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Parameter estimation in heterogeneous catalysis

Jonas Sjoblom

Chemical Reaction Engineering, Department of ChemicdlBialogical Engineering
Chalmers University of Technology

Abstract

The detailed modelling dieterogeneous catalytsystems is challenging due to the unknown
nature ofnew catalytic materialas well as th@ftenrequired transient nature of the resui
models.Thus, his thesisdeals with the methodologies involved in the kinetic modelbig
heterogeneous catalysis and in particlN#x reduction systems. The methods presented
increase the understanding of the interplay between model parameteiscadéaiease the
number of necessary laboratory experimenhte effect of more efficient parameter estimation
methods should result in faster model development which is requireany process
development but especially for catalytic emission control.

In the first paper injection parameters for an engine rig with a,N8&torage and Reduction
(NSR) system wereptimised using different experimental designs at different load points.
The optimised settings were used as a map for a control st@egplyingwith a European
Transient Cycle (ETC).

In the seconghaper, we developed a method thapes with the large number of unknown
model parameters by applying a Latent Variable (LV) model to the Jacobian matrix in the
fitting procedure The LV model resudtin a lowdimensional approximation of the Jacobian
with reducel parameter correlation amshablesmproved efficiencyin parameter estimation
In the third paperExperimental design for precise parameter estimation was performed in a
batchsequential way sing D-optimality asthe objective function. A screening methodology
similar tothat used fodrug discovery in the pharmaceutical industry was applied farge
number of simulated candidate experiments. By applying\amodel to the Jacobian of all
these experiments, a reduced parameter correlation was obtained and the number of necessary
experiments was reduced. The restritsn the second and third papginpoint a number of
benefits of using LV models including:
1) the determination of the effectivank, i.e. the number of independent phenomena
present in the data at hand,
2) the analysis of the correlation structure which is useful in the parameter assessment and
3) the linear approximation in few dimensions enables more efficient computations.

In the burth paper,a detailed model for the Selecti@atalytic Reduction of NQ using
Hydrocarbon as a reducing agent 3CR) over silver alumina (Agl.03) was developed.
By applying an experimental design to the steady state levels and also selectingattueirun
improved fitting properties were obtained dugheincreased parameter sensitivity enabled by
the transient experiments.

This thesis also contairsdescription of the modelling techniques and challeegesuntered

during this thesiproject An assessment of the importance as well as the pteaowgrelation

is given. Thisdemonstrates the intimate interplay between model assumptions and the
stipulated model parameters and exemplifies a thorough assessment of the whole modelling
chain from intial experiments to model validation.

Keywords: Parameter estimation, Jacobian, Latent Variable models, Experimental design,
Design of experiments, microkinetic modelliggterogeneous catalyssensitivity analysis
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PREFACE

Having wandered around in both professions as well as imenétis amazing how important
pictures are to mankind. Pictures arediso efficiently send messages di@he picture says
more tharat h o u s a n {Chimeserpib\erd) goes without saying. But pictures are still just
projections of the complex realityodn to a more manageable format. Nevertheless | also feel
the need for an illustration of this thesis

The search for a perfect fit is like reaching 1500 meter above sehdewsdwhere irBarek,
Laponia SwedenThe way to get there is to draw a rhapd find you way through. How to

reach the peak of the mountain is of secondary interest as long as you get there. There are
helicopterd even though they are not allowed at all places in Sarek. If yoinrtire terrain

you can cover a large area in yogasch but if you doot watch out you may slip and fall

badly. If you walk slowly you will not slip but the food may run out for you.

Parameter fitting (using gradient methods) is like searching for that peak ofcdimetain
providedwith a map that you ade yourself or bought really cheap at the gas station and an
altitude indicatot. You are also instructed to only wallphill; downhill will only take you

farther away from the goaBut this timethe weather is compldtefoggy! You cannot see

more thara few meteraway You start to walk andlimb and soon you find yourself on a pile

of moraine. You realize that you are far from the goal and move down fromdkpile, jump

around a bit and restart again, just to findrgalf on another pile a few nmoents later.

Sometimes the climbing goes through cold mountain streams and sometimes through boulder
terrain drawing onyour reserves. All of a sudden ttmin breaks through and you realize
where you have been agdu can also perceitbe peakar away.You even find a small path!

You feel mut bettereven if the path goes downhill, because soon you will be able to climb
higher than ever before. Hoping that the peakyaise t he good oneé

w7 \ :‘4 V
d and have nice weather.

£ i
.',,-'_,_,,,"‘"'ﬂ.w-’ P

Sarek national p, a wonderful place to be ifyou are eIprepare
(photo: Hans Molin)

! This altitude is the ultimate fit of a sifatied run and experimental data

2 The map is the model that we decide upon

®*Hel icopters take you from one point to another, this
* A look at the altitude indicator is the function cak, residual calculation
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1. INTRODUCTION

This thesiss about parameter estimation in heterogeneous catalysis and specifically applied
to NOx reduction for vehicle emissions. Theernationallystrong interest in N@reduction

makes this research area very intense, but on the other hand, the fundamenstnaidg
enabled by mathematical modelling is unfortunately often not as frequent. This introduction
presents some issues in mathematical modelling in heterogeneous catalysis and hopefully
justifies modelling efforts in general and this PhD project iti@aar.

1.1. Global warming and NOy reduction

Reduction of carbon dioxide (GDemissions from vehicles is an important factor in the
abatement of global warmirégiansen 2004]Since CQ formation is a natural consequence

of fuel combustion, the naturaay to reduce C@®emissions is to decrease fuel consumption.

The most efficient way to reduce g@missions is of course to decrease transportation or to

use renewable fuels. Yet, for transportation that nevertheidisexist, fuel consumption can
beeduced by running the engine fileanodo (oxyge
burn engine is the diesel engine.

In a traditional gasoline engine, whichilises stoichiometric combustion (neither oxygen
excess nor deficiency), the harmful exhawsts reducedising a threeway catalyst which
simultaneously oxidises carbon monoxide (CO), hydrocarbons (HC) and reduces nitrogen
oxides (NQ). The diesel engine, on the other hand, produces lean emissions and cannot use
this technology because the NQeduction process is inhibited by the oxygen rich
atmosphereNOx emissions are alsa pollutant sincethey contribute tce.g. acid rain and
ground level ozone (which causes urban smBg).a long time this was not an ugssince

diesel engines producelaively low NOx emissions However,as the legislation for diesel
vehicles has beconmore stringenfor NOx emissions, new catalysts, especially for heavy
duty diesel engines need to be developed.

Even though there is technology available to meet theeguremission legislation,
compliance tdfuture legislationwill be evenharderto attain. Furthermore, there are issues
regardingthe ageing of the catalyst, cedtiart problems as well dse reduction oparticulate

matter (soot) to deal with Additiondly, future alternative fuels will bringsignificant
challenges to the research community within heterogeneous catalysis. Nevertheless, whatever
advanced technique that will be used to solve future emission problems, heterogeneous
catalysis will beindispensableandthus,a profound understanding of the catalytic processes

will be crucial.

1.2. Mathematical modelling and heterogeneous catalysis

To achievea profound understanding of heterogeneous catalytic systems, mathematical
modelling is a key technigy@erger 2008, Franceschini 2008a, Guthenke 2007, Koci 2007]
Models can be used for many different objectiveeg, prediction to improve oifboard cotrol

and aftertreatment design but most importantly (and exclusively in this thesis) models can be
used to increase the understanding of heterogeneous catalysis. For example, by analysing a
complex model (that contains different phenomena), the differétingmena can be
evaluated for a specific situatioAlso, in the case of aftertreatment development, appropriate
actions can be taken. A typical example would be to assess whether the limiting factor for



NOx reduction is governed by mass transfer resigtamcthe amount of active material.
Furthermore, the models need to be detailed enough to enable the assessment of different
phenomena(different dominating reactions depending on the exhaust gas composition)
Additionally, due to the highly dynamicatureof an aftertreatment system (changing flow
conditions and temperatures depending on the vehicle operation as well as the reducing agent
that is injected dynamically), the models also need to capture transient phenomena. Thus, this
thesis contributes to ¢hlong term objective of increased understanding of heterogeneous
catalysis by improvement in modelling methodology.

When assessing a model applied to practical -theoretical) situations, the use of
experiments is very important. In order to draw hgality conclusions, the model and
model analysis as well as the experiments need to be of high gudlitgse parts are
performed iteratively in order to improve understandifighe catalytigprocesgBox 1965a]
seeFigurel.

2. Experiments 3.Models and
and Model
Experimental simulations
design

4. Model

analysis

(Fit and

assessment)

Figure 1. A schematic picture of the machinery involved in the modelling cycl&.he numbers indicate the
chapters in the thesis where these parts are further described. The applications of thedifferent parts
(including papers |-1V) are given in chapter 5.

