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Abstract

Many statistical methods are based on the crucial assumption that
all observations are stochastically independent. In situations when
this assumption does not hold the methods of analysing data often
gets very complicated and the options fewer. When estimating the
survival function for survival data arising from the random censor-
ship model the Kaplan-Meier estimator is very often used. Under the
assumption of observations being stochastically independent it has
been showed to enjoy many nice properties. It has also been showed
that the Kaplan-Meier estimator still is consistent when groups of
observations are dependent. In this thesis we present a method for
constructing confidence intervals for the survival function from in-
dependent observations based on the Kaplan-Meier estimator. The
method resembles likelihood intervals, but instead of relying on an
asymptotic distribution of the likelihood ratio, the intervals are based
on the exact distribution calculated by means of bootstrap. Different
ways of expanding the method to the case of groups of observations
being dependent are discussed.
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Chapter 1

Introduction

Consider the random censorship model, i.e. we have n identically and inde-
pendent failure times distributed according to the survival function F'. Each
failure time is subject to right censoring by the censor variable, which is
assumed stochastically independent of the failure times and distributed ac-
cording to the survival function G. We do not observe both the failure time
and the censor variable for each pair, but rather the minimum and an in-
dicator of which one was the smallest. Our goal is to estimate the survival
function F' of the failure times. In this situation the Kaplan-Meier estimator
(KM), also called the product limit estimator, of F'; (Bohmer, 1912), (Kaplan
& Meier, 1958), is very often used and has many nice properties.

Akritas (1986) studied different ways of bootstrapping the KM estimator.
The two methods are resampling cases, (Efron, 1981a), and resampling from
the KM estimator, (Reid, 1981). Akritas studied the asymptotic behaviour
of the KM estimator and confidence bands for the survival function F. He
showed that Reid’s proposal does not give asymptotically correct confidence
bands. A third option is conditional bootstrapping, (Hjort, 1985), which
was studied by Kim (1995). He concluded that conditional bootstrapping
estimates the conditional variance of the KM estimator better than Efron’s
approach.

Ying and Wei (1994) studied the behaviour of KM when the failure times
no longer are mutually independent. They concluded that the KM estimator
is still consistent under rather mild assumptions. For highly stratified data
these assumptions where trivially correct. Confidence intervals for F' using a
modified Greenwood formula were considered by Eriksson and Adell (1994).
They showed that falsely assuming independence could have serious effect on
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2 CHAPTER 1. INTRODUCTION

the confidence level of the interval. However, they had a fix censoring point
in their simulations and did not study the KM estimator at points beyond
this. This means that all survival estimators are frequencies of overdispersed
data.

The aim of this thesis is to study confidence intervals for the survival
rate based on the KM estimator. The first section of chapter 2 contain-
s a short introduction to bootstrap and how one may use this in order to
find confidence intervals. After the introduction to bootstrap we start with
the simplest possible case of survival data, no censored observations and all
failure times independent. In this situation the KM estimator equals the rela-
tive frequency of survivals, thus the model to consider is the binomial model.
Several confidence intervals obtained by sampling cases are investigated, i.e.
the “classic” way of bootstrapping. We use the exact binomial confidence
interval as the golden standard. In the same chapter we also compare d-
ifferent ways of bootstrapping when groups of observations are dependent.
They are compared with respect to the ratio expected variance to the true
variance. We still assume there are no censored observations, hence we have
an overdispersed binomial model.

In the next chapter we proceed with independent but possibly censored
observations. We introduce a semiparametric confidence interval for the sur-
vival rate. The interval is computed using bootstrap and in case of no cen-
sored observations it coincides with the exact binomial interval. The most
promising classic bootstrap interval of chapter 2 is the accelerated bias cor-
rected percentile interval. How this is computed for censored observations is
also shown. These two intervals together with a likelihood ratio interval are
compared in two simulations.

In chapter 4 we relax the assumption of independence between all failure
times, by allowing dependence within groups of observations. In this situ-
ation the ordinary KM estimator (ignoring the dependence) is still a valid
estimator. An example where data can be considered arising from this kind
of model is the lifetimes of several individuals who are related in some way
and therefore can not be treated as independent. Another example is the
failure time of several similar organs of the same individual. The specific ex-
ample that was the basis for the work of this thesis comes from oral surgery
for the implantation of fixtures to support dental prosthesis. One individual
has several fixtures implanted and the time until failure of these fixtures may
be dependent. In chapter 4 we discuss different ways of bootstrapping from
this kind of data.



Chapter 2

Bootstrapping binomial data

If there are no censored observations the Kaplan-Meier estimator is reduced
to the relative frequency of survivals. Thus, when studying different ways
of forming confidence intervals for the survival function, a good start is to
study binomial data.

In this chapter we will start by considering the binomial model. Then
we will continue with an overdispersed binomial model. The latter model
corresponds to the kind of dependency structure of the survival model in
chapter 4. But first of all, we start with a short introduction to bootstrap
and different ways of finding confidence limits using bootstrap.

2.1 Bootstrap in general

Let z1,...,x, be a sample of independent random variables all distributed
according to the same distribution function F. Let # be the parameter that
we wish to estimate. The parameter 6 is a function of F', e.g. the expected
value of F'. Suppose that we have an estimator § = é(wl, ..., Zy) of f at hand.
Moreover, besides estimating # we also want to find a confidence interval.
In order to do this we need to know the distribution function F', or find
a pivot statistic with known distribution under some model assumptions, or
use some other trick. The simple idea of bootstrap is to solve this problem
by replacing the unknown distribution F' with the empirical distribution,

_ #{i;2; <z}

determined by the sample.
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Thus, we can by means of simulation calculate the distribution of the
estimator under F,:

1. Simulate a bootstrap sample of n observations, z3,...,z ! from the
empirical distribution Fj,. Since the empirical distribution function
places mass n~! on each of the n observation of the original sample,
we may just draw observations from z1, ..., x, at random with replace-
ment.

2. Using the same function as on the original sample, but now on the

simulated sample, calculate the estimator: §* = 0(z%, ..., z*).

These two steps are repeated N times, and by using the obtained values we
get a picture of the distribution of g*. In particular we can find L and U
such that

PP(L<f—0<U)m1-2a

If we let HAE‘ and 0 o) denote the aN’th and (1 — ) N’th ordered values of
o respectively, we may use L = 0(a) 0 and U = 0(1 —a) ” 0.

2.1.1 Confidence intervals

One way of calculating confidence intervals, which originates from Efron
(1979), is to approximate the distribution of 6 — 6 with the distribution of
0* — 0 observed in the simulation. Thus, we assume that

P(Lgé—HgU)zl—Za (2.1)
holds for every 6. Using this we get the basic confidence interval:

20 = 07,0y, 20 — 07, (2.2)

When going from (2.1) to (2.2) we use § — 0 as a pivotal quantity. This
concept has been developed further by Beran (1987). In some situations
there might exist a transformation f such that f(f) — f(6) is more pivotal
than @ — #. The basic confidence interval method is then applied to f (9),
and the confidence interval for € is obtained by transforming the confidence

!The * indicates that the variables and estimators are simulated, and later on that
probabilities, expectations and variances are with respect to the sampling distribution.
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limits for f(#) back to the original scale using the inverse of f. Such intervals
will be referred to as basic f.

A different approach, which seems to first appear in Efron (1981b), is
based on the existence of a transformation h such that h(f) — h(f) and
h(6*) — h(#) have the same symmetric distribution around 0 for all values of

0 and 6. Under these assumptions it can be shown that the percentile interval
[02‘(1), 02‘1_(1)], (23)

which is read off directly from the bootstrap distribution of 9, has coverage
probability 1—2«. Although the percentile interval seems less appealing from
a theoretical point of view, if the parameter space is finite and the estimator is
confined to that space, the percentile interval will always produce confidence
intervals within that space, but this will not always be the case with the
basic interval.

