Figure 2.3.
The ability of I to approximate the direction of steepest descent may then
be measured by
d(T) := min max M,
B YOl
which is the cosine of the angle between the vector z that is furthers away from
any vector in I', and the vector in I" that is closest to z.

Let T'! be the maximal positive basis that consists of the standard unit
vectors and their negatives and let I'? be a minimal positive basis consisting of
a normalized regular simplex (Appendix, Definition 1 and Theorem 7). From
[36] we have d(T!) = 1/4/n and Theorem 10 in the Appendix states that d(['?) =
1/n. For n = 2, the situation is depicted in Figure 2.3; d(I'!) is just the cosine
of /4 and d(T'?) the cosine of 7 /3.

Obviously T! € Z™*2" and therefore passes as a core pattern matrix in
Algorithm 1. Tt is not true that T2 € Z"™*2" but we use d(I'?) as an upper
bound for d(T) for any minimal positive basis T.
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We now suppose that the reduction in the objective function is proportional
to the approximation of the gradient and that the gradient is of a fixed size (as
is the case if f is linear). A step s according to (2.5) then leads to a decrease
in the objective function value bigger than or equal to

of = p-|lsll - d(T),

where p is some positive constant. The function f is evaluated 2n times per
iteration with I'" and n + 1 times with I'2. Hence the quotient of the reduction
in f per evaluation using I'? and the reduction in f per evaluation using I'!
becomes 2n4/n/(n(n + 1)). This quotient is less than 1 for all n > 1 and tends
to zero as 1/4/n when n tends to infinity. Hence, a maximal positive basis
should pay off in any dimension and become even more effective with increasing
dimension. The reason is that the basis ability to approximate the gradient (as
measured by d(I')) does not vary linearly with the size of the basis. However,
the analysis is made under substantial simplifications.

2.6 Pattern search and surrogate functions

In this section we consider the concept of a surrogate function f which approxi-
mates f and is less expensive to evaluate. We discuss, inspired by [2, 5, 14, 38],
how surrogates can be used in a systematic way in order to optimize f.

We can distinguish at least two types of surrogate functions in the literature.
Surrogates of the first type are algebraic constructions that can be expressed
in a closed mathematical form. For example, they can be linear or quadratic
functions that interpolate or approximate a set of samples of f [8, 31]. This
approach is problem-independent in the sense that it treats f as a “black box”.
They can also be based on a truncated Taylor series expansion of f, as in the
classical trust-region method.

Surrogates of the second type are of relevance when the evaluation of f relies
on some complicated simulation, as discussed in the introduction to this chap-
ter. The surrogate is based on a simplification of the underlying simulation; we
could say that one looks inside the “black box”. Consequently, this approach
is more problem-dependent. For example, if the evaluation of f involves the
numerical solution of a system of partial differential equations (PDE), the sur-
rogate could be based on the use of a coarse computational grid in the PDE
solver. This idea is explored in Section 5.4. They could also be based on an
analytical approximation of the system of PDE:s that are easier to solve and
whose solutions are approximate solutions to the original system. Typically, a
surrogate of the second type provides a global approximation of f.

How should surrogates be used in the optimization process? The simplest
would perhaps be to first optimize on the surrogate and then use the optimum as
the initial guess for optimization on the “real” function. The drawback is that we
have no control of the quality of f. If the surrogate is a bad approximation, this
strategy may lead us even further away from an optimum of f than if we had not
used the surrogate at all. Furthermore, surrogates of the first type are typically
only reliable approximations to f in a neighbourhood of the current iterate.
They must be updated during the optimization, and we need a procedure for
determining the region where we can expect the surrogates to give meaningful
information about f.
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It should thus be clear that efficient use of surrogates requires some kind
of framework. Such frameworks that are based on the pattern search method
are proposed in for example [5, 14, 38]. The frameworks in all these references
can, in principle, handle surrogate functions of both types. However, no explicit
examples of surrogates of the second type are given.

The reason why the pattern search algorithms are well suited for providing
a surrogate optimization framework is the freedom of choice of the exploratory
moves algorithm, which need only consist of two things: an oracle that suggests
a number of steps on the current grid, and a core pattern check that has to be
done before the grid may be refined. A core pattern check is simply a search
through all the steps in the core pattern (Section 2.3.1). We can therefore write
the following simple exploratory moves algorithm [5], which is actually just a
way of expressing the conditions on the exploratory moves algorithm in Section
2.3.1.

Algorithm 7. Ezxploratory moves with an oracle.
Let xzy,, f(zy), A be given and let sy = 0.
Let the oracle suggest some steps s',... ,s™ on the current grid.
If f(zk + 5%) < f(zy) for somei € {1,... ,m} then s = s,
else perform a core pattern check:

If there exists s € ARBT s.t. f(xr +s) < f(zg) then

take s, € ApBT s.t. f(zr + sk) < f(zk).

Return s, f(zy + si).

A surrogate function can now be incorporated into the optimization via the
oracle. For example, the oracle may consist of some iterations with an arbi-
trary optimization procedure on the surrogate. The efficiency of the algorithm
evidently depends on how the oracle works and is updated.

We now give the exploratory moves algorithm for a coordinate search algo-
rithm that uses a surrogate function. We write

(8k f(zk + 81)) = cs(zk, f(@k), f, Ak)

for the ordinary coordinate search algorithm 3, where f is now added to the
arguments to indicate on which function the coordinate search is performed.

Algorithm 8. Exploratory moves for surrogate coordinate search.
Let xy,, f(wr), A be given and let s = 0.
8k, f(zk + 8k)) = cs(ax, flax), [, Ak)
If 51, # 0 then
If f(zr, + 8k) < f(zk)
S = §k
else
(s, fzr + sk)) = cs(zk, f(zk), f, Ak)
else
(sk, fzr + sk)) = cs(zg, f(zk), f, Ak)-
Return si, f(zk + sk).

We note how the step is the result of a coordinate search on either f or f.
Therefore, the basis matrix and the generating matrix are as for the ordinary
coordinate search. Furthermore, unless a successful step si is found by this
algorithm, an unsuccessful coordinate search has been done on f, i.e., a core
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pattern check has been done on f. We conclude that the surrogate coordinate
search algorithm is an instance of the general pattern search algorithm applied
to f.

By plugging the surrogate coordinate search algorithm into the Hooke and
Jeeves algorithm and the SBA, we get versions of them that make use of surro-
gate functions and also are instances of the general algorithm. Note that if f is
a bad model of f so that the steps suggested by coordinate search on f never
result in lower values of f, these versions turn into the usual ones apart from
the extra evaluations of f.

31



32



Chapter 3

Fluid dynamics

3.1 Introduction

We give a brief introduction to fluid dynamics which serves as the theoretical
background for the waterjet inlet flow modelling in Chapter 4. Everything in
this chapter can be found in most introductory textbooks on fluid dynamics.

We derive the Navier-Stokes equations of motion for a viscous, incompress-
ible flow when the fluid has constant density and viscosity. We discuss the
modelling of steady, turbulent flows with the Reynolds equations and the Stan-
dard k-e model. Since it is very important for a flow model to correctly represent
the near-wall flow we describe the structure of a turbulent boundary layer and
how it can be modelled.

3.2 Navier-Stokes equations

We use the conservation laws of mass and momentum to derive the equations of
motion for a viscous incompressible Newtonian fluid of constant density in the
absence of body forces. The derivation is valid also for non-stationary flows.

Let p(x,t) € R® denote the trajectory of a fluid particle initially at x € R3
(i.e. @(x,0) = x). Let V C R® be some volume element of the fluid with
boundary 9V and outward normal n and let V; = {p(x,t) : x € V'} denote the
volume moving with the fluid.

The law of conservation of mass says that the rate of increase of mass in V
equals the mass flow rate into V. Since we consider a fluid of constant density
we get, after applying Gauss’ Theorem,

/ VeudV =0. (3.1
v
The momentum of the fluid in V4 is
m(t) = / pu(x,t)dV. (3.2)
Vi
The forces on a volume element are usually divided into body and surface forces,
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of which we will ignore the former in order to simplify the presentation!. The
surface stresses of the volume element are pressure and internal friction and
may be represented by the stress tensor® o(x,t) € R® x R® so that o(x,t)n is
the force per unit area at time ¢ on a surface element through x perpendicular
to n. Hence, using the transport theorem [10] to differentiate (3.2) with respect
to t, we get
m'(t) = pE av = ondV = | VegdV, (3.3)
v, Dt v, Vi

where the second equality is Newton’s second law and the third equality is Gauss’
Theorem. Here, Du/Dt = u/dt + (ue V)u is the the total derivative of u (the
acceleration of a fluid particle following the fluid), and (V e 0); = 00;;/0x; (a
repeated index means a summation over that index).

We now make appropriate regularity assumptions on p and u. Then, since
Equations (3.1) and (3.3) are valid for arbitrary volumes V(= V;—¢), we may
remove the integral signs to get

Du
and
Veu=0. (3.5)

Water is an example of a Newtonian fluid [1] for which
o =pl +2uD, (3.6)
where p is the coefficient of viscosity and

L 1(6’112 + 6uj
”_2 6.23‘]' 6.%’,

D ) (3.7)

is the rate of deformation (or strain) tensor. The second term in (3.6) represents
the viscous stresses.

For an inviscid fluid viscous stresses are ignored and ¢ = pI. Substitution
into (3.4) gives the Euler equations. For viscous incompressible fluids it follows
from Equation (3.5) that V e 2D = V?u (= (Auy, Aua, Aus)). We then arrive
at the following four partial differential equations:

Du N
Ppr = =Vp+ uV-u,
Veu=0.

(3.8)

These are the Navier-Stokes equations. The first three equations represent the
balance of momentum and the last equation expresses the conservation of mass.
In the balance of momentum equations, the first term is called the inertia force,
the second the pressure force and the third the viscous force.

1 Actually, when modelling the s-duct flow in the following chapter, it is possible to account
for gravitational effects without including gravitation in the equations. See discussion in
Section 4.4.6.

20ne can ask why o should be a matrix. Actually, using Newton’s second law and the
assumption that ¢ is a continuous function it can be proved that o is a linear function of n.
This is done in [20].
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3.3 Reynolds number

An important quantity for describing a flow is the Reynolds number, defined as

L
Re:U—,

v

where U is a typical flow speed and L a typical distance over which the flow
changes in a significant way. In the case of flow through a duct with circular
cross section, L can be taken to be the duct diameter. For a stationary flow the
Navier-Stokes equations become

1
(ueViu= —;Vp +vV2u.

We may expect to have

U? U
|(ueV)u| ~ T and |vV2u| ~ 2—2,
which gives
2
(weV)u| UYL _
[vV2u| vU/L?

That is, the Reynolds number indicates the relative importance of inertia to
viscous forces in typical parts of the flow domain. A flow with a high Reynolds
number differs a lot from a flow with a low one. For the latter, viscous forces
dominates over inertia forces so that the flow equations may be approximated
by

Vp = pViu, (3.9)

which is sometimes called the equations of creeping motion. Since they are
linear they are much simpler than the full Navier-Stokes equations and because
they are of the same degree one can use the same boundary conditions.

With a high Reynolds number, viscous flow effects are so small that they
may be ignored, giving the approximation

pue Vu= —Vp. (3.10)

These are the Euler equations. The flow is driven by pressure differences so
that fluid particles are accelerated in the direction of the pressure gradient at
each point. Since they are of lower degree than the Navier-Stokes equations the
number of boundary conditions has to be reduced.

3.4 Boundary layer

For a high Reynolds number, viscous effects are negligible in most part of the
fluid domain so that Equation (3.10) is valid. Since these equations are of lower
degree, one has to reduce the number of boundary conditions. The appropriate
procedure is to replace the no-slip condition at the walls with an impermeabil-
ity condition. Experimentally, though, it is found that the no-slip condition
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continues to apply no matter how high the Reynolds number is. Hence there
is a thin region close to the walls where the flow adjusts itself to the no-slip
condition, resulting in much larger values of 8?u/dy? than far from the wall (u
being the velocity parallel and y the distance perpendicular to the wall). This
region, where viscous effects remain important, is called the boundary layer and
its approximate thickness denoted by d. It can be shown that ([1])

) 1
L~ Re/?

Sometimes ¢ is defined as the distance from the wall where the flow differs one
percent from the inviscid flow solution.

Even if the boundary layer is very thin for high Reynolds number flows, its
presence is still very important for certain aspects of the flow. (Consider for
example d’Alembert’s paradox: the drag force on an obstacle in a potential flow
is zero.)

3.5 Turbulent flow

We discuss some basic properties of turbulent flows. In Section 3.5.1 we state
and motivate the Reynolds equations. In Section 3.5.2 we briefly describe the
structure of a turbulent boundary layer.

With an increasing Reynolds number (for example as the result of an increas-
ing mean velocity) the flow eventually becomes unstable. Small disturbances
are amplified and may lead to a fully turbulent flow. A necessary condition for
turbulence to develop and sustain is the existence of a mean velocity gradient
([27]). A turbulent flow is characterized by chaotic and irregular flow particle
trajectories. Local quantities change unpredictably in time, even if the imposed
boundary conditions are stationary. However, turbulence is not a completely
random phenomenon since, often, it gives rise to some kind of patterns at a
large scale. For example, a turbulent velocity field have certain spatial struc-
tures known as eddies. There are always eddies of a wide range of sizes, small
eddies existing inside larger eddies ([27]). A turbulent flow is much more dis-
sipative than a laminar flow, because of the work of the small eddies against
viscous stresses. Also, “important constituents of the turbulence phenomenon
take place in eddies of the order of a millimetre in size, while the whole flow
domain may extend over meters or kilometers” ([21]).

3.5.1 Reynolds equations

It is clear from what has been said above that even though the Navier-Stokes
equations are valid theoretically, they are not appropriate to be used in a prac-
tical model for turbulent flows since such a model would require an impractical
number of grid nodes in order to resolve the small-scale (stochastic) effects on
the large-scale (average) flow behaviour. The remedy is to adopt a statistical
aproach. Each flow quantity ¢ is divided into

1=Q+d,

where ) is an averaged component and ¢' is a ﬁuctgating component. We
denote averaging by bar, i.e., @ = ¢§. By definition, ¢’ = 0. In a stationary
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flow the average may be seen as a time average. If the flow is explicitly time
dependent, the average quantity may be considered to be the average of the
quantity at corresponding instances and locations over a number of identical
flow setups ([37], p- 300).

If we put u; = U; + u},p = P+ p' into the steady form of the Navier-Stokes
equations and then take the average, we get the Reynolds equations for the mean
quantities U, P:

oU; oP 0 oU; —
U, =2t = _ Z — puldd ),
P 6.’L‘j 6.’13, Bm]- (M 6.'17]' puzuj )
(3.11)
ou; 0
6.(13,' e
The six quantities 7; = —pu§u9 behave as additional stresses on the fluid and

are known as the Reynolds stresses. They represent the effect of the small-scale
fluctuations on the large-scale mean flow arising from the non-linearity of the
Navier-Stokes equations. Mathematically, the Reynolds stresses appear as six
new variables and must be modelled in order to get a closed system (a system
with enough number of equations to determine all the unknowns). This closure
problem is the fundamental issue of turbulence modelling.

3.5.2 Turbulent boundary layers

The presence of solid boundaries, “walls”, significantly affects turbulent flows.
The no-slip condition enforces large velocity gradients close to the wall which
give rise to the production of turbulent energy. Seil [34] states that solid bound-
aries “act as sources of turbulence and energy loss”.

The structure of a turbulent boundary layer may be described by several
layers depending on the behaviour of the turbulence in each layer. According
to Hinze ([17], p. 587) a turbulent boundary layer of thickness & consists of
an inner region, where the flow is directly influenced by viscous effects, and an
outer region, where the flow is fully turbulent and viscous effects are negligible.
In the inner region (0 < y/d < 0.2) the shear stress is approximately constant
and equal to the wall shear stress 7, ([26]). The inner region, in turn, consists of
the very thin viscous sublayer (y/é < 0.002)), where viscous stresses dominate,
the buffer layer, where both viscous and turbulent (i.e. Reynolds) stresses are
important, and the log-law layer (0.02 < y/0 < 0.2) where turbulent stresses
dominate.

