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Abstract

We treat the problem of computing the theoretical value of barrier options
within the framework of Black-Scholes model. First we give a brief intro-
duction to the theory of option pricing. A rigorous mathematical model
of a financial market based on Brownian motion and stochastic calculus is
described.

Next we consider probabilistic methods to compute certain laws of the
first hitting time and the first exit time of a Brownian motion with drift.
The results obtained are used to derive price formulas of continuous barrier
options with corresponding rebates. The numerical properties of the formulas
are examined.

We then study the pricing of discrete barrier options and extend an ap-
proximation method by Broadie, Glasserman and Kou (see [BGK]). The
method is based on Siegmund’s corrected heavy traffic approximation.

We also design a numerical method to estimate the Wiener measure of
certain cylinder sets. The method is employed to compute the theoretical
value of discrete barrier options.

The method is based on the so called trinomial method (or the explicit
finite difference method for the heat equation). Different aspects of the
trinomial method are investigated. In particular, we consider the rate of
convergence for the trinomial method. We present results which indicate
that the convergence rate depends on two factors, namely the smoothness of
the initial value (or the payoff function) and the moments for the increments
of the trinomial distributed random walk.

Keywords: barrier options, discrete barrier options, rebate options, Brow-
nian motion, heavy traffic approximation, random walk, trinomial method,
explicit finite difference method, heat equation.

AMS 2000 Mathematics subject classification. 91B28, 60J65, 60G50,
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Chapter 1

Introduction

In the beginning of the seventies Fischer Black and Myron Scholes published
their now very famous article “The Pricing of Options and Corporate Lia-
bilities”. Based on the principle that, on a rational market, there are no
possibilities to make sure profits, Black and Scholes derived a theoretical
price for the European call option (see [BS]). Since then the popularity as
well as the number of options and other financial derivatives have increased
considerably. In particular, path dependent options have received a notable
amount of attention in both academic and trade literature. In this report we
will examine in detail the pricing of one particular path dependent option,
namely the barrier option.

Although the goal is to develop the theory from its foundations, this
report is mainly intended for readers who are familiar with the basics of
Brownian motion and stochastic calculus. For an introduction to this sub-
ject, we recommend [KS|. However, certain relevant concepts and results
about Brownian motion are collected in two appendices.

This report is structured as follows. In Chapter 2 we give a brief intro-
duction to the theory of option pricing. We build up a rigorous mathematical
model of a financial market based on Brownian motion and stochastic cal-
culus. We also define barrier options and discuss certain economical aspects
of barrier options.

Chapter 3 is devoted to derive analytical formulas for the value of contin-
uous barrier options. The formulas are based on certain laws involving the
first hitting time and the first exit time of a Brownian motion with drift. The
aim with Chapter 3 is to present, in a unified framework, many previously
published results.

In Chapter 4 we consider discrete barrier options. In contrast to contin-
uous barrier options the value of a discrete barrier option does not in general
possess a closed form price formula. One common approach to price discrete
barrier options is to use an approximation method proposed by Broadie,
Glasserman and Kou (see [BGK]). In Chapter 4 we discuss an extension of



this method.

The purpose of the final chapter, Chapter 5, is to describe a numerical
method to estimate the Wiener measure of certain cylinder sets. The method
will be useful to calculate the theoretical value of discrete barrier options.

The algorithm is based on the so called trinomial method (or the explicit
finite difference method for the heat equation). Consequently, we begin
Chapter 5 with an investigation of the trinomial method. We focus especially
on the convergence rate for the trinomial method. We believe that this
investigation is of independent interest since the trinomial method is so often
used in problems related to financial mathematics.

We conclude this thesis with two appendices, which briefly describe the
Cameron-Martin’s theorem and the strong Markov property.

Finally, we remark that the last three chapters can be read independently
of each other.



Chapter 2

A Brief Introduction to the
Theory of Option Pricing

2.1 Introduction

In this chapter we will give a brief introduction to the theory of option pric-
ing. We will build up a rigorous mathematical model of a financial market
based on Brownian motion and stochastic calculus. For a more compre-
hensive treatment on option pricing we recommend [HK], [BBC] or [MR].
We will also define barrier options and discuss certain economical aspects of
barrier options.

2.2 The Black-Scholes Market and
Contingent Claims

Take as given a complete filtered probability space (€2, F, P, {F;}s>0) where
the sample space {2 is the space of all continuous functions w : [0, 00) — R.
The coordinate mapping process Wi(w) = w(t), w € Q, is a Brownian motion
with respect to (P,{F:}:+>0) and the filtration {F;};>¢ satisfies the usual
conditions. The usual conditions mean that F; contains all null sets of P
and that the filtration is right continuous.

Now we can define the Black-Scholes market. On this market there are
two securities. The price processes for these securities are governed by the
following (stochastic) differential equations, viz.

dBt = ’I‘Btdt,
dS; =nSidt+ oS dWy, 0<t <),
where 7, r, 0 and A are real constants with ¢ > 0 and A > 0. Suppose

also that By = 1 and that Sy is a constant strictly greater than zero. The
stochastic integrals (or differentials) shall be understood in the Itd sense.



We will interpret By as the price (in some currency) at time ¢ of a riskless
bond, with r being the associated riskless interest rate. Moreover, we will
interpret S; as the price (in the same currency as for the bond) at time ¢ of
a risky security which pays no dividends. The security can for instance be
a stock, a commodity or an asset linked to a foreign currency. The constant
o is often referred to as the volatility.

The solutions to the above (stochastic) differential equations are given
by

B;=¢" and S; = Soe(”_UQ/Q) oW

where ¢ € [0,A]. Thus, the price of the risky security follows a so called
geometric Brownian motion (with drift).

In the sequel we will always assume that the market is frictionless, mean-
ing that the investors are allowed to trade continuously, that there are no
transaction costs and that there are no restrictions against selling short.
Selling short means selling borrowed assets.

Now suppose that we expand the Black-Scholes market by adding a so
called contingent T-claim, also known as a financial derivative or an op-
tion. These are assets which are defined in terms of the risky asset and the
bond, which in this connection are referred to as the underlying assets or
the underlying securities. We make the following mathematical formaliza-
tion. (Recall that if T is a stopping time then Fr denotes the o-algebra
{AeF; An{T <t} e F foralt>0}).

Definition 2.1. Let T be a bounded stopping time. A contingent T-claim
is an Fr measurable and positive random variable X .

The interpretation of this definition is that the contingent T-claim is a
contract which specifies that the stochastic amount X of money is to be paid
out to the holder of the contract at time 7'. In most cases, T is a fixed date,
that is, T' is a constant.

One of the most important contingent claims is the so called European
call option. A European call option with strike price K and time of expiration
T, where K and T are constants, is a contract which gives the holder the
possibility but not the obligation to buy one share of the risky security at
the expiration date T' at the prespecified price K. If S7 < K, the contract
is worthless at the maturity. If S > K, the holder can buy one share of
the risky security at the price K giving the net profit S — K. Thus the
European call option is equivalent to a contract giving the holder the amount

X =max(Sy — K,0)

at time 7.
How much would an investor be willing to pay for a given contingent
T-claim X7 Remarkably enough, Black and Scholes (see [BS]) asserted that



there is a unique rational value for the option, independent of the investor’s
attitude to risk. In the next three sections we will give an argument leading
to this unique rational price.

2.3 Self Financing Portfolios

First some definitions that will be frequently used in the sequel.
Below we let B(A), where A € R, denote the smallest o-algebra contain-
ing all open subsets of A.

Definition 2.2. The stochastic process h is said to be progressively mea-
surable with respect to the filtration {F;}o<i<x if, for each t € [0,)] and
B € B(R), the set

{(s,w); 0<s<t,weQ, hsg(w) € B}
belongs to B([0,t]) ® F;.

Definition 2.3. Suppose P and P are equivalent probability measures. Let
LP([0,A],P) denote the set of all {F;}o<i<x progressively measurable pro-
cesses h such that

Eﬁ[/ol\|ht|”dt] < o0,

where EP stands for expectation with respect to P.
Let L7 ([0,)], P) denote the set of all {F;}o<i<x progressively measur-

loc
able processes h such that

A
/0 |ht|Pdt < 00 P — a.s. (2.1)

Thus, for all h € £2 ([0, )], P) we have that the It6 integral

loc
A
/ hs dW
0

is well defined. Moreover, this integral belongs to L?(P) if h € L2([0, )], P)
(see [KS]). Note also that the condition in equation (2.1) is invariant with
respect to an equivalent change of (probability) measure.

Referring to the previous section we will next define portfolios.

Definition 2.4. A portfolio (or a trading strategy) ¢ is a stochastic
process ¢y = (49, 1), 0 < t < X, where ¢° and ¢! are progressively mea-
surable with respect to the filtration {Fi}o<i<r. The value process V(o)
corresponding to the portfolio ¢ is defined by

Vi($) = ¢/ Bi + #; Sy,
where t € [0, A].



The random variables ¢9 and ¢; are interpreted as the number of shares
of bonds and risky assets, respectively, held in the portfolio at time £.

Recall that if T : Q + [0, A] is a stopping time and (h¢)o<¢<x is a stochas-
tic process, then

hT(w) = hT(w) (w), w € Q.
Thus, in particular,

Vir(¢) = ¢3-Br + ¢1-Sr.

Next we will consider portfolios where all the changes in the portfolio
values are due to capital gains.

Definition 2.5. Let ¢ = (¢°, ¢') be a portfolio such that ¢° € £ _([0,)], P)

loc

and ¢*S € L2, ([0,A],P). The portfolio ¢ is said to be self-financing if

loc

t t
m@—w@=£¢%&+%¢ﬁ& (2.2)

for all t € [0, A].

To motivate Definition 2.5, suppose that all trading occur at discrete
times t = t;, k = 0,1,... ,n. Then the gain Gy, = V;, — V;, at time #; is
given by the equation

k-1 k—1
Gtk - Z (l)g (Bti+1 - Btz’ ) + Z (l)'%l ( Sti+1 - Sti )a
i=0 i=0

provided all changes in the portfolio’s value are due to capital gains. By
letting maxyg (tx+1 — tx) go to zero we are lead to Definition 2.5.

It is often convenient to work with discounted prices, meaning that the
prices are expressed in terms of the bond instead of in terms of the monetary
unit. For this reason we will introduce a discounted price process Y and a
discounted value process VY by setting

Y; = 8;/B; and V;Y(¢) = Vi(¢)/B: = ¢} + ¢, Vi

for each t € [0, A].
The next theorem gives us an equivalent description of a self-financing
trading strategy.

Proposition 2.1. Let ¢ be a trading strategy such that ¢° € L} ([0, )], P)

loc

and 'S € L2 ([0,\],P). Then ¢ is self-financing if and only if the dis-

loc
counted value process satisfies

t
1?@%%&@=A¢Mm

for all t € [0, A].

10



Proof. Let for conciseness V; = Vi(¢) where ¢ is a portfolio such that ¢° €
L ([0,\],P) and ¢'S € L2 ([0,)],P). By applying It&’s rule (see [KS],

loc loc

p.153) we obtain
v, =d(B,V;")
=B,dV,” +V,YdB,
=B,dV," + ¢}dB, + ¢, Y1dB,
for any t € [0, A]. Since dS; = d(B;Y;) = BdY; + YidB; we get
dV, = By (dV," — ¢;dY;) + ¢)dB; + ¢;dS;. (2:3)

Proposition 2.1 now follows at once from equation (2.3). O

2.4 Arbitrage

A fundamental concept underlying the Black-Scholes theory is that of arbi-
trage.

Definition 2.6. An arbitrage opportunity or an arbitrage portfolio
s a self-financing portfolio ¢ such that the corresponding value process has
the following properties,

Vo(¢) =0, Va(¢) 20 and P(Vx(¢) >0) > 0. (2.4)

As can be seen from equation (2.4), an arbitrage portfolio is a riskless
way to make money, or in the terminology of Bjork, “a deterministic money
making machine”, see [BBC|. Of course, a rational market will be free of
arbitrage opportunities.

Actually, on the Black-Scholes market one can construct arbitrage portfo-
lios (see [HP]). To get a reliable model of a security market we must therefore
exclude such examples. One way to achieve this is to put constraints on the
trading with the risky asset. Before we present such a constraint, we will
introduce the so called martingale measure in the Black-Scholes market.

Let @ be a measure on F, defined by the Radon-Nikodym derivate d@Q =
ZdP, where

7 — ef%a)\2+aW)\

with @ = (r — n)/o. Note that Z > 0 which implies that @ and P are
equivalent. If we now for each ¢ < )\ set

Wta - Wt - at,

then the Cameron-Martin’s theorem, see Appendix A, yields that {W}o<i<r
is a Brownian motion with respect to (Q, {F;}o<i<r). Moreover, since

dY; = (n — r)Yidt + oYy dWy = oY, dWS, (2.5)

11



we see that the discounted price process Y is a martingale with respect to
(@, {Fi}o<t<r). For this reason the measure @ is often called the martingale
measure for the Black-Scholes market.

We are now in the position to define a class of trading strategies without
any arbitrage portfolio.

Definition 2.7. A portfolio ¢ which satisfies
$'Y € L£2([0,N,Q)
will be called admissible.
Theorem 2.1. There exists no admissible arbitrage portfolio.

Proof. Suppose that ¢ is a self-financing and admissible portfolio. By using
the self-financing property, Proposition 2.1 and equation (2.5) we get

AV (¢) = ¢1dY; = o ¢, YidWy

for any ¢ € [0, \]. Since the trading strategy is admissible we get that VY is
a martingale with respect to (@, {F;}o<i<x). Hence

Vo(g) = Vi () = EC[VY (¢)].

Thus if V(¢) = 0 then E?[V)(¢)] = 0. Since P and Q are equivalent we can
draw the desired conclusion that ¢ cannot satisfy equation (2.4). O

Once again, consider the contingent T-claim X with T' < X. Suppose also
that there is an admissible and self-financing portfolio ¢ such that Vp(¢$) =
X. If the claim is not priced according to the value of the portfolio at any
time ¢ < T, then there is a riskless profit on the extended market consisting
of the contingent claim, the risky security and the bond. This leads us to
the following important definition.

Definition 2.8. Suppose there is a self-financing and admissible portfolio ¢
such that

Vr(¢) = X.

The theoretical price v at time t = 0 corresponding to a contingent T'-
claim X is defined by v = Vo(¢). The portfolio ¢ is called a hedging or
replicating portfolio for the claim X.

It is of course crucial that there are hedging portfolios. We will deal with
this question in the next section.

12



2.5 Hedging Portfolios

This section deals with the problem to hedge a contingent 7T'-claim X, which
is square integrable with respect to ). Our goal is to find an admissible
portfolio ¢ such that

(2.6)

dVY (¢) = ¢tdY; , 0<t <\ =esssupT,
VY (4) = XY,

where XY = X/Br with X € L?(Q).
Consider the process M given by

M, =E°[XY|F], 0<t<A

It is evident that M is a square integrable (Q, {F;}o<i<)-martingale. The
representation theorem for Brownian martingales now gives a process h €

L£2([0,A],Q) such that
t
Mt:M0+/ hedWe, 0<t<A Q-as. (2.7)
0

Now let
¢t = hi/(cY;) and ¢ = M, — 1Y,

for each 0 < ¢t < A. Since ¢° € £} _([0,A],P) and ¢'Y € L2([0,)],Q) we

loc
can conclude that ¢ = (¢°,¢') is an admissible portfolio. Moreover, the

corresponding discounted value process equals
V() = 60 + 41 Yi = M.
This implies
V7 = XY and dV}'(¢) = hdW = $;dY,

where we have in the last equality used equation (2.5). In other words, ¢ is
the desired replicating portfolio.

From this result we now get that the theoretical value v of the contract
X is given by

v="Vo(¢) =V (¢) = E?[XV] = EC[e7"" X].
We can summarize this as follows.