Two methods of calculating confidence intervals, related to the percentile
interval, are the bias corrected percentile method, BC, and the accelerated
bias corrected percentile method, BCa. The assumption of the latter is that
there exist a monotone increasing transformation h, constants a and zy, such
that

h(6) — h(9)
— 2.4
1+ ah(8) 24)
and its bootstrap version, is N(0,1) for all §. The BC method uses a = 0,
and with both a and z equal to zero we get the percentile interval. From
the bootstrap we get the distribution of #*, but under the assumption that
the bootstrap version of (2.4) is N(0,1) we also have

Q
Il
o
*
—
S
*
AN
>
L
>
—
>

)+ (29 = 20) (1 + ah(8))]) ,
where 2(®) is the a-percentile of the N(0,1)-distribution. Thus, we have

ht (h(0) + (29 = 20)(1 + ah(9))) = 0, (2.5)
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A 1— o upper confidence limit for € is now obtained by using (2.4) and (2.5):

l1-a = P (z("‘) < 1(+)ahfé(§) + zo)

= P(0.<h7 [h(0) + =220 (1 + ah(D))])

1—a(zg—2())

(2.6)
= P (0 <h7 [R(B) + (=) — 20)(1 + ah(D))])
= P (0 < éfﬁz))

where 3y = (1 — ) and

2o + 219
1—a(z + 2®)”

Bla) = P(z +

are obtained by equating the mid-rows of (2.6). Thus, with 8, = f(a) we
get the 1 — 2« two-sided confidence BCa interval for 6 :

(0512 006 (2.7)

However, one thing remains to be done, and that is to set the bias pa-
rameter 2y and the acceleration parameter a. Starting with the easy one of
the two, the bias parameter, by using (2.4) and the fact that h is monotone
increasing we get P* (6" < 6) = ®(29), where P *(6* < ) is the proportion of
0% in the bootstrap that fall below 0. Thus we get the bias parameter as

2 =301 (P'(0" < 0)). (2.8)

The acceleration parameter a is not as easy to find, but a non-parametric
approximation was suggested by Efron (1987),

S VP

S 29
where ) A
. (1 = A)F, + A&) — 0(F,
.= g N0 2 +26) - 0(F)

is an empirical influence measure of observation z; on 6. Here 0 is treated as
a function of distributions, and &; is the degenerated distribution with a unit
mass at x;.
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2.2 Resampling cases, binomial model

The “classical” way of performing bootstrap is to resample from the observa-
tions with replacement and then rely on that the distribution of the bootstrap
sample will mimic the distribution of the original sample. Here we will com-
pare six different ways of forming confidence intervals that are based on this
“classical” way: percentile, basic, basic with logit and arcsine transformation,
BC and BCa.

2.2.1 Bootstrap distribution

Let = be the observed number of “successes” out of n independent Bernoulli
variables, all with the same unknown “success”-probability p, i.e., = is the
observed value of a binomial variable with parameters n and p. The obvious
estimator of p based on these observations is p = x/n.

When we perform the bootstrap we draw from the n “successes” and “fail-
ures” with replacement, thus we have probability x/n of getting a “success” in
each of the n draws. If we let 2* be the number of “successes” in a bootstrap
sample, then z* is an observation of a binomial variable with parameters n
and z/n.

The different ways of forming confidence intervals that we will compare
below are all computed using the inverse of the empirical distribution func-
tion. But since the bootstrap distribution is known, we also know what
values the empirical distribution function will converge? to as the number
of bootstrap samples tends to infinity. Thus, we can compare the intervals
themselves and their coverage probabilities without any tedious simulations.

2.2.2 Confidence intervals

In figure 2.1 the confidence limits for every possible relative frequency p and
the coverage probabilities of the lower limit for 0 < p < 1 are displayed,
n = 30. The coverage probability of the upper limit at p equals the coverage
probability of the lower limit at 1 — p so we need only study one of them.
The upper graphs contain the confidence limits of the different bootstrap
intervals (solid line) together with the exact two-sided intervals (dashed line)
for the parameter p. The intervals in the figure are from left to right:

Zalmost surely
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Percentile n=30 Basic n=30 Basic arcsin n=30 Basic logit n=30
1 1 — 1 1 —
0.75 S0 0s S s 0.75
os| os, ./ 05 05
025,/ 025,/ 025! / 025/
0—== 0=~ 0 0=
0 02505 075 1 0 02505 075 1 0 025 05 075 1 0 02505 075 1
P P P P
1 1 1 1
0975 0.975 0.975 0.975
0.95 0.95 0.95 0.95
0.925 : 0.925 h l 0.925 : 0.925
0.9 0.9 0.9 0.9
0 02505 075 1 0 02505 075 1 0 02505 075 1 0 02505 075 1
p p p p

Figure 2.1: Two-sided 95% confidence intervals (upper graphs) and the cov-
erage probabilities of the lower limits (lower graphs).

Percentile : [PasPi-al
Basic © (2D — P1—as 2D — Dal,
Basic with transformation f : [f~1(2f(p) — f(p1_q)), T 71(2f(P) — f(Pa))]

where f is either arcsin(y/-) or a modified version of the logit function 3 .

When p is 0 or 1 the bootstrap gives p, = p = pi1—o. Thus all four
intervals will give the confidence interval [0,0] or [1, 1] respectively. These
are obviously not very good intervals, and therefore the confidence limits are
replaced with the exact limits. This kind of modification may seem strange
and ad-hoc to do, but to prevent the limits corresponding to p being 0 or
1 from disturbing the coverage probability comparisons, we can not use the
intervals as they are. Another way around this problem could be to consider
the coverage probability conditionally on 0 < p < 1, but then it would be
harder to interpret the result for p close to 0 or 1.

Both the percentile and the basic intervals show a “bias”, compared to
the exact interval, in the sense that both limits are either smaller or larger
than the corresponding exact limits. This “bias” is most pronounced for the
basic interval. Moreover, the coverage probability of the lower limit is far too
low for large p. This is true for both intervals, but especially for the basic

310gitmodified(p) = lOg@ + 6) - log(l + d— p)7 with § = 1/27’L
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Smoothed distribution, Bin(5,0.5)

%

PR

0.75
05 e

0.25

0 1 2 3 4 5

Figure 2.2: Smoothed distribution.

interval. For both intervals the upper limit for p equals 1/n is smaller than
the limit for p = 0, but this inconsistency is caused by the replacement of
the upper limit with the exact one at p = 0.

The basic arcsine and the basic logit intervals look a bit strange, especially
the basic logit interval. At p = 0.1 the upper limit of the basic arcsine interval
is bigger than the upper limit at p = 0.1333. But otherwise the basic arcsine
interval is closest to the exact interval overall. The basic logit interval has
two points where the upper limit decreases in p. Also when looking at the
coverage probabilities the basic arcsine interval performs better than the
other three, but on the other hand, none of the four confidence intervals
performs satisfactory.

2.2.3 Smoothed bootstrap distribution

When we calculate the percentiles of the bootstrap distribution as described
above we use the distribution function of p* as it is. One possibility is to use
a smoothed and continuous version instead. A very simple way of smoothing
is to use a linear spline as described in figure 2.2.

The effects of using the smoothed distribution instead of the empirical
distribution on the percentile and basic arcsine intervals are found in fig-
ure 2.3. For the percentile interval there is very little improvement. Looking
at the basic arcsine interval we see that the decrease in the upper limit is
gone, but we still have a bump on the lower limits around p = 0.1 and the
lower limit is too big for p above 0.95. However, besides this, the deviance
from the exact interval is very small and the coverage probability of the low-
er limit for p < 0.5 is almost perfect. But, on the other hand, the coverage
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Percentile n=30 Basic arcsine n=30 BC n=30 BCa n=30
1 — 1 1 . 1
0.75 /1 075 0.75 /1 075
osi /7 05 ost 05
025),/ 025| / 0.25| / 0.25
0= 0 0= 0
0 02505 075 1 0 025 05 075 1 0 02505 075 1 0 02505 075 1
p P p P
1 1 1 1
0.975 0.975 0.975 0975 N\W\NVWW
0.95 0.95 0.95 0.95
0.925 : 0.925 , 0.925 , 0.925
0.9 0.9 0.9 0.9
0 02505 075 1 0 025 05 075 1 0 02505 075 1 0 02505 075 1
p p p p

Figure 2.3: Two-sided 95% confidence intervals (upper graphs) and the cov-
erage probabilities of the lower limits (lower graphs), smoothed versions.

probability drops well below the target 0.975 for p around 0.85, and the bump
causes a big conservatism around p equal to 0.7.

In the same figure two other intervals are also shown, BC and BCa. The
BCa interval involves a bias parameter, z;, and an acceleration parameter,
a, as described on page 5, whereas the BC interval only involves the bias
parameter. Instead of using the zq in (2.8) we will use

2= (P(6" < 0)+0.5P" (0" =0)).

With this modification the intervals of # and 1 — # will not contradict one-
another. Further, 1;, the empirical influence measure of observation 7 on é, is
— for all failures, and 1 — @ for all successes. With these empirical influence
measures we get the acceleration parameter of (2.9):

126
0= —F—
6y/n0(1 —0)

In the figure we see that the performance of the BC interval is only slightly
better than the percentile interval, but the coverage is still not as good as
for the smoothed basic arcsine interval. But looking at the BCa interval and
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2.3. EXACT CONFIDENCE INTERVALS
n=20 n=25 n=35 n=50
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Figure 2.4: Coverage probabilities of the 97.5% lower limit, exact limits
(upper graphs) and BCa limits (lower graphs).

its coverage probability, the figure shows a dramatic improvement compared
to the percentile interval. Of the intervals tested here BCa is the only one
which does not show a coverage probability well below the intended level at
any point.

The coverage probability of the exact interval and the BCa interval of four
different values of n is found in figure 2.4. Compared to the exact interval,
the BCa interval is more conservative when p is either quite small or large,
while for p around 0.5 the coverage probability range of the BCa interval falls
below 0.975, but in these four examples never below 0.97, which seems quite
acceptable.