In the log-law layer it is possible to derive a universal, logarithmic relation
between the velocity U tangential to the wall and the distance y normal to the
wall. This relation is known as the log-law and reads as

1
Ut = ZIn(Ey™), (3.12)
K
where
pr=Y
Uy
and
y+ — U-,—y-
v
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The friction velocity u, is defined by
Ur = (TU)/p)l/Q:

where 7, is the wall shear stress. The log-law can be derived from arguments
based on the Boussinesq hypothesis, the assumption of a constant shear stress,
an assumption concerning the length scale of the near-wall turbulence, and
dimensional analysis. The numerical values of the constants are found from
experiments to be k = 0.41 (von Karman’s constant) and E = 9.8 for a smooth
wall ([26]). Experiments also show the log-law to be valid for 30 < y*+ < 500 ~
1000 ([17]).

3.6 Turbulence modelling

Many models for the closing of the Reynolds equations have been developed.
They differ in accuracy, range of applicability and computational cost. One of
the most popular and well-established ways of closing the Reynolds equations is
the Standard k-e model. According to the Fluent manual [15], its popularity for
industrial flow calculations is due to its “robustness, economy, and reasonable
accuracy for a wide range of turbulent flows”. Malalasekera and Versteeg [26]
remark that the k-e¢ model is the most widely used and validated turbulence
model. Fluent also allows for the option of using more elaborate turbulence
models. They state that for certain flows it is necessary to choose a Reynolds
stress model (RSM), but that the RSM is computationally more expensive and
less robust than the k-e model.

Since the optimization presented later in this work requires a large number
of flow simulations to be done, it is essential to choose a robust and computa-
tionally efficient CED model. We have therefore decided to use the Standard k-¢
turbulence model, which is presented in greater detail in the following section.
The boundary conditions for the k-e model are discussed in Section 3.6.2. In
particular, we discuss how to specify the inlet conditions in practice, and how
the effects of boundary layers are taken care of in order to improve the accuracy
and efficiency of the model.

3.6.1 The Standard k-¢ turbulence model

The Standard k-e model ([21], [15]) consists of two transport equations for the
turbulent kinetic energy k,

and its dissipation rate e,

ou); ou
e=v—L—*.
81']' 6.’12']'
The version of the model described here is derived for high Reynolds numbers,
using the hypothesis of Boussinesq (see below) and assuming that the turbu-

lence is isotropic, which means that the statistical properties of the turbulence
are equal in all spatial directions. Hinze [17] points out that even though the
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assumption of isotropy is not true for any actual flow, it often yields valuable
approximations also when the turbulence has essential nonisotropic character-
istics.

In the Reynolds equations (3.11), the Reynolds stresses appear together with
the viscous stresses. Therefore, it is tempting to assume that also the former
are proportional to the mean velocity gradient (the Boussinesq hypothesis). To-
gether with the assumption of an isotropic turbulence, this leads to the modified
Boussinesq hypothesis [17]:

- — 2

d;; is the Kronecker delta function, D;; the average rate of deformation and p;
the turbulent viscosity.

Arguments based on dimensional analysis under the assumption that one
length scale and one velocity scale suffice to describe the effects of turbulence
yields ([26])

k’2
Mt = pcu?7 (314)

where C, = 0.09.

By a Reynolds-averaging procedure it is possible to derive two transport
equations for k and e from the Navier-Stokes equations. Modelling some of the
terms in these two equations (see for example [26]) gives the Standard k-e model
for high Reynolds numbers ([21]):

P%]Z = %(Ht%) +2uDi; Dy — pe
De 0 ,u; Oe €. = = €2 (3:.15)
P = B2 (a_easci) + 015E2NtDijDz’j - Czepz,
where
o, =13, Ci. = 1.44, Cye = 1.92.

Once Equation (3.15) has been solved, k and e determine the Reynolds stresses
through the modified Boussinesq hypothesis (3.13) and Equation (3.14).

To sum up, in the Standard k-e model, the six Reynolds stresses are modelled
by two new unknowns, k and €. A closed system for the six unknowns U;, P, k
and € are made up of the six partial differential equations in (3.11) and (3.15),
together with the seven algebraic relations (3.13) and (3.14).

3.6.2 Boundary conditions for the k-¢ model

In Fluent, the boundary conditions for k and € at the outlet and at the walls are
taken care of by the software, while the user has to specify the inlet condition. In
the first part of this section we discuss how the inlet conditions may be specified
in practice. In the second part we outline how low-Reynolds-number boundary
layer effects can be taken into account by the high-Reynolds-number Standard
k-e model given above, by the use of wall functions.
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Specifying the inlet boundary conditions

In industrial practice it is rare to have access to experimental measurements of
the exact distributions of k¥ and e at the inlet. Instead, uniform values of the
turbulent quantities can be obtained from empirical formulas, which we now dis-
cuss. In the Fluent manual [15] it is noted that this procedure is appropriate,
for example, in the case of a fluid entering a duct, and that often the calcu-
lation is relatively insensitive to the turbulence inlet data, because the shear
layers generate more turbulence than enters the duct at the inlet. Neverthe-
less, unphysically large inlet values can significantly affect the solution and the
convergence behaviour.

One way to specify constant inlet boundary values for £ and € in Fluent
is to use the turbulence intensity I and the turbulence length scale I. The
relationship between k and I is ([15], pp. 6-14)

3
k = 5(UTefI)27
where U,y is some reference flow speed. The turbulent rate of dissipation can
be determined from ! by ([15] pp. 6-14)

k3/2
€= 03/4T

Furthermore, since the eddy viscosity is related to k and € by Eq. (3.14) we get
Mt X Il.

Thus, the turbulent viscosity increases when either I or [ is increased.
In fully-developed duct flows, I can be approximated by

| =0.07Dy, (3.16)

where Dy is the hydraulic diameter ([15] pp. 6-12). If one knows the boundary
layer thickness, dgg, at the inlet, a better estimate of [ is ([15], pp. 6-13)

Near-wall treatment

As discussed in Section 3.5.2 turbulent flows are significantly affected by the
presence of walls. Fluent [15] notes that an accurate near-wall modelling is
important in order to get reliable numerical solutions. In general, there are
at least two methods for the numerical modelling of the turbulent boundary
layer ([21]): the wall-function-method and the low-Reynolds-number-modelling
method. In the latter, boundary layers are resolved by using fine enough com-
putational grids. The former avoids the need for fine near-wall grids by the
use of wall functions that describe the relations between the involved quantities
(velocity etc) at a certain distance from the wall. For high Reynolds number
flows, it therefore saves computational resources, as noted by Fluent [15].

Since the Standard k-e model described above was developed for high Reynolds
number flows, it will give incorrect solutions if the low-Reynolds-number-modelling
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method is used. Instead the wall function approach is employed. A set of wall
functions for the Standard k-e model are:

U_l1 Eury b= u? o
uw, ko\ v ) ek Ty
T w

These relations should be fulfilled at the wall-adjacent nodes. Since the log-law
is only valid in the log-law layer, these nodes should be well inside the log-law
layer, but not closer; 30 < y* < 200, say. It should be noted that the friction
velocity u, is not known a priori and hence it is not obvious how to employ
the above formulae in practice. Fluent [15] follows the procedure outlined by
Launder and Spalding [21].

The first relation is the log-law (Eq. (3.12)). To derive the other two, we
note that in the near-wall region the production term in the transport equation
for k becomes ([34])

Gr = —puv' (3.18)

dy’
where v is the velocity normal to the wall. In the inner region, the shear stress

is approximately constant and equal to the wall shear stress. Therefore, since
Reynolds stresses dominate in the log-law layer, we have

_pW = _pu72— (= Tw).

Furthermore, differentiation of the log-law gives

oUu
gz (3.19)
oy Ky
The last two equations inserted into Equation (3.18) result in
3
G = pz. (3.20)
KY

We now assume that the production G, of turbulent kinetic energy equals the
rate of dissipation pe (see [17], pp. 649). Hence,

3
e=dr
KY

Inserting this expression for € into Equation (3.14) and solving for k gives

3
k2= At (3.21)
Cupry
The Boussinesq hypothesis,
e =,
P = Mt 62} )

together with Equation (3.19) allow us to write Equation (3.18) as

u?
Gk = Mg /4;,2y2 . (322)
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Equating the two expressions (3.20) and (3.22) for G, and solving for y; results
in

pe = pus KY.
By inserting this expression for y; into Equation (3.21) we finally arrive at
w2

cy?

k=
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Chapter 4

A waterjet inlet duct
performance model

4.1 Introduction

This chapter and the following are concerned with the waterjet inlet design
problem stated in the introduction to the thesis. We present a model of the
inlet duct and its hydrodynamic performance, which is then optimized in the
next chapter. The inlet performance model consists of

e a model for the generation of duct geometries,
e a model of the duct flow,
e a model for the assessment of the hydrodynamic performance.

Before going into the details, we briefly discuss each one of them, and their
interaction with the optimization to come.

Geometry

In order to generate geometries, a parameterization of the inlet duct geometry
has been performed. The idea is to describe the geometry by finitely many real
numbers, or parameters. Each parameter represents an important aspect of the
geometry, such as a radius, characteristic length etc, and to each set of given
parameter values is associated a geometry (shape, inlet duct flow domain) D.
When the parameters are varied, they generate a set of geometries on which
the optimization can be performed. Mathematically, a parameterization can be
seen as a mapping

D:QCR" — Py, D = D(p), pER, (4.1)

where 2 is a subset of R", n is the number of parameters and P3 the set of all
subsets of R3. p is the vector of parameters and D is the geometric shape. The
details of the parameterized geometry are given in Section 4.2.

The parameterization reduces the number of degrees of freedom for the duct
geometry from infinitely to finitely many. This is necessary in order to obtain
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a finite dimensional optimization problem, which can be solved by a computer.
It is clear that this drastic reduction in degrees of freedom makes the choice of
parameters a crucial step in our modelling. For the optimization of the model to
be meaningful, the parameters must generate a relevant set of duct geometries.
For the optimization to be efficient, the parameters should be as few as possible,
and somehow independent of each other. To choose the parameters one has to
be familiar with the problem, and have a feel for what geometric aspects that
could be of relevance. Physical parameters (length, radii etc) will make it easier
to obtain independent parameters, control the behaviour of the model and to
interpret the optimization results.

Flow

We have used computational fluid dynamics (CFD) techniques to compute the
steady, incompressible, viscous and turbulent flow through the inlet. A CFD
analysis consists of two steps. Firstly, the flow domain is discretized by the
generation of a computational grid, or mesh. This step has been performed
with the commercial software Gambit. Secondly, the discretized flow equations
are solved on the grid. This step has been done with the commercial software
Fluent.

The fact that it will be used in the context of optimization imposes special
requirements on the CFD model. First of all, we must find a procedure for
the automatic generation of acceptable grids for a wide range of geometries.
Grid quality is important for fast and accurate CFD calculations. In general,
the generation of high quality grids is a demanding task, but in our case it is
quite straightforward because of the simplicity of the flow domain geometry.
Furthermore, in view of the fact that a large number of CFD calculations are
performed in the course of an optimization, robustness and minimal execution
time become essential properties of the CFD model. This is further discussed
in Section 5.4.

Our CFD model, presented in Section 4.4, is based on the Reynolds equations
(3.11) with k-e modelling of the Reynolds stresses (Section 3.6). The reliability
and accuracy of the model is validated by comparing solutions obtained in Flu-
ent to the experimental data of Bansod and Bradshaw [3]. The experimental
validation is also a way of adjusting parameters such as boundary conditions,
grid etc, to improve the performance of the CFD model.

Performance

In Section 4.5, we discuss a model for the assessment of the hydrodynamic
performance of a given duct. The model can be seen as a mapping which to
each duct represented by the parameter vector p assigns a real number f(p)
that measures some aspect of the hydrodynamic performance. The aspects of
hydrodynamic performance that we consider are total pressure loss and the risk
of inception of cavitation as measured by the minimum static pressure in the
duct.
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4.2 Geometric modelling

In this section we discuss the modelling of the waterjet inlet duct geometry.
The geometric simplifications that have been done are accounted for in Section
4.2.1. The parametric model of the duct geometry is described in Section 4.2.2.
Section 4.2.3 briefly explains how the duct geometry can be represented by
NURB curves.

The implementation of the geometry has been done in Gambit. (Grid gen-
eration with Gambit is discussed in Section 4.3.4.)

4.2.1 Geometric simplifications

In order to perform a CFD evaluation of the flow in the waterjet inlet, it would
be desirable to model at least the following aspects of the geometry:

1. the shape of the waterjet inlet itself,
2. the pump shaft,
3. the inlet grille.

The emphasis of this work is on the geometric shape of the waterjet inlet and
in fact it is the only geometric feature that has been modelled. We now briefly
discuss why the other two features can, and have been, neglected.

As can be seen in Fig. 1.1, the pump shaft passes through the waterjet inlet
and will clearly influence the flow, whence its effect on the flow behaviour should
be modelled somehow. Nevertheless, this geometric feature has not been taken
into account in what follows, mainly because the grid topologies used in this
work make a direct geometric representation of the pump shaft impractical.

Also the effect of the grille has been neglected, for three reasons. Firstly,
to represent the individual bars of the grille would require a very large mesh.
Secondly, it can be assumed that the effects on the flow caused by the grille is
more or less independent from the effects caused by the shape of the waterjet
inlet. Finally, not all waterjet inlets have a grille fitted.

4.2.2 Parameterization of the s-duct geometry

The waterjet inlet has been modelled by an expanding s-duct consisting of a com-
bination of straight duct sections and circular arc sections. The cross-sectional
shape is circular, but the radius of each cross-section is allowed to vary. The
dimensions of the duct have been proposed by Rolls-Royce AB. The diameter of
the inlet opening is set to D;;, = 0.4 m and the diameter of the outlet opening is
set to v/2 - Dy,. The height (y-direction) is fixed to H = 3 m. The total length
in the z-direction will be denoted by L.

The s-duct can be described by the center curve of the duct, and a radius
curve, which gives the radius of the cross sections as a function of the arc length
parameter along the center curve.

The generic form of the center curve and the three parameters it has been
parameterized with is shown in Fig. 4.1. In words, the center curve consists of

1. a straight line of length D;,,

2. a circular arc of radius Ry (variable),
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Figure 4.1: The duct geometry and the six segments of the duct center curve.
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Figure 4.2: The defining parameters for the radius curve. Note that the arc length param-
eter s has been scaled by s5.

a straight line, inclined by « degrees (variable),
a circular arc of radius R» (variable),

a straight line of length D;,,

A

a straight line of length D;,, along which the radius of the cross section is
constant equal to v/2 - D;, /2.

The radius curve r is a continuous curve with two parameters. More specifi-
cally, let s be the arc length parameter of the center curve and denote by s; the
arc length of the first 7 center curve segments. We define r by

_ Q(s)a 0S5S357
T(s)_{ V2-Djn, s5<s5< sg,

where ¢ is a cubic spline with initial value ¢(0) = D, /2, final value ¢(s5) =
V2-Din /2 and initial derivative and final second derivative equal to zero. Also,
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we require ¢(s5/3) = r; and ¢(2s5/3) = ry. As a consequence, the radius curve
is continuous on the interval [0, s¢] and has continuous second derivative on
[0, s5). Its parameters are r; and ro. For practical reasons, we will use r(s/s5)
instead of 7(s), as in Fig. 4.2.

Constraints

The five parameters «, Ry, Ra, r1, T2 given above are subject to certain con-
straints. For example, we have the natural restriction R; > 0. We now give
a complete list of constraints. It should be noted that they are sufficient for
guaranteeing that the parameterization makes sense, and sometimes, in order
to guarantee that the construction of the duct is possible in practice, they have
been chosen stronger than necessary.

™
<z 4.2
a<g, (4.2)
T «a
3D;, + H - tan (5 — a) + (R + Rz)tan(g) < Lz, (4.3)
« D;, H
bt < 4.4
(Rl + RQ) tan (2) + 5 = sm(a)’ ( )
D:
- S Ty i= 1727 (45)
4
D;, . .
ri + —— <min{Ry, Ra}, i=1,2. (4.6)

2

Constraint (4.2) expresses that we do not allow the mid-section of the centre-
line to be inclined more than 90 degrees. Constraint (4.3) restricts the total
duct length in the x-direction. To be able to connect the two centreline bends
smoothly with a straight line, the bend radii can not be too large. This is guar-
anteed by constraint (4.4), which also separates the bends by at least D;, /2.
Eq. (4.5) imposes lower bounds on the radius along the duct. If the duct ra-
dius at one of the bends are greater than the bend radius, the duct surface
will “intersect itself”, and the practical geometric construction will fail. This is
avoided, with some margin, by constraint (4.6).