Theorem 2.2. The theoretical price v of a contingent T-claim X € L?(Q)
at time t = 0 is given by

v=E% [e=" X],

13



where Q) is defined by

1

dQ = e"zNFeWagp

with A\ = esssupT'.
Moreover, the Q-dynamics for the price process S is given by

St — SO e(’l"—0'2/2)t+0'Wta, O S t S >\,

where {W}o<i<x is a (Q, {Fi }o<i<r)-Brownian motion.

2.6 Dividends

So far we have assumed that the the risky security pays no dividends. The
same assumption was made in the original paper by Black and Scholes, but
it is not difficult to extend the Black-Scholes theory to cover dividend paying
securities as well.

There are several different ways to model dividends. In this section we
will consider a model proposed by Samuelson in [Sa]. In Samuelson’s model
the dividends are paid out continuously at a rate which is proportional to
the asset price. To be more specific, if we let the random variable D; denote
the total dividend amount paid out during the time interval [0, ], then

t
Dt:/qssds, OStSA,
0

where ¢ is a constant. The constant g is known as the dividend rate or the
dividend yield.

The model is applicable to options on foreign currencies (see [GK]) and
commodities (see [Hull]) but not to stocks. The dividends to a stock are
most often paid out at discrete times and consequently, the dividends process
{D;}o<t<x corresponding to a stock is not absolutely continuous. For further
details about discrete dividends, see [HJ].

In Samuelson’s model our previous definition of a self-financing portfolio
will no longer be relevant, since we now receive dividends. A more appro-
priate definition would be to say that a trading strategy ¢ is self-financing
if the corresponding value process V(¢), which is defined as before, satisfies

t t t
Vi(9) — Vo(@) = /0 QdB, + /0 SLdS, + /0 SdD, 0<t <A

Thus, in a self-financing portfolio the only external funds invested in the
portfolio come from the dividend payments, which are, on the other hand,
used in full.

From this definition one can proceed as in the previous sections. The
modified definitions and computations are straightforward, we obtain the
following generalization of Theorem 2.2.

14



Theorem 2.3. If the underlying asset pays dividends at a constant rate g,
then theoretical price v of a contingent T-claim X € L*(Q) at time t = 0 is
given by

v=E%e"TX],
where Q is defined by

1

dQ = e~ 2N teaWagp (2.8)

with A = esssupT and oy = (r —q —n)/o.

Moreover, the Q-dynamics for the price process S is given by
S, = Sy 6(7'qu02/2) t+aWtaq’ 0<t< )\’

where W, is a (Q, {Fi}o<t<r)-Brownian motion.

2.7 The Black-Scholes Formula

In this section we will consider two important examples of contingent claims,
namely the European call option and the European put option. The call
option is already defined in Section 2.2. A European put option with strike
price K and time of maturity 7', where K and T are constants, entitles the
holder to sell one share of the risky security S at the expiration date T' at
the prespecified price K. Thus, at maturity the put value equals

max(K — S7,0).

Our next project is to derive the theoretical value of the European call
and put option. First however, we will introduce some definitions and prove
a lemma that will be frequently used in this work.

Define a process S* by setting

St = SpetttoWe <t < T,
where y =1 —q— 02/2.
Lemma 2.1. Let P be a measure on (Q,F) defined by
dP = 67%02T+0WTdP’
where T and o are positive constants. Then, given K € R and A € Fr,
e "TE[(Sh — K)1a] = Spe " P(A) — Ke "7 P(A).

Moreover,

P(A) = P(A—y), (2.9)
where A —¢ = {w € Q; w+ ¢ € A} and the function < is given by ¢(t) =
ot, t> 0.

15



Proof. The first part of the lemma follows at once from the definition of P.
To prove equation (2.9), let W(,)(w) = w(-) —<(-). Note that

P(A)=P(W € A—q).

According to Appendix A {Wt}OStST is a Brownian motion with respect to
(P,{Fi}o<t<T), which yields

PWeA—¢)=P(WeA—q)

since A —¢ € Fr. It is evident that P(W € A —¢) = P(A —¢) and
consequently,

O

In what follows we let ® denote the standard normal distribution function,

i.e.
@(w):/m 5L

—oo Ver

Now we can establish the theoretical value of a Furopean call and put
option.

Theorem 2.4. The theoretical value v. of a European call option with strike
price K and time to expiration T is given by

ve = Spe" ' ®(dy) — Ke ™' ®(dy), (2.10)

where

g — In(So/K) + (r — g+ 0?/2)T
1= T

and
d2 = d1 - O'\/T.

The theoretical value v, of a European put option with strike price K and
time to expiration T is given by

vy = Ke " ®(—dy) — Soe™ 7 ®(—dy). (2.11)

In the special case ¢ = 0 the price formula in equation (2.10) is called
the Black-Scholes formula.

16



Proof. Let us begin with the call option. From Theorem 2.3 we get that

ve = E9 e max(Sy — K, 0)]
=e "TE[(S} - K)la],

where
A= {,U/T‘|‘O'WT > k}

with & = In(K/Sp). The preceding lemma combined with the scaling prop-
erty for Brownian motion now yields

ve =S0e " P((u+0*)T+oWr > k) — Ke ""P(uT +oWr > k)

(W+WI>L)

2 %

—Ke_TTP(g + Wy > L)

oVT
=Soe "' P(W, > —dy) — Ke ™' P(Wy > —dy),

:Soe_qTP

where d; and dy are defined as above. The symmetry of the normal distri-
bution now gives the desired result.
Next consider the put option and note that

v, =e "TEY [ max(K — S7,0)]
=—e "TE[(S} - K)lg],

where B = {uT+ocWr < k}. If we proceed as in the previous case we obtain

vp = Ke_TTP(,uT + oWt < k) — Soe_qTP( (1 + 02) T+ oWr < k)
= Ke_TTP( W, < —d2) — Soe_qTP( Wy < —dq )
== Ke_TT‘I)(—dQ) - S()e_qT‘@(—dl).

2.8 Barrier Options

The term barrier option refers to an option with a payoff depending on
whether or not the underlying asset price is above or below a prespecified
barrier (or barriers) during the time the option is alive. In the next two
subsections we will give a more precise definition of those barrier options
which will be treated in this work. Finally, in the third subsection we will
briefly discuss certain other barrier options.
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2.8.1 Knock-out and Knock-in Call/Put Options

To begin with we will consider knock-out options. The special feature of a
knock-out option is that it will be extinguished (’knocked-out’) if the under-
lying asset price breaches some barrier (or barriers) prior to the expiration
date. The class of all knock-out options can be subdivided into two dif-
ferent subclasses, depending on the number of barriers of the option. In
the first mentioned subclass we have mainly four different contracts, namely
up-and-out call, up-and-out put, down-and-out call and down-and-out put
option. The word ’up’ refers to the fact that the asset price must travel
ypwards in order to hit the barrier, i.e. the barrier is initially above the
asset price, while ’down’ means that the barrier can only be hit from above.
In the subclass of knock-out options with two barriers, usually referred to as
double-barrier knock-out options, we find the double-barrier knock-out call
and the double-barrier knock-out put.

The payoff of an up-and-out call option with strike price K, barrier H
and expiry date T', where K, T and H are constants, is

Hla.X(ST - K, 0)1{ maxgepo,1] St<H }*

In other words, at maturity 7" an up-and-out call option has the same value
as a plain European call option provided that the underlying asset price
never breaches the barrier during the lifetime of the option. An up-and-out
put has the payoff

max(K — S, 0)1{ max;eo,7] St<H }

at maturity T
The down-and-out option depends on the minimum of the asset price.
Especially we have that the value of a down-and-out call equals

maX(ST - K, 0)1{ ming o, 7 St>H }

at maturity 7. The definition of a down-and-out put option is straight
forward.

The double barrier knock-out option depends on both the minimum and
the maximum of the asset price. The payoff at the maturity date of a double
barrier knock-out call, with barriers H; and H,, equals

maX(ST - K7 0)1{ minte[o,T] St>Hlamaxt€[0,T] St<Hy }'

Now the payoff at maturity of a double barrier knock-out put is evident.
Next we turn our attention to so called knock-in options. A knock-

in option will expire without value if the barrier (barriers) is (are) never

breached by the underlying asset during the lifetime of the option. For
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instance the holder of an up-and-in call option will receive, at the maturity
date T', the amount

maX(ST — K, 0)1{maxte[0,T] St>H }-

In a similar way one also defines the barrier options up-and-in put, down-
and-in call/put and double barrier knock-in call/put options.

So far we have assumed that the underlying security price is contin-
uously monitored against the barrier. However, interestingly enough, for
many traded barrier options the barrier is monitored only at specific dates.
These options are usually referred to as discrete barrier options. For instance
a discrete up-and-out call possesses the payoff

maX(ST - K, O)l{maxteM Si<H}

at the maturity 7', where the set M = {t1,%2,... , ¢y} is referred to as the
monitoring dates or price-fizing dates. The price-fixing dates are mostly
equidistant in time, that is M = {At,2At,... ,mAt} where At = T/m for
some positive integer m. Discrete barrier options are sometimes also referred
to as barrier options with a discrete barrier. In a similar way, barrier options,
where the underlying security is continuously monitored against the barrier,
are sometimes referred to as a barrier option with a continuous barrier or as
a continuous barrier option.

2.8.2 Rebate or Binary Barrier Options

Rebate options are often combined with knock-out or knock-in call/ put
options. The purpose of adding rebate options to knock-out and knock-in
options is to compensate for the loss that occurs when the knock-out option
is '’knocked out’ or the knock-in option is never 'knocked in’.

To begin with we will define the rebate option belonging to a knock-out
option. A holder of this contract will receive a prespecified positive amount
R provided that the underlying asset price crosses the barrier before or at
the maturity date of the knock-out option. The pay out will occur at the
same time as the barrier is crossed. If the barrier never is hit the rebate
option will expire without value.

Thus the payoff of the rebate option belonging to a continuous up-and-
out or down-and-out option with barrier H and time of expiration 7" can be
written as

Rl my<rys
where
H inf{t >0; S, >H} ifSy<H,
7‘ =
inf{t >0; Sy, < H} ifSy>H.
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That is, if t = 0, 7(H) is the time elapsed until, if ever!, the asset price hits
the barrier H.

For a double barrier knock-out option with barriers H; and H, the cor-
responding rebate option will pay

R1{r(myar(,) <1}

at time 7(H;) A 7(Hy), where (-) A (x) = min((+), (x)).

A rebate option must not necessarily be combined with a knock-out op-
tion and in this case the rebate option is usually called a binary (or digital)
knock-in option or an American binary (or digital) option. Here the term
binary or digital is used since the payoff is either a fixed amount or nothing
at all.

The rebate option belonging to a knock-in option will instead pay out
a prespecified positive amount R only if the underlying does not breach
the barrier before the expiry date T of the knock-in option. The payoff at
maturity is therefore

Rt (m)y>my

in the single barrier case, while if there are two barriers the terminal payoff
equals

R1g7(m) ar(ta)>T)

In both cases the payoff takes place at time T. The options are sometimes
also referred to as binary (or digital) knock-out options.

There are discrete versions of the rebate options as well. The definitions
of these options are straightforward from the definitions of the continuous
counterparts, i.e. the payoffs at maturity are obtained by replacing 7(H) by
i (H), where 77 (H) is defined by

( inf{te M; S, >H} if So<H,
T =
M inf{t € M; S, < H} if So > H.

2.8.3 Some Other Barrier Options

The barrier options we have described so far are perhaps the most traded
barrier options, but they are far from the only ones. For example, partial
barrier options have lately grown in popularity. For such barrier options
the barrier is only activated during some period of the option’s. For further
discussion about these options we refer to [HK] and [HK2].

A barrier option with a time dependent barrier is called a moving barrier
option. Pricing formulas of barrier options with an exponential barrier are

1'We use the convention inf @ = co.
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discussed in [R] and [KI]. More general techniques to price continuous mov-
ing barrier options are treated in [RZ] while discrete moving barrier options
can be priced using an algorithm presented in this report (see Chapter 5).

A barrier option depending on two underlying assets is called a two-asset
barrier option. The barrier crossing event in a two-asset barrier option is
often triggered by one of the assets while the final pay out depends on the
other asset. Two-asset barrier options are examined in [Ch].

Other interesting barrier options are the so called Parisian barrier op-
tions. These options are “delayed” barrier options based on the age of ex-
cursion of the underlying price process beyond a given barrier. The Parisian
up-and-out call for instance, will expire without value if the underlying price
process raises above the barrier and stays continuously above the barrier for a
time interval longer than a specified delay. Parisian options were introduced

in [CJY] and [CCJ].

2.9 Why Barrier Options?

As already mentioned above, barrier options, especially knock-out and knock-
in call/put options, have become increasingly popular in the last few years.
The reason for this is simply that knock-out and knock-in call/put options
are cheaper than the corresponding contracts without any barriers. If an in-
vestor finds it unlikely that the underlying asset will fall below a certain price
level, it is natural to buy a knock-out option with the barrier at that same
level. The difference in price between the knock-out option and the ordinary
option can be substantial, especially when the volatility is high. Thus, using
barrier options, investors can avoid paying for the scenarios they feel are
unlikely.

However, these benefits may imply a risk. Barrier options can be very
sensitive to price changes of the underlying asset. For instance, consider an
up-and-out call option and suppose that the underlying price is just beneath
the barrier and that the option is close to maturity. If a small short term
price spike occurs, the option will expire without value. On the other hand,
if the asset price remains constant until maturity the option can become
very valuable. Thus, investing in barrier options and, especially, knock-out
options is sometimes combined with a large risk. For a more comprehensive
treatment about this topic we refer to [Li] and the references therein.
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Chapter 3

Analytical Formulas for the
Value of Continuous Barrier
Options

3.1 Introduction

In [M] Merton gives the first known price formula of a barrier option con-
sidering a continuous down-and-out call option with zero rebate written on
a non-dividend paying security. Subsequently Cox and Rubinstein, [CR],
extended the down-and-out call formula to include rebate as well. A com-
plete list for the value of all continuous single barrier options with rebate
has recently been presented in [RR] and [R].

Several people have also analysed the continuous double barrier option.
Kunitomo and Tkeda, [KI], calculated its value using the Levy formula'. Hui,
[Hui2]|, solved the pricing problem using separation of variables, Pelsser, [P],
derived the value with the help of contour integration while Geman and Yor
in [GY] employed a method based on the Laplace transform. The rebate
options corresponding to a double barrier option have been examined in
[Hui| and [P].

To the best of our knowledge, with the exception of the formula for
the value of the rebate option corresponding to a double barrier knock-out
option, all results presented in this chapter have been published earlier. The
aim with this chapter is to present, in a unified framework, many previously
published price formulas for continuous barrier options. We will also discuss
numerical characteristics of the formulas obtained.

The presentation is based on three classical results from probability the-
ory, namely the Cameron-Martin’s theorem, the strong Markov property for
Brownian motion and the optional sampling theorem. For a reader not fa-

'The Levy formula is a formula for the transition law of a Brownian motion with two
absorbing boundaries.
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miliar with these results, we have two appendices in the end of this work
which treat the Cameron-Martin’s theorem and the strong Markov property.
For a description of the optional sampling theorem we recommend [KS] or
[D].

The remainder of this chapter is structured as follows. In the next section
we will derive analytical expressions for certain distributions which involve
stopping times associated with a Brownian motion. With the aid of these
results we will in Section 3 determine the value of all barrier options with
zero rebate. Finally, in Section 4, we will derive the value of the rebate
options.

3.2 Hitting and Exit Times

In this section we will compute certain laws involving the first hitting time
and the first exit time of a Brownian motion with drift. We let the probability
space (Q, F, P, {Fi}+>0) be defined as in Section 2.2. If b € R the first hitting
time of b, hereafter denoted A(b), is defined by

A(b) = inf{t > 0; W, =b}.

It can be proved that A(b) is a stopping time with respect to the filtration
{Fit>0 (IKS], p.7). A random time A of the form

A=inf{t > 0; Wy ¢ (b1,b2)}, b1 <0< bo,

is usually referred to as the first exit time of the open interval (b, b2). Note
that A can also be written as A = A(b1) A A(b2).