2.3 Exact confidence intervals

As done in the previous section, exact confidence intervals for binomial data
can be calculated quite easily, see e.g. (Collett, 1991). Suppose z is an
observation of a binomial(n,p) distributed variable X. A 1 — « upper bound
for p is obtained by testing the hypothesis H,, : p > py for all possible
values of py. The hypothesis H,, is rejected when P, (X < z) < «a. Since
Py, (X < z) decreases with py the upper bound for p is the value of py that
solves the equation P,, (X < z) = a. If there is no solution to the equation,
ie. if Py, (X <z) > «a for all py, the upper bound for p is 1. The upper
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Set 1 + R + + o+ +
Set 2 ++ + + + o+ o+
Set N T+ T o+ T+
0 0.2 1
pO

Figure 2.5: Calculating exact confidens intervals for binomial data. Example
with n equal to 15. The +’s are the simulated uniformly distributed variables.

bound can be obtained by numerically solving the equation above.

However, it is also possible to do the same thing by means of simulations,
in a rather elegant way. Step one is to simulate N sets, each sized n, of
independent variables uniformly distributed on the interval (0,1). For each
set, £*(po) is the number of simulated variables less than or equal to py. Then
each x*(py) is an observation of a binomial(n,p,) distributed variable. The
result of the simulation could look like figure 2.5. In the first set 2*(0.1) is
equal to 1, and z*(0.2) equals 4. In set 2 2*(0.2) is equal to 3.

The relative frequency of sets satisfying z*(py) < x is an estimate of
Py, (X < ), and the upper bound for p is the value of py for which - N of
the sets fulfil *(py) < z. Since each z*(py) is a non-decreasing and right-
continuous function of py, the number of sets fulfilling z*(py) < x is non-
increasing. Hence, we find the estimate of the upper bound in the following
way: For each set, let p* be the smallest value of py for which 2*(py) is greater
than x:

p* =min{py : z*(po) > x} = sup{po : z*(po) < z}.

Let p{;_,, be the (1 —a)- N’th of the ordered p*. Then, assuming there are
no ties among the p*’s, all a- N sets with a p* > pf;_,, fulfil z*(pf,_,)) < =,
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N| 100 200 500 1000 5000 10* 10°
P a) | 09403 0.9506 0.9492 0.9424 0.9457 0.9440 0.9434

Table 2.1: Exact upper bound calculated by means of simulation.

while none of the (1 —a)- N sets with p* < p{;_,, satisfies the same criterion.
Thus, the estimate of the upper bound is pa_a).

Let U1y, Ufgys - - -5 Uln) denote the ordered simulated variables of a set. If x
is less than n, the definition of p* implies p* = Ulzi1)- So what it boils down
to, is that the upper bound is just the 1 — a percentile of the distribution of
an order statistic, which we compute by means of simulation. An example
with n = 15, £ = 12 and N ranging from 100 up to 100 000 is found in

table 2.1. The correct upper bound is 0.9432.

2.4 Overdispersed binomial model

In this section we will continue with Bernoulli variables of which we want
to estimate the unknown success probability #. But now we will study a
hierarchical model by introducing a distribution P for the success parameter.

In detail: assume that we have m groups, each sized n. The number
of successes in group ¢, x;, conditional on p;, is binomial distributed with
parameters n and p;. The parameters pq,...,p,, are independent random
variables distributed according to the distribution P, with mean 6 and vari-
ance v6(1 —0),0 <v < 1.

If z;; is the success indicator for observation j of group i we have
Var(z;;) = 6(1 — ) and Cov(z;j,zy) = v8(1 — ) for j # [, while the covari-
ance between z;; and xy; is zero when 7 # k. Our estimate of 0 is the total
relative frequency of successes, = 7, x;/(mn) which has variance

Var(6) = % [14 (n—1)v]. (2.10)

In Davison and Hinkley (1997) two simple methods of bootstrapping hierar-
chical data are studied. Both are done in two steps. In the first step each
method sample m groups with replacement. In the second step observations
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of each group sampled in step 1 are sampled. Suppose group 1 was select-
ed once in step 1. Then method 1 samples among the n observations of
group 1 without replacement, while method 2 samples n observations with
replacement.

2.4.1 Bootstrap method 1

When bootstrapping according to method 1 we actually only sample groups.
If group iy is sampled k£ times in step 1, all observations of group iy are
included exactly k times in the whole bootstrap sample. We can think of o
as an average of m observations from the uniform distribution on {py, ... pn},
where p; = x;/n. Thus

Vart (%) = - Var'( 2 (h:-0)" = >t - =
Calculating the expected variance we get
var; ()] = 2= (1 4 (- 1y L (211)
mn m

Although the model of the bootstrap sample does not have the same structure
as the model of the original data the expected variance is very close to the
variance of 0 as long as m is large enough. Regardless of the value of n, it is
asymptotically correct.

2.4.2 Bootstrap method 2

The bootstrap sample obtained when bootstrapping according to method 2
will have the same structure as the original data. In the first step we sample
with replacement from all the groups, suppose i* is the index of the sampled
group. Then we sample n times with replacement from the x;« successes
and n — z;« failures with replacement. Thus conditional on the sampled
group, the number of successes of that group is binomial distributed with
parameters n and p;« = 3+ /n. The only difference of the bootstrap model
compared to the model of the original data is the distribution of the p*’s
which in the bootstrap model is uniform on {py,...,pn,}, thus E*[p*] =
and Var*(p*) = 711 m (ﬁz — 9) This yields

2] N2 m

Varz(é*) = LA 4+ ! > b

mn m  m’n =
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and

a1 0(1—0) 11 11

E[Var3(67)] = — [(2 — n) +(n—=1)v (1 — n)] . (2.12)

When using method 2 the expected variance of the bootstrap estimate of

f can deviate quite much from the variance of 0. If in fact all observations

where independent, i.e., P is degenerated with point-mass at  and v = 0,

the bootstrap observations will still have a within-group dependence unless

all p; are equal. Only when n = 1 the expected variance of the bootstrap
estimate of 6 is asymptotically correct.

2.4.3 Bootstrap method 3

A third simple way of bootstrapping hierarchical data is of course to neglect
the dependence and bootstrap as if all observations were independent. In our
situation this results in mné* being binomial distributed with parameters mn
and 6 and the variance of * to be

~ ~

Vary () = le; )
and
E[Varﬁ(é*)] = % (1 — %) +(n— 1)1/% : (2.13)

If v is zero this way of bootstrapping will of course work just fine, but as
v gets larger the more will the variance on average be underestimated.

2.4.4 'Which one?

When using method 1 we do not get the same structure of model but the
expected variance is close to the desired one. With method 2 we get the
same structure of the model but the expected variance can be as much as
two times bigger than the desired one. With method 2 we will always have
a bigger variance than with method 1.

In figure 2.6 the ratio of expected variance of method 2 and 3 to the true
variance are shown. The maximal ratio of method 2, maximum over n and m,
in the left graph declines quite rapidly as v gets bigger. If, for instance, v is
at least 1/4 the ratio is never greater than 4/3, and for v above 0.5 the worst
case is 1.18. On the other hand, as the dependence gets larger, the more
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Bootstrapping according to method 3.

Bootstrapping according to method 2.

— max for all m and n — m=20, n=5

-~ m=20, n=5 - -~ m=20, n=2

"0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Vv Vv

Figure 2.6: Ratio of the expected variance of method 2 and 3 to the true
variance.

will method 2 resemble method 1. When bootstrapping as if all observations
were independent there is no lower limit for how much the variance will be
underestimated.

2.5 Summary

In section 2.2 six different ways of using bootstrap to compute confidence
intervals were compared. They all were based on bootstrap samples obtained
by sampling cases. The BCa interval, when using a smoothed bootstrap
distribution, produced coverage probabilities not far from the exact interval.
All other intervals had ranges for p for which the coverage probability was
too low.

We have also seen a way of computing the exact confidence interval by us-
ing bootstrap, where the same bootstrap can represent samples from different
models.

When all Bernoulli variables no longer are independent, specifically, when
groups of variables have positive correlation, the robust way of bootstrapping
is to sample groups only. The alternative method of sampling in two steps,
first group and the within group, will produce bootstrap distribution which
are too wide. Sampling as if all observations are independent will produce
too narrow bootstrap distributions.



Chapter 3

Univariate survival data

In the random censoring model there are two survival functions. The fail-
ure time, Y° and the censoring time, C, are independent and distributed
according to survival functions F' and G respectively. We observe only the
minimum of Y° and C, and an indicator of which one is the smallest. The
survival function of interest is F', whereas G is only a nuisance parameter.
Suppose we want to estimate the survival rate at t5, § = F(tp). For this
purpose we use is the KM evaluated at ¢y, 0 = F (to).

In this chapter we will consider two bootstrap techniques for calculating
confidence intervals for . First we will introduce a technique for calculating
confidence intervals that resemble the exact confidence intervals for the bi-
nomial model, computed using bootstrap. The second bootstrap technique
we will study is the accelerated bias corrected percentile method, BCa.

