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Parameter estimation in heterogeneous catalysis 
Jonas Sjöblom 

Chemical Reaction Engineering, Department of Chemical and Biological Engineering 

Chalmers University of Technology 

 

Abstract 
The detailed modelling of heterogeneous catalytic systems is challenging due to the unknown 

nature of new catalytic materials as well as the often required transient nature of the resulting 

models. Thus, this thesis deals with the methodologies involved in the kinetic modelling of 

heterogeneous catalysis and in particular NOX reduction systems. The methods presented 

increase the understanding of the interplay between model parameters and also decrease the 

number of necessary laboratory experiments. The effect of more efficient parameter estimation 

methods should result in faster model development which is required in any process 

development but especially for catalytic emission control. 

 

In the first paper, injection parameters for an engine rig with a NOX Storage and Reduction 

(NSR) system were optimised using different experimental designs at different load points. 

The optimised settings were used as a map for a control strategy complying with a European 

Transient Cycle (ETC). 

 

In the second paper, we developed a method that copes with the large number of unknown 

model parameters by applying a Latent Variable (LV) model to the Jacobian matrix in the 

fitting procedure. The LV model results in a low-dimensional approximation of the Jacobian 

with reduced parameter correlation and enables improved efficiency in parameter estimation. 

In the third paper, Experimental design for precise parameter estimation was performed in a 

batch-sequential way using D-optimality as the objective function. A screening methodology 

similar to that used for drug discovery in the pharmaceutical industry was applied for a large 

number of simulated candidate experiments. By applying an LV model to the Jacobian of all 

these experiments, a reduced parameter correlation was obtained and the number of necessary 

experiments was reduced. The results from the second and third paper pinpoint a number of 

benefits of using LV models including:  

1) the determination of the effective rank, i.e. the number of independent phenomena 

present in the data at hand, 

2) the analysis of the correlation structure which is useful in the parameter assessment and  

3) the linear approximation in few dimensions enables more efficient computations.  

 

In the fourth paper, a detailed model for the Selective Catalytic Reduction of NOX using 

Hydrocarbon as a reducing agent (HC-SCR) over silver alumina (Ag-Al2O3) was developed. 

By applying an experimental design to the steady state levels and also selecting the run order, 

improved fitting properties were obtained due to the increased parameter sensitivity enabled by 

the transient experiments. 

 

This thesis also contains a description of the modelling techniques and challenges encountered 

during this thesis project. An assessment of the importance as well as the parameter correlation 

is given. This demonstrates the intimate interplay between model assumptions and the 

stipulated model parameters and exemplifies a thorough assessment of the whole modelling 

chain from initial experiments to model validation.  

 

Keywords: Parameter estimation, Jacobian, Latent Variable models, Experimental design, 

Design of experiments, microkinetic modelling, heterogeneous catalysis, sensitivity analysis 
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PREFACE 
 

Having wandered around in both professions as well as in nature it is amazing how important 

pictures are to mankind. Pictures are used to efficiently send messages and ñOne picture says 

more than a thousand wordsò (Chinese proverb) goes without saying. But pictures are still just 

projections of the complex reality down to a more manageable format. Nevertheless I also feel 

the need for an illustration of this thesis. 

 

The search for a perfect fit is like reaching 1500 meter above sea level
1
 somewhere in Sarek, 

Laponia, Sweden. The way to get there is to draw a map
2
 and find your way through. How to 

reach the peak of the mountain is of secondary interest as long as you get there. There are 

helicopters
3
 even though they are not allowed at all places in Sarek. If you run in the terrain 

you can cover a large area in your search but if you do not watch out you may slip and fall 

badly. If you walk slowly you will not slip but the food may run out for you.  

Parameter fitting (using gradient methods) is like searching for that peak of the mountain 

provided with a map that you made yourself or bought really cheap at the gas station and an 

altitude indicator
4
. You are also instructed to only walk uphill; downhill will only take you 

farther away from the goal. But this time the weather is completely foggy! You cannot see 

more than a few meters away. You start to walk and climb and soon you find yourself on a pile 

of moraine. You realize that you are far from the goal and move down from the rock pile, jump 

around a bit and restart again, just to find yourself on another pile a few moments later. 

Sometimes the climbing goes through cold mountain streams and sometimes through boulder 

terrain, drawing on your reserves. All of a sudden the sun breaks through and you realize 

where you have been and you can also perceive the peak far away. You even find a small path! 