Summary of parametric model

The following five parameters have been used to parameterize the inlet duct
geometry (Fig. 4.1 and 4.2):

a  the angle of inclination of the duct,

R; the upstream bend radius,

R, the downstream bend radius,

r1  the duct radius one third along the duct center curve,

ro  the duct radius two thirds along the duct center curve,
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where r; and r, are interpolated by the constinuous radius curve. These pa-
rameters are subject to certain constraints that can be represented by the set

Q={p€R :p=(a,Ry,Ro,71,72) and a, Ry, Ra, 71 and r» fulfils

4.7
the constraints in Eq. (4.2) to (4.6)}. (47)
The parameterization may now be expressed as
DQg]R” —)P3, D:D(p), p:(a,Rl,Rz,’I‘l,'I‘z), (48)

where D is the s-duct flow domain and, again, P3 is the set of all subsets of R3.

4.2.3 Representation of the parametric geometry

The implementation of the geometry has been done in Gambit; see Section 4.3.4
for further discussion. To communicate the geometry to Gambit it is necessary
to have a practical and efficient representation of the center and the radius
curves discussed in the previous section. We have used NURB (non-rational
uniform B-spline) curves for this task. A NURB curve of degree p is a piecewise
rational polynomial of degree p, which can be defined as

_ 2izo Nip(w)w;P;
Clw) = Z?:O Ni,p(“)wi

where {P;} are called the control points, w; > 0 are the weights and N; , is the
p:th B-spline basis function (a piecewise polynomial of degree p with compact
support, i.e., which is zero outside a subinterval of [0, 1]).

Details about the properties of NURB curves are deferred to the Appendix.
Let us just remark that NURB curves provide an excellent tool for the repre-
sentation and local shape control of geometric features. The main reason for
this is the compact support of the B-spline basis functions so that the pertur-
bation of a control point will influence only a small part of the curve. The
main reason, however, that we have used NURB curves, is that they provide
an efficient and compact representation of piecewise defined curves, and they
can be used for an exact representation of, for example, circular arcs. The def-
inition of NURBs allows for flexibility in the choice of parameterization and it
is possible to approximate a uniform parameterization. It should thus be clear
that NURB curves are a natural choice for the representation of the center and
radius curves.

0<u<l,

4.3 The computational grid

In order to perform a numerical simulation of the s-duct flow, the flow domain
must be discretized. This is accomplished by the computational grid, or mesh.
The mesh is an essential part of a CFD model. The complete CFD model is
discussed in Section 4.4. In Sections 4.3.1 and 4.3.2 we describe two kinds of
structured grids appropriate for an s-duct. The grid quality is discussed in Sec-
tion 4.3.3. The practical meshing procedure is described in Section 4.3.4. Note
that because of the symmetry of the flow in an s-duct only half the geometry is
meshed.
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4.3.1 O-grids

We first consider a single-block mesh with a cylindrical geometry that fits natu-
rally to the s-duct geometry. It consists of an O-type grid over the cross-section
of the s-duct (Figure 4.3), which is then swept along the centreline to generate
the complete mesh (Figure 4.4). We will call such a grid an O-grid. The O-grid
consists of both wedge elements and hexahedral elements.

N
S

S
SRR
_'17,,-:,»““\\\\\\\\\\
LA S e
s o

R
LSS

117
."" i
v g i
ety |
ST
.5._‘,:.:.0.05':,;,'///?//
I
!

e
SS

S
e

!

Figure 4.3: Cross-sectional grid topology for the O-grid.

The following parameters have been used to specify the exact size and shape
of the O-grid:
my: Number of mesh intervals along the duct, i.e., on edge AE in
Figure 4.4.
msy: Number of mesh intervals on the arc AB (half of the semi-
circle ABC) in Figure 4.3.
mg: Number of mesh intervals on edge AD.
sri:  Successive ratio of mesh intervals at end A of edge AD.
sra:  Successive ratio of mesh intervals at end D of edge AD.
The parameters m;, mz, m3 determine the size of the grid. The number of mesh
intervals along the duct, my, are uniformly distributed along the centreline. The
purpose of sr; is to stretch the mesh on edge AD towards end point A in order
to obtain a clustering of grid points close to the wall. This is needed to obtain
a grid that resolves the near-wall flow with only a moderate number of grid cell
elements. sry is used to stretch the mesh on edge AD towards end point D. The
motivation for this is given in Section 4.3.3.

4.3.2 Butterfly grids

The second mesh we consider is a multi-block structured hexahedral grid. The
cross-section of the s-duct has been divided into an inner quadratic region and
four outer regions, giving the butterfly-like cross-sectional grid shown in Figure
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Figure 4.5: Cross-sectional grid topology for the butterfly grid.
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4.5. This cross-sectional grid is then swept along the centreline of the s-duct.
We will call this type of grid a butterfly grid.

The following parameters have been used to specify the exact size and shape
of the butterfly grid:

my: Number of mesh intervals along the duct, i.e. on edge AE in
Figure 4.4.

mso: Number of mesh intervals on edge BC in Figure 4.5.

mg: Number of mesh intervals on edge AB.

sr: Successive ratio of mesh intervals at end A of edge AB.

ra:  The ratio between the duct radius and half the length of the
diagonal in the inner quadratic region of the cross-sectional grid.

Again, the parameters m, ma, m3 determine the size of the grid and the num-
ber of mesh intervals along the duct, my, are uniformly distrubuted along the
centreline. sr serves the same purpose as sry for the O-grid and it is used to-
gether with ra, that determines the relative size of the inner quadratic region,
to obtain a grid that resolves the near-wall flow with only a moderate number
of grid cell elements.

4.3.3 Grid quality

The mesh quality plays a significant role in the accuracy and convergence be-
haviour of the numerical computation. The quality of the mesh is affected by
the grid node distribution, the grid smoothness and the shape of the grid cells,
as noted by Fluent [15].

The grid node distribution is important in order to resolve characteristic
features of the flow. For example, the resolution of a boundary layer requires a
high grid node density. For turbulent flows, the required near-wall grid density
depends on the turbulence model being used.

A grid is smooth if the changes in cell volumes between adjacent cells are
small. Non-smoothness will increase truncation errors in the discretized equa-
tions and thus decrase the accuracy of the solution.

Two cell shape attributes are skewness and aspect ratio. The skewness mea-
sures how much the cell element angles deviates from the angle in an equilateral
element of the same type. Highly skewed cells can decrease the accuracy and
destabilize the solution. The aspect ratio tells how stretched the cell is.

Both the O-grid and the butterfly grid admit for good resolution of the near-
wall region. However, this involves a stretching of the grid, which will decrease
the grid smoothness. The O-grid posses very good orthogonality in all cells
except for in the wedge cells near the centreline. The skewness of the wedge
cells will increase with the number of grid points in the circumferential direction,
but their influence on the solution can be decreased by a stretching of the grid
towards the centreline. The block-structure of the butterfly grid results in both
skewness and further decreased smoothness. As a consequence of the stretching
in the radial direction, some cells will have large aspect ratios. In both grids,
the gridlines are aligned with the primary flow direction, which should minimize
the numerical diffusion [15].
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4.3.4 Grid generation

The generation of O-grids and butterfly grids for the s-duct has been done with
the commercial software Gambit. The meshing procedure in Gambit starts with
the definition of the flow domain geometry. The user defines the vertices that
are connected by edges. The edges are assembled to form surfaces and finally
volumes are constructed from the surfaces. The actual meshing is accomplished
in a similar way by first meshing the edges, then the surfaces and finally the
volumes. Gambit can be executed manually from a graphical interface, or auto-
matically by reading the commands from an external text file, called the journal
file, provided by the user.

Since the grid generation will be used in an optimization procedure, it has
to be done automatically. We have had access to a computer program written
in C++ by Sara Agren [40] that, given the geometry data and a chosen set of
mesh parameters, prints the corresponding Gambit journal file. Gambit takes
the journal file as input, executes all the commands in it and finally prints a
mesh data file which can be read by Fluent.

4.4 CFD model and experimental validation

The intension of this section is to describe the calibration and validation of
a CFD model for the turbulent flow in the waterjet inlet s-duct model. As
pointed out in the introduction to the chapter, our choice of CFD model has
been influenced by the fact that it will be used in the context of optimization.

The model is calibrated and validated by comparing computed solutions,
obtained using Fluent, to experimental data by Bansod and Bradshaw [3]. In
their experiment, the fluid was air. The Reynolds number was 5-10%, compared
to about 5-10° for the s-duct water flow considered in this thesis. Still, it is hoped
that the result of a validation against the Bansod and Bradshaw experiment can
be carried over to our waterjet model. The investigated parameters of the CFD
model are

e grid topology,
e turbulence model (Standard or RNG k-¢),

e turbulence boundary conditions.

We stress that the purpose of this section has not been to fully evaluate the CFD
model that has been used, but rather to improve its performance by making
appropriate choices of the parameters given above.

The generic flow in s-ducts is discussed in Section 4.4.1. The experimental
setup of Bansod and Bradshaw is described in Section 4.4.2. The details of
the computational simulation of the experimental setup in Fluent are found in
Section 4.4.3. A comparison of the computed solutions to experimental data is
given in Section 4.4.4. The result of the validation is discussed in Section 4.4.5,
and our choice of CFD model for the waterjet inlet duct flow is given in Section
4.4.6.
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4.4.1 Flow through s-shaped ducts

The flow through s-ducts is characterized by a complex interaction of pressure
gradients, streamline curvature and secondary flows. The following description
has been taken largely from [34] and [3].

As the flow enters the first bend it is deflected by a cross-stream pressure
gradient which gives higher static pressure at the outside of the bend than at
the inside. The inviscid core flow takes time to adjust to the curvature of the
bend which result in a cross-flow in the core region from the inside to the outside
of the bend. In combination with a flow of boundary layer fluid towards the
inside of the bend caused by the cross-stream pressure gradient, this yields a
secondary flow consisting of a pair of counter-rotating vortices that convects
low-momentum fluid to the inside of the bend. Assisted by the adverse pressure
gradient at the inside of the second half of the bend, this gives rise to a rapid
increase in boundary layer thickness at the inside towards the end of the bend.

The build-up of low momentum fluid at the inside of the first bend displaces
the core flow towards the inside of the second bend. Of course the cross-stream
pressure gradient reverses as the flow enters the second bend and it tends to
convect boundary layer fluid towards the inside of that bend. However, the
vortices built up in the first bend take time to reverse, and they still cause
boundary layer fluid to convect towards what is now the outside of the second
bend. Therefore, the cross-stream pressure gradient will only affect the bound-
ary layer fluid in the core-region which has been displaced towards the inside of
the bend. In combination with the cross-stream flow in the core region (similar
to what happened in the first bend) toward the outside of the bend, another two
counter-rotating vortices appear that convects boundary layer fluid towards the
inside of the bend. The result at the duct exit is a characteristic region of low
total pressure and velocity at the outside of the second bend and a secondary
flow pattern consisting of two pairs of counter-rotating vertices.

4.4.2 Experimental configuration

The s-duct geometry called C3 in the paper by Bansod and Bradshaw [3] has a
diameter D of 0.15 m and consists of two 45° bends. The upstream bend has
R/D = 2.25 and the downstream bend has R/D = 3.5, where R denotes the
radius of the centreline. The bends are separated by a straight duct section
of length 0.5D and after the downstream bend follows a straight duct section
of length 0.5D. Air of velocity 45 m/s is blowed into the inlet. The Reynolds
number of the flow based on the duct diameter is approximately 5 - 10°.

4.4.3 Computational simulation

The computational flow domain is shown in Fig. 4.6. It consists of the s-duct
of Bansod and Bradshaw (referred to as the physical s-duct or flow domain)
extended by two straight duct sections of length D, one placed upstream of
the duct and one downstream. We will refer to certain cross-sections of the
computational domain as follows.
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3 top

Figure 4.6: Computational flow domain for the s-duct of Bansod and Bradshaw. The phys-
ical flow domain corresponds to the part between station 1 and 5.

Station 0 the inlet of the computational flow domain
Station 1  the cross-section at the entrance of the upstream bend, which
is also the inlet of the physical s-duct
Station 5 the cross-section 0.5D downstream of the exit of the
downstream bend, which is also the outlet of the physical s-duct
Station 6 the outlet of the computational flow domain

In all computations, an inlet velocity of 45 m/s was specified normal to the
inlet boundary and the fluid was specified as air with the density 1.293 kg/m3
and the molecular viscosity g = 1.7455 - 1075 kg/ms, giving the experimental
Reynolds number of 5-10°. A Neumann outflow condition (OUTFLOW in Flu-
ent) was specified at the outlet. The turbulence was modelled by the Standard
and the RNG k-e models with the standard wall functions.

The ’standard’ scheme in Fluent was used for the pressure and the QUICK
scheme for the other equations. Either the SIMPLE scheme or the PISO scheme
was used for the pressure-velocity coupling. When SIMPLE was used, the under-
relaxation factors where 0.2 for the pressure and 0.5 for the momentum, k& and
€ equations. When PISO was used, the under-relaxations factors where 0.3 for
the pressure, 0.7 for the momentum equations and 0.8 for the k¥ and € equations.

4.4.4 Computations compared to experimental data

In this section we present the results of five computations done in Fluent and
compare them to the experimental data of Bansod and Bradshaw. We note that
our computations are comparable in accuracy to those obtained by Seil [34] in
a similar validation.

The first two computations were done in order to evaluate the different grid
topologies discussed in Section 4.3. Another two computations were performed
in order to calibrate the boundary conditions of the k-e model (Section 3.6.2).
In the last computation the turbulence model was changed from Standard k-e
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Grid Topology | Parameters Size yt range
Grid 1 | O-grid | (70,15,30,1.1,1.06) | 63000 | [25,82
Grid 2 | Butterfly | (70,22,16,1.13,0.7) | 66220 | (25,77

Table 4.1: Grid data.

to RNG k-e.

Grid evaluation

Two computational grids have been examined. The first grid, called Grid 1,
has an O-type topology, and the second, called Grid 2, has a butterfly topology
(Section 4.3). The two grids are comparable in size and near-wall resolution, as
can be seen from Table 4.1.

One computation was run on Grid 1 and another on Grid 2. In both compu-
tations, the boundary conditions for £ and € were determined by the turbulence
intensity I = 1% and the turbulence length scale I = 0.0105. The value of [ was
obtained from formula (3.16), using the hydraulic diameter Dg = 0.15 m. The
results were almost identical. The main difference was found in the convergence
behaviour. Fig. 4.8 shows the average total pressure and the mass flow rate at
the exit at each iteration during the computation. It can be seen that Grid 2
gives faster convergence than Grid 1. It is also interesting to compare the tur-
bulence velocity scale distributions in Fig. 4.22 and Fig. 4.23. The distribution
for Grid 1 has a small cusp at the entrance to the upstream bend. Since this
cusp is not present for Grid 2, it might be a consequence of the high degree of
skewness in the O-grid wedge elements along the centreline. The skewed wedge
elements probably also explains the slower rate of convergence for Grid 1.

Distribution of static pressure

The measured distribution of C,, (defined in Eq. (4.10)) compared to that cal-
culated using the Standard k-e model with [ = 0.0105 and I = 1% on Grid 1
and 2, along the top and bottom of the duct symmetry plane is presented in
Fig. 4.9. All other computations gave more or less identical results. The overall
qualitative agreement is good, but the static pressure was under-predicted at
the bottom of the upstream bend, as well as at the duct exit. Also, the static
pressure is over-predicted at the bottom of the downstream bend, which, ac-
cording to Seil [34], is a consequence of the failure of the turbulence model to
adequately predict a measurable region of separation/near-separation.

Distribution of total pressure loss

The computed contours of the total pressure loss coefficient Cp at station 5 are
presented in Fig. 4.11 to 4.13. The Standard k-e model shows good qualitative
agreement with the measured distribution in Fig. 4.14. Most noticeable is the
under-prediction of the “tucking-in” of the contours of Cp toward the centreline.
This under-prediction is reduced when [ is decreased from 0.0105 to 0.0015. The
reduction of [ corresponds to calculating [ from the boundary layer thickness,
dgg, using Eq. (3.17), instead of computing it from the hydraulic diameter using
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Method 1 Method 2
Grid | k-e l I | Cp Rel. error | Cp Rel. error
Gridl | Std 0.0105 | 1% | 0.104 | 71% 0.088 | 45%
Grid2 | Std 0.0015 | 1% | 0.101 | 66% 0.085 | 40%
Grid2 | RNG | 0.0015 | 1% | 0.098 | 61% 0.082 | 35%

Table 4.2: Mass-averaged total pressure loss coefficient at station 5. Measured value is
Cp = 0.061.