There are two major obstacles in achieving the goals of improved understanding. The first is
associatd withthe vast amount of informaticavailable(catalyst characterisation, similarities

to other systems, extrapolation of information from other experimental conditions etc) which
results in complex reaction mechanisms #ngs many model parametergc8ndy, aneven
greaterobstacle ighe factthat all thesenumerougparametersas well as the model structure
itself, may turn outto be inappropriate This can result from incorrect assumptions or
erroneous simplifications and more detaiii be givenin the rest othis thesis. In short, one

could say thathe modelling of processes that take place at a molecular level is inherently
difficult using only macroscopic observationSonsequently, the modelling effort can be
difficult and time consuming. élvever, even if the models are erroneous, they are often
proven useful and the need to improve at any stage in the modelling cycle constitutes the
motivation for this PhD project.

® High quality does not necessarily mean low noise levels. With the notion high quality means that the
experiments can be well characterisesl the noise levels as well as any other uncertainties are investigated and
quantified.



1.2.1. Challenges with parameter fitting

One basic assumption during parametémt is that the model is correct. Furthermore, the
most common fittingoroceduresre based on gradient search methods, which work best with
parameter values in the vicinity of the true values. However, when the model is potentially
unsuitable the paramiers are far from the true values #ordthe experimental design is not

well adapted for the objective, correlation between parameters occurs. Normal gradient
calculations are not well suited to deal with this correlation and consequently, the objective of
paper 1l is to show how latent variable models can be used for more efficient parameter
fitting. The analysis of the correlation structure gives valuable information about how many
parameters that can be adequately fitted. Moreover, a better choiceanfepens subject to
fitting can thus be obtained.

1.2.2. Challenges with experimental design for precise parameter
estimation

Experimental design is a methodology that aims at maximising the information content given
by a limited number of observations (experingnt~or linear models, the methodology is
quite straight forward, see.g. [Montgomery 2001] For nonlinear models, the situation
becomeamore complicatedbut manageable since the pioneering wbykBox [Box 1959
and whenthere aremultiple responses the complexity increases by one dimeifBox
1973] There are many other aspects that come intq plagh as
e whether the modelling objective is preise parameter estimation or model
discrimination[Buzzi-Ferraris 2009, Hunter 1967]
e the choiceof the objective function[Bardow 2008, Box 1970, Franceschini 2008Db,
Pritchard 1978, Walter 199@jhere Doptimality is the one used this thesis
e The number of experiments in each modelling iterati@enthe sequential designg.
[Box 1965b, Hoste 1975]where batcksequential experimental desifWalter 1990]
hasbeen applied in this thesis.
Howeverno literature could bédentified that simultaneously deals with nonlinear, multi
response models, tirdependent experiments (using many observatiaygrdingthe aim to
plan a series of experiments (batch sequential approach). A feasible way tatddakese
many aspects is to approximate the Fisher information matrix using a Latent variable model.
In paper Il it is shown that by using this approach the information content can be more easily
guantified and the experiments become less labour ingensiv

1.3. Objective

The objective of this thesis is to demonstrate novel methodologies during the modelling cycle.
Furthermore, the main focus is on model fit and model assessment if the model
structure isless than optima(as is evident from most of thgapers in this thesis). For
instance, different methods to handle many parameters that are highly correlated are applied.
The main tools are Design of Experiments (DoE) and Multivariate Data Analysis (MVDA)
and the results show that Hgeemethodologies autribute to a deeper understanding and
additionally, they are also more computationally efficient. Finally, this thesis is also intended

to describe the different parts and aspects of the modelling cycle, to assess the impact of these
different parts and Iso to give recommeatations of how to overcome commassues
encounteredh practical modelling tasks.g.for PhD studentsén Chemical Engineering.






2. EXPERIMENTS AND THE DESIGN OF EXPERIMENTS

AWIi t hout experiment | am snowhadtngi.s Buds sithl
Michael Faraday 17911867

Even though this thesis is dealing with modellifigs important to realize thawe base all

our understanding either explicitn observations (measurements)tioé systemin study or

from previousknowledgewhich inturn was based on observations. Furthermore, the type of
modelling that was performed in this thesis is based on the assumption that the model is
correct and that the data (from observations) are not. The data are probably a good measure of
what we want to observe, but is impaired by errors.

In the following subsection, various experimental techniques are described jgite@n
understanding of the important consequenbeyg haveon the modelling.

AThe chain is neeake s bndth&adpdndstarts ith the expeenient

2.1. Design of Experiments (DoE)

Models are almost always tightly connected with experiments. Experiments are used in
different stages for different purposes:

¢ Initial experiments
o To verify that the redmn occurs
o0 To get reasonable ranges for reaction conditions
o0 To propose an initial reaction mechanism
e Structured experiments, preferably a statistical design of experiments
o To estimate effects of reaction conditions
o To estimate model parametérs
e Verification experiments
o Validation experiments
0 Robustness testing

As long as one has the objective in mind, it is easy to realize that a systematic approach is
beneficial. Apart from the initial experiments (where intuition and imagination are more
important), he use of experimental design cannot be ovecommended. The use of
experimental designs enabkesg.

o Independent analysis of different experimental factors
0 Maximum information from minimum number ekperiments

® This does not meanah| consiler the experiments tme the weakest link. On the contrary, experiments are
often the most well defined and characterized part ofrtbeellingchain.

" This is the theme of paper Il and will be further described in sedti{Design of Experimesstfor precise
parameter estimatipn



For the basic concepts underlying DoEe sy textboolon the subjece.g.[Montgomery
2001], [Umetri 1988] or a tutoria[Lundstedt 1998]

2.1.1. Single observation experiments
Il n Aclassical 0o experimentation, one perfor ms
the results. The characteristic feature is t

row consists of factors {xariables) ad responses {yariables). The different experiments
can be performed independently, which means that there is no correlation between different
experiments (rows). Examples of-wranted experimental correlations are:
0 Experiments performed in the same ordsthe variationof one of the factors,e.
first -leadol efklpeew i ment s f-lodV elwe de Xope rail he mithd .
0 Replicates performed in sequence
o Experiments performed so that correlations between different factors becamon
orthogonal exprimental design.
For catalytic reactors the classical experiments correspond to some integrated value or
perhaps some final state of the reaction. It may also be one selected feature of the reaction
event such as catalyst ignition.

2.1.2. Time-dependent experiments

One other type of experiment or more precisely one type of experimgadi@is time
dependent observations. Tirdependent observations are encountered when we have
sampling at several sequential time points during an experiment. The correlatic@ertetw
observations is a natural consequence and hence should be adjusted for ac&ordingly.

The advantage of timdependent observations is that they enable the study of the dynamics.
Dynamics are of interest when we do not have steady state or when adc@mmisleof
importance. Theneet eady st ate experiments are here r
A transient experiment magimply involvea @A st ep changeodo in inlet
transient experiments can be extended to include all observdtiahsaim to study the
dynamics of the system.

For complexnontlinear systems (with many coupled reactigrtsansient experiments are of

utmost importancéBerger 2008jand if the system contains unobservable variables (such as
coverage of the catalytic material in a catalytic converter) it becev@smore important.

Due to the model nalinearity, ane difficulty is the model parameter evaluationterms of

Adiegn f aHowewer, byousing transient experiments one drastically increases the
parameter spaceand enables estimation of kinetic parameters not achievable using-steady
state techniques.

& Note: All too often one can encounter the determination of degrees of freedpfor(calculation of
confidence intervals) based on tidependent observations btitl §implicitly or unconsciously) assuming
independence of observations. This is all very unfortunate, but on the other hand it is difficult to get any
better alternatives accepted by the statistical community



2.1.3. Orthogonality and correlation

Design of Experiments aims to mamze orthogonality and minimize correlatioiere are
different types of orthogonality amdrrelations:

1.

2.

3.

Among observations: a classical experimental design is performed with every
observation independemtf each other. This means that there should deotier
correlation between the observations other than specified by the adherent factors.
Among factors: adjustable factors should always be made orthogonal while-for un
controlled factors the correlation may be difficult to avoid. (Different sampling
methods could be considered her®.)

Among responses: The responses are typicallyaaustable (at least in a direct
sense). However during optimization of different responses one may seek
orthogonality.