3.1 Semiparametric exact confidence interval

Suppose we have n independent observations of ¥ = min(Y? C) and
§ = I(Y° < O), {(yi,6),5 = 1,...,n}. Let there be k distinct times of
failures and censorings, 7, ..., 7. If there are ties between failures and cen-

sored observations, the censorings are taken to occur immediately after the
failures, and correspond to different 7’s. Let r; = >; I(y; > 7;) be the num-
ber of observations at risk at 7;, d; and ¢; are the number of failures and
censored observations at 7; respectively. Note that since we separate ties
among failures and censorings d; - ¢; = 0 for all j.

17
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From these observations we compute KM estimates of both F' and G:

() = g(l—f—p
G(t) = I1( ——)

To draw with replacement from the pairs {(y;,d;),7 = 1,...,n}, is the
same as simulating from the random censoring model with survival functions
F and G (Davison & Hinkley, 1997). On such a bootstrap sample we can
calculate the KM estimator, I, and evaluate it at t, giving 0* = F*(to) By
such a simulation we will get a picture of the distribution of 0 = F(t,) under
the model where F = F and G = G. But in order to compute intervals we
want to know the distribution of 0 under models where F (to) has other values
than the observed 0 and find values which make our estimate 6 unlikely.

3.1.1 Choice of alternative model

A fully non-parametric confidence interval for § would require that we knew
the distribution of # under all pairs of survival functions F' and G. But since
this family is far too big to work with we will only consider pairs of F' and
G such that the F’s are some family of stochastically ordered distributions
generated from F', and G is held fixed at G. The question is how to choose
the family of stochastically ordered distributions.

Since F is an unconstrained ML estimator of F a natural choice seems
to be using a constrained ML estimator of F'. The constrained estimator is
easily obtained by introducing a Lagrangian multiplier to the log likelihood
function (Thomas & Grunkemeier, 1975). In detail, using the constraint
F(to) = 0y we get

Al = I -9 I a-%), (3.1)

i <min(to,t) i+ A jitg<r; <t Tj

where A\ = \(6,) satisfies F)(to) = 0. Since F)(t) is non-decreasing in \ for
every t, the obtained family is stochastically ordered.

By means of simulation we can estimate the distribution of 6 under
(ﬁ‘ )\,CAJ) for any A > d; — r;, where 7; is largest distinct failure time less
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*O | | | i | | | W‘ ——
0O 1 2 3 4 5 6 7 8 9 10
t

Figure 3.1: Simulation of failure /censor times, Y*’s under different models,
(Fy, G) (solid line) and (F 45, G) (dashed line).

than or equal to ¢,. We could do this by simulating Y% ~ Fy\ and C* ~
G and then calculate (Y*,6*) as before. But we might just as well simulate
Y* directly, using F)(t) - G(t) and just keep track of the original observation
being censored or not. This corresponds to weighted sampling from the pairs

{(yz,éz),z = 1, .. .,n}.

3.1.2 An example

Figure 3.1 shows an example on how these simulations can be done. The
data consists of 10 observations of which 3 are censored. The observations
are displayed over the graph, f for failure and c for a censored observation.
Suppose we want to find a confidence interval for F' at t; = 5. The KM
estimator at this point equals 0.5833 (7/12).

The *’s beside the vertical axis are 10 simulated U(0,1) distributed vari-
ables, uj,...,uj,, which we use to simulate y*. The figure shows how we
can use the same set of u*-variables for different models. As seen by the
dotted lines, when using (F',G) (solid line), which corresponds to random
draw with replacement from the 10 observations, the u* equal to 0.67 will
produce y* = 4 and 0* = 0. But when using (F_45, G) it will produce y* = 2
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0.57

0 712 1

Figure 3.2: Distribution of #* under (ﬁ’,\, G‘) for A equal to —3.975, 0.0, and
16.25.

and 0* = 1. The complete bootstrap samples are {1, 2, 3,4 5,6,6,89,10}
when using (F,G), and {1,1,2,2,3,3,4¢,5,5,9} using (F_45, Q).

Figure 3.2 shows the result from simulations under three different values
on A\. Each curve is based on 100 000 simulations. The left, middle and
right curve is the estimated distribution of 0* under (Fy, @) for A equal
to —3.975, 0.0 and 16.25 respectively. From these curves we obtain the
estimated probabilities and expectations of table 3.1. From the table we
conclude that a 1 —0.0251 — 0.0254 =~ 0.95 confidence interval for # would be

[0.2541, 0.8459].

3.1.3 Special cases

If 6 equals 0 or 1 we actually do not need to use bootstrap to compute the
exact upper and lower limits respectively. Instead we can find the limits by
numerically computing some probabilities under the constrained ML estima-
tor F and G. The lower and upper limits are naturally 0 and 1 respectively.
In this section variables marked with a * are distributed according to F) or

G.
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A BG) Pua (0 <0) P (0 20) Edelf]

-3.975 0.2541 0.9795 0.0251 0.2547
0 0.5833 0.4848 0.5587 0.5831
16.25  0.8459 0.0254 0.9811 0.8456

Table 3.1: Probabilities and expectations under different models.

0 equals 0

When 6 is equal to 0 we have observations such that the largest one, Y(,),
is less than ¢5. We also know that this was a failure, i.e. the corresponding
failure indicator d(,), is equal to 1. To find the upper confidence limit we need
to calculate the probability of the event 0* = 0. But this event is equivalent
with (Y7, < 29) N (d(,)), and we can find the probability of the latter by
conditioning on the value of Y(‘;L):

k
Pa () <) N0 =1) = XPa (i =7)-
Py (Vg < 1) N (0 = DGy = 7)

Further, since
Px(Yiy <75) = (Pa (Y7 < )" = (1 - Ex(1)G(7y))

and bothAF ) and G are known functions, we can numerically find the proba-
bility of 6* = 0. The upper confidence limit is then obtained by numerically
solving the equation P (0* = O) = «/2 with respect to \.

0 equals 1

In this case the original sample has no failures before 5. All observations less
than t,, if any, are censored ones. Suppose there are s censored observations
less than ;. What we need to calculate now is the probability of the event
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A

0* = 1, which equals
Pa (6 =1) =P, (ﬁ e Ato)) = (P (v > i )"
i=1

This probability is computed under the constrained ML estimator Fy\ and
G. However, when there are no failures in the interval [0, ¢] the constrained
ML estimator of F' is not unique. The probability 1 — 6y can be arbitrarily
distributed over the interval [¢', ¢y] where ¢’ is the largest censored observation
less than %y, if there are any, zero otherwise. By putting the point mass 1 — 6,
at tp we get

PA(Y* > Cinty) = 3 Pa(Cr=m)Pa (Y > C At|Ch =) +
j:Tj<t0
Py (Ct > to) Py (Y > Cf Ato|CF > to)
= P5(Cy < to) + P (Cy > to) Py (Y > to)

since under F) we have Y; > t, with probability 1. Moreover, Py (Y2* > t,)
is just 6y and because P, (Cf >ty) = (n — s)/n := P, we end up with
P (é* = 1) = (1 — P, + P,6,)". Finally, setting this equal to /2 yields the
lower confidence limit

exp{log(a/2)/n} — 1+ P,
P, '

3.1.4 Computational drawback

However, there is one major drawback with this technique: Holding the set
of u*’s fix, and varying A, i.e. varying the model, the KM estimator of
the bootstrap sample at tg, é*, is not a monotone function of A\. When we
decrease A we get a model which is stochastically smaller. It would then
be desirable that the KM estimator of the bootstrap sample decreased, or
at least did not increase. But 6* can both increase and decrease when we
decrease .

What happens as we change ), is that the value of one or several bootstrap
observations change. If we decrease ), the bootstrap observations will become
smaller. But the bootstrap observations can also change from being a failure
to become a censored observation or vice-verse, and this is what causes the
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,,,,,,

Figure 3.3: Simulation ofAfailurAe/ censor times, Y*’s under different models,
(Fy, G) (solid line) and (F_g s, G) (dashed line).

non-monotonicity. If we would sample both y°* and ¢* independently, only
y%* would change as we modify the model. But we still would have the same
problem.

An example of this is shown in figure 3.3. The original sample is
{1,2¢3,4¢ 5}, where “’s indicate censored observations. Suppose we want
to study the survival rate at ¢y = 3. There are two different survival estima-
tors in the graph, corresponding to F, for X equal to 0 and -0.8, solid line
and dashed line respectively. The u*’s are displayed on the left of the vertical
axis. Using ﬁ‘o, the obtained bootstrap sample is the same as the original
one. If we instead use 13’_0_8, one observation changes from 3 to 2. But the
observation also goes from being a failure to a censored observation. The
bootstrap sample is now {1,2¢ 2¢ 4¢ 5}. If we diminish A even more, down
to -1.3, the complete sample becomes {1, 1, 2¢,4¢ 5}.