Eq. (3.16). The boundary layer thickness was chosen to be dg9 = 0.025%0.15 m,
in accordance with the measurements by Bansod and Bradshaw. The RNG k-¢
model gives a better tucking-in behaviour, but the overall qualitative agreement
is poor.

Fig. 4.15 shows the radial distribution of Cp at the lower half of the duct
at station 5. The Standard k-e with [ = 0.0105 and I = 1% gives a smeared
out curve compared to the experimental data. Better agreement is obtained
when [ is decreased to 0.0015. The RNG k-¢ model succeeds well in predicting
the distinct local maximum and minimum of the curve, but fails to adequately
locate the region of large loss at y/D =~ 0.23.

The computed boundary layer as measured by the contour of Cp = 0.01 is
shown in Fig. 4.16 to Fig. 4.18. Bansod and Bradshaw reported a boundary
layer thickness of one duct radius at the bottom of the duct at station 5. Thus
the boundary layer thickness at station 5 is under-predicted by the Standard
k-€ with [ = 0.0105 and I = 1%, but fairly well predicted when [ is decreased
to 0.0015. This can also be seen from the distribution of C'p over station 5.

Mass-averaged total pressure loss coefficient

Table 4.2 presents the mass-averaged total pressure loss Cp at station 5. Bansod
and Bradshaw measured Cp = 0.061. Cp has been calculated with two methods.
With Method 1, Cp was calculated according to the definition of Bansod and
Bradshaw as the mass-average of C'p over station 5, see formula (4.14). With
Method 2, Cp was calculated from formula (4.15). Since the computational
flow domain has been extended compared to the experimental flow domain, the
computed velocity is not completely uniform over the cross-section at station 1.
Therefore, as discussed in Section 4.5.2, Method 1 and 2 give different values.
Method 2 gives a value closer to the measurement, perhaps because its physical
meaning is the one intended by Bansod and Bradshaw.

It can be seen from the Table that the RNG k-e model gives a value of Cp
closer to the measurement than does the Standard k-e model. The ability of
the latter model to predict Cp is slightly increased by reducing [ from 0.0105
to 0.0015.

In an attempt to further improve the agreement between computed and
measured Cp and distributions of Cp, one computation was done using the
Standard k-e model with [ = 0.0015 and I decreased to 0.1%. However, the
result was identical to that using I = 1%.
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Figure 4.7: Boundary conditions in CFD model.

Secondary flow

All computations gave the same kind of secondary flow behaviour, as can be
seen in Fig. 4.19 to 4.21. A strong streamwise vortex is predicted near the duct
symmetry plane. A second, weaker vortex smeared out along the wall is also
predicted. The computed secondary flow behaviour is physically realistic, as
discussed by Bansod and Bradshaw [3] and Seil [34]. It is the first-mentioned
strong vortex that causes the tucking-in of the contours of Cp, as well as the
boundary layer at station 5 to be much thicker than for a straight duct.

Decreasing the turbulence length scale ! from 0.0105 to 0.0015 results in a
stronger vortex, as can be seen by comparing Fig. 4.19 with Fig. 4.20. Also,
the RNG k-¢ model predicts a stronger vortex than does the Standard k-e.

4.4.5 Discussion of the validation

Grid 1 (O-type topology) and Grid 2 (butterfly topology) was found to give
more or less identical solutions, but with a faster rate of convergence for Grid
2.

All investigated combinations of grids, turbulence models and turbulence
boundary conditions gave almost identical distributions of static pressure.

It was found that the performance of the k-e¢ model could be improved by
calibrating the turbulence boundary conditions. The best conditions found were
given by I = 1% and | = 0.0015. The latter value was obtained from the
approximate formula (3.17), with the boundary layer thickness at the entry
plane taken in accordance with experimental data to be dg9 = 0.025 * 0.15.

The RNG k-e model was found to more accurately predict the loss over the
duct than the Standard k-e model. However, the latter model showed slightly
better qualitative agreement between measured and computed contours of the
total pressure loss at the duct exit. Furthermore, industrial experience tells that
the Standard model is more robust than the RNG model.
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4.4.6 Choice of CFD model for waterjet inlet duct flow

For the optimization-related turbulent s-duct flow calculations presented later,
we will use the following CFD model in Fluent. The preceding validation and
discussion lends credibility to the accuracy and robustness of the model.

The purpose of the CFD model is to numerically solve the Reynolds equa-
tions (3.11). We have not included gravitation in the equations since it will
be cancelled out by the hydrostatic pressure. Instead, gravitation is taken into
account in the model after the CFD analysis, by adding the hydrostatic pres-
sure to the static pressure reported by Fluent. The sea level has been set 0.5 m
above the center of the inlet opening.

We use a butterfly grid to discretize the flow domain. The turbulence is
modelled by the Standard k-e model. By default in Fluent, the turbulent quan-
tities k£ and € are subject to a Neumann condition at the outlet. At the inlet,
we specify a uniform boundary condition by the turbulence intensity I and the
turbulence length scale . We take I = 1% and calculate ! according to formula
(3.17). If the boundary layer thickness at the inlet is 2.5% of the inlet duct
diameter D;,, and D;, = 0.4 m, then [ = 0.004. The inlet velocity is set to
8 m/s and a Neumann (OUTFLOW) condition is specified at the outlet; see
Fig. 4.7. The reference pressure location has been set to the center of the inlet
opening, and the pressure p reported by Fluent will always be zero there.
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Figure 4.8: Solution history at station 6 (exit). Standard k-¢, I = 0.0105 and I = 1%.
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Figure 4.9:
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Figure 4.10: Distribution of Cp over duct symmetry plane.
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Figure 4.11: Contours of Cp at station 5. Grid 2, Standard k-¢, [ = 0.0105 and I = 1%.

Figure 4.12: Contours of Cp at station 5. Grid 2, Standard k-¢, [ = 0.0015 and I = 1%.

Figure 4.13: Contours of Cp at station 5. Grid 2, RNG k-¢, I = 0.0015 and I = 1%.
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Figure 4.14:
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Figure 4.15: Radial distribution of Cp at the bottom of station 5.
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Figure 4.16: Boundary layer contour (Cp = 0.01). Grid 2, Standard k-¢, | = 0.0105 and
I1=1%.
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Figure 4.17: Boundary layer contour (Cp = 0.01). Grid 2, Standard k-¢, | = 0.0015 and
I1=1%.

Figure 4.18: Boundary layer contour (Cp = 0.01). Grid 2, RNG k-¢,1 = 0.0015 and I = 1%.

62



Figure 4.21: Secondary flow at station 5. Grid 2, RNG k-¢, | = 0.0015 and I = 1%.
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Figure 4.22: Turbulent velocity-scale (Vk/U,.y) on the duct center plane. Grid 1, Standard
k-¢,1 =0.0105 and T = 1%..
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Figure 4.23: Turbulent velocity-scale (vk/U, ) on the duct center plane. Grid 2, Standard
k-¢, 1 =0.0105 and I = 1%..
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4.5 Objective functions

We present the objective functions that will be used in the optimization of
the waterjet inlet duct geometry. The purpose of an objective function in this
context is to assess the hydrodynamic performance of a given waterjet inlet
s-duct geometry. The parameterization in Eq. (4.1) allows us to regard the
objective function as a mapping

fQCR 5 R, [ =fp), p = (o, Ry, Ry,71,72).

We consider two aspects of the hydrodynamic performance of the s-duct.
The first is the cavitation performance and the second is the total pressure loss.
These aspects of the flow are now explained in greater detail. Throughout the

discussion we assume a stationary, incompressible viscous flow in a gravitational
field.

4.5.1 Cavitation performance

Cavitation is said to occur if the static pressure (including hydrostatic pressure)
is below the vapour pressure at some location in the duct. The inception of
cavitation in a waterjet inlet will increase losses and may cause erosion, and must
therefore be avoided. We proceed to define a measure of the risk of cavitation.

Let p denote the static pressure without the hydrostatic pressure, and p* the
static pressure with the hydrostatic pressure. Hence,

p* =p— pgy, (4.9)

where p is the fluid density, g the gravitational constant and y the height above
the sea level, Fig. 4.24. We split up the pressure like this for practical reasons.
Firstly, the hydrostatic pressure should be taken into account in the objective
function presented in this section, but not in the one presented in the next.
Secondly, as discussed in Section 4.4.6, p is the quantity reported by Fluent
and gravitational effects are taken into account by computing p* after the flow
calculation.

In hydrodynamics it is common to scale the flow quantities. This facilitates
interpretation of flow data. The pressure is often represented by the static
pressure coefficient,

* *
Cp(x) = pi(lx ) el (4.10)
prref
where U the velocity magnitude and index ref refers to some reference location.
For the s-duct, we have chosen the reference location to be the center of the
inlet opening (Fig. 4.24). Thus, at the center of the inlet opening, we always
have Cp, = 0.

The risk of inception of cavitation in a flow domain D is measured by the
minimum static pressure coeflicient,

Cp,mz’n = }rcnelg Cp(x)- (411)

Since C}, = 0 at the reference location, we have

Cp,min S 0.
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Figure 4.24: S-duct flow domain geometry.

When D is the waterjet inlet s-duct parameterized by Eq. (4.8), Cp min
depends on the geometry parameter vector p. In order to find the parameterized
geometry that minimizes the risk of cavitation, Cp min (P) should be maximized.
This is equivalent to minimizing —C) i (P). Since all optimization problems
in this work are formulated as minimization problems, we take the objective
function to be

f(P) = —Cpmin(P)

Since Cp min < 0, we have

f(p) >0, Vp.

4.5.2 Total pressure loss

All physical flows experience a loss of energy due to viscous effects. In their
study of the flow in s-shaped ducts with circular cross section of constant radius,
Bansod and Bradshaw [3] recommended the losses to be measure by the mass-
averaged total pressure loss coefficient

- 1 pU

Cp=— CpdS,
P A ouT prerref P

where ref refers to the condition at the inlet, A is the cross-sectional area, OUT
the outlet surface, dS the surface measure and

P..;—P
Cp = # (4.12)
Eprerref
the total pressure loss coefficient. P is the total pressure,
1
P=p+ épU2. (4.13)

We only consider incompressible water flow in this work, and hence the density
is constant. For constant flow conditions over the inlet surface IN (Fig. 4.24),
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the above definition of Cp is equivalent to

Cp= Cp dﬁ, (4.14)
ouT m

where diih = pu e ndS is the mass flow rate measure, u the flow velocity, n the
outward normal to surface OUT (Fig. 4.24) and 7i = [}, drn the mass flow rate.
Formula (4.14) explains the name of Cp. Furthermore, it is valid also for ducts
with varying cross-sectional radius. When the flow domain is parameterized by
Eq. (4.8), Cp becomes dependent on the parameter vector p, and since the
losses should be minimized, we take the objective function to be

f() =Cr(p).

As a more general measure of loss in a stationary, incompressible flow in an
s-duct like the one in Fig. 4.24 we suggest

Co = — [y PuendS — [, PuendS (4.15)
P Jin 2pUu e ndS. '

Note that this formula is equivalent to (4.14) for constant inlet conditions, and
that u e n is positive on the outlet and negative on the inlet.

We now motivate that Cp is a measure of losses and that the last formula
can be read as “the rate of viscous loss over the duct between surfaces IN and
OUT, normalized by the inflow of kinetic energy through surface IN”. To this
end, let V; denote a volume following the fluid (Section 3.2). Let D/Dt be the
total, or material, derivative,

D
D—(f = g—(f + (ueV)u.

Consider the kinetic energy in V;,
1 2
E@) = | gplul"dV.
V;

By the transport theorem, the rate of change of kinetic energy in V; equals

dE(t) _ D (|lu?
dt _/thDt( 2 )

We have

2
B - e

Thus, by the Navier-Stokes equations for a flow in a gravitational field g,

Du * 2
P = ~VP HuVIu+t e,
we get
D
p—u-u=/ (=Vp* + pV?u + pg) e udv.
v, Dt Vi
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The left-hand side is the rate of change of kinetic energy. The terms on the
right-hand side represent, respectively, the rate of work done by the pressure
field on the fluid, the rate of work done by viscous stresses and the rate of work
done by the gravitational field. We now fix ¢t and take V; = V to be the entire
s-duct flow domain. Let

by =gy

be the gravitational potential so that g = —V¢,, and note that Du/Dteu =
V(3[ul|?) for a stationary flow. Then we get, after re-arranging the terms, that

1
- [ nvrueu=— [ VG +p0,+ pollalt) euav. (@10

The sum between the paranthesis on the right-hand side equals P (see Eq. (4.9)
and (4.13)). Since we consider an incompressible flow, we have

VPeu=Ve(Pu).

If we put this into Eq. (4.16) and apply Gauss’ Theorem, we obtain

—u/ V2uou:—/Puon.
\% s

The s-duct surface S consists of the wall W, the inlet IN and the outlet OUT.
Since uen =0 on W, we get

—/,uV2uou=— Puen — Puen.
v IN ouT
This is the nominator in Cp. As mentioned above, the right-hand side is the
negative rate of work done on the fluid by viscous stresses, i.e., the viscous
losses. This explains the physical meaning of formula (4.15).

It is interesting to note that not all viscous work necessarily dissipates. By
Green’s formula we have

—u/ V2u°u=u/ IVailPdv — [ w;2%as,
\% A% s On

where summation overe repeated indices is understood. The first term on the
right-hand side is evidently always positive. It corresponds to viscous dissipation
of energy due to deformation of fluid elements ([1], p. 216). We now consider
the second term on the right-hand side. Again, S consists of wall, inlet and
outlet. u; is zero on the wall, so

7 Suia—ndS— ,u/INuza—ndS+u/OUTuz o ds.

This expression should be as large as possible in order to minimize the losses.
(Note, however, that it is correlated to the deformation term, since both contain
the derivative of w;.) It is zero if the flow is fully developed (Ou;/On = 0) at
the inlet and the outlet. In this thesis we use the outlet condition du;/0n =0
(Section 4.4.6), which implies

oui ;o Ou;
7 Sui%ds— /,L/INUz o ds.
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The size of this term only depends on the condition at the inlet. If the inlet
velocity is normal to the inlet surface (Fig. 4.24), then

6ui _ ou

U—
S N Ox

where u is the velocity in the x-direction, which is the direction normal to the
inlet. The term on the left-hand side should be positive to reduce losses. Since
u is positive, this is the case if u/0z is negative. Hence the flow should diffuse
(streamlines should expand) into the inlet opening in order to reduce the loss.
However, whether this contribution has any practical significance or not we do
not know.

To sum up, we have motivated why Cp is a measure of energy losses due to
viscous effects. We found that the losses are affected not only by the dissipation
inside the duct, but also by the conditions at the inlet. The impact of these
conditions are neglected in our work because we specify uniform inlet conditions.
This might be a short-comming in our modelling of the waterjet inlet duct
performance.

4.6 Summary

We have discussed an implemented model of a waterjet inlet duct. The purpose
of the model is to allow for an optimization of the inlet geometry for optimal
hydrodynamic performance. The model can be summarized by two mappings
D and f, which to each parameteric representation p of the inlet geometry
associates a duct D(p) and a real number f(p) that measures the hydrodynamic
performance.

The inlet geometry was modelled by an s-duct having circular cross sections
of varying diameter. We presented a simple parameterization of the inlet, con-
sisting of five parameters wich will also be the variables in the optimization in
the following chapter.

A CFD model in Fluent for the flow through the inlet was calibrated and
validated against experimental data. We decided to use the Standard k-e tur-
bulence model.

We have discussed two measures of the hydrodynamic performance of the
inlet. The first was the minimum static pressure coeflicient, which measures the
risk of cavitation in the duct. The other was the mass-averaged total pressure
coefficient, which we showed to be a measure of the rate of viscous loss over
the duct. We found the losses to be affected not only by the the dissipation
of energy inside the duct, but also by the conditions at the inlet opening. The
latter conditions are not properly represented by the model since we specify a
uniform inlet velocity condition.
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Chapter 5

Optimization of the
waterjet inlet duct
performance model

5.1 Introduction

The waterjet inlet model developed in the previous chapter was summarized by
the parameterized geometry D(p) and a hydrodynamic performance measure
f(P). In this chapter we consider the minimization of f.

The optimization problem and its properties are discussed in Section 5.2.
In Section 5.3, we present our choice of optimization algorithm. Section 5.4
contains suggestions for the interaction between the optimization and the CFD
modelling. The numercial results from five optimization runs are presented and
analyzed in Section 5.5, and further discussed in Section 5.6. We summarize
and conclude in Section 5.7 and give suggestions for improvements and future
research in Section 5.8.