The discussion about orthogonality and mitigatiocarfelation will be further discussedg.
in section3.2

2.1.4. Application of DoE to heterogeneous catalysis

As in every experimental activity, DoE is of utmost importance in order to retrieve maximum
information and avoid costly misinterpretations. It is therefore distressing to observe the
relative lack of DoE in the field of catalysis comparedfdéo example the field of analytical
chemistry. However there are publications using DoE and the demonstratiorbehtfes is

as usual very clear. Examples include:

Optimization of catalyst preparatifpawson 1992]

Combinatorial chemistry approach for semeng of different catalytic materials
[Bricker 2004, Kirsten 2004]

Spanning the experimental space for improved parameter fifBagsan 2003]
(however $eady State)Zamostny 2002] (papeslll & 1V)

Optimization of catalytic processes suchwéthin fuel cellsiDante 2002]

Use of DoE in kinetic modelling has beetudied by the goup of Vlachos
[Aghalayam 2000, Davis 2004papers Il & V)

Optimization of injection parameters fon SR system on an engine rig (paper I)

° DoE deals with linear models. Note that fionlinear modelsthe correlation among the factors is
actually builtin by definition. One solution often used is then to approximatadhinearfunction with a
linearized one. This will be discussed more in secti@n



2.2. Experimental Reactor design

The reactor design includes all physical parts of the sys$tgures2 and 3 showwo reactor
setups used in this thesis.

l

'-—-> Veni

Figure 2 Monolith reactor setup. The monolith (1) is inserted into aquartz glass tube. The tube is heated
from outside using a heating coil 2). Two thermocouples (3) measwrthe temperature inside the monolith
(use for simulations) and in front of the monolith (for temperature control). The heating coil is powered
by a power supply (4) and controlled by a Eurotherm controller (5). The monolithis fixed in the quartz
glass tube (and partially isolated from the heating coil) byquartz wool (6). The quartz glass tube and
heating coil is further isolated byquartz wool (7). A gas mixture isfed to the reactor using a set of mass
flow controllers (MFC) (8) and the reactor outletstream goedo various detectors Q) beforebeing vented

N

Mirror

L

o the detector

IR Radiation

Gas flow

Gas flow

Figure 3 DRIFTS reactor setup. A gas mixture (usinga MFC setsimilar to the monolith reactor) is fed to
the fAdomed ( hemiang passesthmughe eh mackddebed)of catalyst (sample) The bed
temperature is controlled by a Eurotherm and the outletstream goes to amassspectrometer detector.
Infrared radiation strikes the surface where it diffuses into the bedhecomegeflected andcollected via an
integrating sphere and finally passed to the IR detector.

The reactor design is a very important step that is often neglected due to practical reasons
(e.g.the reactor alreadgxists,ready to be used). However, the design will defirst/ret the
experimental limits both in terms oénges (such as flow, concentrati@md temperature



limits) as well as phenomena (such as temperature gradients, velocity prBglesy.is a list
of typical exampleencounterelf:
e Velocity profile forthe flow entering themonolith: assumed to be plug flow but is
probably fully developed laminar flaw
e Concentration profile entering the reactor: When a step change in concentration is
perfor med, the real concentratisparsiopr of i |
effects seesection3.4.
e Temperature gradients in gas flowue to heating coil heating from outside in
combination withthe absege ofmixing in front ofthereactor
e Channelling and stagnant zoneshe packed bed.
e Absence ofheating of pipes creates longer timesldgr some gases @uto re
adsorption effects (such as N®,0 and NH).

2.3. Catalyst characterisation

In order to understand the morphology and structure of the catalyst sample a relevant
characterisation is needed. This information can then be used to apply a relevant transport
model.It also indicates the relevance of a mean field kinetic model, sesexd§on3.6.1and

6.2

2.3.1. N, physisorption

By performing N adsorption and desorption kmw pressures, the specific surface area and
the pore size distribution can be determirfeak. further readingsee[Barrett 1951, Brunauer
1938, Kannisto 2009aFor example, in paper 1V, the specific surface area (BET area) was
197nf/g and the pore size distribution was 2D A (80% of the pores) with an average pore
diameter of 30 A (3im).

2.3.2. Electron microscopy

By using electron microscopy.g. Scanning electron microscopy (SEM) or transmission
electron microscopy (TEM) one obtains images of the catalgsFigure 4, a monolith
channel is dispked with a 20 wt%washcoatoading of AgAl,O3 catalyst.The washcoat is

of varying thicknessat approxmately 40 um on thechannel wallsand thicker in the corners.
Figure 5 shows a close up of the monolith wétlorderite) and a thin layer of A@l,0s.

From this picture it is clear that the washcoat is not a uniform porous layer, but consist of
primary particles of about 1um which in tucontaineven smaller pores, aslicatedby BET
analysis.

In the TEM image (Figure6) of an Agalumina samplelarge silver particlesf about 10nm

in diameter can be observed. There are also smaller particles not visible in the TEM image
(because they are too small) but evidencedthgromethods indicating small nanoclusters of

a few atoms which are suggested to be the main reactive sites for the SCR mechanism
[Kannisto 2009h]

% Most of these effect as well as many other effects will be numerically evaluated in §eStion
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— . e TN S Figure 6. A TEM image from a

Figure 4. A SEM picture of a Figure 5. A SEM picture of the  gjlyer-alumina (SG5) sample,

Al204 washcoat. [Kannisto 2009b]
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2.4. Detectors

As indicated in the introduction, experiments, model simulations and analysis are tightly
connected. The research heavilyiggbn experiments and the experimental data is collected

by detectors. In a way, one could say that detectors are the foundatiwhich parameter
estimation is based upon, since it is the comparison between the simulated data and the
detector signals.e. the residual) that defines the goodness 6f fiburing the optimisation of

the detector signal there is always a traffebetweensensitivity(i.e. how much signal) and
selectivity(i.e. how sensible the signal is to interfering signals, interfering species etc).

2.4.1. Mass spectroscopy

Mass spectroscopy (MS) & technique to separate (and thus quantify) different molecules
depending on their masghe main advantages are that the techniguast {ime resolution

about 1/10s) and requiresily small amounts ofthe sample ga$2-10 ml/min). The greatest
challerge for quantification is that thealibration procedure is sometimbghly responsive

as will be shown below. There are many different types of MS systems, but here only the
guadropole type of MS using a SEM detector is describeaFigure?.

1 At least under the assumption that the model is correct.
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lonization chamber

Quadropole (mass separation)

f@o@od)o< ® Secondary
) Electron
O_O 7 o Multiplier

Figure 7 Schematicpicture of a Mass Spectrometeinstrument setup. Adopted with permission from Dr
Norbert Muller, INFICON Limited .

The gases are sampled downstream the reactor by a glaésrgapat samplesbout 210

ml/min driven by the very low pressure in tHdS system (about x10° mbar). Thegas
reaches the ionization chamber where electrons with high enerthe hitolecules and create
positive ions/fragments. The incoming electraapel the molecular electrons so that they
leave the moleculddowever,the incoming electrons may also break the bonds between the
atoms in the molecule and thus create fragniéntgen, theions are accelerateidto the
guadropole, where thgases are parated according to their mass (mass over charge). The
ions thatpased through the quadropole themterthe Secondary Electron Multiplier (SEM)
detector where the number of molecules is transformed into a signal. This detector enables a
linear responswithin a very widerange (9 orders of magnitude rmore).

The MS signal represents a ratio of mass over charge (m/e) and exclosivelylinked to
the concentration in the gas phaBkere are ifferent sourcesf a certain m/eatio™:

1. the molecule ointerest itself, charged by +1

2. fragment/molecules of double the mass but with double charge (+2)

3. bigger moleculsfragmentized into smaller fragment

4. smaller moleculgfragmens that recombinewith other fragmergmolecules (present

at high concentratius)
5. other moleculs with differentisotopic composition.

These effects beodemand & is impoetdneto properly hapdie these
issues when quantifying MS dath.is important to ote that just because themgght be
selectivity issues the MS technique can be made very accurate with high selectivity and
furthermore it has theenefitsof small and fast samplin§

More details andguidelineson measurement methodology as well as handling of the
selectivty issue are given iAppendixA.

2 The terms fragments and ions are used interchghgin this chapter.

13 There are other sources as well, ilyahe sources relevant to heterogeneous catalysilisted here.

14 Another way to solve the selectivity issue is to use a separation technique, such as gas chromatography (GC),
however thdime resolution is lost unledtsis used in combination with eine measurements and data can be
interpolated with sufficient accuracy
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2.4.2. Infrared Spectroscopy

Infrared (IR) spectroscopig a technique where electromagnetic radiation in the famge
approx. 40001000 cn excites vibrationl energy levels of moleculeShere are different
types of spectrometers, but the Fourier Transfgpectrometer is the most common type.

2.2.3.1.Gas phase Infrared Spectroscopy

The reactor outlet gas streamters thelR flow cell andis quantified using a calibration
procedure. Since the concentrations are low (ppm levels) the sensitivity issue is pegtly sol

by designing the flow chamber to be long and to let the beam cross the gas flow many times.
Also the number of scans can be increased to increas@tiad to noise levei,e. sensitivity.

The sensitivity issue then becomes a time resolution issue.