Moreover, we introduce a collection of probability measures {P9 ; 0 € R}
given by

P(4) = Blem30 W11 ,],

defined for all A € F. According to Cameron-Martin’s theorem we have that
the process W, given by

Wl =W,—6t, 0<t<I1,

is a Brownian motion with respect to (PY,{F;}o<t<1). This fact will fre-
quently be used in the sequel.
The subject of the first part of this section is the following distribution,

G (a,b1,bo;0) = PP(W1 < a, A(ba) < A(b1), A(ba) < 1),

defined for b1 < 0 < be, a < by and all 8 € R. The key result in this section
is the following lemma, the proof of which is based on an idea described in
[An].
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Lemma 3.1. Suppose by < 0 < by, a < by and 0 € R. Set A9 = 0 and
PO =0 and define recursively the stopping times

)\(n) — 1nf{t > p(n_l) ; Wt = b2}
and
p™ = inf{t > A"~V W, = by}

forn > 1. Then for anyn > 1

n
Gi(a,b1,bp30) =  (PP(Wy < a, A7) < 1) — P/(W; < a, A?) < 1))
=1
+ PY(Wy < a, A <1, 2D < p)),
(3.1)

Proof. Firstly, let A ={\) < p(U} and B, = {A\™® < 1}. Note that for all
w € A we have AN (w) = A®)(w), which implies p® (w) = p® (w), which in
turn implies A®) (w) = A(*(w) and so forth. Hence, by induction on n it can
be shown that for all w € A° we have A®*~1(w) = A®"(w) for any n > 1,
and, accordingly from this

18, 1ae = 1p,, lac (3.2)

for every n > 1. By a similar argument one can prove that for all w € A and
any n > 1 we have A" = A(27+1) and hence,

15,14 = 1By,4,14 (3.3)
for every n > 1. Next observe that for any given sets C; and Cy we have
leyle, = 1oy — 1y 1cs. (3.4)
Successive applications of the equations (3.2), (3.3) and (3.4) yield
1,14 = 1p, — 1,1 e
= 1p, — lp,1ue

= 1Bl - ]-Bz + 1B2 1A
= ]-Bl - 1B2 + 1B3 ]-A

- ]-Bl - 1B2 + 1B3 Toee e T ]‘B2n + ]‘B2n+1 ]‘A

for any n > 1. By integrating both sides over {W; < a} with respect to P?
we obtain equation (3.1). O
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Figure 3.1: Two paths of a Brownian motion.

To evaluate the terms in the sum in equation (3.1) we will use the re-
flection principle. This principle can be described as follows. Consider a
Brownian path that crosses the barrier b before time 1 and is below a at
time 1, where a < b and b > 0 (an example of such a path is the solid line in
Figure 3.1). Due to the symmetry with respect to b of a Brownian motion
starting at b, the probability of this event is the same as the probability of
travelling from b to a point above 2b — a (the dashed line in Figure 3.1 is
the Brownian path reflected in b). The argument above makes the following
plausible,

P(Wi<a, \(b)<1)=P(Wy;>2b—a,\(b) <1),
since {W7 > 2b—a} C {A\(b) < 1} we now get
P(Wi<a, \(b)<1)=P(W1 >2b—a).
Hence
P(W; <a, A\(b) <1) = ®(a— 2b) (3.5)
because P(W; =a) =0 for any a € R.
Of course, equation (3.5) still requires a rigorous proof. In the next

lemma we will give proof of a generalization of the reflection principle based
on the strong Markov property for Brownian motion.
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Lemma 3.2. Let A9 be defined as in Lemma 3.1 and suppose a < by. For
any t > 1 we have

P(Wi <a, A% D < 1) = &(a — 2a{) (3.6)
and
P(Wy <a, \@ < 1) = &(a — 22, (3.7)

where agi) =1i(by — b1) + by and agi) =1i(by — b1).

Proof. We follow [KS], p.95 and p.98. Let the operator U be defined as in
Appendix B. Firstly, fix a positive number ¢ < 1 and note that the symmetry
of Brownian motion implies

(U1-t1(—00,q) (b) = P(b+ W1 < a)
:P(b+W1,t22b—a) (38)
= (U1 t1pp—a,00)) (b)

for any real numbers a and b.

The stopping time 7 = Al A 1 is obviously bounded for any ¢ > 1.
The strong Markov property in combination with equation (3.8) now implies
for w € AN < 1},

2i—1)

= (U121 (-00.01) (Wriw) (@)

= (U1—r(w)L(—o0ya]) (b2)

= (U1—r(w) 1 2by—a,00)) (B2)

= (U1-r(w) 1 2bs-a,00)) (Wr(w) (W)
]

E[l{W1>2b2 a} | F. w)

[ {Wh1<a} |‘7:]

By integrating over {7 < 1} = {A(®~1) < 1} we see that
P(Wy < a, A1 < 1) = P(Wy > 2b, —a, A7V < 1), (3.9)

Note that {A%~1D =1} c {W; = by} and thus P(A\#~D =1) =0. In
combination with equation (3.9) this yields

P(W; <a, \& Y <1)=P(Wy >2by —a, \ZD <1).
Since by < 2by — a we find

{W1 > 20y —a, \& ) <1} ={Wy >2by —a, p% 2 <1}
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and therefore
P(W; <a, \&D) <1) = P(W; >2by —a, p*2 <1). (3.10)

Using the fact that 2bs — a > by and the symmetry of Brownian motion,
equation (3.10) gives

P(Wy > 2by —a,p®? <1)
, (3.11)
= P(W; < 2(by — by) +a, \#3) < 1)

for 4 > 2. The equation (3.6) now follows by induction on 3.

By replacing A(Zi—1) by A(2D) and p(2i-2) by p(2—1 in the equations (3.10)
and (3.11) we also get (3.7). O

Next we will extend Lemma 3.2 to the case when the drift 6 # 0.

Lemma 3.3. Let A9 be defined as in Lemma 3.1 and suppose a < by. For
any i > 1 and any 0 € R we have

PY(W; < a, A& D <1) = 2 0(q — 20 — ) (3.12)
and
POUW: < a, A®) < 1) = 2 3(a — 20 — 9) (3.13)

(4) (4)

where oy’ and oy’ are defined as in Lemma 3.2.

Proof. Fix an integer 7 > 1. Observe that
. 1
PY(W; <a, AV <1) :E[exp(—5 0% + OW1)1 3, <o a6 <13)

a
1 ,
:/ exp(—3 0% + 0z)P(W; € dz, \V) < 1).

—0oQ
It is now convenient to introduce a constant «, defined by

o= agi), i=(+1)/2, ifjisan odd number,
ag), i=7/2, if § is an even number,
From Lemma 3.2 we get

diP( Wi <z, A9 <1) = p(z — 2a),
T
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exp(—% 6? + 0z) p(z — 20)dx

—0oQ
@ 1 1 dzx
= e — 202+ 02— =(z —2a)?)—=
/oo XP( 2 2( ) )\/2_7T
a 1 dx
= exp (200 — =(z — 2a — 0)?) —=
/_oo p( 5 ) 7=
a
=20 / o(r — 2a — §)dx
—0o0
=2 B(a — 20 — 0),
which proves the lemma. O

Next we will focus on the remainder term
PO(Wy < a, ACHD <1, A1) < o)
in the expression of G4, given in equation (3.1). Observe that
PO < a, A@D <140 < W) < PY(W, < g, A@PHD < 1)
= 6200‘5%1)(1)((1 - 2045”“) -0,

according to equation (3.12). Moreover, from [KS|, p.112, we get that the
following inequality

1 2
O(z) < ——e % /2
(0) < e

is valid for any x < 0. Thus the remainder term is bounded by
PY(W1 < a, A@mD) <100 < p1))

. . (n+1) _ py2
< ( 1+1) exp (200" — (o — 20, ) )
a— 2a1n —0 2

if a < 2a§n+1) + 6, which implies that, given § < 2,

é

POy < a, AP <100 < p0) = o(e ™)

as n tends to infinity. This result and Lemmas 3.1 and 3.3 imply the next
lemma.
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Lemma 3.4. Suppose by <0 < by, a < by and 6 < 2. Ifagi) =1i(by—b1)+by
and ag) =i(by — by) then

n ! o
G_|_(G,, b17 b2, 9) — Z ( 2041 )BQ( 2055_2) _ 0) _ 62(1&7')0@(& N 2@%1) o 0))
=1
+ Rn—i—l

where Ry = o(e_”é), n — 00, or more precisely
(n+1)
|Rpy1| < ¥ " ®(a — 2a§n+1) —6).

Lemma 3.4 shows how the formula for the distribution G4 should be
implemented in order to be able to control the truncation error. Set

(@)

pgi) 2041)0 (I)( (1) o 9) and p( i) _ 2a2 9@((1 o 204%“ _ 9)_

Lemma 3.4 now yields
| G4 (a,b1,by;0) — Z (P(Z) —pg )| <
{Zap1l)>€}

Thus, if the desired accuracy is set to €, then one has to add the terms
(pgi) (Z)) 1=1,2,... until pgi) < €. The result will then have the desired
accuracy.

The remaining part of this section is devoted to introduce and to deter-
mine certain transition distributions that will be useful in the sequel. First
recall that for any 8 € R,

G (a,by,bo;0) = PP(Wy < a, A(ba) < A(b1),A(by) < 1)
if b5 <0 < by and a < by. Now let for any 6 € R,
G_(a,by, by; 0) = PP(W1 > a, A(b1) < A(b2), A(b1) < 1)

if b1 < 0 < by and a > b;. Furthermore, given b; < 0 < be, set
G4 (b1, b2;0) = PP(A(b2) < A(br), A(b2) < 1),
G1— (b1, b2;0) = PY(A(b1) < A(b2), A(b1) < 1)

and

Go(a1,ag,b1,bo;0) = P?(a1 < Wi < ag, A(by) AX(bz) > 1)

if b1 < a1 < ag < by. These distributions can be expressed with the aid of
the function G4, as we will show in the next lemma.
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Lemma 3.5. Let the functions G—, G14+, Gi— and G4 be defined as above.
Then
G- (CL, b1, by; 0) = G+(_a7 —b1, —by; _9) )
G14(b1,bo;0) = P(0 — be)
+ G4 (b2, b1,b2;0) — G- (b2, b1,b2;0)
G1-(b1,b2;0) = G14.(—b1, —bo; —0)
and
Gg(al, ag, bl, b2; 9) = @(ag - 9) - <I>(a1 - 9)
—G+(a2,b1,b2;9) +G+(a1,bl,b2;0) (3.14)
—G_ (ag, b1, bo; 9) + G_ (al, b1, bo; 9)
Proof. The expression for G_ follows at once from the symmetry of Brownian
motion.

Below, we let Ay = A(b1) and Ay = A(b2). To prove the second equation,
note that

Gy (b1,b2;0) =P (W1 < ba, Ay < A, Mg < 1)
+ PO (W1 >boy Mg < Ap, Ap < 1)
=G (b2, b1, bo;0)
+ PY(Wy > bo, Mg < Ap)

(3.15)

since {Wy > by} C {Ag < 1}. Tt is obvious that P?(W; > by, A\; = Ag) =0
and, accordingly from this,
PO(Wy > by, Ao < A1) =P*(W; > by)
— PY(W1 > bo, M1 < X\2)
=PO(W, > by)
— PO (W1 >bo, Ay < A, A1 < 1)

(3.16)

because {A\1 < Ao} N{W; > b} C {A\ < 1}. The equations (3.15) and
(3.16) now yield the expression for Gi4. The expression for G;_ follows
from symmetry.
It remains to determine G49. Observe that
Ga(a1,a2,b1,b0;0) =P’ (a1 < Wi < ag)
—Pa(al < W < ag, M A< 1)
=P’(W1 <ap) — P°(W; < a1)
_PH(WI <ag, MAX < 1)
-I-Pa(Wl <a, MAX < 1).
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Equation (3.14) now follows from the fact that

Pe(Wl <a, )\1A>\2§1) :Pa(Wl <a, )\2<>\1,)\2§ 1)
+P9(W1 <a, A1 <>\2, A1 Sl)

for any number a.
Next consider the following distributions,
F,(a,b;0) = P*(W; < a,\(b) > 1),
where ¢ < b and b > 0, and
F_(a,b;0) = PP(W, > a, A\(b) > 1),
where a > b and b < 0.
Lemma 3.6. If F\ and F_ are defined as above, then
F(a,b;0) = ®(a — ) — e ®(a — 20— 0)
and
F_(a,b;0) = Fy(—a,—b;—0).
Proof. From equation (3.12) with 4 = 1 we have that
PY(Wy <a, A(b) <1) =e®®(a—2b—0).
Thus

Fy(a,b;0) =P (W, < a, \(b) > 1)
=P’(Wi <a)— P’ (W, <a, \b) < 1)
=B(a—0) — 2 B(a — 20— 0).

The last part of the lemma follows from symmetry.

3.3 Barrier Options with Zero Rebate

The purpose of this section is to calculate the theoretical value of continuous
barrier options with zero rebate. The rebate options will be treated in the

next section.

Because the market is assumed to be free of arbitrage, the following

relation must hold

UV = Uki + ko,
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where v denotes the theoretical value of a (call/put) option and [vk;/vk,] de-
notes the value of a [knock-in/knock-out| (call/put) option with zero rebate
and with the same option parameters as the (call/put) option. Moreover, the
barrier options are presumed to have the barriers at the same level. Since the
theoretical values of calls and puts are known (cf Theorem 2.4) it is enough
to solely price knock-in or knock-out options. We will henceforth focus on
knock-out options.

Next we will make some comments about notation. If nothing else is
stated we will, throughout this chapter, use the same notation as in Chapter
2. This means that the constants K, R and 7" denote strike price, rebate and
time of expiration, respectively. If the barrier option has only one barrier, it
will be denoted by H. Moreover, for a double barrier option, we will denote
the lower barrier by H; and the upper barrier by H,. Finally, r, ¢ and o
denote the risk free interest rate, dividend yield, and the volatility of the
underlying security, respectively.

In what follows it will always be assumed that the knock-out option
under consideration has not been knocked-out at time zero. For example, if
we consider a down-and-out option, we will implicitly assume that Sy > H
while if we consider an up-and-out option we will take for granted that
So < H. For double barrier options it will always be assumed that the
inequalities H; < Sy < H,, are satisfied.

Recall from Chapter 2 that the process S* is defined by

St = SpetttoWr 0 <t < T,
where 1 = r — ¢ — 6/2. Recall moreover that the measure P is given by
P(A) = E[e 27 Tt"r1,], A€ F.
In what follows, let

™(H) = inf{t > 0; S' = H}.

The next lemma will bridge the gap between Lemma 2.1 and the results
obtained in the previous section.

Lemma 3.7. Let x be a constant equal to 1 or —1. For any strictly positive
numbers T, K, H; and H,, which satisfy H; < Sy < H,, the following holds

P(XSéf <xK,m™(H;) >T,7™"(H,) > T)

(3.17)
= P%(xWi < xe, A(dy) > 1, Mdy) > 1),

where Oy = @, c= f(K), d; = f(H;) and d,, = f(H,) with

_ ln(.’L‘/S()) T
f("I") - O'\/T ’ > 0.
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Furthermore,

P(xSk < xK,m#(H) > T,m"(H,) >T) 1)
— PO (x Wy < xe, A(dy) > 1, A(dy) > 1), '

— (it )WVT

where 61 -

Proof. The scaling property for Brownian motion (see [KS]|, p.104) implies
that the stochastic process

t
(VT s
is a Brownian motion under P.
Set k = In(K/Sy), hy = In(H,;/Soy), hy = In(H,/Sy) and let n € R. The

scaling property and Cameron-Martin’s theorem now yield

P T+ ocWr) < vk, min + oW max + oW h
(X(’) T) =~ XR, 0<tl<T(nt t) > hla 0<t<T(nt t) < u)
=P + W) < 1 + W d + W d
(x(0 1) < xe, 01<11t1<111(9t 1) > d OI<11?<X1(915 1) < dy)

= PY(x Wi < xe, Mdy) > 1, A(dy) > 1),

(3.19)
where ¢, d; and d, are defined as above and where
0 = nv'T
s

Equation (3.17) now follows by setting 7 = u in equation (3.19). From
Lemma 2.1 we see that if we replace 5 by x4+ 02 in equation (3.19) we obtain
equation (3.18). O

We are now in the position to establish the theoretical value of all barrier
options. We will begin with the single barrier options.