5.2 The Problem

We now consider the optimization of the waterjet inlet model for maximal static
pressure and for minimal loss. This can be written as

Lnelg —Cp.min (5.1)

and
in C 5.2
glelg P, ( )

where p = (a, Ry, Ra2,71,72) is the parametric representation of the flow domain
D as described in Section 4.2.2. 2 is the set of all p that fulfil the non-linear con-
straints also discussed in Section 4.2.2. The objective functions were described
in Section 4.5.

The two problems are characterized mainly by the properties of the objective
functions. In order to evaluate any of them at a point p we must solve a

71



three-dimensional turbulent flow problem on the domain D(p). In practice,
this is done by performing a CFD analysis of the flow. A CFD analysis is
a complicated and (most often a) time-consuming numerical process. As a
consequence, the objective functions will inherit all three of the properties listed
in the introduction to Chapter 2.

Not much can be said a priori about the regularity of the objective functions.
We note that since —C} i is obtained by taking the minimum over the flow
domain, we can not expect it to be smoother than C?, even if the flow solution
should vary smoothely with the parameter vector p. This is because, loosely
speaking, the location in the duct where the minimum static pressure is attained
may “jump” from, for example, the upstream to the downstream bend.

5.3 Optimization algorithm

We have solved the above problems with the Sherif-Boice (SBA) algorithm de-
scribed in Section 2.4.2. Our choice of algorithm is based on the properties of
the objective functions mentioned in the preceding section (see the introduction
to Chapter 2 for a discussion). The SBA is simple and easy to understand.
It is a true direct search method in the sense that it relies only on rank order
information about the objective function and use neither explicit nor numeri-
cal estimates of the derivatives. It proceeds by taking steps in the coordinate
directions, evaluating the objective function and reducing the step length when
necessary.

Being a pattern search method, the SBA has nice convergence properties
under certain circumstances. The convergence analysis of pattern search meth-
ods for unconstrained problems required the objective function to be at least
C*' (Theorem 2). The result could be extended to bound constrained (which is
a special case of linearly constrained) problems, as discussed in Section 2.3.3.
However, our optimization problems are subject to non-linear constraints, and
we can not guarantee that —Cjp, min has higher regularity than C°. Therefore,
the theoretical robustness of the method when applied to our problem can not
be guaranteed, and we must carefully observe how the optimization proceeds in
practice.

Let p;,i = 1,...,5 be the coordinates of p (p1 = @, etc). The steps Ap; taken
by the SBA should be of different sizes in different directions. This could be
taken care of by the algorithm, but a better solution is to change the variables
to p; = pi/Ap;. This is called a scaling and corresponds to a multiplication
p = Dp with the diagonal matrix D = diag(1/Ap;). A scaling will transform
the constraints  to Q and change the objective function to f(p) = f(D~'p).
In the following, we will simply refer to f, 2 and p, assuming that the scaling
problem has been solved. A will denote the step size, equal in all directions,

The optimization was terminated when A < A,,;,. Because of the high
cost of each function evaluation, another appropriate stopping criterion could
be the maximal number of function evaluations. In the following, the number
of evaluations will also be referred to as “the number of iterations”.
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5.4 CFD and optimization

As pointed out already, the evaluation of the objective functions is very time-
consuming since it depends on the result of a CFD analysis. To avoid that
the optimization, which requires a large number of function evaluations, takes
too long, we would like to reduce to a minimum the time spent on each flow
calculation. The parameters that affect the amount of time required for each
CFD analysis include

1. the choice of turbulence model,

2. the choice of boundary conditions,

3. the grid size,

4. the termination criterion for each computation in Fluent,

5. the quality of the initial guess for the computation in Fluent.

The choices of turbulence model and boundary conditions were done in Section
4.4.6. In the case when a single CFD analysis is to be done, 3. and 4. would
probably not be a problem. We would simply choose a “fine enough” grid, which
perhaps consists of 80000 elements and gives very good resolution of the near-
wall flow. The computation in Fluent would be run until the numerical residuals
no longer decrease; this would require approximately 1000-1500 iterations. The
time spent in Fluent would be several hours on a SUN ULTRA 1 workstation.
One optimization (100-150 evaluations) under these conditions would take 3-4
weeks.

We now discuss how we have used, and how one could use, the three param-
eters 3.-5. to speed up the optimization process. We remark that here we are
only interested in how these parameters influence the objective functions and
the time it takes to evaluate it, and not how they influence all the other aspects
of the flow. Throughout the discussion f will denote any of the two objective
functions.

5.4.1 Surrogates from coarse grid computations

We first investigate the possibility of constructing surrogate functions of the
second type (Section 2.6) by performing the flow calculations on a coarse grid.
We would like the grid to be as coarse as possible in order to minimize the time
required for each evaluation of f. The trade-off, of course, is that if the mesh is
too coarse, the values of f will be meaningless.

The flow in the two different s-ducts shown in Fig. 5.1 and 5.2 has been cal-
culated in Fluent using six different grids. Duct 1 is determined by the param-
eter vector p; = (45,1,1.4,0.22,0.25) and Duct 2 by ps = (65, 3,1,0.305,0.32).
Data about the different grids is found in Table 5.1. The grid sizes ranges from
almost 80000 elements (very fine mesh) down to 3150 (very coarse mesh). Ta-
ble 5.2 presents the values of the objective functions Cp and —Cp,min for both
geometries and for each grid.

All grids were fine enough to capture the main features of the flow, such as
the secondary flow pattern at the exit.
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Figure 5.1: Duct 1.

Figure 5.2: Duct 2.

For Duct 1, the coarsest grid (Grid 6) gives a value of Cp which is 18%
higher than that given by the finest grid (Grid 1). For Duct 2, the corresponding
difference is 11%. The values of —Cp i, calculated using the finest and coarsest
grids for Duct 1 and Duct 2 differs by 3% and 2%, respectively. Thus, C_'p does
show some sensitivity to grid size variations. This is not a surprise since the
losses mainly occur in the boundary layer, which is badly resolved by the coarse
grids as is reflected by the high values of y* in Table 5.1. —Cj nin, On the other
hand, shows a remarkable insensitivity to the grid size.

For rank order methods like the SBA it is not the value of f at a certain
point that is interesting in itself, but this value relative to values of f at other
points. Therefore it is interesting to note that the relative rank of the values of
Cp and —C) min for the two ducts are preserved with all grids, i.e.,

Cp(p1) > Cp(p2) and —Cpmin(P1) > —Cpmin(P2)-

Hence, the conclusion that Duct 2 has more desirable cavitation and loss prop-
erties than has Duct 1 is independent of the grid used.

We have chosen Grid 3 (20790 elements) in Table 5.1 as our “nominal” grid,
and in the following when we write Cp and —Cp,min it is understood that this
mesh has been used in the CFD model. This grid is illustrated in Fig. 4.4 and
4.5. We have also used the coarser Grid 6 (3150 elements), and the values of
objective functions calculated with this grid will be denoted Cp® and —Cp min-
These are the surrogate functions: they are faster to evaluate and even though
the values of Cp” and —Cg,,;,, at a given point differ from the values of Cp” and
—Cp min the above discussion shows that the former functions approximate the
latter. To obtain some of the numerical results presented later, we have used
the surrogates to find good initial guesses for the optimization on the “real”

functions.
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rid | Topology | Parameters Size y+ range

G

1 | Butterfly | (70,18,27,1.15,1.15,0.7) | 79380 | [15,70]

2 Butterfly | (70,22,16,1.13,1.13,0.7) | 66220 | [75,400]
3 | Butterfly | (55,13,12,1.2,1.2,0.7) | 20790 | [100,460
4 | Butterfly | (50,10,10,1.21,1.21,0.7) | 12500 | [200,670
5 | Butterfly | (40,8,8,1.21,1.21,0.7) | 6400 | [330, 1060
6 | Butterfly | (35,6,6,1.25,1.25,0.7) | 3150 | [430, 1580

Table 5.1: Grid data.

Duct 1 Duct 2

Grid Cp _Cp,min Cp _Cp,mz’n
1 0.1003 | 0.5237 0.07099 | 0.3236
2 0.1025 | 0.5264 0.07324 | 0.3254
3 0.1077 | 0.5336 0.07418 | 0.3259
4 0.1080 | 0.5312 0.07499 | 0.3264
5

6

0.1170 | 0.5149 0.07738 | 0.3289
0.1183 | 0.5089 0.07850 | 0.3303

Table 5.2: Summary of CFD analysis of Duct 1 and Duct 2 for different grids.

5.4.2 Termination criterion in Fluent

For the CFD analysis to be fully automatic we must have an appropriate termi-
nation criterion for the computation in Fluent. Fluent allows the user to choose
between termination of the computation when the numerical residuals are below
some set treshold, or simply after a fixed number of iterations, n;;. We have
used the latter method with n; = 300, which was the number of iterations re-
quired for the flow through Duct 1 in Fig. 5.1 to converge. Different geometries
require different number of iterations for the flow solution to converge, and to
be on the safe side we should have chosen n; twice as large. However, that
would also double the time required for each evaluation of the objective func-
tions. What we have gained in time we have paid for in accuracy, but we think
this cost should not bee too high, because it was observed that in general the
values of the objective functions converged to an acceptable level long before
the numerical residuals were converged.

It should be clear that surrogate functions could be constructed by perform-
ing even fewer iterations in Fluent than we have chosen. This possibility is
examined in [11] but has not been considered any further in this thesis.

5.4.3 Initial guesses for the CFD analysis

The SBA proceeds by taking small trial steps around a current iterate. From
a shape optimization point of view, this corresponds to comparing the hydro-
dynamic performance of a current geometry with that of slightly perturbed
geometries. Since we expect the flow in two almost identical geometries to be
very similar, a natural idea is to use the flow solution from the current geometry
as an initial guess for the flow calculation in the perturbed geometries. The hope
is that it would reduce the time required for each CFD analysis. Indeed, Seil
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[34] found that this procedure reduced the time required for each CFD analysis
by a factor of 6-10. However, we have used another version of Fluent, and found
only very limited positive effects of good initial guesses.

5.5 Results

We present the results from applying the optimization procedure dicussed above
to the cavitation objective function —Cj nin and the loss objective function
Cp. The analysis of the results, which is started in this section, is continued in
Section 5.6. If nothing else is said, the initial step length in each run was set
to A =1, and the optimization algorithm was terminated when the step length
was reduced below A,,;, = 0.01.

5.5.1 Cavitation

We present the results from three optimization runs on the cavitation objective
function —Cp min-
Run 1. The optimization was started from

p? = (90,1,1,0.22,0.25).

The algorithm converged (A, = 0.01) after 133 function evaluations. The
optimal vector was

pi = (65,3,1,0.305,0.32).

The optimization history is shown in Fig. 5.3. —Cj min decreased from 0.5423
to 0.3258.

Run 2. Run 2 was done in two steps. In step I, the surrogate —Cp ., was
optimized from the initial vector

p? = (90,1,1,0.22,0.25).

The algorithm converged (A,,;, = 0.01) after 133 evaluations. The optimal
vector,

p = (60,2.8,1.2,0.31125,0.32),

was used as the initial vector in step II, where —C} ;in, was optimized with
initial step length 1/8. Step II converged after 104 evaluations. The optimal
vector was

p; = (66.25,2.9,0.975,0.3025, 0.315).

The optimization history of run 2 is shown in Fig. 5.4. —Cj, nin decreased from
0.5423 to 0.3275 in step I, and from 0.3275 to the optimal value 0.3260 in step
1L

Run 3. In step I, the surrogate —Cy',,;, was optimized from the initial
vector

pJ = (40,4,4,0.32,0.3325).
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Run 1 Run 2 Run 3

Initial | Optimal | Initial | Optimal | Initial | Optimal
o} 90 65 90 66.25 40 58.59375
Ry 1 3 1 2.9 4 4.05
R, 1 1 1 0.975 4 1.55
r1 0.22 0.305 0.22 0.3025 0.32 0.32
ro 0.25 0.32 0.25 0.315 0.3325 | 0.3325
Cp 0.1172 | 0.07413 | 0.1172 | 0.07420 | 0.0827 | 0.07324
—Ch,min | 0.5423 | 0.3258 0.5423 | 0.3260 0.3422 | 0.3269

Table 5.3: Results from optimization on the cavitation objective function.

Step I converged after 124 evaluations and the optimal vector,
p = (60,4,1.55,0.32,0.3325),

was used as the initial vector in step II, where —C} yin was optimized with
initial step length 1/4. Step II converged after 52 evaluations. The optimum
was

p = (58.59375,4.05,1.55,0.32, 0.3325).

The optimization history of run 3 is shown in Fig. 5.5. —Cp min was reduced
from 0.3422 to 0.3269. The optimization in step II only contributed to a very
small part of this reduction.

The data from the runs are summarized in Table 5.3. The initial and optimal
duct geometries from all runs are shown in Fig. 5.6. Details of the radius curves
are summarized in Fig. 5.7. Run 1 and run 2 resulted in approximately the
same optimum, and in the following we only report the result from run 1. The
optimum of run 3 differs significantly from the optimum of the first two runs.

5.5.2 Loss

We present the results from two optimization runs on the total pressure loss
objective function Cp.

Run 4. In step I, the surrogate Cp” was optimized from the same initial
vector as in run 1. The optimization was terminated when the step length was
less than A,,;, = 0.2. This happened after 70 evaluations, and the best vector
found was

p = (55,3.4,1.5,0.315,0.315).

This vector was the initial vector in step II, where Cp was optimized with initial
step length 1/4. Step II converged after 120 evaluations and the optimum was

Pl = (55.15625,3.775,1.275,0.316875, 0.316875).

Fig. 5.8 shows the optimization history from run 4. Cp was reduced from 0.1172
to 0.07330 in step I, and from 0.07330 to the optimal value 0.07249 in step II.
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Run 4 Run 5

Initial | Optimal | Initial | Optimal
o 90 55.15625 | 40 54.0625
Ry 1 3.775 4 4.6125
Ry 1 1.275 4 1.3
r1 0.22 0.316875 | 0.32 0.3225
ro 0.25 0.316875 | 0.3325 | 0.325
Cp 0.1172 | 0.07249 | 0.0827 | 0.07246
—Ch,min | 0.5423 | 0.3266 0.3422 | 0.3268

Table 5.4: Results from optimization on the loss objective function.

Run 5. In step I, Cp” was optimized from the same initial vector as in run
3. The optimization was terminated after 65 evaluations, when the step length
was less than 1/2. The best vector found so far,

p = (50,5,1.8,0.32,0.33),

was the initial vector in step II, where Cp was optimized with the initial step
length 1/2. Step II converged after 135 evaluations, and the optimum was

p: = (54.0625,4.6125,1.3,0.3225,0.325).

Fig. 5.9 shows the optimization history from run 5. Cp was reduced from 0.0827
to 0.07350 in step I, and further reduced to the optimal value 0.07246 in step
II.

The data from the runs are summarized in Table 5.4. The optimal values of
Cp for the two runs are almost equal. However, the optimized geometries differ
slightly from each other, as can be seen in Fig. 5.10. The optimized radius
curves are very close to each other, as illustrated in fig. 5.11.
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Figure 5.3: Optimization history of Run 1.
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Figure 5.4: Optimization history of Run 2. The surrogate —C2, . was optimized in step
I, and —Cp min in step II. The asterix indicates t%e value of —Cp min at the
initial vector in step I.
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Figure 5.5: Optimization history of Run 3. The surrogate —C]‘j‘ min Was optimized in step
I, and —C)p min in step II. The asterix indicates the value of —C) yin at the

initial vector in step I.
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Figure 5.6: Initial and optimized geometries for the cavitation objective function.
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Figure 5.7: Radius curves for initial and optimized ducts with the cavitation objective func-
tion.
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Figure 5.8: Optimization history of Run 4. The surrogate Cp” was optimized in step I,
and Cp in step II. The asterix indicates the value of Cp at the initial vector in

step 1.
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Figure 5.9: Optimization history of Run 5. The surrogate Cp® was optimized in step I,
and Cp in step II. The asterix indicates the value of Cp at the initial vector in
step L.
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Figure 5.10: Initial and optimized geometries for the loss objective function.
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5.5.3 Optimal designs

In Tables 5.3 and 5.4 we see that optimization with respect to losses (runs 4 and
5) yield very good cavitation performance as well. The optimal value of —Cp_ min
in run 4 and 5 (loss objective function) are even better than the optimal value
of —Cp,min from run 3. Similarily, but less striking, the optimization of the
cavitation performance (runs 1 to 3) yields low losses.