Furthermore, the different gas molecules may laxexlapping peakgenerating a selectivity
issue. This can be solydy using multivariate calibration proceduridsartens 1989jor by
multiple selection othe spectral domaimas implemented in the instrumenttiaé Competence
Centre of Catalysis, Chalmens@K) (MKS MG2000)[MKS Instruments 2006]

2.2.3.2 Diffuse reflectance Infrared Spectroscopy

In the gas phase there are only-8Niormal modes of vibrations for a nrbnear molecule,
where N is the number of atoms.hdh amolecule is adsorbedn asurface thenumber of
vibratioral modesincreaseswith different adsorption configurains This makes spectra
much more information rich. However it also requires that one can assign different peaks to
different vibrations to make the spectra interpretablés assignment uses both theory and
previous knowledge (from similar systems). tésithe information from the peak assignment

a more plausible reaction mechanism can be derived.

Aspects of peak assignment
The peak assignment task is sometimes difficult due to a number of reasons:
e Peak positioemove depending on eadsorbed species
e Pak position appears at different frequencies due to different support effects
(compared to other published information)
e The peak in study is from an unknown specie
e The peak in study can be hiddéy other overlapping peaks
A number of countemeasures andnethods are available tpartly circumvent these
problems, including:
e Targeted experiments (one gas at a time)
e Temperature programmed experimengsg(Temperature Programmed Desorption,
TPD)[Gorte 1996]
e |sotopic experiments, such d&SteadyState Isotopic Transient Kinetic Analgsi
SSITKA [Shannon 1995]

Aspects on the quantification of diffuse reflectance data
The quantification will be further described iAppendix A, which deals with the
modelling/numerical pariConceriing the experimental parthere are a number of aspects to
takeinto accoun{Mdiller 2008}
e Penetration deptis small, typically less than 0mm for Pt ony-alumina. This is due
to the large portion of pores for high surface area materials.

5 This range may differ with different applications. 460@00 cnt* corresponds to 25600000 nm.
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e Particle size dependendeeak heights G@well as peak areas) may depend on patrticle
size distribution, mostly higher peaks for smaller particles, however not alays.
simple calculation(see section 7.7 ifiMuller 2008]) shows that the majority of
surface ignternal pore area and only0Q% is external ared hus it is really the pore
surface thats manifested in the DRIFT spectra.

e Sample preparation: In the studlgere was found to beo dependence on how much
sample thatwas pressed into the reactor. Thmeans that the-alumina is rigid
compared to the mechanical force due to tapping/pressing more sample into the
reactor.

e Baseline variation due to temperatusgther separate backgrounds need to be taken or
baseline correction using a low ordeolynomid or a linear interpolation of
background spectrean be used to account for baseline variation

e Negative peaks due te.g. hydroxyl groups The supportmay contain adsorbed
species during background acquisition. This may need to be accounted for é-the pr
adsorbed species overlap with species of interest during reaction conditions.

2.4.3. General remarks on gas phase analysers

There are of course many other gas analysers that are used for reactor expeeigents,
chemiluminisence detectors for NQ@uantificaton. However they are oftenonly reliable
when operated and calibrated correctly, they will not be describefdrther. In almost any
analyserthere will be a few important issues that really need to be dealt with in order not to
ruin any subsequent mdteg effort. Theseissues are

e The ®nsitivity

e The ®lectivity

e GasconsumptiorfTime resolution

2.4.4. Temperature sensors

The temperature inside the reactor whererdaetions takelace is of outmost importance.
The measurement should be aete and notinvasive. The most commotemperature
sensos at KCK is a thermocouple of type K, which is a standard sensor giving accurate
temperature estimatddowever, the precision of the temperature is not as much of an issue as
is the issue of representativity.
e By insertion of a thermocouple in a monolith channel, the residence time can be
affected, thus the conversion and local temperature
e The heating coil for the monolith reactor setup will induce a temperature gradient in
the inlet flow to the monolith.
e The blackbody radiation of the monolith can caussubstantial temperature drop at
the end of the monolith

The accuracy of temperature measurements in relation to kinetic modelling was studied by
HansernHansen 2007yvho found that in order to be able to discriminateveen twosimple
mechanism the precisiomeeded tdoe better than 2K. The temperature gradients (and thus
variation in representativity) intgpical monolith reactor is easily more than 5°C
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3. MODELLING

OAl'l model s are wrorfagllbeorteEB.Bone model s ar

In order to get some perspective, we need to define what webyean i mode |l 0, Sinc.
very frequenty usedterm for many different kinds of models.

Below is afdefinitiond or a s @f enadeld used ot heterogeneaadalytic reactors

applicable in this thesis:

e A model is something used to explain observad unobservable phenomenahe
model can aim to describe physical phenomena or be more empirical in nature

e A model consists of atructurémechanism which égeribes how different phenome
arerelata.

e A model also has a set of model parameters and for corpdeknea) models therg
is normally no unique set of parametétsut an infinite number of sethat will fulfil
the objective functioH.

e These paramets should have any (preferably all) of the following properties:

o Parameter valuegive the model good fit to experimental data

o For physical models,ggameter valueshould bephysically reasonable
A Values within acceptable limits
A Reasonable relationshijetween parameters

Frame 1. Definition of a model as viewed upon in this thesis

The statements above impljrat the model parameters are NOT the model. The activity
Amodel |l ingd is by this defsmiincluding identifyingethee xt r a
model parameters). In this thesis the focus is therefore NOT on modelling but rather on
parameter fitting and model (or model parameter) assessment. This may seem strange to some
people, who ofterassume that parameter fitting always readily achievable and model
assessment gives satisfactory conclusioses the malel is trustworthy). However, would

like to argue that this is seldom the case and in particular for detailed kinetic models applied

to heterogeneous catalysis.

3.1. Linear models
In order to predict reactor outlet concentrations, one could also use a very simple model:
r=>kx @

Where x can be any variablee(g. concentration, but also temperature, flow rate etc.)
eventually transformed (squared, inversed, logarithmic, etc) aisdaklinear constaniThe

18 Unless a suitablexperimental design can be performed.
" The objective function will be described in sectiband is often defined as a minimization of the square of
the residual (difference between simulated and experimental data).
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response can be any response.g§.reaction rate, conversion, selectivity efthe expression
can also be written in matrix notation:

r =bx 2

These models have the advantage that the model parameters can be analysed using classical
statistical analysis if handled properly. One prerequisite is that the experimental data enables
independent estimation bf i.e.that DoEhas been applied (se21).

3.1.1. Linear regression

In linear regression analysis one is concerned about finding a relationship between a response
variable, y which is assumed to depend on another imdigp¢ variable. The observations of

y will be ap-pag®i mated by fy
y=yt+e ©)
Where the residual, e, is preferably as small as possible.
The Astandardo | inear regression model
= bx 4

Wherex is a vector of variables §xxi, X, €) where the fioland vari a
corresponds to the interceptis a vetor of regression coefficients wheltee first element

isthe interceptandt he remaining coefficients are the A
in X. In order to estimate thegarametersnbwe need a so called HfAobj
linear regression we almost always gpplt he Al east andthaobpdie appr
function is to minimize the square of the residual:

min min _

b f(X1b)2: b (yobserved_ﬂ2 (5)

By derivation of the objective function with respect to the parameters and setting the
derivative to zera.e. minimization the solution becomes

b=X'Y(X'X)™
sl
b,

Where ve nowhaveextended the least squares to a multivariate, gadsere we have many x
variables in arX matrix and manyyvariables in & matrix.

3.1.2. Assumptions for linear regression

In order to prove that the esttion of the model parameters déhe best ufbiased ones, we
need a few assumptions:
1. The observations are independent
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2. The xvariables are exactly known (they have no error)
3. The residual (in the-girection) is nomally distributed with an expected value of zero
4. The variance of the residual is constant over the entire calibration range

These assumptions are very seldom fulfilled even though they can be sufficiently fulfilled if:
1. The experiments were performed aaling to an experimental design and performed
in randomized order.
2. The errors in x are small, compared to the residuals in y
3. The data can be transformed so that the residual becomes normally distributed
4. The calibration range is sufficiently small or thesiduals are weighted so that the
variance becomes constant

Very often the above mentioned techniques are not enough and better methods are needed.
One method is the method of latent variables.

3.2. Multivariate analysis, Latent variable models

The multihariate method described below (PCA, PCR, PLS) and similar methods are called
ALatent wvariabl ed met hodslimensioaat laypes @anetchnebe nat u
regarded as idl atent variabl eso. Tdwismanymet hod
correlatedvariables and observations.

3.2.1. Principal Component Analysis, PCA

One of the assumptions for linear regression analysis is that-tleiables are exactly

known. This may mostly be true enough (at least compared to the uncertainty in measuring
the yvariable). Quite often though there is an interest in handling uncertainfiesisnwell.