You feel much better even if the path goes downhill, because soon you will be able to climb 

higher than ever before. Hoping that the peak you see is the good oneé 

 

 
Sarek national park, a wonderful place to be if you are well prepared and have nice weather. 

(photo: Hans Molin) 

                                                

 
1 This altitude is the ultimate fit of a simulated run and experimental data 
2 The map is the model that we decide upon 
3 Helicopters take you from one point to another, this is referred to as ñmanual tuningò 
4
 A look at the altitude indicator is the function call, i.e. residual calculation 
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1. INTRODUCTION 
 

This thesis is about parameter estimation in heterogeneous catalysis and specifically applied 

to NOX reduction for vehicle emissions. The internationally strong interest in NOX reduction 

makes this research area very intense, but on the other hand, the fundamental understanding 

enabled by mathematical modelling is unfortunately often not as frequent. This introduction 

presents some issues in mathematical modelling in heterogeneous catalysis and hopefully 

justifies modelling efforts in general and this PhD project in particular. 

1.1. Global warming and NOX reduction 

 

Reduction of carbon dioxide (CO2) emissions from vehicles is an important factor in the 

abatement of global warming [Hansen 2004]. Since CO2 formation is a natural consequence 

of fuel combustion, the natural way to reduce CO2 emissions is to decrease fuel consumption. 

The most efficient way to reduce CO2 emissions is of course to decrease transportation or to 

use renewable fuels. Yet, for transportation that nevertheless will exist, fuel consumption can 

be reduced by running the engine ñleanò (oxygen excess) and the most common type of lean 

burn engine is the diesel engine.  

 

In a traditional gasoline engine, which utilises stoichiometric combustion (neither oxygen 

excess nor deficiency), the harmful exhausts are reduced using a three-way catalyst which 

simultaneously oxidises carbon monoxide (CO), hydrocarbons (HC) and reduces nitrogen 

oxides (NOX). The diesel engine, on the other hand, produces lean emissions and cannot use 

this technology because the NOX reduction process is inhibited by the oxygen rich 

atmosphere. NOX emissions are also a pollutant since they contribute to e.g. acid rain and 

ground level ozone (which causes urban smog). For a long time this was not an issue since 

diesel engines produce relatively low NOX emissions. However, as the legislation for diesel 

vehicles has become more stringent for NOX emissions, new catalysts, especially for heavy 

duty diesel engines need to be developed.  

 

Even though there is technology available to meet the current emission legislation, 

compliance to future legislation will be even harder to attain. Furthermore, there are issues 

regarding the ageing of the catalyst, cold-start problems as well as the reduction of particulate 

matter (soot) to deal with. Additionally, future alternative fuels will bring significant 

challenges to the research community within heterogeneous catalysis. Nevertheless, whatever 

advanced technique that will be used to solve future emission problems, heterogeneous 

catalysis will be indispensable and thus, a profound understanding of the catalytic processes 

will be crucial. 

1.2. Mathematical modelling and heterogeneous catalysis 

 

To achieve a profound understanding of heterogeneous catalytic systems, mathematical 

modelling is a key technique [Berger 2008, Franceschini 2008a, Guthenke 2007, Koci 2007]. 

Models can be used for many different objectives, e.g. prediction to improve on-board control 

and aftertreatment design but most importantly (and exclusively in this thesis) models can be 

used to increase the understanding of heterogeneous catalysis. For example, by analysing a 

complex model (that contains different phenomena), the different phenomena can be 

evaluated for a specific situation. Also, in the case of aftertreatment development, appropriate 

actions can be taken. A typical example would be to assess whether the limiting factor for 
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NOX reduction is governed by mass transfer resistance or the amount of active material. 

Furthermore, the models need to be detailed enough to enable the assessment of different 

phenomena (different dominating reactions depending on the exhaust gas composition). 

Additionally, due to the highly dynamic nature of an aftertreatment system (changing flow 

conditions and temperatures depending on the vehicle operation as well as the reducing agent 

that is injected dynamically), the models also need to capture transient phenomena. Thus, this 

thesis contributes to the long term objective of increased understanding of heterogeneous 

catalysis by improvement in modelling methodology. 

 

When assessing a model applied to practical (non-theoretical) situations, the use of 

experiments is very important. In order to draw high quality conclusions, the model and 

model analysis as well as the experiments need to be of high quality
5
. These parts are 

performed iteratively in order to improve understanding of the catalytic process [Box 1965a], 

see Figure 1.   