Hence, under the given flow conditions, the two objective functions
are dependent of each other. This may seem strange because —C} min is a
local measure in the sense that its value is attained at a particular point in the
duct, whereas Cp is a measure of the loss over the entire flow domain. However,
consider the distribution C), (defined in Eq. (4.10)) over the top and bottom
of the symmetry plane of the ducts, shown in Fig. 5.12, 5.13, 5.14 and 5.15.
The x-axis is labelled by the distance in the x-direction from the inlet opening.
We note that —Cp ;i is attained at the top of the duct exit in all optimized
geometries. It is also at the exit that we calculate Cp. Hence, at least close to
the optimum of —C}, ymin, increasing static pressure at the duct exit is benefitial
for both objective functions. The relationship between the objectives are further
investigated in Section 5.6.2.

The geometries of the optimized ducts differ significantly from each other,
as can be seen in Fig. 5.6 and 5.10. Let pj denote the optimal duct from run
1, and pf the optimal duct from run 5. pj has the lowest value of —C} iy of
all the optimized ducts, and p the lowest value of Cp. Consider the ducts

p(a) = (1 —a)p] +api, a€[0,1]

on a line between pj and pi. In Fig. 5.17 we have plotted —Cp min(p())
and Cp(p(a)) for a = 0, %, 35,...,1. It can be seen that all the ducts p(a)
are near-optimal with respect to both cavitation and losses. Hence, all the
optimized ducts correspond to the same “flat optimum”, i.e., the same large
basin in parameter space where the objective functions attain low, near-optimal
values. We may draw the conclusion that under the given flow conditions,
there are many duct designs which are near-optimal with respect to
both cavitation and loss, at the same time.

Consequently, it makes sense to summarize the optimal parameter values

from all runs:

Q attains values between 54.0625 and 66.25 degrees,
R,y attains values between 2.9 and 4.6125,

Ry attains values between 0.975 and 1.55,

R;1/Ry attains values between 2.6 and 3.5

T attains values between 0.3025 and 0.3225,

r9 attains values between 0.315 and 0.3325.

The optimal designs are thus characterized by

1. A long, sweeping upstream bend followed by a sharper downstream bend.
The relation between the two bend radii is approximately R;/Rs = 3.

2. A moderate inclination of the duct, with a & 60°.

3. A contraction of the duct over the downstream bend. The cross-sectional
radius (Fig. 5.7 and Fig. 5.11) increases rapidly over the first part of the
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upstream bend, reaches its maximum mid-way along the duct and then

decreases over the downstream bend.

Due to the dependency between the objective functions, it is hard, from the
results obtained so far, to point out how the cavitation-optimal and loss-optimal

designs differ from each other.
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Figure 5.12: Distribution of C, along the top and the bottom of the initial

ducts for run 1. The corresponding result for run 2 is identical.
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Figure 5.13: Distribution of C, along the top and the bottom of the initial and optimal

ducts for run 3.
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Figure 5.14: Distribution of C, along the top and the bottom of the initial and optimal
ducts for run 4.
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ducts for run 5.
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5.5.4 Hydrodynamics of initial and optimal designs

We now compare in detail the hydrodynamics of the initial and optimized ducts
from run 1. The radius curve for this duct is shown in Fig. 5.7. The main differ-
ences between the hydrodynamics of the two ducts are that the flow separates
in both bends in the initial duct but not in the optimal, and the boundary layer
thickness over the bottom of the upper bend has been radically reduced in the
optimal duct.

Fig. 5.18 and 5.19 show the distribution of C}, over the symmetry plane for
the two ducts. Due to hydrostatic effects, both ducts have low values of C, in
the upper parts. The initial duct has low values of C), at the inside of both bends
and Cp, min is attained in the middle of the downstream bend. The optimal duct
has high values of C), throughout the upstream bend and the location of the
minimum C)}, has moved to the top of the duct exit.

The distribution of C}, can be understood by considering the distribution of
the pressure without the hydrostatic pressure in Fig. 5.20 and 5.21. The initial
duct has large cross-stream pressure gradients in both bends, which give rise
to low static pressure at the inside of both bends. The pressure gradients are
caused by large bend angles and a relatively high bend curvature. The optimal
duct has a much higher static pressure from the entrance to the upstream bend
throughout the duct to the exit of the downstream bend, as a consequence of
the larger cross-sectional duct diameter (Fig. 5.7). In combination with smaller
cross-stream pressure gradients, in particular in the upstream bend, we get a
much higher static pressure on the inside of the bends. In the downstream bend,
the reduced cross-stream pressure gradient is a result of the smaller bend angle,
and in the upstream bend it is due to smaller bend angle and curvature.

The perhaps largest qualitative difference between the flow in the two ducts
is revealed by Fig. 5.30, 5.31, 5.32 and 5.33. We can see that the flow separates
at the inside of both bends in the initial duct but not in the optimal - at least
according to our computations.

The flow separation in the initial duct is caused by a rapid increase of bound-
ary layer thickness (Fig. 5.26) in combination with adverse pressure gradients
(Fig. 5.20).

Fig. 5.22 and 5.23 show the distribution of the normalized velocity U/U,.y,
where U,.s is the inlet velocity. The overall impression is that the flow in the
optimal duct is more uniform over each cross-section. The flow in the initial
duct has larger velocity gradients than the optimal duct, which results in a larger
total pressure loss. We can see how the boundary layer grows rapidly after the
upstream bend in both ducts'. Since the flow actually separates in the initial
duct we get a sharper border between the low-momentum boundary layer fluid
and the fast-moving core flow, and thus larger cross-stream velocity gradients.
The same thing happens on the inside of the downstream bend in the initial
duct, but not in the optimal. Moreover, the cross-stream velocity gradient in
the upstream bend is larger in the initial duct, due to the cross-stream pressure
gradient present there.

We note in Fig. 5.33 that the velocity distribution is remarkably uniform
over the upper bend in the optimal duct, and the boundary layer, represented by
the contour of Cp = 0.05 (defined in Eq. (4.12)), is much thinner on the inside

IThis is caused by the secondary flow in combination with the adverse pressure gradient
over the second half of the inside of the bend; see Section 4.4.1.
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after that bend in the optimal duct (Fig. 5.27) than in the initial (Fig. 5.26).
This can be attributed to the accceleration of the flow due to the contraction of
the duct there, in combination with the reduced strength of the secondary flow,
which is seen Fig. 5.34 and 5.35.

The distribution of Cp over the duct exit is shown in Fig. 5.28 and 5.29.

Fig. 5.24 and 5.25 show the distribution of turbulence intensity over the sym-
metry plane. High levels of turbulence are associated with the separation/near-
separation regions, due to the large velocity gradients present there. The optimal
duct has lower levels of turbulence. In particular, compared to the initial duct,
the turbulence intensity has decreased significantly over the second half of the
inside of the upper bend.
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Figure 5.18: Distribution of Cp over symmetry plane, initial duct run 1.
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Figure 5.19: Distribution of Cp over symmetry plane, optimal duct run 1.
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Figure 5.20: Distribution of (p — pres)/(0.5pU2 ;) (Cp without hydrostatic pressure) over
symmetry plane, initial duct run 1.
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Figure 5.21: Distribution of (p —pTef)/(O.E’)pref) (Cp without hydrostatic pressure) over
symmetry plane, optimal duct run 1.
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Figure 5.22: Distribution of U/U,¢s over symmetry plane, initial duct run 1.
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Figure 5.23: Distribution of U/U,.f over symmetry plane, optimal duct run 1.
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Figure 5.24: Distribution of turbulence intensity \/2k/3/U,.s over symmetry plane, initial
duct run 1.
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Figure 5.25: Distribution of turbulence intensity \/2k/3/U,.s over symmetry plane, opti-
mal duct run 1.
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Figure 5.26: Boundary layer thickness represented by the contour of Cp = 0.05. Initial
duct run 1.
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Figure 5.27: Boundary layer thickness represented by the contour of Cp = 0.05. Optimal
duct run 1.
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Figure 5.28: Contours of total pressure loss coefficient Cp at exit of initial duct run 1.
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Figure 5.29: Contours of total pressure loss coefficient Cp at exit of optimal duct run 1.
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Figure 5.30: Velocity vectors after upstream bend, initial duct run 1.

Figure 5.31: Velocity vectors in upstream bend, optimal duct run 1.
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Figure 5.32: Velocity vectors in downstream bend, initial duct run 1.
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Figure 5.33: Velocity vectors in downstream bend, optimal duct run 1.
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Figure 5.34: Secondary flow at exit of initial duct run 1.
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Figure 5.35: Secondary flow at exit of optimal duct run 1.
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5.6 Discussion of the results

We discuss and continue the analysis of the results obtained in the previous
sections.

5.6.1 Geometry and hydrodynamic performance

The risk of cavitation has been minimized in the optimal duct by increased static
pressure due to a larger cross-sectional diameter, in combination with reduced
cross-stream pressure gradients due to smaller bend angles.

The lower total pressure loss in the optimal duct is a consequence of the
reduced secondary flow, the thinner boundary layer at the bottom of the duct
after the downstream bend, and the fact that the flow does not separate. The
reduced secondary flow is at least partly due to the smaller bend angles.

It is interesting to see how flow separation is avoided in the optimal duct by
different mechanisms in the two bends. In the initial duct the flow separation
in the lower bend was caused by the thickening of the boundary layer in combi-
nation with an adverse pressure gradient. The adverse pressure gradient results
from the large bend angle and curvature, as well as the expansion of the duct.
The thickening of the boundary layer in the lower bend is still present in the
optimal duct (since it is mainly caused by secondary flow effects), but the size
of the adverse pressure gradient at the critical location mid-way through the
bend is much smaller. This is due to the decreased bend angle and curvature.
Moreover, the most rapid increase in the cross-sectional diameter takes
place in the beginning of the upstream bend, before the evolution of
the boundary layer takes place. There, the boundary layer is still very thin
and the adverse pressure gradient caused by the rapid expansion of the duct
does not cause flow separation.

The separation of the flow in the upper bend in the initial duct is probably
mainly caused by an adverse pressure gradient and not so much by secondary
flow effects. The argument for this is that the two vortices that convect low-
momentum fluid to the bottom of the duct in the upper bend are much weaker
than the corresponding vortices in the lower bend. Their strengths are reduced
by the two upper vortices that were induced by the lower bend (Fig. 5.34).
Therefore, the reduction of the size of the adverse pressure gradient due to the
contraction of the duct has a radical impact on the flow over the upper bend as
can be seen by comparing Fig. 5.32 to Fig. 5.31. We may conclude that the
reduced boundary layer thickness at the inside of the upper bend is
primarily a consequence of the contraction of the duct.

5.6.2 Relation between the objectives

In Section 5.5.3 we noted that the objective functions were dependent of each
other. We explained this by the fact that the minimum static pressure was
attained at the (top of the) outlet. Therefore, the dependency is at least partly
a consequence of the specific flow conditions and the expansion of the duct. The
reason is that the static pressure at the outlet can only be lower than the static
pressure at the inlet for certain inlet velocities.

To see this, we use the definitions of P and p* in Eq. (4.13) and (4.9) to
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write
* 1 2
p" =P —pgy—5pU"
Let IN and OUT refer to the top of the inlet and outlet opening, respectively.

These are the locations on the inlet and outlet with the lowest static pressure.
Then we can write the difference between the outlet and inlet pressure as

1 .
pour — Pin = Pour — Pin + pg(yrn — your) + §P(U?N - Udur)-
Since the volumetric flow rate is constant, we approximately have

Arv

Uour = Urn .
AouT

The difference between yoyr and yrn is close to the duct height H. If we ignore
viscous losses, so that Poyr = Pry by Bernoulli’s Theorem, we may therefore
simplify the above equation to

2
pPour — PIn = —pgH + %PU?NO - (Jle ) )
ouT
For an expanding duct we have Ajn < Apyr and therefore, as we increase the
velocity, the pressure at the outlet will eventually be higher than at the inlet.
To see for which velocity we have pyr = pin, We set the right-hand side of
the above equation equal to zero. Solving for Uy yields

Urn = 29H
w 1— (Arn/Aour)?

For our s-duct we have A;y/Aoyr = 1/2 and H = 3, which gives U;y = 8.9
m/s. For higher velocities the location where the minimum pressure is attained
must move from the outlet which presumably alters the relationship between
the objective functions.

To confirm these arguments and investigate them further, we compute the
flow in the optimal duct from run 1 for inlet velocities 9, 10 and 12 m/s, in
addition to the original 8 m/s used during the optimization.

Table 5.5 summarizes the values of —C}, i and Cp, which were computed
with the new reference conditions at the inlet. We see that both —Cj i, and
Cp decrease with increasing velocity.

Fig. 5.36 shows the distribution of C}, along the top and bottom of the duct
symmetry plane for the different inlet velocities. We first note that when the
inlet velocity is increased, the static pressure at the top of the outlet increases
relative to the pressure at the inlet, as predicted above. Let us consider the
location of the minimum static pressure. For 8 m/s it is attained at the exit.
For 9 m/s it has moved to the downstream bend. For higher velocities, the
minimum static pressure is attained at the top of the inlet. This confirms the
theory above. The fact that the static pressure at the exit is not exactly equal
to that at the inlet for 9 m/s can be attributed to viscous losses.

We also note in Fig. 5.36 how all values of C), are increased with the velocity.
We may conclude that in absence of sharp bends, the risk for internal
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Inlet velocities
8m/s | 9m/s | 10m/s | 12m/s
Cp 0.0741 | 0.0729 | 0.0718 | 0.0670
—Cp,min | 0.3258 | 0.1175 | 0.0587 | 0.0469

Table 5.5: Effects of changing the inlet velocity in the optimal duct from run 1.
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Figure 5.36: Distribution of Cp along the top and bottom of the optimal duct from run 1
for different inlet velocities. The straight line indicates the value of Cp at the
top of the duct inlet.

cavitation is small for high velocities. (With “internal” we mean inside
the duct. In practice, cavitation may occur at the entrance of the duct, but this
scenario is not included in our model.)

Let us denote the value of C, at the inlet by C;. It would not be true
to state that Cj is completely independent of p, because it is influenced by
the conditions in the upstream bend. However, this influence is limited, and
mainly, Cj depends on the inlet radius and the inlet velocity. Consequently,
for any duct, C} is close to the theoretical minimum of Cp mi,. When we have
found a duct in which Cp min is attained at the inlet (Cp min = C;), changes in
the downstream geometry that does not move the location of Cj yin from the
inlet will only have small effects on Cp min inasmuch as they affect C}.

To see that this is indeed the case, we consider the ducts p; and pj in Fig.
5.37. The first is a long, smooth duct specified by

p1 = (30,3.2,4,0.305,0.32),

and the second is the optimal duct from run 1. The ducts have almost identical
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Figure 5.37: Geometry of three different ducts for the investigation of the dependency be-
tween the objective functions.
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Figure 5.38: Distribution of C; along top and bottom of the duct symmetry plane for the
three ducts in Fig. 5.37.

values of —C mmin, as seen in Table 5.6. Fig. 5.38 shows that the minimum
static pressure is attained at the outlet. In fact, we have again examined ten
ducts on a line in parameter space between p; and pj, and all of them have
values of —C}, nin that are between those for p; and pj. We conclude that as
soon as —Cp min 18 attained at the duct inlet, we have reached a large
basin of ducts that are near-optimal with respect to —Cjp pin-

To get more insight in the relationship between the objective functions, let
us again consider Fig. 5.37 and 5.38. The duct p» is given by

p2 = (65,1.4,1,0.305,0.32).

It is the same as p] apart from a sharper upstream bend. Fig. 5.38 shows that
for all ducts, the minimum static pressure is attained at the inlet. Consequently
they have all approximately equal, near-optimal values of —C min. However,

in Table 5.6 we can see that they differ with respect to Cp. p2 have largest
losses, which can be attributed to the sharp upstream bend where heavy flow
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Pi P1 P2
Cp 0.0718 | 0.0794 | 0.0983
—Cymin | 0.0587 | 0.0509 | 0.0695

Table 5.6: Data for three different ducts for the investigation of the dependency between
the objective functions.

Opt. radius | Non-opt.
Cp 0.0741 0.1312
—Ch,min | 0.3258 0.5919

Table 5.7: Effects of different radius curves. The centre curve is the one in the optimal duct
from run 1.

separation actually occurs. p; has lower losses than ps, because it is smoother,
but it has higher losses than pj, which may be attributed to its length.