This was first analysed by Pearson in 1§@é&arson 1901]The concept has been developed a

lot since then ad a model type that corresponds Roe a r sstudy dsscalled Principal
Component Analysis (PCA). The difference between a linear regression situation and a PCA
mo d e | i's that the residual to be minimized
orthogonal to the line (the model). This is depicted in the figure below:

17



example example
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a) i n dinean eegréssion.: the residual b) PCA: the residualsithe distance betwee
the vertical distance between the data and the data and the model perpendicL

model. (orthogonal) to the model.
Figure 8. Differences in how the residual is defined between standard linear regression and a PCA model.

In the linear regression case, thedmabis y=kx and the only parameter is k.
In the PCA case, the model assumes errors in both x and y and the model therefore is

k vEkFT @

T is calledthe score matrix and@onsists othe values along the rdel plane (in the example

above, the scores correspond to the \alaleng the line shown ikigure 8b.) The score

matrix is the new approximation of the original matrix X, but using fewer dimensions.

P i s tehed fiammodd consi sts of the |l inear combinai
to project on to the model pl ane. Her e we he
P. The loading matrix P is orthogonal and normalized to the size of one (mtied)i.e.;

PP=I ®)

The PCA example above can be extended to many more variables and many more
observations but works out the same way:
We get a loading matrix P that will be used to project the aigmatrix X ontoa low
dimensional plan€r.
The mainadvantages of PCA (and other LV methods) are

e |t handles errorsin x and y

e It handles cdinear variables

e |t produces models that have components that are orthogonal
For more details about PCA, seg. [Eriksson 2001, Martens 1989]

3.2.2. Principal Components Regression, PCR

After making a PCA on a set ofdata, we have the situation where we no longer have
correlation between the varials. One way to proceed then is to make a multivariate linear
regression but using the scores T instead of the matrix X. the model then becomes:
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y=Th ©

Where T is the score matrix from a PCA model ofT’XXP. This method will not be further
di scussed but serves as a Abridgeodo to the PL

3.2.3. Partial Least Squares, PLS

The Partial Least Squares method (PLS) or AF
is called is a regre&s method very similar to the standard multivariate linear regression and

the PCR case described above. It uses two separate models for X and Y and then tries to find

the correlation between these two models. The model now becomes:

yi—y=(-xb (10
Whereb is the regression vector given by:
b=W(/P'W)'c (11

W, P, andc are loading vectors,e. linear combinations of the original x and y variables. A
geometrical picturés given below:

X=1X+ TP O6 +E Y=1Y+ UC 6 +

Y=1Y+ U C & +YRXBh stF
X1 Bpre= W( P 80M)= W* Cd

Y-vl

Figure 9. Geometrical description of the PLS model.

Since theX andY mat ri ces are MfAstrippecboespbndingPL®very
loadings W) are associated with tlerrespond n g , Astrippedd matrix X.
interpretations more clea¥V" is used YW*=W(P 6 W). W* can now be compared to the

variabkes in X. Furthermore, this issed in paper llIFor further details about calculatioasd

algorithms se@Martens 1989]
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3.2.4. Multivariate curve resolution: Alternating least squares (ALS)

Multivariate curve resolution is the process, where a data matfixsecomposednto

different components. One example i€ tRCA modelwhich decomposeshe matrix into

scores and loadings usinthe objective function to maximézthe variation in&. One
Ainegativeod side ef f ealtulatedn ortehofekplaindthariamc®@ang o n e nt
not as a functiorof chemical phenomena. The resulting loadings are thustsoesehard to
interpret in terms of fAchemic 8imilarlythedcaresmat i o
possess both positive and negative values, wheaveltd be desirable to have only positive

values thatcould correspond to concentrations. One solutio these objectives is to use
Alternating Least Squares (ALS). The ALS ispinnciple very similar to PCA but by adding
nortnegativity as constrais, the resulting scores and loadings can be interpreted as
concentrations and pure component spectr&. procedure during ALS consistsf several

steps First the X matrix, D, is approximated using ordinary PCA. Then by using a rotation
matrix R, the final model becomes:

D~B=TP'=TRR'P'=CS (12)

where C i s a rmaturtiixnef @&aodadisp&ctraaMoreaetailsare o f p
given in the appendiB. The prerequisite for successful decomposition is that all species are

visible in the spectra and that they vary between different observations. Another prerequisite

is that good initial estimates of either concentration or pure spectra (or a combination of both)

are available

3.2.5. Comments about latent variable models and projection methods

The phenomenon of projections is nepuhkwcot
how projections of an unobservable reality is taken for the truth and anyone questioning it

will be discreditedLewi2004] The same story goesAiAbott he no
[Abbott 1884] In this chapter only the numerical methods of PCA, FRLIS and ALS are

mentioned. There are adgr number of similar models and similar algorithms that all produce

latent variable type of models. The concept of Latent Variablas a frame work for
multivariable modellinghave been well described by BurnhgBurnham 1999, Burnham

1996] Another similar method is Factor Analysiichalsois used during ALS

Multivariate Analysis, MVA (or Latent Variable modelling)as been presented in the
literaturefor many years and is an entire research awvdtself. These applications are (by its
very nature) often connected to experimental design (see also s2ctjorApplications
applied to catalysis include:

e Catalyst synthesis optimizatighagliabue 2003]

e Sensitivity analysis (see sectidrit.3 paper Il and Il

e Caitalytic system optinzation paper )

8 The reaen to use the notation D instead of X is that ALS is typically applied to a spectral matrix, which is a
measured matrix D, where as the notation of a matrix X is more general and can be either a measured data matrix
but also a sensitivity matrie.g.the Jacobian matrix.
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3.3. Nonlinear models

In kinetic modeling of heterogeneous catalytic systems, nonlinear models are fr&gyent.
nonlinear modalwe mean models that are nonlinear in the parameters,

Y _1(p) (19

op

This means that thderivative (or sensitivity) of a response with respect to a parameter is
dependent of the parameter value itself. In contrast,model in eq(4) is linearin the
parametersince the derivative with respect to the paramdt#sand bl) is just a function of

x and not of bOne example of aonlinearmodel is the Arrheniugxpressiongqg (28). The
aspectof nonlinearity becomes important for parameter estimation, sincél8yis heavily
used in this procesBarameter estiationwill be described in more detail in sectidn

The practical treatment of nonlinear models and nonlinear equation sygtegndor
parameter estimation and for solving Gf)is approximation by finite iferences Thus, no
further description will be given in this thesis.

3.4. Modelling of the reactor system

The main objective is to understand whatoecurringin the reactor. However, it is very
important to have accurate control of the effects from ¢t af the system. A typical reactor
system consists of 5 pamsth individual propertieshat influence observations

Mass flow controllersNIFC): Response time and accuracy
Pipesupstream: lag time, axial dispersion

The reactor (see secti@rb)

Pipes downstreantag time, axial dispersion

Detectors: response time and accur@gfectivity and sensitivity)

arwnE

The modelling of these partain be achievelly empty reactor models wherenple modes
can be applied~or dispersion effectéor examplegideal stirred tank reaats can be applied

dc ¢ ~1 -
—=—=6,-c=—6& —-cC 14
dt Vv, (f i (f - (49
Where q is the volumetric flow, Ms the probablyfictive) dispersion volume andis the
time constant correspding to the time it would take for a step in feed concentration to reach

63% of the final level. To model time delaysimple delay model can be applied:
c(t) =¢, (t-7) (19

wherert is the time constant correspangl to the time lag of the particular component.

By modelling each part individually, a more accurate estimation of the reactor inlet conditions
(which is used as input to the model) as well as detector conditions (which is used for residual
calculation)can be obtained. This will be superior to the use of empty reactor data as model
input, where all dispersion effects are lumped into upstream effects and downstream effects
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(from pipes and detectors) are fAmoveghén upstr
in section5.5.