In table 3.2 the risk set, number of failures and the KM estimator based
on these three bootstrap samples are found. The value of 6* is highlighted as
bold. We see that changing A from zero to -0.8 causes an increase in 6*. But
when changing A from -0.8 to -1.3, 0* decreases. These kinds of examples are
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t
A 1 2 3 4 5
0 r| 5 4 3 2 1

d | 1 0 1 0 1
F*10.80 0.80 0.53 0.53 0.0
08 r | 5 4 2 2 1
d| 1 0 0 0 1
F*10.80 0.80 0.80 0.80 0.0
13 1| 5 3 2 2 1
d | 2 0 0 0 1
F*| 060 0.60 0.60 0.60 0.0

Table 3.2: Computing F* using different bootstrap samples.

not hard to find. Especially if there are many censored observations before
to in the original data.

This means that we can not perform the bootstrap in the same way as
we did with the exact binomial interval. We can not look at one bootstrap
sample separately, and calculate a value of A for which o equals f. We have
to look at all bootstrap samples at the same time and find some value of A
for which the distribution of 8* has shifted its mass enough.

If the number of bootstrap samples is N, we have to save all N - n u*-
variables. For each value of A of which we want to estimate the probability
of f* < é, we must compute the bootstrap samples as described in figure 3.3.
On each bootstrap sample we then calculate 0* and check how many are
above . This means that we more or less perform a bootstrap for every A.
Thus, this technique involves simple but very extensive calculations.

Actually, since 0% for some bootstrap samples may not be a monotone
function of A\, the number of bootstrap samples for which 0% is below 6 may
also be a non-monotone function of A. Thus, the family of distributions that
we obtain by the bootstrap may not form a stochastically ordered family. But
the true family of distributions, of which we by the bootstrap have estimated,
is a stochastically ordered family. So if the number of bootstrap samples is
large enough this will not be a major problem.



3.2. BCA BOOTSTRAP INTERVAL 25

3.2 BCa bootstrap interval

In section 2.2.3 the BCa bootstrap interval showed good performance when
used on binomial data and using a smoothed bootstrap distribution. As
described earlier the BCa method only involves sampling from the cases,
with equal sampling weights. But it also involves two adjusting parameters,
2o and a.

In the same way as done in the binomial case we will use

2 =071 (P*(0" < 0) +0.5P* (6" = 0))

instead of the zp in (2.8). Thus 2, is derived using the smoothed distribution
rather than the obtained bootstrap distribution as it is.

The acceleration parameter we will use is the non-parametric approxi-
mation suggested by Efron (1987) as described in (2.9). The acceleration
parameter involves the empirical influence measure of observation i, ..., y,
on é, Y1, ..., Y, where 1; is defined as:

0

V= oA

[6((1 - A)F, + AG)]

A=0

In this definition 6 is regarded as a function of distributions, and &; is the
degenerated distribution with a unit mass at observation y;. We then get

(1 _ (1 — A)d] + AI(yZ = Tj,éi = 1))
(1 — A)Tj + AI(y, Z Tj)
fi(A)

0((1 - A)F,+A8) =]

AR

where the product is over all j such that 7; < ;. Then assuming f;(A) >0
for all 7 and A > 0 we get

o 7(a)
5 (01 = 0P+ 26)] = TLHA T 755

Evaluating this with A = 0 we get the empirical influence measure of obser-
vation y; on 6:

v =1 ( _ ﬁ) > djly; > 1) = rjl(y; = 75,60 = 1)

7 rj(rj — d;)




26 CHAPTER 3. UNIVARIATE SURVIVAL DATA

If f;(A) = 0 for any j we have 6((1— A)F, +A£;) equal to zero for all A > 0,
and then also ¢; = 0. This will be the case when 0(F},) = 0 and y; is one of
the largest observations, which all are uncensored ones.

However, as with the binomial model of section 2.2, if = 1, 6* will have
the same value in all bootstrap samples. The same will happen if 6 =0 and
if there are no censored observations. Thus, we can not use bootstrap in
order to compute confidence intervals in these cases. Instead we will use the
limits of section 3.1.3, in all cases when 6 is either zero or one.

3.3 An illustrative example

To illustrate the types of confidence limits described we use the data of
Freireich et al. used by Gehan (1965) and several other authors. Two groups
of leukaemia patients of whom the remission time in weeks were recorded. For
none of the placebo patients was the remission time censored, making them
less interesting for our purpose. But for the group of treated patient some
observations were censored. For these 21 patients the recorded remission
times were

6,6,6,67,9%10,10%11¢ 13,16,17¢ 19 20° 22, 23, 25°, 32, 32¢, 24, 35°

where the censored observations are indicated by ¢. Table 3.3 shows two-sided
1 — « confidence intervals for the survival rate at two time-points. Bootstrap
A is the semiparametric exact interval of section 3.1, Smoothed BCa is the
interval described in section 3.2 and the LR interval is the Likelihood ratio
interval introduced by Thomas and Grunkemeier (1975). Both bootstrap
intervals were computed using 10° bootstrap samples.

In all four cases we have the same order between the limits. Looking at
the lower limit, the smallest one is always the smoothed BCa limit while LR
has the largest limit. The upper limit of smoothed BCa is largest in all four
cases and the smallest upper limit is the bootstrap A upper limit. Thus, the
smoothed BCa confidence interval covers the other intervals in all four cases.
However, the difference between the limits is at most 0.029 and the difference
between the LR and bootstrap A limits is never bigger than 0.011.
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Bootstrap A Smoothed BCa LR interval
to F()) o LCL UCL LCL UCL LCL UCL
10 0.7529 0.05 0.529 0.899 0.511 0.904 0.540 0.904

0.10 0.565 0.880 0.554 0.893 0.576 0.885

20 0.6275 0.05 0.389 0.819 0377 0.835 0.395 0.822
0.10 0.427 0.793 0.417 0.799 0.432 0.795

Table 3.3: Two-sided 1-« confidence intervals for remission time of leukaemia
patients.

3.4 Two simulations

In figure 3.4 and table 3.4 the results of simulations from two different models
are shown. The figures show the coverage probability of three different types
of intervals: the semiparametric exact interval of section 3.1 (Bootstrap A),
the smoothed BCa interval described in section 3.2 (Smoothed BCa) and
the Likelihood ratio interval introduced by Thomas and Grunkemeier (1975)
(LR).

The simulated samples are of size 50 with the failure times being expo-
nential distributed with mean 1, and the censor variables uniform on [0, b],
for b equal to 1.0 and 0.5. The expected number of censored observations
in the interval [0,%] for ¢ < bis 50 - (1 — F(t))/b. Since the largest possible
value of an observation is b, the graphs show the coverage probability for
F(t) between 0 and F(b) = e .

Actually, the KM is a valid estimator of F'(¢) only in the interval in which
there are observations. Thus the confidence interval is also invalid after the
time of the largest observation. The confidence interval used for ¢ above the
largest observation in the simulations is [0, U,], where U, is the upper limit
at the largest observation. In each model and for each confidence interval
10° simulations were done.

The Bootstrap A intervals were computed using 10° bootstrap samples,
and performed as described in section 3.1. Since this method is a very com-
puter intensive one, the cover probability was only computed for 13 and 10
different survival rates in each model respectively, and these corresponds to
23 independent simulations.

The BCa interval was also computed using 10° bootstrap samples. The
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Figure 3.4: Coverage probability of Bootstrap A (*), Smoothed BCa (solid
line) and LR (dashed line).

lower and upper limit used when 0 equals zero or one, were the ones of
bootstrap A. Since it is possible to use the same bootstrap samples for dif-
ferent survival rates with this method, the coverage probability of at least
150 survival rates between 0 and e~ are found in the figures. The coverage
probability of the LR interval was computed at the same survival rates as the
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Bootstrap A Smoothed BCa LR interval

b F(t) oy Oy, oy Q 7] Qly
1.0 0.950 0.00 3.17 0.00 1.49 8.65 2.40
0.920 1.43 3.17 1.56 3.29 1.89 2.05
0.900 0.75 2.06 0.67 3.45 4.47 2.04
0.850 2.43 2.27 1.63 2.10 2.43 2.21
0.800 2.49 2.55 1.65 2.16 2.97 2.08
0.750 2.60 2.31 1.83 2.02 2.81 2.19
0.700 2.61 2.48 215 1.92 2.74 2.44
0.650 2.46 2.39 2.27 1.92 2.70 2.31
0.600 2.49 2.38 2.54 2.11 2.62 2.48
0.550 2.37 2.32 2.45 2.05 2.87 2.44
0.500 2.69 2.08 2.96 1.91 3.15 2.70
0.450 8.8/ 2.03 3.8 1.46 3.96 2.86
0.400 4.66 1.14 4.%35 0.62 5.59 38.15

0.5 0.950 0.00 291 0.00 1.67 9.21 2.63
0.920 0.26 2.46 0.19 2.41 2.26 2.26
0.900 0.75 2.61 0.85 2.55 435 2.15
0.875 2.26 2.25 1.18 1.96 3.12  2.28
0.800 2.76 2.49 1.64 1.85 3.02 2.24
0.850 2.76 2.50 1.33 2.13 3.23 2.21
0.750 2.88 2.36 2.16 1.91 3.22  2.29
0.700 3.49 2.35 2.36 1.83 3.63 2.52
0.650 4.81 2.04 3.80 1.60 0.23 2.44
0.625 5.53 1.55 4.85 1.67 6.06 2.81

Table 3.4: P (lower limit > F'(t)) - 100% = «; and P (upper limit < F(t)) -
100% = «, of Bootstrap A, Smoothed BCa and LR.