We have thus found that the objectives are not dependent in general. Their
relation depends on the critical velocity where the outlet pressure can be higher
than at the inlet. Furthermore, sharp bends may increase losses even if they do
not affect the cavitation performance. Losses may also increase if the duct is
unecessary long.

5.6.3 Effects of changing the radius curve

A carefully selected cross-sectional shape of the duct is essential to obtain
cavitation- and loss-optimal designs. To convince the reader that this is in-
deed the case, we have compared the flow through the optimal duct from run
1 with the flow through duct that have the same center curve but a different,
non-optimal radius curve, see Fig. 5.39.

Table 5.7 contains the values of —C) 1in and Cp. The values for the duct
with the non-optimal radius curve is significantly higher than those for the
optimal duct.

In Fig. 5.40 we can see how the static pressure distribution along the top
and the bottom of the duct is affected by the change of radius curve. We note
that the static pressure at the end points (inlet and outlet) remains more or less
the same, but in between the shape of the curve is changed considerably. The
optimal radius curve yields much higher static pressure over the upstream bend
than the non-optimal. The influence of the sharp downstream bend (seen as the
“dip” in the curve before the exit) is much more marked for the non-optimal
radius curve. The location of the minimum static pressure has moved from the
duct exit in the optimal duct to the mid-part of the downstream bend in the
non-optimal duct.

The conclusion is that the effect of optimizing the radius curve is to smooth
out the distribution of Cp, so that the effects of sharp bends become less marked.
This should allow the centre curve to have sharper bends.
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Figure 5.40: Effects of different radius curves on the distribution of C) along the top and
bottom of the duct symmetry plane. The centre curve is the one in the optimal
duct from run 1.
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5.6.4 Behaviour of the optimization algorithm

In all runs, the objective function values decreased rapidly during the first 20-30
evaluations (iterations), whereafter not much happened. Even so, it took many
more iterations for the algorithm to converge. For example, in spite of the
small improvement in the objective function made during step II in runs 2 to 5,
the algorithm still required approximately another 100 evaluations in order to
converge (A < Ay,in = 0.01). This can be attributed to the following property
of the algorithm: each reduction (halving) of the step length requires 10 (2*n,
where n is the dimension of the optimization problem) function evaluations.
Thus, to reduce the step length from 1 to less than 0.01 requires at least 70
evaluations (even if the current iterate is optimal).

In Section 5.3 we noted that the non-linear constraints and the possibly low
regularity of the cavitation objective function could cause convergence problems,
at least in theory. Numerical investigations show that the optimal vectors are
quite far from the boundaries of the constraint domain 2. Therefore, the con-
straints should not have caused any false convergence in practice. It is harder to
say anything about the influence of the regularity of —C) i on convergence.

5.6.5 The surrogate functions

In one way we can say that the coarse mesh functions —C}, ;,, and Cp® were
very good surrogate functions because when they were optimized, the values of
=Cp min and Cp decreased to almost the same extent. The surrogates provided
very good initial guesses for the optimization in step II, where only very small
improvements in the objective were made. On the other hand, the surrogates
did not give significantly faster convergence, except for run 3.

Consider run 4 in Fig. 5.8. Let po denote the initial vector in step I. We have
Cp®(po) = 0.1336 and Cp(po) = 0.1172, which is a difference of 14%. Thus,
the surrogate loss function is only a crude approximation of the loss function,
at least in some regions of the parameter space. Nevertheless, the optimum
of step I provides such a good initial guess in step II that almost no further
improvement in the objective is made. We conclude again (as in Section 5.4.1)
that the most important property of a surrogate for optimization is not that it
approximates the function itself, but rather that it approximates the differences

in function values between any two points.

5.7 Summary and conclusions

We have used the Sherif-Boice algorithm [35] to optimize the waterjet inlet per-
formance model described in Chapter 4 for maximal static pressure (minimal
risk of cavitation) as well as minimum loss. The implemented procedure is fully
automatic and terminates within a reasonable amount of time. The credibility
of the procedure is shown by examples where the optimization is started from
a “poor” initial design (one that is known to be less efficient) and gives an op-
timized design with significantly improved hydrodynamic performance - higher
static pressure, lower loss, no flow separation. Furthermore, the inlet model was
used as a tool for investigating the interaction between the inlet geometry and
its hydrodynamic performance under different flow conditions. We have also
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discussed how to speed up the optimization process by using coarse grids and a
premature termination of the flow solver.

It was found that, under the given flow conditions, the objective functions
were dependent of each other, that is, when we optimized for maximal static
pressure we obtained low losses as well, and vice versa. We also found a range
of geometries which were near-optimal with respect to both objective functions
at the same time, so the geometry of the optimal ducts could be altered quite
significantly with a preserved good hydrodynamic performance. The main geo-
metric features of the optimal ducts are

1. along sweeping lower bend radius,
2. a sharper upper bend,
3. and a contraction of the duct over the upper bend.

4. The maximum cross-sectional radius is attained approximately mid-way
through the duct.

As is discussed in the following section, the modelling of the inlet duct has
been done under considerable simplifications. Therefore, perhaps more interest-
ing than the result of the optimization is an understanding of how the hydrody-
namics relate to the underlying geometry. We have analyzed the hydrodynamics
of one optimal duct as compared to an initial “poor” geometry. The hydrody-
namics of the optimal duct are summarized by:

1. Higher static pressure at the inside of the bends,

2. reduced adverse pressure gradients at the inside of the bends so that the
flow does not separate,

3. a more uniform flow over the second half of the upper bend, with a rela-
tively thin boundary layer at the inside of that bend,

4. reduced secondary flow.

The contraction of the duct over the upper (relatively sharp) bend thins out
the boundary layer at the inside of that bend, thereby reducing viscous losses.
The large upstream bend radius minimizes the adverse pressure gradients and
thus the risk of flow separation. The large radius in that bend can also be
seen as necessary for the cross-sectional radius to be able to increase and reach
its maximum mid-way through the duct without causing flow separation. It
is interesting to note how the most rapid increase in the cross-sectional radius
takes place in the first part of the lower bend, before the critical point where
the boundary layer starts to grow. This is probably essential in order to avoid
that the flow separates.

We can conclude that the parametric model of the inlet geometry described
in Section 4.2 worked well. It was a simple model, consisting of only five param-
eters; nevertheless it could be used to generate a relevant range of geometries.

It was found that the observed dependency between the objectives does not
hold in general, but is a consequence of the given inlet velocity U,c¢. In our
case the dependency could be attributed to the fact that the minimum static
pressure was attained at the top of the outlet in all optimized ducts. However,
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analysis and numerical experiments show that, due to the expansion of the duct,
the downstream pressure will increase relative to the pressure at the inlet when
the inlet velocity is increased. Typically, it is only possible for the minimum
static pressure to be attained at the outlet when U,y < 9 m/s.

The risk for internal cavitation should be reduced when the inlet velocity
is increased, at least in the absence of sharp bends. A duct that is cavitation-
optimal for one velocity should be cavitation-optimal for higher inlet velocities
as well. This is due to the just-mentioned fact that the downstream pressure
increases relative to the pressure at the inlet when the inlet velocity is increased.

For Uyey > 9 m/s the minimum static pressure may be attained at the
inlet. We found that when this happens we have reached a large basin in the
parameter space where all ducts give values close to the theoretical minimum
of the cavitation performance measure (—Cp min). We used this to construct
two examples that show that the objectives are indeed not dependent in general.
Both ducts had the minimum static pressure at the inlet opening and thus near-
optimal cavitation performance. But both ducts had relatively large losses; one
due to a sharp lower bend where the flow separated and the other because it
was very long. This also shows that the cavitation measure —C) i, can not be
used as the only flow performance measure.

Our experience with the Sherif-Boice algorithm (SBA) can be summarized
as follows:

e It gave near-optimal function values within only 20-30 function evalua-
tions.

o It worked well together with the surrogate functions.

e It required many iterations to converge. This is explained by the fact
that the algorithm must perform 2n (where n is the number of variables)
evaluations each time the step length is halved.

The surrogate functions were constructed by performing the flow computation
in Fluent on a relatively coarse grid. The surrogates were approximately three
times as fast to evaluate as the real functions. We summarize our conclusions
about the surrogates as follows:

e The surrogates preserved enough of the nature of the problem to drive the
optimization process in the right direction. Since the SBA is a rank-order
method, the desirable property of the surrogates is that they maintain the
rank between different function values.

e In a short period of time the optimization on the surrogates produced
designs that were near-optimal also when measured with the real functions.

e They can be used to get quick, preliminary results about the correspon-
dence between geometry and flow performance.

We conclude that the SBA, although it is a very simple algorithm, worked
well on our problem. It is not believed that other algorithms would perform
significantly better on problems like this, as long as the number of variables
is as low as in our case, but perhaps it is possible to find a better stopping
criterion.
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Outflow

Outflow

Figure 5.41: Extended flow domain.

5.8 Future research

As pointed out in the Introduction to the thesis, there are some shortcomings
in our waterjet inlet modelling. In particular, we have only considered internal
aspects of the flow. This might affect the direct applicability of our conclusions
concerning the inlet design. For example, the optimized ducts expand rapidly
before the lower bend and become the thickest mid-way through the duct. In
practice, this will increase the drag as the inlet ploughs through the sea. More-
over, the analysis of the losses at the end of Section 4.5.2 indicates that the
loss depends on the conditions at the inlet opening, but these are more or less
constant in our model since we specify a uniform inlet velocity condition.

Therefore, it would be desirable to extend the model by extending the flow
domain to include a volume of water surrounding the inlet opening as shown
in Fig. 5.41. Such an arrangement was used by Seil [34] to model the flow
into a flush-type inlet. With this extended flow domain it would be possible
to include more aspects of the hydrodynamic performance of the duct into the
optimization, for example:

e external drag around A in Fig. 5.41,

e drag due to differences between the free-stream pressure (at C) and the
pressure inside the duct (A),

o losses associated with how the flow enters into the duct,
e cavitation performance around the inlet lip (B) and at the inlet opening.

Seil [34] notes that “... an actual waterjet inlet must reflect a compromise
between the cruise and manoeuvring conditions,... “. This suggests the chal-
lenging problem of optimizing the inlet for a range of operating conditions simul-
tanously. However, for such an optimization to be really interesting, it would
be necessary to extend the flow domain as indicated above. The reason is that
it allows us to include the important effects from different inlet velocity ratios
(IVR), which can be defined as the ratio between the volumetrically-averaged
velocity at the duct exit and the ship speed [34]. The flow may be very different
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for different IVR and the IVR can range from 0.5 for a cruise condition to oo
for a starting or manoeuvring condition.

A possible extension of the geometric model used in this work could be
to allow for different cross-sectional shapes. For example, the cross-section
could be rectangular in the beginning and elliptic at the exit with a successive
transformation between these two shapes along the duct.

More studies can be done on how to make use of knowledge about the CFD
model to reduce the amount of time required for the optimization. Suggestions
for further research on this issue are:

1.
2.

improve the efficiency of using good initial flow solutions in the flow solver;

construct surrogates that are faster to evaluate;

. consider to use a range of surrogates in the optimization;

. investigate the possibility of progressive optimization [11], by which is

meant a continuous update of the flow solver - finer grid, more iterations
in the flow solver - as the optimization proceeds.

The value of surrogates should become more marked when the number of vari-
ables in the optimization problem is increased.
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Appendix A

Positive linear dependence
and the regular simplex in
optimization

The purpose of this chapter is to investigate some properties of the regular
simplex from the point of view of optimization.

Simplices are geometric constructions consisting of n + 1 vectors, called ver-
tices, in R®. They are used in some nonlinear optimization methods, such as
the classical simplex method [16] and some pattern search methods [22]. How-
ever, they are also of interest to the analysis of general pattern search methods,
because, as we will show, simplices are minimal positive bases. Positive bases
are used in pattern search methods to define the search directions. Hence, it is
interesting to know how well a positive basis can approximate the gradient (see
also discussion in Section 2.5.2). We show that the cosine of the angle between
an arbitrary vector and the closest vector in a minimal positive basis consisting
of a regular simplex is bounded below by 1/n.

We also investigate the geometric properties of the iterates generated by the
classical simplex method by Spendley, Hext and Himsworth [16]. This method
proceeds by generating a sequence of simplices in R", where the next simplex is
found by reflecting one vertex of the current simplex in the plane through the
remaining vertices. Inspired by Powell [32] we show that, at least when n > 3
is not a power of 2, repeated use of such reflections may result in an infinite
sequence of points in a bounded domain. Hence the iterates generated by the
classical simplex method do not stay on a lattice as do the iterates generated
by pattern search methods. The lattice structure of the iterates was essential
to the convergence analysis of the last mentioned methods [36].

Our analysis uses some basic theory of positive linear dependence, which we
now present.
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A.1 Positive linear dependence and positive bases
in R"
The positive span of {ay,--- ,a,} C R™ is the cone
{a€eR":a=cia1 + -+ crar,c; € Re; >0,Vi}.

The set {a1,---,a,} is called positively dependent if some a; is in the positive
span of the others, otherwise positively independent. A positive basis is a posi-
tively independent set whose positive span is R®. A positive basis must contain
at least n + 1 elements and such a basis is called minimal. Also, it contains at
most 2n elements and such a basis is called mazimal.

From [12] we have the following two theorems of which the second charac-
terizes positive spans.

Theorem 3. Suppose {a1,--- ,a,} positively spans R". Then {az,--- ,a,} lin-
early spans R™.

Theorem 4. Suppose {a1,--- ,a,},a; # 0, linearly spans R™. Then the follow-
ing are equivalent:

1. {a1,--- ,a,} positively spans R".

2. For every b # 0, there exists an i such that bea; > 0.

3. For every i, —a; is in the positive span of the remaining a;:s.

For what follows, it is also convenient to have

Lemma 5. Let {a1, - ,an1} be a minimal positive basis for R™. For any
giwen ¢ € R™ we may choose n of the a;:s so that x is in their positive span.

Proof. From Theorem 3 we have z = E?Zl bia;, b; € R If b; < 0 we can
use 3 in Theorem 4 to replace bja; with a positive linear combination of the
remaining a;:s. This gives x as a linear combination of n of the a;:s where one
more coeflicient is positive than in the first linear combination. Repeating this
procedure eventually gives the desired result. O

A.2 The regular simplex in R”

Simplices may be defined in different ways. In some parts of mathematics,
they are defined as n-dimensional sets in (n + 1)-dimensional space. In simplex
methods for nonlinear optimization (originally described in [16]), however, they
are given by n + 1 vectors in R, whose convex hull is n-dimensional.

A.2.1 The regular simplex as a minimal positive basis

In our definition of a regular simplex, we only use the property that all the edges
are of equal (non-zero) length.

Definition 1. The set of vectors {vi, -+ ,vny1} in R is called a regular sim-
plex if v; # v; and ||v; — vj||=constant> 0, Vi # j. The v;:s are called the
vertices of the regular simplex. If ||vi|| = 1,Vi, the regular simplex is said to be
normalized.
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Intuitively, a normalized regular simplex constitutes a minimal positive basis.
In order to show this, we first prove the following proposition.

Proposition 6. Any n vectors in a normalized reqular simplex are linearly in-
dependent.

Proof. Let {v1,--- ,vnt1} denote a normalized regular simplex. Suppose that

n
Y= Zcivi =0.
i=1

Definition 1 implies that v;  v; is equal to some constant « for all ¢ # j. More
precisely,
constant = [[v; — vy 1> = llesll” + oy [ — 2v; o v; (A1)
:2—2Ui.Uj,VZ'7£j. '
We then have

n
YouUs = aZci =0,
i=1
n
youv; =cj +a Z c; =0,
i=1,i#]
so that ¢; = acj. Then either o = 1 or ¢; = 0, but @ = 1 implies that all
v; are the same, which is contrary to the definition of a regular simplex. Thus

¢;j =0, Vj, which shows the linear independence of vy, ,v,. It easily follows
that any n of the v;:s are linearly independent. O
Theorem 7. Let {v1,--- ,vp41} be a normalized regular simplex in R™. Then

it is also a minimal positive basis.