3.5. Modelling of transport phenomena in heterogeneous
catalytic reactors

In this sectionthe different modelsfor transport phenomena apgesented. The included
techniques areot intendedo be complete, but rather to describe some common techniques
and theirproperties.In section5.5, quantifications and deeper analysis of the impact of the
different models will be given using the model frorappr IV as an examplédA good
summary of this topic can be found[kKeapteijn 1997]

In this thesis projegtthe modelling of transport phenomena is of secondary importance since
the chemical kinetics is of primary interest. However taagport phenomemnmaustalways be
consideredand therefore a number of options are available. Below is a list of actions in order
to enable various approximations for modelling of monolith reactors:

Tuning experimental conditions

By adjusting theexperimeatal conditionsappropriately, theransport phenomenean be
neglected
e Use bw concentrations:
o Prerequisites for Fids law for diffusion (assuming constant diffusion coefficient)
is not violated Also low concentrationgeads tolow reaction rates, whic will
decrease the mass transfer resistance.
0 Heat of reaction is lovgo that the reactor may be assumed to operate isothermally
and thus heat transport may be neglected.
o Use bw temperatures to make kinetics more limiting than mass transport
e Use high fow rates to decrease external mass transport resistance
o High flow rates wil/l al so make the reac
concentration variation over the reactor smalhd allowing more direct
measurement of reaction rates.
e Use a hin washcoat containing the catalytic material so that pore transport resistance
becomes negligible

Dealing with transport phenomena

If the experimental conditions are such that the transport phenomena cannot be neglected,
they will need to be treated othereithe kinetics will be masked by transport limitations and

the validity of the kineti parameters wilbe reducedln many cases, the objective may even

be to understand the interplay between kinetics and transport phen@mgefa, automotive
catalyticdesign and process optimisatidrmere are different options for different phenomena

e Model axial dispersiofibyfit a-in-k e r i e 861 (see

e Approxi mate radial di f36Bhsion by a dAfil m mo«

19 Dispersion is a phenomenon arising from both diffusion and convection.
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e Nedect pore transport resistance, or matiel pore transporsingan effe¢iveness factor
(see3.5.3

¢ Neglect heat transfeor model the heat flux similar to mass transgeee3.5.4

The following sections briefly describe the different methods relevant to this thesis.

3.5.1. Lumping in axial direction: Tanks-in-series

In order toavoid partial differential equations (PDHE)r a trarsient reactor modethe axial
dimension may be approximated with a taitkseries model’ Considering the monolith
channel as a tube reacttris approach approximates théé reactor with a number of ideal
continuouslyst i rr ed t ank oneeatedtinoseriss. Thi€ &préxibnataptoes
the axialdispersionbut neglectsadial diffusion. Wren the number of tanksecomes large,
the model approaches a plug flow reactor.

Figure 10. The monolith channel is approximatel by a series ofcontinuously stirred tank reactors
(CSTR).

It is possible to calculate the number of tanks needed to capture the same phenomena as a tube
reactor with dispersion effectsee appendi&, and ths number is typically 2G0 for a small

lab scale reactodepending orflow rate, temperature and compositiorlowever, due to
computational cost of the ode solver, this relatively large number can be redubed
conversion is low enough, se@urell.

(- A
0
§ Cin
=
S Curve for many tanks or plug flow model
=
@)
&)
VA
Few number of tanks Axial coordinate

Figure 11 Effect of low number of tanks in the tanksin-series model. If the conversiondonsumption of
feed reactants) is low in an overall point of view, the modelling error will be low and computational speed
is gained.

%0 As an alternative to tanks in series, the finite elements method (FEM) can be applied. However;darié&s
is numerically a more stable/robust model.
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3.5.2. Lumping in radial direction: film model for external mass
transport

In a fully developed laminar flownhich is the case in a monolitteactorexcept for a small
entrance region) there is no radial velocity component. The transport of molecules to and from
the washcoabccursby diffusion. The diffusion in the bulgasphase is governed by Ficks
law of diffusion:j" a=DaVya Wherej 4 is the radial flux’, Dais the diffusivity andvya is the
concentration gradient (driving force). Because deenotwant to solve dc/dr (.e. Vya or
resolve the true concentration gradient in the gas phasecan approximate the overall
gradient by a film of thickness delfawith a transport resistance related to the diffusivity. The
film model is often defined as:

NA = kcA(CA,b - CA,s) (16)

where G is the bulk concentratioma s is the gas phase concentration jasthe surface and
ke IS @ mass transport coefficient.Akcan be derived from

Ken = 19

where Sh is the Sherwood numbdm{ensionless number that characterizes film transport
resistancg Da is the molecular diffusivity andnds the characteristic length, in thgasethe
diameter of the monolith channel.

The Sherwood numberrf monolith channels at steady state conditions was derived by
Tronconi [Tronconi 1992] and in spiteof the importance of transient experiments, this
correlationis used in this thesiand the potential negative consequences are discussed in
[Wickman 2007] See alsdahe appendixC for further details.

3.5.3. Modelling of pore transport resistance

The diffusion inthe washcoat is ofteneglected by assuming that the diffusion transport
resistance is sufficiently low.e. the rate of surface reaction is slower than the transport in the
wasltoat. This assumption is reasonable as long as the concentration gradient is low (by low
conversion) but may be incorrect during transient conditiddadelling of pore transport
resistance was ignored in all papers in this thesis. The reasons for this are

e Thin washcoatg0-100um)

e The alumina washcoat is normally full of cracks, which facilitates the toansp

into the pores even further

One way toevaluate the influence gfore transport resistance is by calculating the Weiss
Prater parametavhich is theratio of observed reaction rate and pore diffusion.

(I)WeissPrater = 77¢2 = (19

2 The flux is normally composed by molecular flux (j*) and bulk flux. The sum of these fluxes are referred to as
the combined flux (N). Due to the low concentration levels the bulk flux becomes negligible.
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where r is the reaction rafmole/(s*ntcaf, L is the characteristic length (washcoat thickness,
[m]), csis the concentration at the surfg@éhich is the samasthe bulk concentration if we
can neglect the external mass transport resistance) aid e effective diffusivityjm?/s].
The n is the effectiveness factor ardis the Thiele modulusMore detailsare given in
appendixC.

3.54. Heat transfer models

Heat transfer is very similar to mass trandiird 2002] and the tanken-series and film
modek apply equally well to heat transfefThe film model for heat transfer can be written

Q=hA(T, -T,)
he Nu- A (19
dy,

Where Q is the heat transfer, A is the interfacial area, Tb and Ts are temperatures in the bulk
and at the surface respeadly and h is the heat transfer coefficiedere,the Nusselt number

(Nu) is equal to the Sherwood numk@&h) and A is the thermal conductivityjHowever,in

contrast to molecule$eat can be transferred through the monolith channels and out to the
perphery of the reactor. It then becomes a delicate matter whether to model only one channel
of the monolith or to take radial heat transfer fully into account. In paper IV the radial heat
transfer was lumpednto heat transfer to the quartz tub&a a lumpedheat transport
coefficient UA similar to a film model:

Q=UAC, -T,_ (20)

Where Q is the heat transferred from the monolith to the quartz tulsethE catalyst surface
temperature and,lis the temperature ofie quartz tube.

3.5.5. Mass and heat balances for a monolith reactor

In addition to the mole balanceset heat balacesare included in paper IV as shown in
Figurel2.
|

| | |
— | i i i
: i i i
| | |
i i Ts i i
' i i i
~Tb, i i i
i i C | i

e i i e
! ! ! !

bulk : film | Catalyst surface: | Quartz tube

Figure 12. A schematic view oftoncentrationsand temperatures at differentradial positions. The straight
lines connecting the bulk and the surface igovernedby the film model.

The mole andheat balancgfor the bulkaremodelled as tankm-seiies and for each tank the
balancesre
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d ~ -~
Ctot\/tenk % = Ftot (/f - yb R kcaVb - ys /Ctot =0 (21)
daT, ~ -
CPgaSCtotVtank d_tb = FtotCPgas ‘-f _Tb o ha‘s _Tb P 0 (22

wherecy: is the total gas concentration (calculated from the ideal gas tla@vgccumulation
of mass and heat in the bulity/dt anddT,/dt) areset to zero.

The masshalance for thegas at thesurface(ys) and on the surfac@®) are

d A Nixn -
Ctotvfilm d_)i = Zui g Nrntank + kca‘/b - Y Qtot =0 (23
do
—= T 24
I Zx l (24)

wherev; and y; are the stoichiometric coefficients for the gas phase and surfasetigsty.
The summatiosaredone over all reactions in the mechanigrhe accumulation in the gas
(i.e.in the film closest to the surfacm)set to zerphence hie volume of the film closest to the
surface never needs to be calculated

The heat balances for the surface and the quartarebe

Nixn

Z ‘_ AH RiIi Nmank - hats _Tg :_ UA(-S _Tp:

LA (29
dt CPmoanmono
ar, 2UAG-T,

P _ i (26)
dt CppM,

Whe e gashhe heat of reaction, il the heat transfer coefficient, a is the channel area, UA
is a lumped expression dlfie heat transfer coefficient to the outer quartz tube times the
external area of the monolith.