 

 
Figure 1. A schematic picture of the machinery involved in the modelling cycle. The numbers indicate the 

chapters in the thesis where these parts are further described. The applications of these different parts 

(including papers I -IV) are given in chapter 5. 

 

There are two major obstacles in achieving the goals of improved understanding. The first is 

associated with the vast amount of information available (catalyst characterisation, similarities 

to other systems, extrapolation of information from other experimental conditions etc) which 

results in complex reaction mechanisms and thus many model parameters. Secondly, an even 

greater obstacle is the fact that all these numerous parameters, as well as the model structure 

itself, may turn out to be inappropriate. This can result from incorrect assumptions or 

erroneous simplifications and more details will be given in the rest of this thesis. In short, one 

could say that the modelling of processes that take place at a molecular level is inherently 

difficult using only macroscopic observations. Consequently, the modelling effort can be 

difficult and time consuming. However, even if the models are erroneous, they are often 

proven useful and the need to improve at any stage in the modelling cycle constitutes the 

motivation for this PhD project. 

                                                

 
5 High quality does not necessarily mean low noise levels. With the notion high quality means that the 

experiments can be well characterised, i.e. the noise levels as well as any other uncertainties are investigated and 

quantified. 

2. Experiments 

and 

Experimental 

design 

 

4. Model 

analysis  

(Fit and 

assessment) 

3.Models and 

Model  

simulations 
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1.2.1. Challenges with parameter fitting 

One basic assumption during parameter fitting is that the model is correct. Furthermore, the 

most common fitting procedures are based on gradient search methods, which work best with 

parameter values in the vicinity of the true values. However, when the model is potentially 

unsuitable, the parameters are far from the true values and/or the experimental design is not 

well adapted for the objective, correlation between parameters occurs. Normal gradient 

calculations are not well suited to deal with this correlation and consequently, the objective of 

paper II is to show how latent variable models can be used for more efficient parameter 

fitting. The analysis of the correlation structure gives valuable information about how many 

parameters that can be adequately fitted. Moreover, a better choice of parameters subject to 

fitting can thus be obtained. 

1.2.2. Challenges with experimental design for precise parameter 
estimation 

Experimental design is a methodology that aims at maximising the information content given 

by a limited number of observations (experiments). For linear models, the methodology is 

quite straight forward, see e.g. [Montgomery 2001]. For nonlinear models, the situation 

becomes more complicated, but manageable since the pioneering work by Box [Box 1959] 

and when there are multiple responses the complexity increases by one dimension [Box 

1973]. There are many other aspects that come into play, such as  

 whether the modelling objective is precise parameter estimation or model 

discrimination [Buzzi-Ferraris 2009, Hunter 1967] 

 the choice of the objective function [Bardow 2008, Box 1970, Franceschini 2008b, 

Pritchard 1978, Walter 1990] where D-optimality is the one used in this thesis 

 The number of experiments in each modelling iteration, i.e. the sequential design e.g. 

[Box 1965b, Hosten 1975] where batch-sequential experimental design [Walter 1990] 

has been applied in this thesis. 

However no literature could be identified that simultaneously deals with nonlinear, multi-

response models, time-dependent experiments (using many observations) regarding the aim to 

plan a series of experiments (batch sequential approach). A feasible way to deal with these 

many aspects is to approximate the Fisher information matrix using a Latent variable model. 

In paper III it is shown that by using this approach the information content can be more easily 

quantified and the experiments become less labour intensive. 

 

1.3. Objective 

 

The objective of this thesis is to demonstrate novel methodologies during the modelling cycle. 

Furthermore, the main focus is on model fit and model assessment, even if the model 

structure is less than optimal (as is evident from most of the papers in this thesis). For 

instance, different methods to handle many parameters that are highly correlated are applied. 