BCa. Thus, the whole coverage probability curve in each graph corresponds
to the same simulations.

All intervals are symmetric and at level 0.95, i.e. the coverage probability
of the lower and upper limits should ideally be 0.975.

In all simulations the lower limit at the last failure is carried forward
up to the last censored observation and beyond this point set to zero. The
coverage probability of all three lower limits decreases at the lower range of
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F(t). This might be a consequence of the way we have defined the lower
limit. If we instead had chosen to set the limit to zero already after the last
failure the picture might have been different.

Comparing smoothed BCa and LR the former is more conservative overall.
Only for F(t) above 0.9 is the coverage probability of the upper BCa limit
less than the one of LR. But the differences for the upper limit between
these two is very small except for F(t) < 0.5 and b = 1.0. The difference in
coverage probability of the lower limits is more pronounced. The coverage of
the lower LR limit is almost always below the intended limit. The coverage
probability of the lower BCa limit is too high for large survival rates, and
drops below the intended level for larger values, with a minimum of 0.96 and
0.95 for b equal to 1.0 and 0.5 respectively. The minimum of the LR limit
in the same region of F(t) is 0.945 and 0.94 (outside graph). The lowest
coverage probability of the lower LR limit is for F'(¢) around 0.95. Around
this point is the coverage less than 0.9 for both values of b.

The confidence limits of bootstrap A were simulated for 23 cases. For
each of these cases the corresponding values of the other intervals together
with the ones of bootstrap A are found in table 3.4. Instead of coverage prob-
abilities the estimated probabilities of a limit failing to cover the parameter
are tabulated. A probability that lies between 2.2% and 2.83% is highlighted
as bold. The chosen range is the exact binomial interval of p = 0.025 when
the number of trials is 10 000. Across each row, separately for lower and up-
per limit, if there is no coverage probability within the range, the probability
closest to 2.5% is in italic.

As seen in the table and in the figure for F'(¢) > 0.9 the coverage of the
lower bootstrap A limit is very close to BCa. This is not surprising since for
F(to) equals one, they both use the same limit. In this region is the lower
bootstrap A limit rather conservative, but below 0.9 and down to the point of
50% expected censoring (F'(t) equal to 0.5 and 0.75 respectively) bootstrap
A lower limit has probability within the range [2.2%, 2.83%)] in 11 of 12 cases.

Looking at the bootstrap A upper limit the difference compared to LR
is not very big, the exception being for F'(f) < 0.5 and b = 1.0 where the
coverage probability goes up in the same way as smoothed BCa does.

The Smoothed BCa is overall quite conservative, except for small F(t)
but it is questionable if we would see the same drop in coverage probability
with the lower limit equal to zero beyond the last failure. With the current
definition of the lower limit it is only in this region that the lower Smoothed
BCa limit looks like a winner, since the other has lower coverage probability.
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The best lower limit judging from this simulations is the one of Bootstrap A.
But for the upper limit it is harder to judge in favour of Bootstrap A or LR,
the upper LR limit seems better for extreme survival rates while Bootstrap
A seems better for more moderate ones.

3.5 Summary

In section 3.1 we introduced the semiparametric exact confidence interval
bootstrap A which we computed using bootstrap. It is based on the con-
strained KM estimator used in the LR interval of Thomas and Grunkemeier
(1975). We have also shown how the BCa interval can be calculated using a
smoothed bootstrap distribution in the same way as in section 2.2.3.

These two intervals, bootstrap A and smoothed BCa, together with the
LR interval was compared in two simulation in section 3.4. Judging from
these simulations the smoothed BCa is more conservative than the other
two, especially the lower limit. The lower LR limit showed too low coverage
probability, while the upper LR and bootstrap A limit seems to be equally
good. Since the lower bootstrap A limit was the lower limit with coverage
probability closest to the specified level, and the upper limit was as good as
LR, bootstrap A seems to be better than the other two in general.
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Chapter 4

Group-wise dependent survival
data

In this chapter we will consider the random censoring model where groups of
observations no longer are mutually independent. We assume that there are
m groups each sized n. All mn failure times still have the same marginal dis-
tribution, and the failure times are independent between groups. But within
group we assume that there is a positive dependence, and the dependence
is the same for all pairs within a group, across all groups. We do not want
to make any further assumption of dependency within group, only that it
may exists and that it is positive. Further, we assume that the censoring is
univariate, i.e. all censored observations of a group are censored at the same
time.

We start this chapter by discussing what we ideally would require of
the sampling model. With this in mind we take a look at the analogue of
bootstrap method 1 and 2 in section 2.4. We then briefly discuss frailty
models and how these can be used in our setting.

4.1 Preferred sampling model

Formally, for 7 = 1,...,m (Y¥3,...,Y2) is distributed according to the
multivariate survival function Fy and C; is distributed according to the
univariate survival function G. All marginals of Fy are equal to F,
e.g. Fy(0,...,t) = F(t), and the coordinates are exchangeable, e.g.
Fo(ty,ta, - tn) = Foltn,...,t2,t1). We observe Yj; = min(Y},C;) and
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b = 1(Y;} < Cy), let (5, 0;;) be the observed value.

Ying and Wei (1994) studied the KM estimator under models with de-
pendent observations. They concluded that KM is still consistent under
rather mild assumptions. For the model of this chapter these assumptions
are fulfilled. Thus KM is still a valid estimator of the survival function F.

There are many KM-type estimators of G' based on the kind of data con-
sidered here. Tsai and Crowley (1998) proposed an estimator of the bivariate
survival function but they also studied four different KM estimators of G.
They did not assume the same marginal for the two coordinates, but their
censoring was univariate as in our model. The four estimators of G were
based on either maximum of y;1, y;2, minimum of y;;, y;2, or only one of the
coordinates.

They concluded that all four estimators are consistent estimators of G,
but the one with the smallest asymptotic variance is the one based on max-
imum of y;1,y;2. The one with the biggest asymptotic variance is the one
based on minimum of y;1, ¥;2, and the other two lie in between.

This result is not surprising looking at the case when the smallest of
yi1 and y;o is uncensored and the other is censored. For simplicity assume
¥i1 < Y- Then, when using maximum of y;1, y;2, the information obtained
about the censor variable C}, is that is equal to y;s, i.e. for estimating G' we
have an uncensored observation equal to y;». If we instead use minimum of
Vi1, Yiz, We only know that C; is greater or equal to y;1, that is, for estimating
G we have a censored observation equal to ;1.

Hence, to proceed in the same manner as in the independent case
we would prefer sampling techniques where the survival times (YZ’;O) have
marginal distribution according to the KM estimator of F'. Regarding the
dependency the sampling technique should take it into account in an un-
biased way, but otherwise we do not want to impose any structure on the
dependency. We also would prefer techniques where the survival function of
the censor variable (C}) is the KM estimator of G based on maximum of y;;
over the coordinates.

4.2 A solution

Let there be k distinct times of failures and censored observations, 71, ..., 7%,
among the mn observations. If there are ties between failures and censored
observations, the censored observations are taken to occur immediately after
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the failures, and correspond to different 7’s. For i = 1,...,m, let r;; =
>l (yi; > 75) be the number of observations at risk at 7, of group 4, d;s
and ¢;s is the number of failures and censored observations at 7, respectively.
Note that d;s - ¢;s = 0 and d.s - c¢.; = 0 for all 7 and s, where e.g. d.; is the
sum of d;s for : = 1,..., m. The estimator of the marginal survival function
F and the preferred estimator of G can be written as

Fit)y = ] (1—21—%") (4.1)

s:Ts <t ZZ Tis

o0 = 1 (1- S0 7s) (2

since we get the total number of observations at risk and total numbers of
failures and censored observations by summing over the groups. For time
being, assume that F'(7,) = 0, i.e. the largest observation is a failure.

For s=1,...,kand i=1,...,m define

flrs) = F(Ts_) - F(TS)

V(i) = Yud.sof(7) 5 (4.3)

f(r) 7%~ if d.y > 0 and v(i) > 0

d.sv(i)
0 otherwise

f i (Ts) = {
Hence, f is the frequency function of F on 71, . .., 7. For each i with v(i) > 0
fi is also a frequency function on 7,..., 7, and v is a frequency function on
the indexes 1 to m.