Theorem 3.1. Let d = f(H), where the function f is defined as in Lemma
3.7, and let ¢, By and 01 be defined as in Lemma 3.7.
The theoretical value vy, at time t = 0 of a down-and-out call is given

by
Vioe = Soe 9L F_(max(c,d),d; 01) — Ke "I F_(max(c,d),d; 0y).  (3.20)

If K > H then the theoretical value vqop at time t = 0 of a down-and-out
put can be written as

Vaop = Ke ™ (F_(d, d; 80) — F_(c, d; 60))

(3.21)
— Soe™ " (F_(d,d; 01) — F_(c,d;61)) .
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If K < H, vgep = 0.
If K < H then the theoretical value vy, at time t = 0 of an up-and-out
call can be expressed as

Vyoc = SOe_qT (F+ (da d; 61) - F_|_(C, d; 01)) (3 22)
— Ke~T(Fy (d, d; 0) — Fs (c,d; 0)) - |

If K> H, vyo. =0.
The theoretical value vy, at time t = 0 of an up-and-out put option is
given by

Vuop = Ke "™ Fy (min(c, d), d; 0p) — Soe™ 9" F(min(c,d),d; 01).  (3.23)

Proof. Let us begin with the down-and-out call option. According to Theo-
rem 2.3 and Lemma 2.1 we have

Vdoe =E9 [e_’T max (ST — K, 0)14 mingeo,7) S¢>H }]
=" E[max(S} — K, 0)L{ min,e 0.1y s> 1 })
= T B[(Sf ~ K){ sy, mincry st>11)]
=Soe T P( S} > K, r(H) > T)

—KeTP(S¥ > K, "(H) > T).

By letting H,, — oo in equation (3.17) we obtain
P(S} > K, T#(H) > T) =P%(W; > ¢, \(d) > 1)
=F_(max(c,d),d; ).
Similarly, by letting H, — oo in equation (3.18) we get
P(SY > K, TM(H) > T) = F_(max(c,d), d; 01),

which gives equation (3.20). The theoretical value vy of an up-and-out put
option can be obtained in a similar way. In fact,

Vyop =E%[e™"" max(K — Sr, 0) L fmax;e 0.1y Si<H})
:e_TTE[(K — Séf)l{ Sk <K,max;e[0,1] S{‘<H}]
=Ke "TP(S¥ <K, ™(H)>T)
— Soe " P( S} < K, T(H) > T)
:Ke*TTF+ (min(c, d),d;0y) — SoequF+ (min(c, d), d; 01).
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Next we consider the down-and-out put option. From Theorem 2.3 and
Lemma 2.1 we have that the theoretical value for this option equals

Vdop =E° [e_rT max(K — St, 0)1{minte[0,T] St>H}]
=Ke "™"'P(SE <K, TM(H) >T) - Soe "P(SE < K, T"(H) > T)
=Ke TP (W, <¢, Md) >1) — Soe TP (W, < ¢, A(d) > 1).
Equation (3.21) now follows since, for every 6 € R,
PO(Wy <e, Ad) >1)=P(W, >d, A\(d) > 1)
— POWy > ¢, Md) > 1) (3.24)
=F_(d,d;0) — F_(c,d; ),

provided ¢ > d, or equivalently, K > H. If K < H then it follows at once
that vgep = 0.
Equation (3.22) can be derived in the same fashion as equation (3.21). O

The next theorem gives a closed price formula for the value of a knock-out
double barrier option.

Theorem 3.2. Let ¢, dj, d, 0y and 01 be defined as in Lemma 3.7.
If K < H, then the theoretical value vy at timet = 0 of a double-barrier
knock-out call option is given by

Vkoc :Soe_qTGQ (max(c, dl)a dU7 dla du, 91)
— Ke "' Gy(max(c, dy), dy, dy, du; 0o) -

If K > Hy, vgoc = 0.
If K > Hj the theoretical value vyop of a double barrier knock-out put
option at time t = 0 is given by

Ukop :Ke_TTGQ (dlﬂ min(ca du)a dy, dy; 90)
— Soe~ ' Gy(dy, min(c, dy,), dy, dy; 0;) .

If K < Hy, vgop = 0.

Proof. The result follows immediately from Lemma 2.1 and Lemma 3.7. O

We will conclude this section with a discussion about different represen-
tations for the value of a double barrier option. It is possible to represent
the value of a double barrier option in at least two different ways, namely
either as Fourier sine series or as series of standard normal distributions, as
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above. The Fourier solution can be obtained in several different ways. The
perhaps most straightforward method would be to solve the Black-Scholes
partial differential equation (see [MR] p.118), with corresponding boundary
condition using separation of variables. This method has been discussed
in [Hui2]. Another way to establish this solution is by employing contour
integration (see [P]).

The numerical characteristics for the two different solutions have been
compared in [HLY]. In that paper it is recommended that in a trading
system, the solution involving standard normal distributions should be used,
that is, the solution given in Theorem 3.2 where G5 is computed with the aid
of Lemmas 3.4 and 3.5. The argument is that cancellation errors can appear
in the Fourier series which may lead to substantial errors in the resulting
theoretical value.

3.4 Rebate Options

In this final section of this chapter we will calculate the theoretical value of
continuous rebate options. Let us first consider the rebate option belonging
to a down-and-in barrier option, that is, a binary knock-out option with Sy >
H. The theoretical value vy, of this option is, according to the discussion
in Chapter 1, given by

vbko = B9 (e Rl (m)>1)]
= Re "TP(r#(H) > T),

where 7/ is defined as above, that is, T#(H) = inf{t > 0; S} = H} where
St = SpetttoWt with y = r — g — 0?/2. Set, as above, 6y = pV/T /o and
d = f(H), where f is defined as in Lemma 3.7. By applying Lemma 3.7 we
get

Upko = Re TP (\(d) > 1)
= Re "I F_(d,d; ).

We now turn our attention to the rebate option corresponding to a down-
and-out option, that is, the binary knock-in option with Sy > H. The payoff
at maturity of this contract is, according to the discussion in Chapter 1,
given by

Rl (m)<my-

The pay out will occur at the same time the barrier is reached, which is
at time 7(H). Since 7(H) is not a bounded stopping time we see that this
contract does not fit into the theory that was developed in the previous
chapter (cf Definition 2.1). One can however easily get around this problem
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by noting that the claim above is, from a financial point of view, equivalent
with a claim X that pays X = Rl (g)<r} at time %, where X = 7(H) AT.
The random variable X is Fs measurable and since X is bounded we have
that X is a contingent 3-claim. Thus, the theoretical value of a binary
knock-in option (where the barrier is below the initial asset price) equals at
time t =0

voki = B2 [Re™™ L7 (my<y]
= EQ [RG_TT(H) 1{T(H)§T}] (325)
= RE[e7™ D 1 rumeny]
In order to calculate the above expectation, the next lemma will be useful.

Lemma 3.8. Let T > 0, n € R and let Z be a martingale with respect to
(P, {Fi}o<i<r). If A is a stopping time with respect to {Fi}i>0 such that
A <T P-a.s. and X is a bounded Fp measurable random variable, then

E[XZ\| = E[X Z7].

Proof. Since A < T P-a.s., the optional sampling theorem (see [KS|, p.19)
gives

E|Zr | Fa] = Za.
Moreover,
XE|Zy | Fo] = E[X Zr | FA]
because X is Fp measurable and bounded, and therefore
E[XZr | FA] = X Z,.
By integration the desired result follows at once. O

As above, let h = In(H/Sy). From the scaling property for a Brownian
motion we get for any ¢ € [0, 7],

P(r"(H) <t) = P( min (us +oW) < h)

P( OSI?SI?/T(GOS + W) <d) (3.26)

= PP (\(d) <t/T),

where, as before, 8y = uv/T/o and d = f(H). The equations (3.25) and
(3.26) yield that the value of a binary knock-in option at time ¢ = 0 equals

vpki = RE® e 1544,
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where A = A(d) and E% denotes expectation with respect to P %.
Now we introduce the stopping time A = A A 1. This stopping time is
obviously bounded and satisfies

e_rT’\ 1{)\51} = e—rTA 1{A<1} P-a.s.
and, hence,
Upki = REeO [e_TTA 1{A<1}] .

The random variable e~ "4 1{A<1} is Fp measurable and bounded. Lemma

3.8 together with the fact that the process { exp(—363t + 0gW;) }i>o is a
(P,{Fi}+>0)-martingale gives

vpki = RE[ =20 +00W1 o1 TA Lia<yy]
— RE[e—%ag A+0oWpr—rTA 1{A<1}]

_ RE[e—%ﬁ% A+02Wr+(60—02)Wp 1{A<1}] ’

where 0, = /6§ + 2rT. Note that Wy (,)(w) = d if w € {A < 1}. We now
apply Lemma 3.8 once more and conclude that

vpki = R exp((6p — 02) d) E[e 3% A10Waq )]
= R exp((6y — 62) d) P2(A < 1).
Moreover,
P2(A<1)=P”(A<1)=1-F_(d,d,6)
and we finally have that
vpki = Rexp((6o — 02) d)(1 — F(d, d; 62)).

The values of all the other rebate options with one barrier are given in
the following theorem.

Theorem 3.3. The theoretical value vpr, at time t = 0 of a binary knock-out
option with one barrier is given by

v _ Re T F_|_(d, d; 90) if So < H,
k0 =1 Re"TF_(d,d;00) if So > H,

where d and 0y are defined as in Theorem 3.1 and Lemma 3.7, respectively.
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The theoretical value vpy; at time t = 0 of a binary knock-in option with
one barrier is given by

- Rexp ((00—92)d) (1—F_|_(d,d,02)) ifSo<H,
7\ Rexp ((6p—02)d) (1 — F_(d,d,65)) if So> H,

where 09 = \/03 + 2rT.

Proof. The value of the rebate options corresponding to an up-and-in and
up-and-out option follows at once from the computations above. O

We will now finish this chapter with a theorem which gives the value of
rebate options corresponding to double barrier options.

Theorem 3.4. The theoretical value 'ngo at time t = 0 of a double-barrier
binary knock-out option is given by

Vo = Re ™" Go(dy, du, dy, du; 00),

where dy, d,, and 0y are defined as in Lemma 3.7.

The theoretical value v,‘fki at time t = 0 of a double-barrier binary knock-in
option is given by

Vi = R exp( (0o — 02) dy) G1-(dy, du; 05)
+ R exp( (6o — 02) du) G1+(di, du; 02),
where Oy is defined as in Theorem 35.5.

Proof. The first part of the theorem follows at once from Lemma 3.7. To
prove the second part, let 7, = 7(H;) and 7, = 7(H,). We have

viri = B2 [Rexp (=7 (n A7) Lnnr<ry]
= REQ [exp(—r Tl) 1{Tl<Tu,Tl§T}] (327)

+ REQ [exp(—TTu) 1{Tu<Tl,TuST}:| :

Let for simplicity Ay = A(d;) and A2 = A(dy). It can easily be shown that
(cf equation (3.26))

E°[exp(—rm) 1 <ry,n<T}) = E%[exp(—rT\) L <o, n<1} s

where E?% denotes expectation with respect to P%. Set A; = A\ A 1. Tt is
evident that

E% [ ™M 10 <1 n <ot = B [e7™M 1ia c1, <00} -
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From [KS], p.8, we have that {A; < Ao} € Fp, N F),, which implies {A; <
1, Ay < Ao} € Fa,. Thus the random variable e~"TA1 Liny<1,A<00) 18 FAy
measurable. By applying Lemma 3.8 twice we obtain

o[ —rTAy o —rTA1— 1g2 A1+0oWp
E [e 1{A1<1,A1<A2}] = E[e 270 ! 1{A1<1A1<)\2}]

_1p2 _
— Ble 2B MAOWM O 0)Way 1]

= exp((fp — 02) dy) P2 (A1 < 1, Ay < X9)
= exp((y — 02) d;) P2(A\; <1, A1 < X9)
= eXp((H() — 92) dl) Glf(dl, du; 92)

With a similar method one can also calculate the remaining term in equation
(3.27) and from this we get the value of a double-barrier binary knock-in
option. [l
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Chapter 4

Pricing Discrete Barrier
Options Using Siegmund’s
Corrected Heavy Traflic
Approximation

4.1 Introduction

In contrast to continuous barrier options the price of a discrete barrier option
does not in general possess a closed form price formula. The price can
be expressed in terms of the multivariate normal distribution. Here the
dimension of the relevant multivariate normal distribution is equal to the
number of price fixing dates, which, in most cases, is too large for numerical
evaluation.

Therefore, to price discrete barrier options it is natural to employ numer-
ical algorithms or approximation formulas. In this chapter we will focus on
approximation formulas, while numerical algorithms will be treated in the
next chapter.

Approximation methods have been discussed earlier in the literature.
One technique which has given remarkably good results was first proposed by
Chuang, [Ch], and, independently, by Broadie, Glasserman and Kou ([BGK]
and [BGK2]|). The method they developed is based on a result from sequen-
tial analysis and queue theory, namely “Siegmund’s corrected heavy traffic
approximation”, which is useful to estimate the joint distribution of a random
walk and its maximum.

Broadie et al. derived formulas for some discrete (single) barrier options,
but not all. The purpose of this chapter is to continue the work initiated by
Broadie et al. and determine approximation formulas for all discrete (single)
barrier options.

We will make the same assumptions as in the papers mentioned above
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by Broadie et al. Thus it will be assumed that the underlying asset can be
described as in Section 2.2 and that the price fixing dates are equally spaced
in time. We will also use the same notation as in Chapter 2. This means that
K, T and H denote strike price, time of expiration and barrier, respectively.
The constant m stands for the number of monitoring dates. Finally, we
denote 7, ¢ and o the continuously compounded interest rate, continuous
dividend yield, and the volatility of the underlying asset, respectively.

The chapter is structured as follows. In Section 4.2 we will present the
results of Broadie et al. as well as our main result of this chapter. The latter
result will be proved in Sections 4.3 and 4.4, where we will also describe “Sieg-
mund’s corrected heavy traffic approximation”. In the last section, Section
4.5, we will present some numerical examples.

4.2 Extending the Corrected Barrier Approxima-
tion of Broadie, Glasserman and Kou

The most naive approach to approximate the value of a discrete barrier op-
tion would be to ignore the fact that the barrier is discrete and price the
option as a continuous barrier option with the same barrier. However, nu-
merical examples show that this method can lead to substantial mispricings
(see [BGK]) even in the case of daily monitoring. In the paper [BGK] by
Broadie et al. it was shown that this simple approximation can be improved
just by shifting the barrier. The next theorem is taken from [BGK].

Theorem 4.1. Let v?(H) be the price of a discretely monitored knock-in or
knock-out down call or up put with barrier H. Let v(H) be the price of the
corresponding continuously monitored barrier option. Then, as m — oo,

vl(H) = v(HetpoV/TIm) | 0(%)

where + applies if H > So,— applies if H < Sy, and § = —((1/2)/V27 ~
0.5826, with ¢ the Riemann zeta function.

Theorem 4.1 can be interpreted as follows. If the price formula of a con-
tinuous barrier option is used to value a discrete barrier option, first move the
barrier away from the initial asset price by a factor exp(+8o+/T/m), where
+ applies if H > Sy and — applies if H < Sy. Numerical results presented in
the same paper indicate that the shift of the barrier gives surprisingly good
approximations for moderate to large values of m if the initial asset price is
not too close to the barrier. In addition, the suggested approximation has
the great benefits of being easy to implement and fast to evaluate!.