The main tools are Design of Experiments (DoE) and Multivariate Data Analysis (MVDA) 

and the results show that these methodologies contribute to a deeper understanding and 

additionally, they are also more computationally efficient. Finally, this thesis is also intended 

to describe the different parts and aspects of the modelling cycle, to assess the impact of these 

different parts and also to give recommendations of how to overcome common issues 

encountered in practical modelling tasks e.g. for PhD students in Chemical Engineering. 
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2. EXPERIMENTS AND THE DESIGN OF EXPERIMENTS 
 

ñWithout experiment I am nothing. But still try, for who knows what is possibleò  

Michael Faraday 1791-1867 

 

Even though this thesis is dealing with modelling, it is important to realize that we base all 

our understanding either explicitly on observations (measurements) of the system in study or 

from previous knowledge which in turn was based on observations. Furthermore, the type of 

modelling that was performed in this thesis is based on the assumption that the model is 

correct and that the data (from observations) are not. The data are probably a good measure of 

what we want to observe, but is impaired by errors. 

 

In the following sub-section, various experimental techniques are described just to give an 

understanding of the important consequences they have on the modelling.  

 

ñThe chain is never stronger than the weakest linkò and the chain starts with the experiment
6
. 

 

2.1. Design of Experiments (DoE) 

 

Models are almost always tightly connected with experiments. Experiments are used in 

different stages for different purposes: 

 

 Initial experiments 

o To verify that the reaction occurs  

o To get reasonable ranges for reaction conditions 

o To propose an initial reaction mechanism 

 Structured experiments, preferably a statistical design of experiments 

o To estimate effects of reaction conditions 

o To estimate model parameters
7
  

 Verification experiments 

o Validation experiments 

o Robustness testing 

 

As long as one has the objective in mind, it is easy to realize that a systematic approach is 

beneficial. Apart from the initial experiments (where intuition and imagination are more 

important), the use of experimental design cannot be over-recommended. The use of 

experimental designs enables e.g. 

 

o Independent analysis of different experimental factors 

o Maximum information from minimum number of experiments 

 

                                                

 
6 This does not mean that I consider the experiments to be the weakest link. On the contrary, experiments are 

often the most well defined and characterized part of the modelling chain. 
7 This is the theme of paper III and will be further described in section 4.5 (Design of Experiments for precise 

parameter estimation). 
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For the basic concepts underlying DoE, see any textbook on the subject e.g. [Montgomery 

2001], [Umetri 1988], or a tutorial [Lundstedt 1998]. 

 

2.1.1. Single observation experiments 

In ñclassicalò experimentation, one performs one experiment (one observation) and evaluates 

the results. The characteristic feature is that one experiment produces one ñrowò of data. This 

row consists of factors (x-variables) and responses (y-variables). The different experiments 

can be performed independently, which means that there is no correlation between different 

experiments (rows). Examples of un-wanted experimental correlations are: 

o Experiments performed in the same order as the variation of one of the factors, i.e. 

first all ñlow-levelò experiments followed by all ñhigh-levelò experiments. 

o Replicates performed in sequence 

o Experiments performed so that correlations between different factors occur, i.e. a non-

orthogonal experimental design. 

For catalytic reactors the classical experiments correspond to some integrated value or 

perhaps some final state of the reaction. It may also be one selected feature of the reaction 

event such as catalyst ignition. 

 

2.1.2. Time-dependent experiments 

One other type of experiment or more precisely one type of experimental data is time-

dependent observations. Time-dependent observations are encountered when we have 

sampling at several sequential time points during an experiment. The correlation between 

observations is a natural consequence and hence should be adjusted for accordingly.
8
 

 

The advantage of time-dependent observations is that they enable the study of the dynamics. 

Dynamics are of interest when we do not have steady state or when accumulation is of 

importance. The non-steady state experiments are here referred to as ñtransientò experiments. 

A transient experiment may simply involve a ñstep changeò in inlet concentration, but 

transient experiments can be extended to include all observations that aim to study the 

dynamics of the system. 

For complex non-linear systems (with many coupled reactions), transient experiments are of 

utmost importance [Berger 2008]and if the system contains unobservable variables (such as 

coverage of the catalytic material in a catalytic converter) it becomes even more important. 

Due to the model non-linearity, one difficulty is the model parameter evaluation in terms of 

ñdesign factorsò. However, by using transient experiments one drastically increases the 

parameter space and enables estimation of kinetic parameters not achievable using steady-

state techniques. 

 

                                                

 
8 Note: All too often one can encounter the determination of degrees of freedom (e.g. for calculation of 

confidence intervals) based on time-dependent observations but still (implicitly or unconsciously) assuming 

independence of observations. This is all very unfortunate, but on the other hand it is difficult to get any 

better alternatives accepted by the statistical community. 
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2.1.3. Orthogonality and correlation 

Design of Experiments aims to maximize orthogonality and minimize correlations. There are 

different types of orthogonality and correlations: 

1. Among observations: a classical experimental design is performed with every 

observation independent of each other. This means that there should be no other 

correlation between the observations other than specified by the adherent factors. 