Now consider the following way of sampling ;... ¥;*%: First draw a
group according to the frequency function v. If ¢* is the selected group,
yid ..., y:0 is obtained by sampling n times according to the frequency func-
tion fjx on 7y, ..., 7. These two steps are repeated m times to get a bootstrap
sample from m groups. Thus first we do a weighted sampling from the m
groups. For each time we select group ¢ we then perform a weighted sam-
pling from the failures of group 7. The sampling of the m censor variables is
performed as before using G. 1t is easy to check that this way of sampling
has failure times with marginal distribution corresponding to F.

If F(Ts) > 0, i.e. the largest observation is a censored one, neither f nor v
as defined above are frequency functions. But if we add one failure time, 7 1,



36 CHAPTER 4. GROUP-WISE DEPENDENT SURVIVAL DATA

A

greater than all original ones to the sample space of f with f(7x41) = F(75),
f is a true frequency function . We do the same thing with v; we add an
index, m + 1, with 1 — v(m + 1) equal to the sum of v(i) for i = 1,...,m.
Finally by setting f,+1(k+ 1) equal to 1, (f,+1 zero otherwise) we have the
correct marginal distribution of the sampled observations.

The nice part with this technique is that we may use another marginal
function when defining the frequency functions of (4.3), e.g. the constrained
KM estimator F) used in the independent case. Hence we could calculate
semiparametric confidence intervals as done in section 3.1. However, as we
will see below this is shadowed by two major drawbacks.

4.2.1 Drawback no 1

Suppose there are no censored observations in the original sample. Then
all bootstrap samples will also contain failures only. Thus, both F(t,) and
F*(ty) are just the relative frequencies of observations greater than #, in the
original and bootstrap sample respectively. Further, since v(i) = 1/m the
groups are sampled with equal weights in step 1.

In the second step we sample from the observations of the group selected
in step 1. Since fi(s) = dis/n = #{j : yi; = 7s}/n for all i and s we do
this with equal weights. This means that the number of observations greater
than ¢y is binomial(n, p) distributed with p equal to the relative frequency of
observations greater than ¢, of the selected group.

This is exactly the situation studied in section 2.4. There we found that
the bootstrap distribution will on average be too wide. When there actually
is no dependency, the variance can be twice as big as it should be.

Consider the artificial data in the left graph of figure 4.1. The data
consists of 9 bivariate observations where the failure times are either short
medium or long. The observations are uniformly spread over the 9 squares.
Hence, the data suggest no dependence. The bivariate distribution obtained
by using this bootstrap technique is shown in the right graph. The bootstrap
distribution shows a relatively large dependency with Kendall’s coefficient of
concordance equals 0.47. Generalising this example to k categories and obser-
vations uniformly spread out over the k? bivariate cases Kendall’s coefficient
of concordance equals 5/12 + 1/6k, thus the concordance never falls below
0.415.
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Coordinate 2 Coordinate 2
Long + + + Long| 0.056 | 0.056 | 0.222
Medium + + + Medium; 0.056 | 0.222 | 0.056
Short + + + Shortr 0.222 | 0.056 | 0.056
Short Medium Long Short Medium Long
Coordinate 1 Coordinate 1

Figure 4.1: Artificial bivariate data (left graph) and the bivariate bootstrap
distribution of section 4.2 (right graph).

4.2.2 Drawback no 2

But the censoring itself also contributes to the dependency being too big
in the bootstrap distribution. If for instance all but one observation of a
group is censored the conditional distribution f; is degenerated at the failure.
We illustrate this by another example. In this example the failure times
are independent and uniformly distributed on {1,3,5}, thus the bivariate
distribution is uniformly on {1,3,5}2. The distribution of the univariate
censor variables is uniform on {2,4,6}. Suppose we have a “typical” sample
from this model where the proportions of each possible case is the same as
we would have in an infinite sample.

Then the proportion of (Y7, Y3) equals (2,2) in the typical sample will be
1/3-1/3 -1, and the proportion equals (6,6) will be 1/3-1/3-1/3. The
proportions of each of the 11 different values of (Y7,Y,), disregarding the
order between the coordinates, are found in the upper part of table 4.1. The
censored values are marked with a °.

Note that over the two coordinates the proportions of failures and
censorings at ¢t equals {2,3,4,5,6} is proportional to {18,0,12,0,6} and
{0,12,0,6,0} respectively. Thus the KM estimator of F' based on the sam-
ple is the uniform distribution on {1,3,5}. Further, when looking at maxi-
mum over the coordinates the corresponding numbers are {3,0,6,0,5} and
{0, 8,0, 5,0} respectively. Thus the KM estimator of G is the uniform distri-
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Y12 2 2 2 2 34 4 4 5 6
Y12 3 4 5° 6 3 4 5° 6 5° 6
Proportion-27 ({3 4 4 2 2 4 2 2 2 1 1
ifr 2 3 4 5 6 7 8 9 10 11
v(ii)-54|16 4 10 2 8 0 6 3 9 0 6
s fi(s) - 60
2160 60 24 60 15 0 0 0O O O O
410 0 36 0 O 0 60 60 20 0 O
6(0 0 O O 45 0 0O 0 40 0 60
S* 2 4 6
6| 0.028 0.037 0.269
41 0.044 0.252 0.037
2| 0.261 0.044  0.028

Table 4.1: Proportion of the 11 possible cases in the typical sample, the
frequency functions of the two-stage sampling technique and the bivariate
bootstrap distribution function S*.

bution on {2,4, co}.

In the middle part of table 4.1 the frequency functions v and fi,..., fi1
are shown. As defined there is one conditional distribution for each group,
but if groups have the same set of observations we might as well consider
them as one group when we sample. Thus in this example there will be 11
distinct groups.

The last part of the table display the bivariate distribution of the boot-
strap. The bootstrap distribution of figure 4.1 is the distribution we get if
the probability of a censored observation is equal to zero. Comparing these
two bootstrap distributions the one in table 4.1 is even more concentrated on
the diagonal than the one of figure 4.1. Kendall’s coefficient of concordance
equals 0.68 compared to 0.47 in the case of no censoring.

Now we generalise by replacing the distributions of the typical sample
with uniform on {2,4,...,2k} and {1,3,...,2k — 1} for the censor variable
and the failure times respectively. Then for £ equals 5, 10 and 50 Kendall’s
coefficient of concordance of the bootstrap distribution equals 0.69, 0.71 and
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0.72 respectively. The probability of an observation being censored is (k —
1)/2k, i.e. for k = 3 this equals 1/3 but for £ = 10 the probability is
0.45. Hence as we increase k the proportion of censored observations increase
which explain the increased Kendall’s coefficient. If we instead let the censor
distribution be such that the probability for a censored observation is 1/3
for all k£, by setting P(C =2k) = 1/3 and P(C =j) = 2/(3(k — 1)) for
j < 2k, Kendall’s coefficient equals 0.5923, 0.5739 and 0.5630. Hence instead
we see a slow decline but still at k£ equals 50 the number is fairly high. If
the probability for a censored observation is equal to zero the corresponding
numbers are 0.45, 0.43 and 0.42. This gives an indication that the enlarged
dependency in the bootstrap caused by the censoring will be fairly large also
for continuous data.

4.3 Sampling groups

There are at least two ways of sampling groups. The most straightforward
way is to sample the observations from the groups as they are, that is, to
sample Y* directly from the cases we have observed. Another way would be
to sample failure times and censorings separately. But then one has to decide
how to treat the case when a group has for instance only one failure. We will
only consider the former way of sampling.

Suppose n equals 2, i.e. we have observations from a bivariate survival
model. When we sample (Y}, Y5") from the m groups we have

1 m
S()(t, 8) = P* (Y? > t, YvQ* > 8) = E ZI(yzl > 1, Yo > S).
i=1
The criteria of our preferred sampling technique would be fulfilled if the
product F'(t) - G(t) was equal to (Sp(t,0) + Sp(0,¢))/2, where F' and G are
the ones in (4.1) and (4.2) respectively. But this does not hold. Instead, for
s such that F(75) > 0 we have

So(75,0) + So(0, 75) _ Diny Ly > 75) + Lyiz > 75) _ D Tis+1

2F (1,) omF (1) omE(r,)

The sum equals 7.,41 and using 7., = 2m and the fact that d.;c.; = 0 we get

ren r.s+1ﬁ<1_ o ) _ H( _C_J) (4.4)

T.lp(Ts) a1 j=1
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Since this equals the KM estimator of G treating the univariate censoring
as bivariate and independent we are outside the criteria of our “preferred
model”. Not only is the distribution wrong, this estimator of G is also not
sufficient when the failure times within groups are dependent.

Can we perform a weighted sampling from the groups that will correspond
to the preferred model, i.e. can we find weights vy, ..., v, such that

m
Z Tz s+1 —

/\

(7:)G(7)

l\Dl'—‘

for s = 1,...,k — 17 If the failure times and censor variables are genuine
continuous variables, the only tied observations will be within a group and
only between censored ones. Thus, as soon as two groups has only one failure
each we have £k —1 > m. Then this equation system has more equations than
unknowns and examples with no solution are not hard to find. Hence, in
general it will not be possible to do a weighted sampling from the groups
that will correspond to the preferred model. The fact that there are cases
with no solution to the equation system means that it neither will be possible
to compute the type of semiparametric confidence interval of section 3.1.