'more than 10.000 valuations per second on an Intel Pentium 133 MHz processor
according to [BGK].
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The proof of Theorem 4.1 in [BGK] was based on certain results devel-
oped in an article written by Sigmund and Yuh, see [SY]. In this chapter
we will use the same results to determine approximation formulas for dis-
crete down-and-out/in put and up-and-out/in call options. Note that none
of these options are included in Theorem 4.1.

Before we present our main result of this chapter, we recall that F,
denotes the following distribution function

Fi(a,b;0) = P(0+W; <a, Orgggcl(et + W) <b),

where a < b, b > 0 and @ € R. Moreover, if a > b, b < 0 and # € R then we
let

F_(a,b;0) = P(0+ W, > a, Oréltléll(et + W) >b).

According to the previous chapter we have that, given a < b and b > 0,
Fy(a,b;0) = ®(a — 0) — e®(a — 20— )
and, given ¢ > b and b < 0,
F_(a,b;0) = Fy(—a,—b;—0).

Theorem 4.2. Let vd,. be the theoretical value at time t = 0 of a discretely

monitored up-and-out call option. Then, as m — oo,
Ugoc :Soe_qT(F+ (d’ d+ /B/ﬁa 01) - F_|_(C, d+ :6/\/%’ 01))

. Ke_rT(F+(d,d+ IB/\/E’ 90) — F+(C,d+ ,6/\/7_na 90))

+o<%>,

provided K < H, where

C:ln(K/So) d:ln(H/So) P :(T—q—a2/2)\/T
VT oVT o

and 01 =0y +oVT. If K > H, v¢,. =0.

For a corresponding down-and-out put option the theoretical value vgop at
time t = 0 is given by

V4op =Ke T (F_(d,d — B/v/m;00) — F—(c,d — B/v/m;6))
— Soe” T (F_(d,d — B//m;01) — F_(c,d — B//m; 1))

1
+o(—=), m — oo,

vm

provided K > H. If K < H, vgop =0.
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Remarkably enough, one will not get the above approximations by simply
shifting the barrier as in Theorem 4.1 (cf equations (3.21) and (3.22)).

The value of the corresponding knock-in options can now be approxi-
mated by using the relation

Vki = U — gy,

where v denotes the theoretical value of a (call/put) option and [v{;/v¥,]
denotes the value of a discrete |knock-in/knock-out| (call/put) option with
zero rebate and with the same option parameters as the (call/put) option.
Moreover, the barrier options are presumed to have the barrier at the same
level.

We will prove Theorem 4.2 in the next two sections.

4.3 The Value of a Discrete Barrier Option
To begin with, consider a discrete up-and-out call option where the price
fixing dates are given by the set

M = {At, 2At,... , mAt} , At=T/m.

The value v4,, at time ¢ = 0 for this option is, according to Theorem 2.3,

given by

C

Ugoc =E9 [e_TT ma‘X(ST - K, 0) 1{ Si<H, tEM}]

=B (85— K) 1y sp <, enn)):

where, for each t € [0,7], S¥ = Spexp(ut +oW;) and y =r —q—0%/2. Set
k =1In(K/Sp) and h = In(H/Sp). By applying Lemma 2.1 we obtain

vdoe =Soe T P( S > K, max St < H)
~ Ke ™P(Sk > K, maxS!' < H)
teM
:SoequP( (1 + 0*)T + oWy > k, max (p+0*)t+oWs) <h)
~ Ke ™ TP(uT + oWr > k, max (ut +oWy) < h).
€

The scaling property for Brownian motion now yields for any n € R,

P(nT + oWrp >k, Ega]\‘}((nt—l_UWt) <h)

k nt t h
P> o ma (oW () <O ) ()

=P(60+W; >c, ‘};a}(gHWt) <d),
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where

T _k d— h
g B U\/T, B o\/T
and A = {1/m, 2/m,... ,1}. So if we replace 7 in equation (4.1) by u + o2

and u, respectively, we see that the value of a discrete up-and-out call can
be expressed as

Ugoc =SoequP(01 + Wi > ¢, I{leaj( (01t + W) < d)

(4.2)
— Ke™™'P(6o + Wi > ¢, max (6ot + Wy) <d),

where

T T
00:% and 01:%7:90“—\/?

We will now introduce the discrete counterpart to Fy (cf Section 4.2).
Set for b > 0, a < b and 0 € R,

Fim)(a,b;ﬁ) =P(0+W; <a, ma

tefwt + W) <b).

Note that, given b > 0, a < b,

P(0+ W > a, max (0t + W) <b) = F™ (b,b;0) — F'™ (a,b;60).  (4.3)

In combination with equation (4.2) this gives the following theorem.

Theorem 4.3. Let vl,. be the theoretical value at time t = 0 of a discretely
monitored up-and-out call option. Then

Ugoc :Soe_qT (Fim) (da d; 01) - F—Em) (C, d; 01))
— Ke"T(F\™(d,d; 00) — F\™(c,d; 6)) ,

provided K < H, where ¢, d, 8y and 01 are defined as in Theorem 4.2. If
K>H, v =0.

uoc

We now turn our attention to discrete down-and-out puts. The theoretical
value vgop of this option is given by

Ugop = EQ [6_TT maX(K — ST, 0) 1{ S¢>H, tEM}] .
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If we proceed as above, using Lemma 2.1 and the scaling property, we get
Ulciiop TTE[(K St )1{S“<K SE>H, teM }]
=Ke "' P(uT + oWr < k, {n}gfl (ut +oWy) > h)
- Soe_qTP((p+J )T + oWr <k, mln((,u+0 )t +oWy) > h)
:Ke_’"TP(Ho + Wi <e, Itlélflll (Ot + W) > d)

— Spe TP (6, + Wi < c, min (61 + W) > d).

The symmetry of Brownian motion gives
P(O+W; < a, rtnljll(t%—l— W) > b)
€

=P(—-0+ Wi > —a, Igleax( Ot + W) < —b).

for any numbers a and b. The results above in conjunction with equation
(4.3) yield the following theorem.

Theorem 4.4. Let vgop be the theoretical value at time t = 0 of a discretely
monitored down-and-out put option. Then

oy =Ke T (FI™ (~d, —d; —0p) — F\™ (—c, —d; —6,))
— Soe~ T (F"™ (—d, —d; ~0;) — F{™ (¢, —d; 1)) ,

provided K > H, where c, d, 6y and 01 are defined as in Theorem 4.2. If
K<H, 'ugop = 0.

In the next section we will discuss an approximation of the function Fj_m).
4.4 Siegmund’s Corrected Heavy Traffic Approxi-

mation

The following result is often referred to as Siegmund’s corrected heavy traffic
approzimation.

Theorem 4.5. Ifb >0, a <b and § € R, then, as m — oo,

P(Ov/mAW,, < av/m, N6, < m)

= 20BNV G (q — 2(b+ B//m) — 6) + of

Elly
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where
on
vm

and where B is defined as in Theorem 4.1.

N = inf {n € N; + W, > bym }

The generic term ’heavy traffic approximation’ is taken from queue the-
ory. Roughly speaking, the term refers to approximations of distributions
which involves functionals of a random walk. Theorem 4.5 is such an ap-
proximation, originally proved in a more general setting but the formulation
given here is enough for our purposes. For more details about this we rec-
ommend the reader to [SY] or [As]. For a proof of Theorem 4.5, see [Si2]
p-220-224.

It would be of great interest to know more about the error term o(1//m)
in Siegmund’s approximation. In several examples, the approximation error
is small (see [Si] and [BGK]). We can also quote Asmussen “Numerical
studies indicate that the ... approximation is superior to all other known”
(see [As], p.276).

The value of the constant 3 originally comes from the following expression

BE[WR, ]
B 2E [WA+] ’

where A, = inf {n € N; W, > 0}. The result 8 = —((1/2)/V2r ~ 0.5826
can be found in a paper by Chernoff (see [Che]). For additional information,
see [Si2] or [Lo]. It can be shown that

%: lim E[Wy —by/m; X, < o]
2E[W),] m—oo Am 1 7m

for any 6 € R (see [Si2], p.215). Thus, the constant § may be viewed as
an approximation to the average of the amount by which the random walk
{0n 4+ Wy, }nen exceeds the boundary by/m the first time the random walk is
above the boundary.

Our aim is now to find an approximation of Fj—m) based on Theorem 4.5.
Note that since a < b we have

P(Ovm + Wy, < avm, N, <m) = P(6v/m + Wy, < ayv/m, A <m).
Moreover, the scaling property yields

P(OVmAW,, < av/m, Ao, <m)

0
= P(6vim + W < av/m, max (T% + W) > by/m )

=P(0+W; <a, I;leajc(Ot+Wt) >b).
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where, as before, A = {1/m, 2/m,... ,1}. Hence

P(0+ W <a, I{leaj((et-l-Wt) >b)

= 2BV M G (0 — 2(b + B/vm) — 0) + o(—=)

1
vm
as m — 00. From this we obtain an approximation of Ff_m), namely

Fim)(a,b;ﬁ) =P(0+ W <a)
—P(0+ Wi <a, I{leag((0t+Wt) >b)

=®(a—0)

— 2O (q — 2(b+ B/v/m) — 0) + "(%)

as m — oo. If we compare this expression of Fim) with F in Section 4.2,
then we see that

Fj_m)(a,b;e) :F+(a,b+ﬁ/\/r_n;9)+o(%), as m — oo. (4.4)
Thus to calculate the probability of the event [04+W; < a; maxca(0t+Wy) <
b] using the formula for a continuous barrier, one should first lift the barrier
B/+/m units upwards. This compensates for the fact that when the random
walk {0t + Wy, t = 1/m,2/m,... ,1} breaches the barrier, it exceeds it on
average with 8/4/m units.

Equation (4.4) in conjunction with the Theorems 4.3 and 4.4 completes
the proof of Theorem 4.2. To see how the approximation performs, we will
now present some numerical examples and compare them with other meth-
ods.

4.5 Numerical Examples

Let us first consider the value of discrete up-and-out calls with different
barrier levels but with the other parameters fixed. Table 4.1 shows the value
obtained by using different methods. In the first column in the table we
have the level of the barrier. The values of the other option parameters are
in the caption. The second column contains the value of the corresponding
continuous barrier option. In the third column we have used the formula in
Theorem 4.2, with o(1/4/m) set to zero.

The values in the fourth column are obtained by using a method proposed
in [BGK]. Even if up-and-out call options were not included in Theorem 4.1,
Broadie et al. suggested that one can approximate the value of an up-and-
out call option by a similar shift, that is, lifting the barrier upwards by a
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Continuous Trinomial Relative error

Barrier H BGK Method (in percent)
Barrier (1) (2) (3) (1) (2 @3
155 12.775 12.891 12.905 12.894 0.9 0.0 01
150 12.240 12.426 12.448 12.431 1.5 0.0 0.1
145 11.395 11.676 11.707 11.684 25 0.1 0.2
140 10.144 10.541 10.581 10.551 3.9 0.1 0.3
135 8.433 8.947 8.994 8.959 59 0.1 04
130 6.314 6.909 6.959 6.922 88 0.2 0.5
125 4.012 4.605 4.649 4.616 13.0 0.2 0.7
120 1.938 2.410 2.442 2.418 19.8 0.3 1.0
115 0.545 0.803 0.819 0.807 325 05 1.5
112 0.127 0.257 0.264 0.260 51.1 1.2 1.6

Table 4.1: Up-and-out call options price results, varying H. The option parameters
are So = 110, K =100, 6 = 0.3, r = 0.10, ¢ = 0.0, T = 0.2 and m = 50. If
one assumes that there are 250 trading days per year, then m = 50 corresponds to
daily monitoring.

factor exp(Bo+/T/m) and then use the formula for the value of a continuous
up-and-out call.

In the fifth column we have collected prices obtained by a so called tri-
nomial method presented in [BGK2] (the errors of the trinomial prices are
according to the same article approximately £0.001). Finally, in the last
three columns we have the relative error measured in percentage for the
different approximations.

Note the surprisingly great differences in price between the discrete and
the corresponding continuous barrier option. So it is worth to emphasize that
one should not neglect the fact that some barrier options are discretely and
not continuously monitored. We also see that the approximation derived
in this chapter yields good results, and that the accuracy of the result is
dependent of how close the barrier is to the initial price. This method also
performs better than the approximation proposed in [BGK].

In Table 4.2 we have varied the number of price fixing dates as well.
In this example, however, we use a different trinomial method than in the
previous case. The method is fully described in the next chapter. The error
seems to be £0.001 here as well.

As is to be expected, the approximation developed in this paper degrade
as the number of monitoring times decreases. In the extreme case with the
barrier very close to the initial asset price, the method even performs worse
than the approximation proposed by [BGK]. One could remark though, that
in the extreme case none of the methods work especially well.

In the final example, presented in Table 4.3, we have examined how the
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Continuous Trinomial Relative error

Barrier H BGK  Method (in percent)
m Barrier (1) (2) (3) (1) (2) 3
130 6.314 7.124 7.221 7.148 11.7 03 1.0
125 4.012 4.829 4.918 4.851 173 0.5 14
25 120 1.938 2.600 2.669 2.616 259 06 1.9
115 0.545 0.916 0.950 0.925 411 09 28
112 0.127 0.320 0.336 0.329 61.4 3.0 2.0
130 6.314 7.837 8.286 7.934 204 12 44
125 4.012 5.622 6.062 5.721 299 1.7 5.9
5 120 1.938 3.326  3.683 3.409 43.1 25 8.0
115 0.545 1.404 1.624 1.481 63.2 52 9.6
112 0.127 0.622 0.751 0.708 82.1 123 6.0

Table 4.2: Up-and-out call options price results, varying H and m. The option
parameters are So = 110, K =100, 0 = 0.3, r =0.10, ¢ = 0.0 and T'=0.2.

Continuous Trinomial Relative error

Barrier H BGK  Method (in percent)
Panel Barrier (1) (2) (3) (1) (2) (3)
155 6.798 7.270  7.290 7.274 6.6 0.1 0.2
A 140 2.916 3.251 3.265 3.254 104 0.1 0.3
125 0.566 0.693 0.699 0.695 186 0.2 0.6
140 3.766 4.516 4.578 4.531 16.9 0.3 1.0
B 130 1.576 2.086 2.130 2.097 249 05 1.6
120 0.331 0.541 0.561 0.546 394 09 28
140 7.171 8.277 8.354 8.296 13.6 02 0.7
C 130 3.653 4.550 4.608 4.565 20.0 03 0.9
120 1.110 1.629 1.659 1.637 322 05 14

Table 4.3: Up-and-out call options price results, varying K, ¢ and T. The option
parameters are Sop = 110, r = 0.1 and ¢ = 0.0 for all panels. Panel A has K = 100,
o =0.3,T =1 and m = 250 (daily monitoring). Panel B has K = 100, ¢ = 0.6,
T = 0.2 and m = 50 (daily monitoring). Panel C has K = 90, 0 = 0.6, T = 0.2
and m = 50 (daily monitoring)
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other parameters influence the accuracy of the approximation.

It is of course not possible to draw any certain conclusions from just
numerical examples. But the results presented here indicate that the ap-
proximation gives good results for large values of m and if the barrier is not
too close to the initial asset price.
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Chapter 5

Estimating the Wiener
Measure of Cylinder Sets
Using the Trinomial Method

5.1 Introduction

The aim with this chapter is to design a numerical method to determine the
Wiener measure of a certain cylinder set. To be more precise, if we let the
probability space (2, F, P, {F; }+>0) be defined as in Chapter 2, then our aim
is to find a good estimate of the probability

P(Ac) = P( VVT1 (S Il, I/VT2 S _[2,... ,WTm S Im), (5.1)

where, for each ¢ = 1,2,... ,m, T; = iT, T > 0, and where I; is the open
interval (a;,b;), —00 < a; < b; < oo . In other words, our aim is to find
an approximation of the probability that a Brownian motion at time 7; is
greater than a; and smaller than b; for each 1 =1,2,... ,m.

It is also possible to interpret the probability above in terms of a Gaussian
random walk. If {S,}°° ; denotes a Gaussian random walk, say

Sn =G
=1

where {(;}5°, is a sequence of independent and normal distributed random
variables with mean 0 and variance o2, then the probability of the event
[Si€ L, i=1,2,...,m]is equal to P(A.), with T = o2.