3.6. Modelling of kinetics in heterogeneous catalysis

When assuming that a certain set of chemical reactions is occurring in a reactor, the resulting
mo d e | wi | | be a Akinetic model 0. The compl e
section about lumped expressio8%6.6) to large sets (see section about microkinetic
modelling 3.6.3. These sets will then be used to calculate the reacties aatevery time

point and for every reaction in order to sohhe mass balance for all reacting species. The set

of reactions will implicitly contain a number of kinetic parameters which need to be
evaluated. If these parameters are not known, different ways of estimating them exists (see
section3.6.2below). A number of thermodynamic constraints are also imposed on the kinetic
parameters as will be described in secBahi4and an alternative to the Arrhenius expression

26



is presented in sectiol®.6.5 The technique of parameter fitting by various methods is
described in a later sectio#)(

3.6.1. Lumping of catalytic surface: The Mean Field approximation

Modern catalytic reactors fddOx reduction described ia.g.paper Il and IVhave the special
property that different sites have different tasks.seen in sectio.3 the different sites
cannotbe (and are not)positionedall over the surface, but are dispersed forming small
nanoclustershat arenopefully well spreadver the surfacdt is easy to realize that reactions
including both Pt and Ba sites depend on the proximity of tes.siorigorouslymodel these
(nane) phenomena on a macro scale i s graxtically east
impossible and hence the need for yet another approximation: the mean field (MF)
approximation. A MF model approximates all sites to be eguaéquallydistributed,i.e.

e Uniform particle size and shape

e Uniform coverage of active sites.

e Any nAdi st ang.between PtfardBa) mus( be compensated for by the kinetic

parameters

This approximationis of course never true, butty letting the fited kinetic parameters
compensate for these defects, the MF approximation becomes very @il methods
exist like Monte Carb simulations[Olsson 2003] but again detailed assumptions of the
surface structure must hgostulateda nd t he wuncertainty is just
A s ¢ alb eonclude, dr modelling of monolithst atmospheric conditiong seemdifficult
to find any better alternativéban the MF approximatioiiSee also sectiof.2.)

3.6.2. Atomistic models

The lower limit of modelling relevant to heterogeneous catalysis is on the atomistidfevel.
one can describe.g. how atoms move on a surface or how atoms react on a surfece, th
knowledgemay betransferredo the macrescale levelPresenly, the dominating modelling
technique is Density Functional Theory (DFT). These models take intaurgcedectron
densities assuming thah aton® sucleus mogs much more slowly thanits electrons. DFT
finds electron and nuclei positions that minimize the total energy. The theory and application
of DFT is beyond the scope of this thesis, however it eavesas a beneficial technique to
estimate various properties to be used in modelling on the rsaate. These properties
include:
e Binding energies, i.e. activation energies for desorption.
(physisorption/chemisorption)
e Adsorption conformation,e. plausble geometrical position for an adsorbed specie
e Vibrational frequencies in order to identify adsorbed species (typically reaction
intermediates)

Althoughthese results may be very accurate; thalbdity for a real system is uncertaibhis
is due tothe many approximations done during the calculatamd in particular assumptions
about the suppart

e crystal planes or perfectly defined clusters

e anydistribution of crystal planes, surface size or cluster size distribistioeglected

However, the tehniqgue can be used to estimate boundary values for Microkinetic models

which can be extremely useflurthermore it can serve as the basis for the kind of models
presented in sectioh6.5
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Calculations on NSRatalysishave been performed by Broquist et @edicting reaction

paths[Brogvist 2004]as well as heats of adsorptiBroqvist 2002]

3.6.3. Microkinetic modelling
Microkinetic modelling has been much appreciated in recent yiarksto James A.

Dumesic et alwho contributed with a textbook in therlgal990s[Dumesic 1991]

A microkinetic model consists of elementary staps, most stoichiometriccoefficients are
equal to one and all equilibrium reactions are modelled as two separate sigpse&ction

AA fundamental pnciple in mcrokinetic analysis is the use of kine
parameters in the ratexpressions that havphysical meaningand, as
much as possible, that can lestimated theoretically roexperimentally
With reasonably good estimates of parameters su@h dhis analysis car
suggest which steps of the mechanism are likely to be kinetically sign
and which surface species may be most abundant. This information i
for predicting the manner in which the various steps in the mechanisn
affect catalysperformance.

Should the microkinetic analysis be successful in reproducing all ava
experimental data using values of kinetic parameters that are cong
with known theoretical and experimental estimates, then microki
analysis may become amportant tool in catalytce act i on s
microkinetc analysis provides a framework for theuantitative
interpretation generalization and extrapolationof experimental data an

theoretical concepts or cat al yti c processes

Frame2.Ci t ati on from introduct i dicrokineticstofi Heterogeneoud h e

Catalysis[Dumesic 1991]

rate is expressed as:

Where c is a dimensionlesoncentration i(e. mole fraction y for gas phase specms
coverage d f owisshastoichiometic cogfficientiare « )s the rate constant

r=k J]c* 27

reactants

describeby an fAArr hedbni us expression

Where A is the prexponentialfactor and Eais the ativation energy.This expression was

-Ea

k = AeRT (29

t

e X

actually one of sever al possi bVart H6ffolB&Au | at i o

1896] but was refined and established by Arrherjilighenius 1889a, b, Partington 1964]
For temperatures far from absolute zéndich is the case for experiments relevant to this
thesis) the exponent-Ea/RT)will have alargeinfluenceon k. This means that a change in
theoretical reaction rate can be induced either by a change in Ea oriie. &e have
correlation between these parameters. This is avoided by scabogreferred to as centred

pre-exponentialseesection4.3.

There exist also a number of techniques to theoretically estimate kinetic parameters. These
calculations always assume some kind of ideality but serve as useful starting guesses. These
methods are for example DFT (as dészd above), Bon®rder Conservatio(BOC),
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TransitionState Theory and kinetic gas theory. For more details about theopatieaheter
estimationmethods, seumesic 1991handtheappendixC.

The most attractive features aficrokinetic modelling aréas citedabove:
e |t enables deeper analysidéntification ofrate limiting steps, etc)
e |t should be better for extrapolation (compared to other more kinetically lumped
models)
Among thedrawbacls are
e A More complex mechanism
o Larger system of differeral equations to solvencreasedcomputational cost)
especially fotransient(time dependentimulations.
o0 More correlation between parameteudifffcult parameter fitting and model
evaluations)
o Risk of making inappropriate assumptions about mass trarsfetations {.e.
neglecting these effectiie to computational limijs
Theseparameter fittingaspects will be further discussed in secBof
Microkinetic modelling has been successfully described initdraiure, see.g.[Stegelmann
2004, Stoltze 2000]

3.6.4. Thermodynamic constraints

For equilibrium reactios the thermodynamitaws should be fulfilled at all timesand he
change in Gibbs free energy is given by:

AG = AH - TAS = —RTIn(K) 29

If the net enthalpy changalf.e, given by calculation from gas phase speciesonstant (for
all timesandall states)the activation energies in the microkinetic mechamsust fulfil:

AH r?et = Z Ui Eai,fonNard - Z Ui Ea1 ,backward (30)

This must also be fulfilled for all coverages and if one uses coverage depentieation
energieskEa), then this must also be taken into account. ¢sggPark 1999]
Similarly for AS, the chage in entropy must be constant for all temperatures

A Y AGr?et_AH r?et
H ,backward - e RT

i ) A,forward (31)
AS,,
?t = Zui In(A,forward) - Zui In(A,backward)

These thermodynamic constraints can lraplemented as restrictions on the parameters,
adjustment of some chosen parameterg.(Olsson 1999) or reformulation of the problem
(modelling of equilibrium instead of separate reaction stepg[Mhadeshwar 2003]

Al t er nat iThemnbdynamict shkate vafiable modellmgp pr oacho can be
described ithe next section.

29
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3.6.5. Thermodynamic state variable modelling

In order tomaintainthermodynamic consistencyf. ecs. (30) & (31), one @ir of parameters

(A,Ea) needto be adjusteduring parameter fitting by tr eating them as 0!
for each global reaction path.the slackparameters arehosen carefully, this approach may

work satisfactory. However, the introduction otlack step also introduces stiffness in the
parameter fitting, especially for experimental data with fast transi€htss, the concept of
Thermodynamic state variahteodelling is an interesting alternative approtiwdt avoids the

necessity of slack pametersand has additional benefits

Instead of having model parameters of Arrhenius type, thermodynamic state variables (H, S)
are used as model parameters. The Ea and A in the Arrhenius expression can then be easily
calculated foarriving at the convaional rate expressions, wheolving the mass balances,

Ea =H’-> vH,
i

TIn(A) = S|# _Zvij Sj

(32

where superscript # denotes the transition state and the suminetiower the reactants in
reactioni.

One drawback with the directse of A and Ea as model parameters is that they are often
consideredo be independent of temperatweeen though they mostly have laast a slight
temperature dependencBy using the present approach, the thermodynamic consistent
temperature dependenad both H and S can be easily implemented by introducing
temperature dependentm H and S Another benefit with tis modelling approaclis that
parameter bounds can be made physically soargl for entropy: S> 0 and Sus< Sgas
moreover these restationscan be easily implemented. In ordermtataininitial estimates for

S and H independent methods such as density functional theory (DFT) and calorimetry can
be usedsee also the Appendixpimilar to traditional parameter fitting, a set of paramsete
will be subject to fitting, includingqdsorbed states and/or transition states.