4.4 Frailty models

Judging from the previous sections it seems as if without tightening the
preferred model, e.g. the structure of the dependency, or altering the model
in some way it is hard to find a good sampling model.

An appealing way of structuring the dependency is to consider frailty
models introduced by Vaupel, Manton, and Stallard (1979). In this section
we will briefly go into the frailty model and discuss how one may use this for
our purpose. For a more thorough description of frailty models and various
characteristics of them see e.g. Hougaard (2000).

4.4.1 Continuous failure distribution

The frailty model is a mixture model where the mixture term is the frailty
common to the failure times of a group and constant over time. The frailty
is a non-negative random variable distributed according to H. Conditional
on the frailty,n;, the failure times of group ¢ are independent and the hazard
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function for Y3,...,¥? is assumed to be of the form
niw(t). (4.5)

The function w(t) is common to all groups and can be interpreted as a baseline
hazard. Hence, the conditional survival function is

t
Fly (t) = exp{—n; | w(u)du} = exp{-n(®)}
The unconditional survival function is then obtained by integrating n; out:
Ft) = /0 exp{—2Q(t)}dH (z) = Ly (Q(t)),

i.e. F'is the Laplace transformation of the frailty distribution Ly, evaluat-
ed at the integrated baseline hazard function Q(¢). The bivariate survival
function is also computed using Ly:

F()(tl, e ,tn) = LH(i Q(tj))

This way of describing the model is known as the conditional parameteriza-
tion, but since our goal is to estimate the marginal survival function F' it is
more convenient to use the marginal parameterization

F()(tl, e atn) = LH

The frailty model is commonly used with the frailty distribution being speci-
fied, e.g. gamma or positive stable, and the baseline hazard unspecified. With
the frailty distribution gamma(-y,7y) the likelihood contribution of group i is

J

i Ayij)% eXp{5ijA(yij)/7}] :

1

(4.6)

| —(+d;.) 4T (y + d;.)
L'(v)

where A and A are the hazard and integrated hazard of F' respectively. Since
A is unspecified the likelihood is maximized by using one parameter for each

z exp{A(yg)/7} — (n— 1
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distinct failure time. That is, for each 7; corresponding to a failure time
A(7s) = As and A(7,) is the sum of Aq,..., \;. If no failures occur at t = 7,
A(7s) = 0.

When fitting this kind of model the estimator of F' is of course no longer
the KM of (4.1). The function being estimated is the integrated hazard and
then we use exp{—A(t)} as the estimator of F. Hence the estimator of F
will be closer to the estimator based on the Nelson-Aalen estimate of A:

Faalt) =expf~ ¥ Z%) — i~ ¥ 21y, (4.7

5:7s <t EZ Tis s:7s<t ' 8

Comparing (4.7) and (4.1) the difference will not be large if d.;/r.s is suffi-
ciently small. Thus, for large survival rates the difference will not be large
but as the rates gets smaller the difference will increase. Actually Eya is al-
ways strictly positive, even if the last observation is a failure, while F equals
zero at the time of the last observation when this is a failure.

By inserting the KM estimator F into the likelihood and maximize it with
respect to the parameters of the frailty distribution only, the criterion of the
preferred model are fulfilled. The problem with F' equals zero corresponding
to A equals co could be solved by holding F(t) equal to F(t) only for t < t,,
or by treating all failures after ¢y as censored just after ¢,. Either way we
instead will have different estimators of the frailty parameters for different
to’s. The case when F(to) equals zero still remains to be handled.

4.4.2 Discrete failure distribution

As described above the frailty model is best suited for absolutely continuous

distributions. If the data is discrete, or estimators closer to the KM are more

pleasing, the frailty can instead of (4.5) enter the model in the same way as

the regression function in the discrete proportional hazard model. That is,
h 8| h’s

]_—hs\ﬂi nl—hs ( 8)

where hg),, and h, are the conditional and baseline discrete hazard functions
at 7, respectively. With the frailty distribution H the unconditional survival
function is

Pw = 7 [ 11 (- hsgc)] dH () (4.9)

$:Ts <t
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o0 1 — hy
= — | dH 4.10
/0 [IL 1=, +ah, | H@ (4.10)
and the contribution of group 7 to the likelihood is
: i d d
lr_ll ( . ) (L= he)™ ] |
(4.11)
o0 k ./L-dis
dH (x).
/0 Ll;ll (1 — hs + xhs)ms] (JC)

This likelihood is harder to evaluate and maximize than (4.6). Moreover, a
marginal parameterization of the model would be even worse. Hence to have
a model that is within the preferred model, i.e. requiring (4.9) equals F'()
for every t, makes the evaluation very hard.

With the distribution for the frailty set to gamma(~y,7y), the discrete frailty
model above was fitted to the artificial data of figure 4.1 and to the typi-
cal data set of table 4.1. The likelihood functions are maximized when -y
is set to oo in both cases. Hence in the fitted models all observations are
independent. The marginals of the fitted model equal the uniform distribu-
tion on {short,medium,long} and {1, 3,5} respectively. Hence in both cases
we end up with the preferred marginal distribution and the coordinates are
independent, as they should.

4.4.3 Summary

Perhaps the most obvious way of sampling in two steps, first group and then
within group, is to sample with equal weights in both steps and straight from
the cases. This way of sampling leads to the same result as when sampling
groups only. Namely that the distribution of the censor variables equals (4.4),
which is not a sufficient estimator. But what probably is more important,
the dependency of the sampling distribution would be too high as with the
two-step sampling technique described in section 4.2. This downside makes
these two solutions more or less useless since they are very conservative unless
the dependency is rather strong.

In case of no censored observations sampling only groups will correspond
to the preferred model. But in presence of censoring the sampling distribution
of the censor variable is not a sufficient estimator of G. This drawback
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may not be that important, but still we can not calculate a semiparametric
interval with this way of sampling. However, calculating a BCa interval, or
other bootstrap intervals based on sampling cases, treating the groups as the
experimental unit is quite straightforward and as easy as with independent
observations.

The usage of continuous frailty models inevitably leads to the Nelson-
Aalen based estimator of F. With this estimator replacing KM as the es-
timator of the marginal failure distribution F' the continuous frailty model
is probably the way to go. Instead of using the constrained version of KM
in (3.1) when calculating a semiparametric confidence interval a constrained
estimator of the integrated hazard function could then be used. Another
solution would be to use a proportional hazard model.

The discrete frailty model is an interesting solution when there are many
ties in the data. We have not found any references about this in the literature.
Furthermore, since the fitting of such a model, especially when holding the
marginal fix, is indeed a challenge for the programmer, it must be considered
to be an outsider.



Chapter 5

Concluding remarks

An exact semiparametric confidence interval (bootstrap A) for the survival
rate calculated using bootstrap has been introduced. It is based on the con-
strained KM estimator, and assumes that all observations are independent.
Besides the bootstrap approximation it coincides with the exact binomial
interval when there are no censored observations. In presence of censored
observations it is exact against alternatives given by constrained maximum
likelihood estimators of the survival function.

The accelerated bias corrected percentile interval (BCa) when used on
binomial data was shown to have coverage probabilities not far from the
exact interval. It was more conservative for p close to zero or one compared
to the exact interval, while the coverage probability was slightly too low for
moderate values of p. A smoothed bootstrap distribution was used.

The performance of the bootstrap A and smoothed BCa intervals together
with the likelihood ratio interval of Thomas and Grunkemeier (1975) (LR)
in case of censored observations was compared in two simulations. For the
upper limits the differences in coverage probability were small. However,
smoothed BCa was slightly more conservative than the other two.

Between the lower limits there were greater differences. Smoothed BCa
was in general more conservative than the other two and LR had too low
coverage probability. The coverage probability of the lower bootstrap A was
in between smoothed BCa and LR and except for survival rates above 0.9 it
was the limit closest to the intended level.

Besides the choice of alternatives, the way of sampling from different
models in order to compute the semiparametric confidence interval was quite
straightforward in the case of independent observations. When groups of

45
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observations are assumed positively correlated it is difficult even to find a
way of sampling from the null hypothesis, i.e. from an unconstrained model
suggested by the data. Actually, at present there is no final solution in
the literature to the problem of finding a non-parametric estimator of the
bivariate survival function. Hence, without making any stronger assumptions
we have not found any satisfying sampling model.

One way of solving a specified problem is always to change the specifica-
tion. In our case this could be done by assuming a model for the dependency
structure instead of letting the structure be determined completely by the
data. A well-documented way of doing this is the concept of frailty. It would
then be more natural to base the inference of the survival function on the
Nelson-Aalen based estimator instead of the KM estimator.
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