The problem of computing the probability in equation (5.1) arises in
different fields of mathematics, for instance sequential analysis, insurance risk
theory, queue theory and financial mathematics (see [Si2], [As] and [BGK2]).
In this chapter we will show a financial application of the numerical method
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(5Tb,)

2Th,
1k (Ti) (2Tb,)

Figure 5.1: A Brownian path that goes through five windows.

mentioned above. More precise, we will give an application to the pricing of
discrete barrier options.

Methods to evaluate the probability P(A.) and related problems have
been discussed in the literature before. Siegmund ([Si2], p.49) considers
numerical algorithms to compute the probability that a Gaussian random
walk hits a barrier before a certain time. Broadie et al. [BGK2] develop a
method to estimate the price of discrete barrier options. This method will be
discussed in greater details in Section 5.6. Several people have also analysed
the more general problem of computing the Wiener integral

/Q f(@)dP(w),

where P is the Wiener measure. The numerical evaluation of the above
integral was probably first studied by Cameron [C] in 1951. More recently
in 1999 Steinbauer [St] has developed a quadrature formula to estimate the
Wiener integral. In [St] it is also given a detailed discussion about numerical
methods to compute Wiener integrals. For additional information about
Monte Carlo methods, see [BBG].

In this thesis we will develop a method based on the so called trinomial
method (or the explicit finite difference method for the heat equation). Our
approach to this problem can be described as follows. Let for: =1,2... ,m
the function y; : R — R be the characteristic function of the interval I;, that
is

xi(z) =

1 ifxel,
0 otherwise.

Set also v, = X and define recursively

vi—1(z) = (UT(viXi))(x) , TR 1<i<m,

56



where the operators Uy, t > 0, are defined by

Uif)(2) = E[f(z + W1)], z€R,

for every bounded Borel measurable function f : R — R (cf Appendix B).
By applying Theorem 1 in Appendix B we see that

vit(Wr,_, ) = E[vi(Wr ) xi(Wr, ) | Fry_, |

for any ¢ < ¢ < m and hence

m

P(A,) =E[1:[ xi (Wry)]

m—1

=B[ [[ xi (W) Elvm (Wr,,) Xm(Wr,, ) | Fr,, ]
1=0

=5 T x (¥8) v 1(¥r,...)]

—o(0).

Thus, one way to compute the probability P(A.) = v(0) is to determine
the functions v; for 1 = 0,1,... ,m — 1. We are thereby led to the problem
to compute the function z — (Urf)(z) for a given function f and fixed T'.
One well-known approach to solve this last mentioned problem is given by
the trinomial method.

The trinomial method is in some sense based on the central limit theorem.
The idea is to replace the Brownian motion with a random walk, where the
terms in the random walk are lattice random variables with (at the most)
three possible outcomes. To be more precise, let {X;}°; be a sequence
of independent and identically distributed (abbr. ii.d.) random variables
with mean 0 and variance At, where At = T'/n for some positive integer n.
Moreover, assume that

P(X; € {—Az,0,Az}) =1,

where Az > 0. The constants At and Az are dependent of each other (this
dependence will be discussed in greater details in the next section). Let [a]
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denote the greatest integer < a and set!

[nt/T]
Y =3 X, t>0,neN,.
i=1
The central limit theorem then tells us that the sequence of trinomial dis-
tributed random variables {YT(”’T)}fLO:1 will converge in distribution to a
normal distributed random variable with mean 0 and variance 7', that is,
the sequence will converge in distribution to Wp. This gives us reason to

believe that Uj(wn’T) f, where

(Ut(n’T)f)(-T) :E[f(IL'—FYt(”’T))]’ t>0, ne N_|_, Tz €R,

might be a good approximation of Urf, and that is precisely what we are
going to investigate in the Sections 5.2-5.4.

The discussion above gives that a first ansatz to a numerical method to
compute the probability P(A.) is given by

{% - xm (5.2)

Bi1 = UM (6 x), for 1<i<m.

The quantity 9y(0) will then be an estimation of P(A.). With a minor change
we can improve the method above considerably, as will be seen in Sections
5.5 and 5.6.

The chapter is organized as follows. In Section 5.2 we will develop the
relations between the heat equation and the operators U and U™T). Fur-
thermore, in Section 5.3 we will discuss stability and also prove a convergence
result for the sequence {U;n’T) f152,. Based on some results from the theory
of Besov spaces and the rate of convergence in the central limit theorem, we
will in Section 5.4 give some sharp estimates of the convergence rate for the
error which appears when the function Urf is approximated by U;"’T) f-In
Section 5.5 we will return to our original problem of estimating the Wiener
measure for cylinder sets. With the aid of the observations done in Sections
5.2-5.4 we will improve the algorithm presented in equation (5.2). In Section
5.6 we will show how the algorithm can be used to price discrete barrier
options and present some numerical examples and comparisons. Finally, in
Section 5.7 we will make some suggestions for future research.

5.2 The Heat Equation and the Explicit Finite Dif-
ference Method

There is a rich interplay between the heat equation and Brownian motion,
the study of which goes back already to Bachelier in 1900, [Ba|. In particular,

!We use the convention Ef:_kl z;=0for k € Z.
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the function p, defined by the relation

d
ptz) = PWy<z), t>0, z€R,

is a solution to the heat equation, i.e. p satisfies the following partial differ-
ential equation

op 1%

% " 2022 (5.3)

fort >0 and all z € R.

With the aid of this observation we will now construct other solutions to
the heat equation. Let f: R — R be a bounded Borel measurable function
(abbr. f € L*) and define for each z and ¢ > 0

u(t,z) = (Uef)(=). (5.4)
where the operators {U;,t > 0} are defined as in the introduction, i.e.
(Uf)(z) = E[f(z + W)].

By using the symmetry of Brownian motion and changing variables we have
for all £ > 0,

uwwzéﬂW%WWﬁ%)
:/"ﬂx—sm@@M£
R

— [ 1wtz - e
R

The function (¢,z) — p(t,z — &) solves the heat equation for each fixed &.
By differentiating under the integral sign we now get that u is a solution of
the heat equation, too. If, in addition, f is continuous then the bounded
convergence theorem yields

lim w(?,y) = lim E[ f(y+Wy)]

Yy—x Yy—x

= f(x)a

since W; — 0 P-a.s. as t tends to zero.
To sum up, u is continuous in [0,7] x R and satisfies

v —10% in (0,T] xR,
u|t:0 :f on Ra
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for any continuous and bounded function f and any given T' > 0. A function
which satisfies these conditions is said to be a solution to the Cauchy (or
initial value) problem for the heat equation. The function f is often referred
to as the initial value.

There are infinitely many solutions to the Cauchy problem for the heat
equation (see [J], p. 171-173), but if we restrict ourselves to merely consider
uniformly bounded solutions then there only exists one solution (see [KS],
p. 255). This solution must be given by equation (5.4), since the function
(t,z) = (U f)(z) is obviously uniformly bounded by sup,cg | f()|-

There are many numerical methods to solve the initial value problem
for the heat equation. One method which is known as the explicit finite
difference method has great similarities with the trinomial method. This
relationship is the topic of the remaining part of this section.

The idea behind the explicit finite difference method is to replace the
derivatives in the heat equation with the following finite difference approxi-
mations,

ou _u(t+ At z) —u(t, 7)
gy ho) = At

and

@(t 2) ~ uw(t,z + Az) — 2u(t, ) + u(t,z — Ax)
ox2\ (Az)?2 ’

where Az is some positive number and At = T'/n for some strictly positive
integer n. The constants Az and At can be thought of as being the same
numbers as in the introduction. One then looks for a function @ satisfying

w(t+ At,z) —a(t,z)  1a(t,z + Az) — 2a(t, z) + a(t,z — Ax)
T2

At (Az)? (5:5)

for all (¢,z) € A, where
A={(t,z); (t,x) = (iAt,jAz), i =0,1,... ,n, j € Z}.

The set A will henceforth be referred to as the mesh. Moreover, we let
u(0,z) = f(z) for all z satisfying (0,z) € A. On the mesh we will for
simplicity write @;; = 4(iAt, jAx).

By introducing the parameter

the equation (5.5) gives
Uit1,j = Uij = Alij+1 = 2AUij + A1
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At
o5t

. . ® . .
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-15F

Figure 5.2: The mesh, T =1,n =10 and A =1/3.

or, stated equivalently,
Uig1) = )\ﬂi,j-l—l +(1-2X) U5 + )\’l’li,jfl. (5.6)

The above equation has for certain values of A a probabilistic interpre-
tation. To see this, let the random variables {X;}$2, be defined as in the
Section 5.1, which means that {X;}$°, is a sequence of i.i.d. random variables
with mean 0, variance At and with the property P(X; € {—Az,0,Az}) = 1.
If we let

Po = P(X1 = 0) and P1 = P(X1 = A.’IJ) = P(X1 = —A.’L‘),
then E[X;] = 0 and, moreover,

2p1 (Az)? = At

since the variance is equal to A¢. Thus, provided A € (0,1/2] it is possible
to define

pr=A and pg=1-—2\.

Consider once again the recurrence equation (5.6). From the discussion
above we see that, if A € (0,1/2], then this equation may be written as

i1, = Ea(iAt, jAz + X1)] .
Using the relation (5.6) once more, we have

ﬂi+2,j = E[’ZL(’LAt,]AJJ + X1 + XQ)]

61



and hence by repeated application of equation (5.6) we get

l
Uiy = Bla(iAt, jAz + ) Xy)]
k=1

for any integer [ such that 0 <1 <n — 4. We recall that @(0,z) = f(z). By
setting 7 = 0 we therefore obtain

l
;= B[f(jAz+ ) Xi)].
k=1

The expression above for & may be identified as

Uy ;= (Ul(Z’tT)f)(ij) ,

where the operators {Ut(n’T)

tion, that is

,t >0, n € Ny} are defined as in the introduc-

[nt/T]

U @) =E[fe+ Y Xp).

k=1

Up to now we have only considered the case A € (0,1/2]. If A > 1/2 it
will no longer be possible to give a probabilistic interpretation of the explicit
finite difference method. However, for these values of A the method will
no longer be neither stable nor convergent. These concepts, stability and
convergence, are the subject of the next section.

5.3 Stability and Convergence
In this section we will study two different aspects of the collection {Ut(n’T), t>
0, n € N} }. For conciseness, throughout this section we will write U™ in-
stead of U™T). We will establish a convergence result for the sequence
{U;n) 152, for a large class of functions f, but to begin with, we will present
an example which illustrates the importance of the fact that the operators
Ut(n), t > 0, n € Ny, are uniformly bounded in L°, that is, they are bounded
with respect to the norm || f||cc = sup,eg |f(2)|. The example we are going
to show is taken from [T].

Consider the explicit finite difference solution @, defined on the mesh
{(t,z); (t,z) = (1AL, jAz), i =0,1,... ,n, j € Z} with nAt =T, given by
the following Cauchy problem,

Gu—19% in (0,T] xR,
ulg=o=f onR
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We let f(z) = ecos(zm/Axz) where € is a small positive number. We can
think of f as a function representing a small round off error. From equation
(5.6) we know that

1,5 =Af((+1)Az) +(1-2X) f(jAz) + A f((j —1)Az)
= (A=) 4 (1= 22)(=1)7 + A(—=1)71)e
= (1 —4)\)(—1)%e
or, more generally
;= (1 — 40" (—1)e.

If A > 1/2 then the discrete supremum norm of the approximative solution,
l.e.

sup |’l7,z',j| = (4)\ — 1)”6,
0<i<n,jeZ

will tend to infinity as n — oo even if T' = nAt is bounded. Thus very small
perturbations of the initial data, for instance caused by round off errors, may
lead to such big changes in the discrete solution that it becomes useless.

On the other hand, if A € (0,1/2] then the solution % above is bounded
by e. In fact, provided A € (0,1/2] then for any bounded initial value
the corresponding explicit finite difference solution is bounded. This will be
evident if we recall that the explicit finite difference solution % can be written
as

;= (U g)(jAx),

2

where g is the initial value. Clearly,

1T gl < llglloo (5.7)

for all ¢t > 0 and n € N;. Thus, in contrast to the case when A > 1/2, we
see that the solution % is uniformly bounded by ||g|lcc- The fact that the

operators Ut(") satisfy the inequality in equation (5.7) is sometimes referred
to as stability in L*°.

We will next turn our attention to the limit of the sequence {Uj(wn) f1ee,.
Introduce an i.i.d. sequence of random variables {Z;}2°, such that

P(Z;=0)=1-2\ and P(Z =1)=P(Z =—1) =

It is evident that Z; has variance 2\ and that X; =4 AxZ7, where (1 =4 (s
means that the random variables (; and (2 have the same probability laws.
Next suppose that f is a bounded and continuous function and recall that
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A = At/(2(Az)?), where At = T/n. Thus, as a consequence of the central
limit theorem, we have

lim (U§”f)(z) = lim E[f(z+ Az Z)]

n—00 n—00 ‘
=1

n 5.8
St Bl )] Y
=1
= (Urf)(x)

for every z € R.

In many applications it is essential that we can be assured that the se-
quence {U;n) f1oe, will converge pointwise to Urf even for discontinuous
initial values f. In order to generalize equation (5.8) to a larger set of func-
tions than solely continuous functions the next theorem, known as Skorohod’s
representation theorem, will be useful.

Theorem 5.1. Let {(;}i>1 be a sequence of independent and identical dis-
tributed random variables with mean 0 and variance 1, and let Sp, = 1 1 Gi.
There is a sequence of Fy stopping times {T;}i>o such that S, =q W (1) and
T — Ti—1,% = 1,2,... are independent and identically distributed with mean
1.

For a proof of this theorem, see [D], p.404.
The next theorem is partly based on a proof given in [D], p.405.

Theorem 5.2. Suppose f € L*™. Let v denote the Lebesque measure on R
and let Dy denote the set

Dy = {z € R; fis discontinuous at z}.

If v(Dy) =0 then

lim (U f)(2) = (Urf) () (5.9)

n—00

for any x € R.

Proof. Let Y, = > ; X;. The definition of A gives that VAt = Azv2\
and thus

1 1 1
Y=g Ttk T,

VAL " T V2X V2A

where Z;, 1 =1,... ,n are defined as above. The terms in the random walk

1 o0
{E %
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have therefore mean 0 and variance 1, so according to Theorem 5.1 there
exist stopping times {7;}52, such that

1
—Y, =q W(1
for every n > 0 and such that (7; — 7,-1), 4 = 1,2,... is an i.i.d. with mean

1. The scaling property for Brownian motion implies
Yo =a W(T2)
n
since At = T'/n. Consequently

(U ) (z) = E[f(z + Y)]
. (5.10)
=B[f(z+W(T—=))]

According to the strong law of large numbers we have

T, 1 &
f:EZ;(TZ'—Ti_l)
1=
—1

P-a.s. as n tends to infinity, and, as a consequence of this,

w(T %n) - W(T) P—as. asn— oc.

Because v(Dy) = 0, P(z + Wy € Dy) = 0 for each fixed z and therefore
flz+wW(T %")) — f(z+W(T)) (5.11)

P-a.s. for each fixed x as n — oo.
The equations (5.10) and (5.11) in combination with the bounded con-
vergence theorem imply

lim (U )(2) = E[f (s + Wr)] = (Urf)(z)

n—oo

for all z, which is the desired conclusion. [l

One can note that the above result is the best possible in the sense that
one can construct a function f such that v(Dy) = ¢, for an arbitrary number

€ > 0, and (U}”)f)(:v) — a # (Urf)(x), for some z € R. Take for instance
the function f = x4, where x4 is the characteristic function of the interval

A={z;(0,z) € UAn}ﬂ(—gag)-
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The set A, above denotes the mesh for a fixed n, i.e.