2. Among factors: adjustable factors should always be made orthogonal while for un-

controlled factors the correlation may be difficult to avoid. (Different sampling 

methods could be considered here.) 
9
 

3. Among responses: The responses are typically non-adjustable (at least in a direct 

sense). However during optimization of different responses one may seek 

orthogonality. 

The discussion about orthogonality and mitigation of correlation will be further discussed e.g. 

in section 3.2. 

 

2.1.4. Application of DoE to heterogeneous catalysis 

As in every experimental activity, DoE is of utmost importance in order to retrieve maximum 

information and avoid costly misinterpretations. It is therefore distressing to observe the 

relative lack of DoE in the field of catalysis compared to, for example, the field of analytical 

chemistry. However there are publications using DoE and the demonstration of the benefits is 

as usual very clear. Examples include: 

 Optimization of catalyst preparation [Dawson 1992] 

 Combinatorial chemistry approach for screening of different catalytic materials 

[Bricker 2004, Kirsten 2004] 

 Spanning the experimental space for improved parameter fitting [Barsan 2003] 

(however Steady State) [Zamostny 2002] , (papers III  & IV) 

 Optimization of catalytic processes such as within fuel cells [Dante 2002] 

 Use of DoE in kinetic modelling has been studied by the group of Vlachos 

[Aghalayam 2000, Davis 2004] (papers III & IV) 

 Optimization of injection parameters for an NSR system on an engine rig (paper I) 

 

                                                

 
9 DoE deals with linear models. Note that for non-linear models, the correlation among the factors is 

actually built-in by definition. One solution often used is then to approximate the nonlinear function with a 

linearized one. This will be discussed more in section 4.2. 
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2.2. Experimental Reactor design 

 

The reactor design includes all physical parts of the system. Figures 2 and 3 show two reactor 

set-ups used in this thesis. 

 

 
 
Figure 2 Monolith reactor setup. The monolith (1) is inserted into a quartz glass tube. The tube is heated 

from outside using a heating coil (2). Two thermocouples (3) measure the temperature inside the monolith 

(use for simulations) and in front of the monolith (for temperature control). The heating coil is powered 

by a power supply (4) and controlled by a Eurotherm controller (5). The monolith is fixed in the quartz 

glass tube (and partially isolated from the heating coil) by quartz wool (6). The quartz glass tube and 

heating coil is further isolated by quartz wool (7). A gas mixture is fed to the reactor using a set of mass 

flow controllers (MFC) (8) and the reactor outlet stream goes to various detectors (9) before being vented. 

 

 
Figure 3 DRIFTS reactor setup. A gas mixture (using a MFC set similar to the monolith reactor) is fed to 

the ñdomeò (hemispheric chamber) and passes through a packed bed of catalyst (sample). The bed 

temperature is controlled by a Eurotherm and the outlet stream goes to a mass spectrometer detector. 

Infrared radiation strikes the surface where it diffuses into the bed, becomes reflected and collected via an 

integrating sphere and finally passed to the IR detector. 

 

The reactor design is a very important step that is often neglected due to practical reasons 

(e.g. the reactor already exists, ready to be used). However, the design will define/restrict the 

experimental limits both in terms of ranges (such as flow, concentration, and temperature 
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limits) as well as phenomena (such as temperature gradients, velocity profiles). Below is a list 

of typical examples encountered
10

: 

 Velocity profile for the flow entering the monolith: assumed to be plug flow but is 

probably fully developed laminar flow. 

 Concentration profile entering the reactor: When a step change in concentration is 

performed, the real concentration profile will be ñsmoothed outò due to dispersion 

effects, see section 3.4. 

 Temperature gradients in gas flow, due to heating coil heating from outside in 

combination with the absence of mixing in front of the reactor. 

 Channelling and stagnant zones in the packed bed. 

 Absence of heating of pipes creates longer time lags for some gases due to re-

adsorption effects (such as NO2, H2O and NH3). 

 

 

2.3. Catalyst characterisation 

 

In order to understand the morphology and structure of the catalyst sample a relevant 

characterisation is needed. This information can then be used to apply a relevant transport 

model. It also indicates the relevance of a mean field kinetic model, see also section 3.6.1 and 

6.2. 