Proof. We will use theorem 4. From Proposition 6 it follows that {ve, - ,vp41}
linearly spans R™. Let

n+1

V1 = E CiV;.
=2

If j > 1 then

n+1
v; — v = (1 + Cj)’l)]' + Z CiU;
1=2,i#£]

We now take the scalar product of both sides in this equation with v; —v; and,
using equation (A.1) and v; e v; = a(# 0), Vi # j, so obtain

21-a) =l —ul’=1+¢)(1-a)
Hence ¢; =1, Vj, and
n+1

> wi=0. (A.2)

Theorem 4 combined with the fact that a positive basis contains at least n + 1
elements now gives that the v;:s form a minimal positive basis. |
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To show that Definition 1 is meaningful, we next prove that normalized
regular simplices exist in all dimensions. To this end, it is convenient to have
the following lemma.

Lemma 8. Let {v1, - ,v,y1} be a normalized regular simplex. Then
1
V; 0V; = —E.
Proof. From (A.1) we have v; e v; = «, Vi # j. We then obtain the desired
result by taking the scalar product with vy in (A.2). O

Theorem 9. There exists a normalized reqular simplex in R™, for any n.

Proof. The proof is constructive and we use induction on the dimension n. The
existence is clear for n = 2. Now, suppose {vy,--- ,v,} is a normalized regular
simplex in R*~! for some n —1 > 2. Equation (A.1) and Lemma 8 implies that

1
lJvs — ;|2 = 2(1 + m) (A.3)

Denoting the elements of the vector v; by vi;, j = 1,...,n, we define the
vectors w; € R" by

wi — (wa /v, ..., vin/v,8), fori=1,...,n,
¢ 0,...,0,1), when i =n + 1.

where § and « are real numbers. In order for {w;} to be a normalized regular
simplex we must have

2(1+ﬁ)

1
7 =3 +(1-p)?
and

1
1:?+ﬂ27

where the first equation comes from the condition ||w; —wj;||* =constant, Vi # j,
and the second from ||w;||? = 1,Vi. These two equations have the simultaneous
solutions

which ends the proof. O

The performance of a pattern search algorithm (Section 2.3.1) depends,
among other things, on how well the search directions approximate the direction
of steepest descent. The search directions are required to constitute at least a
positive basis in R™. Therefore, it is of interest to find an upper bound on the
angle, or, equivalently, a lower bound on the cosine of the angle, between an
arbitrary vector and any vector in a positive basis. For a maximal positive basis
consisting of the standard unit vectors and their opposites, the lower bound
for the cosine is 1/4/n (see Figure 2.3 and [36]). The following theorem states
the corresponding result for a normalized regular simplex (which, according to
Theorem 7, is a minimal positive basis).
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Theorem 10. For a minimum positive basis consisting of a normalized regular
simplex {v1,- -+ ,vpt1} in R" we have

min max (z ev;) = —,
lzll=1 i n

and the minimum is attained when x = —v;, for any i.

Proof. From Lemma 8 we have (—v;) e v; = 1/n, Vi # j, and it only remains
to show that max; z e v; > 1/n for any unit vector . For a contradiction,
suppose max; ¢ e v; < 1/n for some z of unit length. Lemma 5 assures that
(after possibly a reordering of the v;:s) we may write z = Zf:zl civi, ¢; > 0.
Let

k=arg max c;.
1=2,...,n+1

Then, using the (contradictive) assumption that z e v; < 1/n for every i, we get

n+1

ol =z o (D civr)
=2

Hence ¢, > 1 and it follows that

1 n+1
revp =Cp— — Z C;
nz’:Z,i;ék
sy 1
>c(1—— )>—
>er(1-— > m

i=2,i£k

which contradicts the assumption on . This concludes the proof.

A.2.2 On a question of Powell

Finally, we consider the classical simplex method in [16]. This method proceeds
by generating a sequence of simplices, where each simplex has all but one vertex
in common with the preceding simplex. The objective function is evaluated at
all vertices {vg,...,v,} of the current simplex. The new vertex v is found
through the reflexion of the vertex with the highest function value, say v,,, in
the plane through the others, i.e. ,

2 n
v=—vy + — ;. (A4)
For n = 2, this can be seen in Figure A.1, and the simplices obtained from such
reflexions form a regular pattern (Figure A.2).
Hence, the method can only produce a finite sequence of different simplices
in a bounded domain of R?. In [32], Powell shows that repeated reflexions may
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0 2

Figure A.1: Reflexion of a regular simplex.

Vo V2

Figure A.2: In R? the sequence of points generated by repeated reflexions of any of the
vertices of a simplex stays on a lattice. Hence, if one vertex, v1 in the figure, is
kept fixed, reflexion of the remaining two vertices produce only a finite number
of new points (namely 4).

produce an infinite sequence of different simplices when n = 3 and asks whether
the same thing could happen in higher dimensions. We show that it indeed
can, at least when n is not a power of 2. As mentioned in the introduction
to this chapter, this result indicates that a simplex method may behave quite
differently from a pattern search method.

Let {vg,...,vn} be a normalized regular simplex in R" (see Definition 1).
Let n = ab > 3, where a is any positive integer and b is any prime number
different from 2 (i.e., n is not a power of 2). We will consider the sequence of
simplices generated by keeping all but two of the vertices in the simplex fixed
and repeatedly apply (A.4) to the other two. More precisely, the k:th simplex
(k > 1) has one vertex wy, different from the (k — 1):th simplex, where

Wo = Vg, W1 = V1
; ’ . A5
{ Wy = —Wg—2 + %(wkfl + Y vi), k>1 (4-5)

All of the simplices in the sequence generated in this way will be different if all
of the vertices {wy}%, are different. If we let

c= (1)2+1}3+...+’03)

n—1
and define

up=wr—c, k=0,1,...,

114



the sequence in Equation (A.5) transforms to

2
U =Vg—C, U] =V —C and Up = —Up_1 — Uk_2,k > 1.
n

We see that the points uy stay in the two dimensional subspace spanned by

uo, u1. From Lemma 8 we have v; e v; = —1/n, Vi # j, and it is then easy to
compute
9 5 n+1 n+1
= = and =—.
loll? = > = 22, n wo e = A

It follows that wu; is the rotation R of ug by an angle € in the plane spanned by
ug, U1, where
Uug ® Uy 1

cos(f) = —— = —.
©) = Tuol Tl = =

Furthermore,

Ug ® Uy

-5 U1 — Ug
lluall? ’

U2 = —U] —Ug = 2
n
so that wus is the reflexion of ug in the line through u;. This means that us is
the rotation R of u;. By induction we get up = Rug_1.

Now, the elements in {wy,} are distinct if and only if the elements in {u;} are
distinct. If two elements in {uy} are equal, we must have R™ug = ug for some
positive integer m. This happens exactly when mé/27 is an integer. Suppose
this is so. We expand cos(m#f) in powers of cos(#), the highest power being of
order m,

1 = cos(m@) = 2™ cos™ () + apm_acos™2(8) + ...

— 2m71

1
n—m+am72m+...,

where all o; are integers. Multiplying both sides by n™ gives

m

-1 2 4
2"+ nfapm_s+n am_a+ ... =0,

where all but the first term are divisible by b. We have thus reached a con-

tradiction under the assumption that mf/2r is an integer, and so we have an
infinite sequence of distinct simplices in a bounded region of R".
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Appendix B

NURB curves

NURB curves are piecewise defined rational polynomials. They provide a unified
mathematical basis for the representation of both analytic shapes, such as conic
sections, as well as complex engineering shapes. Furthermore, they allow for
efficient implementations and fast algorithms. NURB curves include B-splines
and rational and nonrational Bézier curves as special cases.

We first define the B-spline basis functions and discuss some of their prop-
erties. We then define the NURB curves, and to show their use we give three
examples of applications. These include the representation of conic sections,
the connection of two curves, and interpolation. Most of the material below is
taken from [30] and [33].

B.1 B-spline basis functions

Let [a,b] be a finite interval and p > 0 an integer. Let {v;}¥_, be a strictly
increasing sequence of real numbers, called breakpoints, such that

a=v<v <...<wvp=b.
With each v; we associate a positive integer m; and define the knot vector U by

U={u05"‘7um}={1)0""71)07“"1)167“‘71)16}7
S—— S—

mo mi

where mg =myp =p+land 1 <m; <pfori=1,...,k —1. m; is called the
multiplicity of the breakpoint v; and also of the knot u;, if u; = v;.

We recursively define the m — p B-spline basis functions N;, on the knot
vector U by

_ 1, ifue [ui,uiﬂ),
Nio(u) = { 0, otherwise
U — uj; Uitp+1 — U
Nip,(u) = —N;p_1(u) + —————N; _1(u).
hp( ) Uiy — U i,p 1( ) Uipptt — Uipt i+1,p 1( )

If a denominator involving knot differences becomes zero, the quotient is defined
to be zero.
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Many important properties for the B-spline basis functions can be derived
by considering their recursive structure, which is illustrated below.

No,o

No,1
Nig Ny

Ny No,3
Nip N1

No Ni3
N3 N o

N3

Ny

We now list some of the most important properties of the B-spline basis
functions.

Proposition 11. (Properties of B-spline basis functions.)
P1. N;p is a piecewise polynomial of degree p. It is a polynomial of degree p in
the interior of a breakpoint interval (vj,vjt1).
P2. N;p is at least p—m; times continuously differentiable at a breakpoint v;.
P3. Compact support and non-negativity: N; ,(u) = 0 outside [u;, Uitp+1] and
Nip(u) > 0 on (uj, Uiypt1). Note that u; < Uippy1 since mj < p+ 1 for
j=1,...,k—1, whence N;, # 0.
PJ. Partition of unity:
m—p—1

Z N;p(uw) =1, u € [a,b)].

i=0
P5. {Ni,p};iapfl forms a basis for the linear space V' of all piecewise polynomial
functions of degree p which are p —mj times continuously differentiable at the
interior breakpoints vj, j =1,...,k—1.

Proof. P1 and P2 corresponds to Theorem 4.14 in [33]. P3 is proved in Theorem
4.17 in the same reference. P4 follows easily from Theorem 4.20. To prove P5,
we first note that the basis functions are indeed members of V' (P1 and P2),
and that dim(V) = m — p. It only remains to prove that the N;p:s are linearly
independent. To this end, suppose that

Z ¢iNip(u) =0, u € [a,b].

m—p—1
=0
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P3 ensures that the support of IV; , contains a non-empty knot interval (u;, wj1)
and that N; ,(u) > 0 there. Considering the non-negativity of the basis functions
(P3 again), it follows that ¢; = 0. O

B.2 NURB curves

A NURB (non-rational uniform B-spline) curve, of degree p on the interval [0, 1]
is defined by (see [30])

_ Yo Nip()wiP;
C(U) B Z?:O Ni,p(“)wi

where P; are the control points, w; > 0 the weights and N;, the p:th degree
B-spline basis function (described in the previous section) defined on some knot
vector U.

We now list some relevant properties of a NURB curve C. Most of them can
be deduced directly from Proposition 11, or else found in [30].

0<u<l, (B.1)

P0. Algorithms for manipulating NURB curves are fast and numerically stable.

P1. The degree, p, number of control points, n+1, and number of knots, m+1,
are related by

m=n+p+ 1.

P2. Though a NURB curve does not in general interpolate the control points,
one always has end point interpolation, C(0) = Po, C(1) = Py,.

P3. C is infinitely differentiable in the interior of a knot interval and at least
p —m; times differentiable at a knot of multiplicity m;.

P4. Tt lies in the convex hull of the control polygon.

P5. The NURB curves contain B-spline curves (all w; = 1, see P4 in Proposi-
tion 11), rational Bézier curves (U = {0,...,0,1,...,1}) and Bézier curves
(wi=1and U ={0,...,0,1,...,1}) as special cases.

P6. If the control point P; is moved or the weight w; changed, it affects only
the part of the curve corresponding to the interval [u;, Uitpt1]-

P7. The effect of increasing one weight w; in proportion to the others is to
pull the curve towards the control point P;.

Because of these properties, NURB curves provide an excellent and flexible tool
for the representation of geometric shapes. In particular, property P6 allows for
local control and variation of the curve, which makes it possible to use NURB
curves as a design tool or in a shape optimization procedure.

B.3 Applications

We discuss three applications of NURB curves. First we discuss how conic
sections and in particular circular arcs can be represented by NURB curves.
We then describe how to represent two piecewise defined curves by one curve.
Finally, we outline how to use NURB curves for interpolation in general and for
cubic spline interpolation in particular.
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P2 PO
w2=1 wo=1

Figure B.1: A Bézier arc.

B.3.1 Circular arcs

In [30] it is shown how the NURB curves can be used to represent circular arcs.
More generally, it is shown that the quadratic rational Bézier curve,

(]. — u)2w0P0 =+ 2U(1 — u)w1P1 + UZ’UJQPQ

Clw) = (1 —w)2wg + 2u(l — u)wy + u2w,

, u€][0,1], (B.2)

represents a conic (ellips, parabola or hyperbola). This is done by means of a
change of coordinates. Equation B.2 is obtained from the NURB curve definition
by taking p = 2 and U = {0,0,0,1,1,1}.

To represent a circular arc, let PoP1P> be an isosceles triangle such that
P()P]_ = P1P2. Let 6 = ZP1P2P0 and take Wy = Wy = 1, wp = cos@. Then
C(u) is a parameterization of the circular arc from Pg to Py that passes through
the inside of the triangle PoP; P2 and has PyP; and PP, as tangents (Figure
B.1).

B.3.2 Connecting two curves

Given two NURB curves,

NI Pl
Cj(’u,) = X:Z;?—W, u € [aj,bj], ] =1,2,
k=0 Vk,pWk
such that C;(b1) = C(az) and w;,, = w§, we can connect them into one curve.
More precisely, we can construct a continuous curve C(u) on [a1, by + (b2 — a2)]
such that C(u) = C1(u) on [a1,b1] and C(u + by — az) = Cz(u) on [az, by].

Suppose first that b; = as. To define C we have to define the control points,
the weights and a knot vector. We choose

_ pl | _
Pi—Pi; w; = w;, Z—O,...,nl
Piin, = P2, wiyn, =w?, i=1,...,ns.
If the knot vector for C; is U; = {u}, ... ,uﬁnj }, we define the knot vector for C
by
ol 1 2 2
U ={ugs- Uy —15Upi1s--sUnm,}-

Hence U contains m + 1 = my + ma — p knots.
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We now show that C has the desired property. Note that, by the definition

of a knot vector, u}, 1 <wuy, ,=...=uk, ; <u2,; and hence (note that
my —p— 1= nl)

Uny < Unpyj41 = +o 0 = Ungtp < Ungfpt1-

Using the B-spline basis function property P3, we find that if ¢ < n{ then NV; , =
N}, and its support belongs to [a1,b;]. Similarily, if i > 0 then Ny, 5, = N7,
and its support is in [ag, by]. For i = ny we have

an,P Nl +N3,p7

ni,p

and N,, , equals N} .,p When restricted to [a1,b1], and N&p when restricted to
[b1,be2]. Thus, for u in [a1,b1] we have

Smdne N wP;
2713—"2 Njpw;
_ i NipwiPi
Ej =0 NJ,pwa

Z Nj w;
=Ci(u )7 u € [ag,bi].

C(u) =

Analogously, it is shown that C restricted to [az, b2] equals Ca.

If by # ay we define a translated knot vector U = U, +b; —as. It is then
easy to show that the corresponding curve C, defined on [b1,b2 + by — ao] is
such that Ca(u) = Ca(u — by + a3), and we may proceed as above.

B.3.3 Interpolation and parameterizations

The NURB curve does not in general interpolate its control points. If we want
to interpolate a given set of points {Qr},k = 0, ...,n with a pth-degree B-spline
curve C at parameter values u, we can select a knot vector U and solve the
system of linear equations given by

n

Qk = C(ﬂk) = ZNi,P(ﬂk)Pi; k= 0; ceey Ny (B3)

=0

where the control points P; are the unknowns. The choice of U and uj will
affect both the shape and the parameterization of the curve, as noted in [30].
How to choose U in order to avoid a singular system of equations is discussed
in [30], section 9.2.

Clearly, the choice of @y affects the parameterization. To approximate the
arc length (uniform) parameterization, it is common to choose @y as the chord
length along the polygon defined by the Q:s, as explained in [30], section 9.2.

In particular, we can use NURB curves for the traditional cubic spline in-
terpolation. Take uy, as above, p = 3 and the knot vector

U= {EO)aO)ﬂOJTLOJﬂl) vy Un—1,Un, Un, Un, Un, }
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This means that the interpolation occurs at the knots. The corresponding n + 3
B-spline basis function constitute, according to P5 in Proposition 11, a basis for
the space of cubic spline functions on [tg, &,] with knots (nodes) . Setting
up the system (B.3) leaves two degrees of freedom that can be used to specify
the end derivatives.
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