T | T . .
An—{(t,w),(t,x)—(zE,j ﬁ),z—o,l,Z,...,n,jEZ}

(cf Section 5.2). It is evident that f is discontinuous at every point in the
interval (—€/2,€/2) and it follows that v(Dy) = e. From the definition of A,
we have for every integer n > 1

U 10) = P13 Xi| < ¢/2).
=1

and hence, according to the central limit theorem,

lim (U™ £)(0) = P(|Wr| < ¢/2) > 0.

n—00

However, (Urf)(0) =0 as v(A) = 0, which completes our example.

5.4 Rate of Convergence

This section deals with questions concerning the rate of convergence of the

sequence Uj(wn’T) f, n=1,2.... The question we will try to answer is as
follows. What conditions on f and X7 imply that the difference
T
U £)(@) = (Urf) (@) (5.12)

for fixed z € R equals o(n™%) or O(n~?) for some a > 0 as n tends to infinity.
This question has been treated in the literature several times. For instance
Berry and Esseen (see [Be| and [Es|) consider the special case when f is
piecewise constant and von Bahr [Bahr| when f is a polynomial. Leimar and
Reisen [LR| analyse the case when f(z) = max(e” — K,0), with K > 0, and
A =1/2. Kreisset al. [KTW] and Heston et al. [HZ] examine the dependence
between the smoothness of f and the convergence rate of the difference
in equation (5.12). Butzer et al. [BHW] investigate the convergence rate
when the initial values f are differentiable functions. Finally, Lofstrom [Lo]
presents sharp estimates on the difference in equation (5.12) uniformly for
all z € R if f belongs to a so called Besov space.

Before we comment these papers any further we will introduce some
definitions. The next definition has its origin in the theory about finite
difference methods (see [T|, p.43).

Definition 5.1. Let ¢ be any random variable such that E[CQ] < o and let
t = Var(¢). We will say that ¢ is consistent of order u, where p is an
integer, if

E[e] = B[] + O(6"2), ¢ -0,

where i is the imaginary unit and £ € R.
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It can be proved that if ( has an absolute moment of order u + 1, i.e.
E[|¢|**1] < oo, and ( is consistent of order u then E[(¥] = E[W[], where
t = Var(¢), for all positive integers k < p + 1 (see [D], p.101).

If ¢ is consistent of order p then it is also consistent of any order less
than y. For this reason one sometimes say that ¢ is exactly consistent of
order y if ¢ is consistent of order p but not consistent of order u + 1.

Consider next the random variable X, where X = X; with X; defined
as before. Recall from Section 5.2 that

P(X=0)=1-2X and P(X =Az)=P(X =—-Az)= A
where 0 < A = At/(2Az?) < 1/2. The random variable X can be exactly
consistent of order 2 or 4 depending on the value of A. To see this, note that

from Taylor’s formula we have as £ — 0,

E[e®*] =1 —2X\ +2) cos(¢Ax)

N NG,
=l-22=—+22 =) + 0(¢°)

_, At Ay

=1ty gy TOE©)

= exp(~ At €2/2) — L€ (MNP (1 - ) + 0.

Since E[exp(i & W(At))] = exp(—At£2/2) we see that X is exactly consis-
tent of order 2 if A € (0,1/6) U (1/6,1/2] but if A = 1/6 then X is exactly
consistent of order 4.

A consequence of the discussion above is that the trinomial method com-
putes exactly when the initial value f is a polynomial of degree u+ 1, where
1 is the consistency number for X.

Next we will introduce certain Banach spaces known as Besov spaces and
below denoted by B3, s > 0. The Besov spaces are subspaces of the Banach
space Cy, where Cj denotes the class of all continuous functions f : R —+ R
such that

lim f(z)=0

r—+o0

equipped with the norm ||f|lc, = maxzer |f(z)].

The norm in the Besov space By, henceforth denoted || - ||Bs , is given
as follows. Set s = k + vy, where k is a nonnegative integer and 0 < vy < 1.
If 0 <y <1 then

1
11 gss = llfllco +sup 2= ID*f (- + 1) = D¥f()llco
h>0
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where D¥f denotes the k:th derivative of f. If 7 = 1 we set
1
£l g =[1flleo + sup EIIDkf(- +h) = 2D*f(-) + D*f(- = h)llcs -

In the literature there exist many other equivalent definitions of the norm in
the Besov space B . The definition here is taken from [BTW].

Thus, if f € BS, for some integer s > 0, which implies v = 1 and
k = s—1, then f must have a k:th derivative where D* f satisfies a Zygmund
condition, i.e.there is a constant C such that for each z,h € R we have

|D*f(z +h) — 2D* f(z) + D*f(z — h)| < C|h|.

Ifo0<y<land f € BE"™ then Dk f exists and satisfies a Hélder condition
with exponent -y, i.e. there is a constant C such that for every z,h € R we
have

| D*f(z+h) — D*f(2)| < Clh|".

One property for the Besov spaces states that if s; < sg then Bl D B32
(see |[BL], p.142). Thus the functions in B2 are generally smoother than the
functions in Bf.. Much more can of course be said about Besov spaces, but
we refer the interested reader to [BL|, Chapters 6 and 7, and the references
therein.

We shall introduce yet another Banach space, below denoted A%, s > 0.
The space A is a subspace to Cp. In order to define the norm in this space,

let the operators V;(Az), where ¢ > 0, be given by
n
(Aa) _ _ _ [t
(V7% £)(z) —E[f(w-l-iz:;X,)}, where n = [2(A$)2>‘],

for all z € R and f € L. It is clear that (V;(Ax)f)(a:) = (Ut(n’T)f)(a:),
provided 2A(Az)? = T/n. The norm in A  is defined by

_ A
Ifllas. = Ifllco + sup  sup (Az) * VA2 £ — Uit
0<Az<1l tERA,

where Ra, = {At,2At,...} with At = 2)\(Az)?.
The following striking result is due to Lofstrom (see [Lo], p.408).

Theorem 5.3. Suppose that X is consistent of order u. Then
A, =By, 0<c¢<uy,
with equivalent norms. Moreover, if f € Cy and
A
sup || VA1 —Tif lley = o((Az)"),  as Az =0,
te Az

then f = 0.

68



Thus, the convergence rate is closely related to the smoothness of the
initial value f and to the moments of X;. In particular, if f € BS, and
if Xy is consistent of order y, Theorem 5.3 yields that there is for each
¢ < min(u, s) a constant C, independent of f and n, such that

T c
1UF " =Urflley < —51fls., > 2XT.

Consequently, if f € B, and if X is consistent of order y then

(U f)(@) = (Urf)(@) | = 0(n™®), asn — oo, (5.13)
where

a=; min(y, ).

In particular, if Df belongs to Cy and satisfies a Zygmund condition, then

|(UF ) (@)~ Urf)(@)]| = O(1/n), asn— oo,

for any € R and any A € (0,1/2]. If, in addition, D3f € Cy and D3f sat-
isfies a Zygmund condition and, furthermore, A = 1/6, then the convergence
rate is quadratic, i.e.

|(@ D f)(@) = Urf)(@)| = 0(1/n?), asn— oc.

In the literature there are results similar to the one in the equation (5.13)
derived from Taylor expansions of the initial value f or U f. See for instance
the work by Butzer et al. [BHW]| or Heston and Zhou [HZ|. However, the
results by Butzer et al. and Heston et al. require more local regularity of
the initial value than in Theorem 5.3.

Much more can be said about the relation between the smoothness of
the initial value and the rate of convergence for the trinomial method. We
recommend [KTW]| for a further discussion.

Next we will focus on the convergence rate when the initial value f is
discontinuous. Since such functions are not included in the Besov space Bg,
for any s we have no use of Theorem 5.3. For this problem the works of
Berry and Esseen in the fourties are of great value (see [Be| or [Es]). By
using methods from Fourier analysis they were able to show the following
famous theorem.

Theorem 5.4. Let {(;,i = 1,2,...} be a sequence of i.i.d. random variables
with mean 0, variance 1 and finite absolute third moment. There is a constant
C only depending on the third absolute moment such that the distribution
function Fy,(z) = P(ﬁ Yoy G < x) satisfies

|Fu(w) — ®(z)| < C/v/n (5.14)

for any x, where ® is the standard normal distribution function.
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Let x4 denote the characteristic function for the set A C R and set

Ja = X(—c0,a]- Moreover, let U}n) = U;n’T). As a consequence of equation
(5.14) we get

(U fa) () — (Urfa)(z) | = O(1/v/n), asn — oo, (5.15)

for any z. It is possible to show that the convergence rate in (5.15) cannot
be better than n~'/2 for the special case A = 1/2. More precise, if A = 1/2
then

1
2y/mn

where a,, ~ b, means a,/b, — 1 as n tends to infinity. We will now finish
this section with a proof of equation (5.16). The proof is taken from [Es].
It is evident that

| (U™ fa)(a) = (Urfa)(a) | ~

(5.16)

(US f2)(a@) = P(¥an <0) = £ (1+ P(¥a, = 0)).

where Y, = >, X;. If the random walk Y ends up at 0 after 2n steps
it has jumped upwards n times and downwards the same number of times.
Since there are (27:‘) numbers of such outcomes, each having probability 2727,
we have

P(Yay, = 0) = (2”)22”.

n

Stirling’s Formula tells us

n! ~n"e "V27n.

Thus
P(Ya = 0) = (2n)! g=2n (2n)2" Varn og—2n _ 1
(n!)2 n?n 2mn Vv
and therefore
1

| (U™ fa)(a) — (Urfa)(a) | ~

2y/mn’

We are now ready to deal with the main problem of this chapter.

5.5 Estimating the Wiener Measure of Cylinder Sets
Using the Trinomial Method

In this section we will return to the problem of estimating the Wiener mea-
sure of the cylinder set A, where A, = {w € Q; w(iT) € I;, i =1,2,... ,m}
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with I; = (a;,b;) and —oo < a; < b; < oo for i = 1,2,... ,m. Recall from
Section 5.1 that P(A.) = v9(0), where v is given by the following recursion
scheme

Um = Xm>
vi—1 = Ur(v;x;), forl<i<m.

Above y; denotes the characteristic function of the interval I;.
First, since

vm-1(z) = (Urxm)(z)
_ ®<x—bm) _¢)<w—am)’
vT vT

the function vy,—1(z) can easily be evaluated at arbitrary points z by using

some approximation of the normal distribution @ (see for instance [Hull|,

p-242). So in the following we will assume that we start the recursion above
from the function v, 1.

As described already in Section 5.1, for each 7 = 1,2,... ,m — 1 it is

natural to estimate the function v;_1 by Uq(wn’T) (vi xi)- There is, however,

one disadvantage with this approach. For any ¢ = 1,... ,m — 1 the function

v; X; 1s discontinuous at the boundary points of the interval I; and, according
to the discussion in the preceding section, a discontinuous initial value f may

(5.17)

cause a slow convergence of the sequence {U}"’T) F152, as n tends to infinity.
But suppose for a moment that f can be written as

f=¢—y, (5.18)

where g is a function such that Ur g can easily be evaluated analytically and
¢ is in some sense a smooth function. Then the discussion in Section 5.4
gives us strong reasons to believe that one will obtain a better estimate of
Urf by using

U;”’T)¢ —Urg

instead of U%n’T) f- Our next aim is to show how the functions v;y;, 2 =
1,...,m — 1 can be decomposed as in equation (5.18).

For the sake of simplicity, assume that I;,7 = 1,2,... ,m—1, are bounded
intervals, that is a; > —oo and b; < oco. We will return to the special case
when some of the intervals may be unbounded later on in this section.

Fix i such that 1 <7 <m — 1. Note that the function

(t,z) = (Ut (vig1 xi11) )(z), t>0, z€R

is a solution to heat equation and therefore must be infinitely differentiable
with respect to both ¢ as well as z (see [KS], p.254). In particular, we have

71



v; € C®(R), where C*°(A) denotes the class of all infinitely differentiable
functions on the open set A C R.
Next, consider the functions

d

o
Ya(z) —67‘“”“’ k—]:x—a,k
k=0
and

d
bi) /Bk
o) =m0 3 e g

k=0

Here we assume that d is a positive integer. The constants 7, and 7, can be
thought of as a positive and a negative number, respectively. However, we
will for the moment put no restrictions on -, or 5. The coeffecients oy and
B above are chosen such that 1, and 1, equal the function v; and its first

(i) = 9 ()

d derivatives at the points a; and b;, respectively. Thus v;
and ’U ( i) = wbk)( b;) for each k =0,1,...d. The Leibnitz rule gives

Thus we can define ay, recursively by
k—1 k .
ap = ng)(ai) — Z (j)'yff_]aj, k=0,1,...,d.
j=0

Similarly, G is given by
k—1 Ek '
ﬁk:IUz(k)(bi)_ (>7§J/8]7 kZO,]., ad'

In practice, however, we will not (or rather cannot) differentiate the
function v; in order to estimate the coefficients aj, or F;. Instead we will use
numerical differentiation. This step will be described in greater details later
on in this section.

Now set

gi = Ya X(—00,a4] + ¥y X[b;,00)>

where x4 denotes the characteristic function of the interval A, and
¢i = vixi + gi-

72



0.5- =¥

0.4 \

@) \
0.21 ’ \
Yy

/
oiF N

Figure 5.3: The functions v;, ¥, and 1. The solid line is the graph of x — v;(x)
for x € I;. The dashed lines are the graphs of x — 1, (x) and z — p(z) for x < a;
and x > b;, respectively.

Hence
Yo(z) if z <ajy,
di(z) = vi(z) ifa; <z <b
Pp(z) if x> b
The function ¢; is obviously d times differentiable and, furthermore, since

the d:th derivative ¢§d) is continuous and belongs to C®°(R \ {a;,b;} ), the

function ¢§d) satisfies a local Zygmund condition, i.e. for each fixed M > 0
there exists a constant C such that for each z,z + h € [—-M, M| we have

169 (@ + ) — 26 () + {” (= — B)| < CIh.

If, in addition, we assume that v, > 0 and 7, < 0 then qu(d) € Cyp and thus
¢ € ng . Since Urg; can be evaluated using the normal distribution and
elementary functions (see Lemma 5.1 below), we have obtained the desired
decomposition

ViXi = Qi — Gi

as in equation (5.18). Moreover, note that if d > 3 then ¢; € BL . Thus, if
d =3 and A = 1/6 then we get |(U¥1’T)¢i)(:c) — (Ur¢i)(z)] = O(1/n?) as
n — oo.

To sum up, the method we propose can be described as follows. The
Wiener probability P(A.) =~ 99(0) where 9y(0) is determined by the following
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recursion scheme (where, of course, we only calculate the functions 9;, i =
1,2,... ,m — 1 at the mesh points).

) =3(E2) -o(77).

(5.19)

Vj_1 = UT(P’T) ("jiXi + gi) —Urgi, for1<i<m-—1.
Here for each i = 1,2,... ,m — 1 the function g; is defined in analogy to the
above, the coefficients {ay }4_, and {8k }¢_, are chosen such that 1/)(2’“) (a;) =
'F;l(k)(a,-) and wgk)(bi) = 6§k)(bi) for k = 0,1,...d. As mentioned above, the
derivatives of ¥; will be determined by numerical differentiation (see below).

Some remarks are in order before we derive an analytical expression of
Urg;. It remains to determine the parameters A, d, v, and ;. We will deal
with this problem in the next section.

As we have already mentioned, since the function ¥; is merely calculated
at discrete points we will need to find a method to estimate the derivatives
of 9; at the boundary points of I;. Since we will solely use the algorithm in
equation (5.19) for d < 3 it suffices to estimate the first three derivatives. A
natural approach to this problem is to differentiate an appropriate interpo-
lations polynomial. If we let j, be the smallest integer such that j,Az > a;
and let g, be the (interpolation) polynomial of degree 3 which satisfies

Qa((ja + Z)AI) = ’61((]0. + I)A.T) 3 l= _27 _]-a 07 ]-a
then the first three derivatives at the boundary point a; can be estimated by

d*o; d
W]j(al) ~ %q]:(ai) , k=0,1,2,3.