2.3.1. N2 physisorption  

By performing N2 adsorption and desorption at low pressures, the specific surface area and 

the pore size distribution can be determined. For further reading, see [Barrett 1951, Brunauer 

1938, Kannisto 2009a]. For example, in paper IV, the specific surface area (BET area) was 

197m
2
/g and the pore size distribution was 20-77 Å (80% of the pores) with an average pore 

diameter of 30 Å (3 nm).  

2.3.2. Electron microscopy 

By using electron microscopy, e.g. Scanning electron microscopy (SEM) or transmission 

electron microscopy (TEM) one obtains images of the catalyst. In Figure 4, a monolith 

channel is displayed with a 20 wt% washcoat loading of Ag-Al2O3 catalyst. The washcoat is 

of varying thickness, at approximately 40 µm on the channel walls and thicker in the corners. 

Figure 5 shows a close up of the monolith wall (cordierite) and a thin layer of Ag-Al2O3. 

From this picture it is clear that the washcoat is not a uniform porous layer, but consist of 

primary particles of about 1µm which in turn contain even smaller pores, as indicated by BET 

analysis.  

In the TEM image (Figure 6) of an Ag-alumina sample, large silver particles of about 10 nm 

in diameter can be observed. There are also smaller particles not visible in the TEM image 

(because they are too small) but evidenced by other methods indicating small nanoclusters of 

a few atoms which are suggested to be the main reactive sites for the SCR mechanism 

[Kannisto 2009b].  
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 Most of these effect as well as many other effects will be numerically evaluated in section 5.5 
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Figure 4. A SEM picture of a 

monolith channel coated with Ag-

Al 2O3 

 
Figure 5. A SEM picture of the 

cordierite wall and the Ag-Al 2O3 

washcoat. 

 
Figure 6. A TEM image from a 

silver-alumina (SG5) sample, 

as was used in paper IV. From  

[Kannisto 2009b] 

 

2.4. Detectors 

 

As indicated in the introduction, experiments, model simulations and analysis are tightly 

connected. The research heavily relies on experiments and the experimental data is collected 

by detectors. In a way, one could say that detectors are the foundation on which parameter 

estimation is based upon, since it is the comparison between the simulated data and the 

detector signals (i.e. the residual) that defines the goodness of fit
11

. During the optimisation of 

the detector signal there is always a trade-off between sensitivity (i.e. how much signal) and 

selectivity (i.e. how sensible the signal is to interfering signals, interfering species etc). 

 

2.4.1. Mass spectroscopy 

Mass spectroscopy (MS) is a technique to separate (and thus quantify) different molecules 

depending on their mass. The main advantages are that the technique is fast (time resolution 

about 1/10s) and requires only small amounts of the sample gas (2-10 ml/min). The greatest 

challenge for quantification is that the calibration procedure is sometimes highly responsive 

as will be shown below. There are many different types of MS systems, but here only the 

quadropole type of MS using a SEM detector is described, see Figure 7. 

 

                                                

 
11

 At least under the assumption that the model is correct.  
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Figure 7 Schematic picture of a Mass Spectrometer instrument setup.  Adopted with permission from Dr 

Norbert Müller, INFICON Limited . 

 

The gases are sampled downstream the reactor by a glass capillary that samples about 2-10 

ml/min driven by the very low pressure in the MS system (about 1×10
-6
 mbar). The gas 

reaches the ionization chamber where electrons with high energy hit the molecules and create 

positive ions/fragments. The incoming electrons repel the molecular electrons so that they 

leave the molecule. However, the incoming electrons may also break the bonds between the 

atoms in the molecule and thus create fragments
12

. Then, the ions are accelerated into the 

quadropole, where the gases are separated according to their mass (mass over charge). The 

ions that passed through the quadropole then enter the Secondary Electron Multiplier (SEM) 

detector where the number of molecules is transformed into a signal. This detector enables a 

linear response within a very wide range (9 orders of magnitude or more).  

 

The MS signal represents a ratio of mass over charge (m/e) and is not exclusively linked to 

the concentration in the gas phase. There are different sources of a certain m/e ratio
13

: 

1. the molecule of interest itself, charged by +1 

2. fragments/molecules of double the mass but with double charge (+2) 

3. bigger molecules fragmentized into smaller fragments 

4. smaller molecules/fragments that re-combine with other fragments/molecules (present 

at high concentrations) 

5. other molecules with different isotopic composition. 