It should be realized that one important difficulty is to deterrttieeinitial values foH and S
attransition states. However, BOC and Transition state theory (togeitheother techniques

and published values) can be applied to retrieve the necessary transition statéoad,tee
transition state values are easily retrievable from the Arrhenius parameters, H and S for the
adsorbed species together with(83).

The number of degrees of freedom (d.f.) compared with a traditional Arrhenius type of
formulation imposing thermodynamic consistency will be the sareeno gain in fewer
parameters will be achieved. However, the reduced parameter stiffness, the psoppticie

of parameter temperature dependence, the easier implementation of DFT estimates and better
parameter bounds makes this method interesting.

This methodwas appliedto a proposed mechanism for-Hssisted NgtSCR over a Ag

Al,O3 catalyst.In Figure 13, an example of an energy diagram displays H and S for single
adsorbates as well as transition states for the different reactions.
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Enthalpy diagram
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Figure 13 Example of an energy diagram using the present method.ifidicates adsorbed specie, #
indicates a transition state for a reaction.

3.6.6. Lumped kinetic models

Even thoughdetailed (nicrokinetiQ modek prevail in this thesis, there are othi@netic
modelsworth mentioning in this contexthese lumped kinetic modeare usually intended to
express the rate of an overall reaction and not a set of elementary reactions.

Power law model
A power law model is typically set up as:

r=k []c* (33

reactants

Which in essence is the sarieem as the microkinetic forpbut with the difference that the
exponents: can have any value (not only integets)s still in an Arrheniusexpression.

Langmuir -Hinshelwood model

Here one assumes that agsimn anddesoption processes are much fasteanthe surface
reaction and the adsorbed species will be in equilibrium with the gas phase. The reaction rate
will be proportional to the surface concentrat@amd by analytically expressing these surface
concentrations in terms of gas phase conceoiranecanarrive at:

__ —KKPKR
(+KAPA}+KBPB,

(39
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This equation is just one exampte thereaction A+ B => Cwhere A and B is assumed to
adsorb on separate sitédsis a reactiomate constant, Ik and Kz are adsorptionequilibrium
constants andfand R are thegas phaseoncentrations (expressed in partial pressure).
Othermodels such as Rideal oreifiRideal generate similar expressions and asdbhatethe
reactionoccurs betweeane adsorbed spesiand one gas phaseecis.

These types of kinetic expressions are usually applied to express the rate of overall reactions
and not to detailed kinetic modefor further reading about common kinetic models,esge
[Satterfield 1980]

32



4. PARAMETER FITTING AND ASSESSMENT

AWhen we gather information from t
we contribute to its ent-OmoRgssland hence |

In order to get good estimates of the model parametersatbatinknown, some kind of
adjustment is necessary. In mathematical terms one definéab j ect i ve functi o
one wants to manipulate the model parameters so that the objective function reaches some
criteria. The most common objective functionhs tresidual function:

f (X’ b) = Yobserved ™ Ymodel (X1 b) (35)
The criterionto be metis the minimization of the objective function and therefore the square
of the residual is often usebh the following we will use3 for model paramets so that the

objective function can be stated as:

min
ﬂ f (X’ b)2 = (yobserved_ ymodel (X’ b))2 (36)

In the following sections different approaches to parameter fitting witriedly described

4.1. Linear least squares method

The least squaresethod was alreadseviewedin section3.1.1 This method is the most
fundamental method and will be referred to many tinié® solution to theproblemabove,
eq(36), is given by:

b=(X'X)"X'Y 37
T he t er rariséslfronthe factthat y is dinear functionof b, i.e. 62y/8biabj:O foralli

andj. Note that the roman lettéris used for parameters in linear models, where as the Greek
letterp is used for nonhear models.

4.2. Nonlinear least squares methods

Below is averyshort version of nonlinear regression analysis ffBates 1988]

For a nonlinear function vy, theartial derivative of the functin is still dependent on at least
some parameter.e. azy/asias,-;so. This means that the paramet@rctor that minimizeshe
residual cannot belirectly calculated as in e(B7) above.When optimizing in the least
squares sense, the objective function is:

mi

b”s<b> = Yapsovea— AN = [2®)" (39)
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wheren(B) = Ymode(X, B) With the dependencenax being dropped dcause we consider a
specificset of observationsz(B) is the residual correspondingftm the linear case

The solutionis oltained inseveral steps:
1. Approximate the objective function®() by expahsiog:l or

8S(b) . o1 025(B) .
S(b) ~ S(°) + 2 (B-B%) + (b-B°)= b—b°) =
=507+ 5 O-6)+0-) 32 (6
- os(b)| _
ob I 9
q =230 | C g0y sy L
obob' |, 2
b—B° =i

2. The quadratic approximation will have a minima when the gradient isizero,
¥+q((d-b°)=0 (40)

and ifQ is positive definite5=-Q*®. When the linearization is exact, the optima will
be reached with the stégcalled the NewtorRaphson step).
3. For the function §)=(y-n) 06-4),)the gradient> and Hessiany are given by:

¥ =-2)z

q=203-29; ()
ob

When setting the second term of the Hessian to zerobtant h e ANeaawtsen 0 met ho
For further details, sd®ates 1988]

The above citations were given to illustrate what sdedbe calculated during parameter
fitting of nonlinear systemslf one has for exampld(0® experimentaldata points the
calculation of these data pointsnstitutes one functiocall If one then hag adjustable
parameters, then the Jacobian takes about p function calls. The Hessian takes”about p
function calls whichbecomes considerabié p is moderately largesince thismust be
performedfor every iteration during the fitig procedureSee also sectiof.8.

4.2.1. Quadratic Programming, Lsgnonlin

Quadratic programming ia procedure for carrying ouonlinear least squares optimization
but with constraints on the parameters. For mofermation seee.g.[Edgar 2001]

An example of one sudbk Lsgnonlinfound in the Matlab optimization toolbox,Lsgnonlinis

a least squares optimizer for nonlinear problemsr&hee several options afgorithmsand
whenbounds on the parametase specifiede.g. activaion energiegreaterthan zero) the
Isgnonlinfunctionusesai| ar ge scal eo algorithm,
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The large scale algorithm uses a trust region method and preconditioned gratients
description of these algorithms can be foumdhe Matab documentation,[Coleman 2001,
Mary Ann Branch 1999, Thomas Coleman 1996]

4.2.2. Gradient Free fitting algorithms

One alternative way of minimizing the objective function is to use gradient free methods.
These methoddo not assume any gradient, but mesaluae more parameter settings during
the fit. This introducesa tradeoff betweendeviation from a trustworthy gradient and
computational cost. For a paratar space that is limited to imevels, a factorial design will
cover he parameter spaces antif@nction evaluationsvould beenough to find the most
optimal point (for 20 parameterg?® ~ 10° functionevaluationk If each parameter can have
many values€.g. disaetized in 10 intervals), the number of function evabret increases
dramatically to 18(for 20 parameterd,0”° function evaluations).

Gradient free methods are not within the scope of this thesis bstilavery interesting since
the reliability of gradients is low forhighly nonlinear systems, especially with poor
parameter estimateparameter values far from optimumiixamples of a gradient free
algorithns are simulated annealingfAghalayam 2000, Eftaxias 2002, Kalivas 1992,
Raimondeau 2003, S. Kirkpatrick 1988)}d Genetic Algoritms[Routray 2005]

4.3. Parameter pre-treatment

As in every regression situation we assume independence and specifically independent
variables. In Quadratic Programming for NSR systems, the variables are the model
parameters and the objective thie parameter préreatment is to transform them to be as
uncorrelated as possible. T h €.1) sviere @ elpskicali s fit
scal i ng -$ 6 al ihrgmBadsvdnirirggdf the variables and scaling them to unit
variance. In the case of parameter fitting this means:

b. —b
bscaled == o (42)
std(b)

where Braw is the unscaled current parameter valfgean does not necessarilymean the
averageb u t rather the fAsetpointo or.dmssn(bt gues
necessarilynean the spread of the parameter but rather a meadineatibwed range for the
parameter value.
By applying this transforationto all parametersegardlesof ther physical meaningi.e.
treating preexponential and activation energies separatelypbtainall the parameters on
the same Al evedamasinwedlleadas on the
The fAall owed rangeo can be i mplemented in (a
1. to correspond to the actual allowed rangdjch implies that an extreme parameter
value(on the border of allowed range) will\v@a scaled value of +1.
2. to correspond to adefned response in the system. F c
rangeo will cor r baavipgofthe reacton eate. dlsuwil makathe o f
settings of the boursdnuch easier.

In order to get the prexponential and the aecation energies to besauncorelated as
possible, on@erformsficentring of the preexponentials
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