In a similar way we obtain approximations for the derivatives at the boundary
point b; from the equations

dk s,

dk
e (b) Dy, k=0,1,2,3

= dzk

where ¢, denotes the polynomial of degree 3 which satisfies
Qb((jb-f-l)AiE) :6Z((Jb+l)A$) ) l= _17071727

and where jp is the greatest integer such that jyAz < b;.

So far we have assumed that a; > —oo and b; < 00. If a; = —oc or b; = 00
for some 4, then we simply let g;(z) = 1¥4(%)X[b;,00) OF 9i(%) = Pa(T)X(=00,a;]>
respectively, in the equation (5.19).

Using the following lemma, the functions Urg;, i = 1,2,... ,m — 1 can
be evaluated in an efficient way.
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Lemma 5.1. Let p(z) = L&(z). If

9 =1 X(—o0,a] + X[b,00)

where ¥, and ¥y are defined by

d
— ¢al k(g —
% = el "™ a) X .’L' a
k=0
and
L B
i) = en @D Y L @y
k=0
then
d Qg a—x
_ Ya(z—a —I—'ya /2 —M B _ T
(U1 9)(w) =e 3 (Ml =)
we R T2 (P qykpy 7
te b Z(k k(\/T‘l")’b\/_))
where
d—k a
Tk/QZ ik (0 g 4 ,T)
=0
and
) d—k ﬁ . .
Br=T>>" %(35 —b+ )
i=0
and where the functions My, are defined recursively by
B(y) if k=0,
M (y) = { —»(y) ifk=1, (5.20)

yk_l Ml(y) + (k - 1) Mk—Z(y) 1fk = 2133 s ad'

Proof. Let &y be defined as above and let 4, = v, VT . If we set @a(E) =
ha(z + VTE) then

A

(67

,(ﬁ (é‘) — e'Ya Tr— a)"")’afz _ f ')’a )

=

75



since for any £ =0,1,... ,d,

d—k
:Tk/QZaZ+k( +\/_'Ya_a/)

1=0

dk d o; JT
(—kzz—‘x+ £—a))

=0

§=%a

~

= Q.

Let hy = (a - x)/v/T. The scaling property for Brownian motion and the
definition of 1, give

( Ur (% X(—o00,a] )) (37) =K [% (-T + WT) X(—00,d] (:E + WT) ]
=E [ (W1) X(—o0,ha] (W1) ]

—evawz / € (€ — o) ().

Note moreover that

ha 5
/ 96 (6 — ) Fp(€)dt = / (€ — 4u)F B2 (€ — 4a)de

-0

ha—%a
2 / " ek p(e) de.

—00

Thus, if we set

= [ ot (5.21)

d

( Ur (¢, X (~o00,a] ) )(:E) — e%(wfa)+‘7§/2 k'
k=0

for each integer k > 0, then
Mk(h —%a)-
By using a similar argument as above we get
(Ur (91 Xip)) ) () = (@ D502 Z /h ol
k= b—"Tb

where hy = (b—z)/v/T and 4 = v»v/T and where the [i’k:s are defined as in
the proposition. From the symmetry of the normal density we now conclude

(Ur (%6 Xjpoo)) ) (z) = 7070 J+35/2 Z ﬁ]'c )F My (4 — ho)-

76



It remains to show that the functions My, k = 0,1, ... ,d, satisfy equation
(5.20). It is evident that My(y) = ®(y). Since d%(p(é“) = —&p(&) we also have
M;(y) = —(y). Partial integration now yields for k > 2

M) = —¢ ol +-1) [ e ol

= yk_l Ml(y) + (k? - 1) Mk_g(y) .
O

Let us make some comments about the computional complexity before
we finish this section. Note that for each fixed i = 1,2,... ,m — 1 O(n)
computations are required to calculate the function Urg; in equation (5.19).
On the other hand, for each 4 = 1,2... ,m — 1, the number of computations
to evaluate the functions U;n’T) (03 xi +gs) or U;n’T) (%; x;) is of order O(n?).
Thus, the correction term Urg; added to the trinomial method will not to
any appreciable extent extend the computional time. However, since the
algorithm in equation (5.19) requires several evaluations of polynomials it
is possible to improve the performance of the algorithm by using Horner’s
Scheme (see [RW], p.372), which is an efficient way to evaluate a polynomial.

5.6 Numerical Examples and Conclusions

In this section we will compute the value of a discrete double barrier option
using the method described in the previous section. The theoretical price v
at time ¢t = 0 of a discrete double barrier knock-out call with expiry date T,
is given by

Assume for the sake of simplicity, that the barriers H; and H, and strike
price K satisfy H; < K < H,. Moreover, assume that the monitoring dates
M ={Th,Ts,... , Ty} are equally spaced in time with T = T; — T;_1 and
set for each ¢ = 1,2,... ,m,

_ In(H,/S) — pT; _ In(Hy/So) — pT;

a; and b; =
o o

where g = r — g — 02 /2. Introduce the cylinder set
Ac={a; <Wp <bj,1=1,2,... ,m—1}.
The Markov property now yields
v=e¢ "TmE? [max( St,, — K, 0) 1{Hl<St<Hu,teM}]
:e_’"TmflE[E[e_’"T max ( SoettmtoWr, _ g 0) Yapm<Wr,, <bm}|me—1] 14, ]

=e "I E[ (Urf)(Wr,,_,) 14, ] ,
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where f(z) = e™"" max(Spe*TmtoT — K, 0) X( am, bm) (%) So if we modify the
recursion scheme in equation (5.19) by letting

Om-1(z) = (Urf)(=),

then e "Tm-14,(0) will be our approximation to the theoretical price v.
First of all we need to derive an explicit expression for #,, 1. To this
end, let

s(x) = SpeHTm-110%,

Moreover, introduce the sets By = {aym —z < Wp < by, — z} and Cp =
{Wr > c¢—=z} where ¢ = (In(K/Sy) — pTr) /0. Using Lemma 2.1 a last time
in this paper yields

Um—1(x) :efrTE[max(s(x) etTToWr _ K () 1g,]
=e "TE[(s(z) e’ — K)1p, 1¢, |
=s(x)e " P(B,NCy —<) — Ke""P(B, N Cy),
where ¢(t) = ot. Hence

z+ o1 — by, z+oT —c
)

K (o ) (" 20))

D1 (z) =s(x)e” 1" (<I>(

since a;, < ¢ < by,.

We are now in the position to present some examples. In Figure 5.4 we
present the difference between 7y(0) and v as a function of n for different
values on d. In this first example we have chosen A to be 1/3 and v, = 7, = 0.
The option price is approximately 1.2624 (cf the straight line in Figure 5.4).
Consider first the case when we use just the basic trinomial method and do
not add (or withdraw) any polynomial. The corresponding price is denoted
d = —1 in Figure 5.4. We see that the convergence is slow and oscillating.
If we add a polynomial of degree d = 0 the convergence is more regular but
the rate of convergence seems to be more or less the same. In contrast to
these examples, when d is equal to 1, which corresponds to differentiable
initial values, we get a faster and smoother convergence. When d = 2 or 3
the convergence rate do not increase. In fact, it becomes slower.

Figure 5.4 reflects very well the convergence behaviour for the proposed
method for all choices of A € (0,1/2] except A = 1/6, that is, when X is
consistent of order 4.
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Figure 5.4: Convergence rate for the proposed method when A = 1/3 and ~, =
v = 0. The option parameters are Sy = 100, K = 90, H; = 80, H, = 120,
c=03,r=0.1,¢q=0.0, T, =1 year and m = 50 (number of monitoring times,
corresponds to weekly monitoring).
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Figure 5.5: Convergence rate for the proposed method when A = 1/2. The other
parameters are as in Figure 5.4.
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Figure 5.6: Convergence rate for the proposed method when A = 1/6. The other
parameters are as in Figure 5.4.

In the next two figures we present the convergence rate for d = 1,2,3
and A = 1/2 (the binomial method) and A = 1/6, respectively. The option
parameters are the same as in the previous example.

In the special case A = 1/2 we see in Figure 5.5 that the convergence
pattern is roughly the same as in the case A = 1/3. On the other hand, if
A = 1/6 we see in Figure 5.6 that the method obtain the best convergence
rate when d = 3. In Table 5.1 we have collected the prices obtained for
different values of A and d. The table clearly illustrates that the fastest
convergence occurs when d = 3 and A = 1/6. Finally, Figure 5.7 shows how
the smoothing of the initial value improves the convergence rate.

In the next example we shall investigate how the values of v, and -,
influence the error, or rather, if there is a difference in the convergence rate
in the two cases v, = v, = 0 and v, > 0, 7, < 0. From a theoretical point
there is distinct difference between these cases. If 7, > 0 and 7y, < 0, then
the function g (cf Section 5.5) is bounded, whereas if 7, = 7, = 0 then
g(z) = O(z?%) as x tends to infinity.

Recall that the density function for the standard normal distribution
decreases as O(e_””z/ 2) as z tends to infinity. Thus we believe that the growth
in g has hardly any greater impact on the rate of convergence, as the example
in Table 5.2 indicates. Unfortunately, we have not been able to prove this.
Hopefully future research will bring an answer to this problem. But still,
we suggest that the algorithm in equation (5.19) should be used with the
parameter values d = 3, A = 1/6 and 7, =y, = 0. Setting 7, = 7 = 0 has
one practical advantage, the algorithm is easier to implement.

In the final example we have compared our method with an algorithm
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n o d=1,A=1/3 d=1A=1/2 d=3,A=1/6

3 1.2539 1.2578 1.2605
4 1.2559 1.2555 1.2623
5 1.2566 1.2586 1.2619
6 1.2572 1.2581 1.2623
7 1.2581 1.2581 1.2624
8 1.2591 1.2576 1.2623
9 1.2589 1.2576 1.2624
10 1.2595 1.2588 1.2624
11 1.2594 1.2590 1.2624
12 1.2599 1.2586 1.2624
13 1.2604 1.2605 1.2624
14 1.2601 1.2597 1.2624
15 1.2604 1.2594 1.2624
16 1.2608 1.2591 1.2624

Table 5.1: Convergence rate for the proposed method for different values on A and
d. The option parameters are as in Figure 5.4.

1341

— d=1
#——* d=3

1321

V=)
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N
@

I
2 4 6 8 10 12 14 16
n

Figure 5.7: Convergence rate for the proposed method when A = 1/6. The other
parameters are as in Figure 5.4.
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n Y =00 =01 =1 =10

1.2605 1.2605 1.2606 1.2608
1.2623 1.2623  1.2623 1.2625
1.2619 1.2619 1.2619 1.2620
1.2623 1.2623  1.2624 1.2624
1.2624 1.2624  1.2624 1.2624
1.2623 1.2623  1.2623 1.2623
1.2624 1.2624  1.2624 1.2624
1.2624 1.2624 1.2624 1.2624
12 1.2624 1.2624  1.2624 1.2624

== B0 RN JS NI

Table 5.2: Convergence rate for the proposed method for different values on 7,
and 7. The value on d, A and v, are 3, 1/6 and —~,, respectively. The option
parameters are as in Figure 5.4.

BGK BGK H
N (2-pt Extrapol.) | N
256 9.4969 40  9.4895
504  9.4935 9.4899 60 9.4907
1240 9.4919 9.4907 80  9.4907
2308 9.4912 9.4905 100 9.4906
4524 9.4909 9.4905 120 9.4905
8632 9.4907 9.4905 140  9.4905

Table 5.3: The value of a discrete down-and-out call, the option parameters are
So = K =100, H = 95, Ty = 0.2 year (time of maturity), o = 0.6, »r = 0.1, and
q = 0.0. There are 4 monitoring dates which are equally spaced in time, i.e. the
monitoring dates are given by {At,2At,3At,4At} where At = Ty/4. N denotes
the total number of iterations, i.e. N = 4n. The trinomial parameters in H are
Yo=7 =0,d=3and A =1/6.
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developed by Broadie et al. (see [BGK2]) which is designed to estimate the
value of discrete (single) barrier options. For simplicity we henceforth call
this method the BGK method. The BGK method has similarities with the
overshoot method presented in Chapter 4. A discrete barrier at place H is
replaced by a discrete barrier at place H exp(+0.50Az), with + for an upper
barrier and — for a lower barrier. The factor 0.5 is the trinomial analog of the
factor 8 described in Chapter 4. Subsequently the theoretical value is com-
puted using the trinomial method on a mesh with the property that certain
nodes on the mesh coincide with the new barrier. Numerical experiments
in that paper indicate that the convergence rate for the method is O(1/N).
In order to increase the convergence rate a Richardson interpolation is used.
For further details, see [BGK2].

Table 5.3 shows results from the different methods. The values in the
second and third column are taken from a numerical example in [BGK2].
The BGK method has been used with as well as without Richardson extrap-
olation. In the final column we have the values from the method presented
in this work. As we can see, in this example the method presented in this
paper outperforms the BGK method.

5.7 Suggestions for Future Research

We shall conclude this chapter with some suggestions for future research
and potential improvements of the algorithm. The research presented in this
chapter leaves certain questions unanswered. It would be of great interest
to know how the estimations of the derivatives ﬁgk), 1 =1,2,... ,m—1,
influence the total error, i.e. the difference between 79(0) and P(A4.). A
better insight in this problem may lead to better methods to estimate the
derivatives.

It would also be of great value to prove certain modifications of Theorem
5.3. In our application we are perhaps more interested in pointwise estimates
of the error rather than estimates in the supremum norm. It seems plausible

that the convergence rate for

U ) (@) — (Ur f) () (5.22)

for some fixed £ mainly depends on f around some neigbourhood of z. There-
fore it may be possible to derive sharp point-wise bounds for the difference
in equation (5.22) without having to assume that the initial value f is in Cy
(for instance).
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Appendix A

The purpose of this appendix is to state the Cameron-Martin theorem,
which is frequently used in this work, and to this end we need some defini-
tions. Let (2, F, P,{F;}+>0) be our probability space, defined as in Section
2.2. In addition, assume 7 : [0, T] — R is a deterministic function in L2[0.7],
ie fiom n%(t)dt < oo where T is a fixed positive number. Set

t t
7 = exp(— /0 72 (s)ds + /O n(s)dWW,)

for ¢ € [0,T] and introduce a new measure, denoted P", defined by
P"(A) = EP[1427], A€F.

Because Z7 > 0 the measure P" must be equivalent to P. Furthermore, Z
is a martingale with respect to (P, F;;0 < ¢t < T) (see [KS], p. 191 and p.
199). As a consequence of the martingale property we get

P"(Q) = EF[Z7]
= E"[Z]
=1

and it follows that P7 is a probability measure. Cameron-Martin’s theorem
now tells us, how one can construct a P"-Brownian motion with the aid of
a P-Brownian motion W.

Theorem 1. Let
t
W =W, —/ n(s)ds
0

for t € [0,T] where n is defined as above, then W" is a Brownian motion
with respect to (P", F1;0 <t <T).

For a proof of this theorem, see [KS], p. 190.
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Appendix B

The topic of this appendix is the strong Markov property for Brownian
motion. As the name suggests, the strong Markov property is a generaliza-
tion of the Markov property. Intuitively the Markov property says “if s > 0
then Wiy — W, t > 0 is a Brownian motion, independent of what hap-
pened before time s”. The strong Markov property says that this also holds
for bounded stopping times, that is, “if A is a bounded stopping time then
Wiin — Wa, t > 0 is a Brownian motion, independent of what happened
before time A”.

To be able to give a more rigorous description of the strong Markov
property, we will need some definitions. Let (2, F, P, {F;}:>0) be our prob-
ability space, defined as in Chapter 1. Introduce also a collection of oper-
ators {Uy}¢>0 defined on the set of all bounded Borel measurable functions
f : R — R in the following way

Ui f)(z) = B[f(z + Wy)].

The strong Markov property for Brownian motion can now be described as
follows,

Theorem 1. Let f : R — R be a bounded Borel measurable function. If A
is a stopping time with respect to {F;} such that A < T, where T is a fized
positive number, then

BIf(Wr) | Fal(@) = (Ur—a@)))(Wa) @) P-u.s.

For a proof of this theorem, see [KS], Section 2.6.
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