 

These effects become a ñselectivityò problem and it is important to properly handle these 

issues when quantifying MS data. It is important to note that just because there might be 

selectivity issues, the MS technique can be made very accurate with high selectivity and 

furthermore it has the benefits of small and fast sampling.
14

 

 

More details and guidelines on measurement methodology as well as handling of the 

selectivity issue are given in Appendix A. 

 

                                                

 
12 The terms fragments and ions are used interchangingly in this chapter.  
13 There are other sources as well, but only the sources relevant to heterogeneous catalysis are listed here. 
14 Another way to solve the selectivity issue is to use a separation technique, such as gas chromatography (GC), 

however the time resolution is lost unless it is used in combination with on-line measurements and data can be 

interpolated with sufficient accuracy 



12 

2.4.2. Infrared Spectroscopy 

Infrared (IR) spectroscopy is a technique where electromagnetic radiation in the range
15

 of 

approx. 4000-1000 cm
-1
 excites vibrational energy levels of molecules. There are different 

types of spectrometers, but the Fourier Transform spectrometer is the most common type.  

2.2.3.1. Gas phase Infrared Spectroscopy 

The reactor outlet gas stream enters the IR flow cell and is quantified using a calibration 

procedure. Since the concentrations are low (ppm levels) the sensitivity issue is partly solved 

by designing the flow chamber to be long and to let the beam cross the gas flow many times. 

Also the number of scans can be increased to increase the signal to noise level, i.e. sensitivity. 

The sensitivity issue then becomes a time resolution issue.  

Furthermore, the different gas molecules may have overlapping peaks generating a selectivity 

issue. This can be solved by using multivariate calibration procedures [Martens 1989] or by 

multiple selection of the spectral domain as implemented in the instrument at the Competence 

Centre of Catalysis, Chalmers (KCK) (MKS MG2000) [MKS Instruments 2006]  

2.2.3.2. Diffuse reflectance Infrared Spectroscopy 

In the gas phase there are only 3N-6 normal modes of vibrations for a non-linear molecule, 

where N is the number of atoms. When a molecule is adsorbed on a surface the number of 

vibrational modes increases with different adsorption configurations. This makes spectra 

much more information rich. However it also requires that one can assign different peaks to 

different vibrations to make the spectra interpretable. This assignment uses both theory and 

previous knowledge (from similar systems). Using the information from the peak assignment 

a more plausible reaction mechanism can be derived. 

 

 

Aspects of peak assignment 

The peak assignment task is sometimes difficult due to a number of reasons: 

 Peak positions move depending on co-adsorbed species 

 Peak position appears at different frequencies due to different support effects 

(compared to other published information) 

 The peak in study is from an unknown specie 

 The peak in study can be hidden by other overlapping peaks 

A number of counter-measures and methods are available to partly circumvent these 

problems, including:  

 Targeted experiments (one gas at a time) 

 Temperature programmed experiments (e.g. Temperature Programmed Desorption, 

TPD) [Gorte 1996] 

 Isotopic experiments, such as Steady-State Isotopic Transient Kinetic Analysis 

SSITKA [Shannon 1995] 

 

Aspects on the quantification of diffuse reflectance data 

The quantification will be further described in Appendix A, which deals with the 

modelling/numerical part. Concerning the experimental part, there are a number of aspects to 

take into account [Müller 2008]: 

 Penetration depth is small, typically less than 0.4 mm for Pt on -alumina. This is due 

to the large portion of pores for high surface area materials. 

                                                

 
15

  This range may differ with different applications. 4000-1000 cm
-1
 corresponds to 2500-10000 nm. 
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 Particle size dependence: Peak heights (as well as peak areas) may depend on particle 

size distribution, mostly higher peaks for smaller particles, however not always. A 

simple calculation (see section 7.7 in [Müller 2008]) shows that the majority of 

surface is internal pore area and only 0.01% is external area. Thus it is really the pore 

surface that is manifested in the DRIFT spectra. 

 Sample preparation: In the study, there was found to be no dependence on how much 

sample that was pressed into the reactor. This means that the -alumina is rigid 

compared to the mechanical force due to tapping/pressing more sample into the 

reactor. 

 Baseline variation due to temperature. Either separate backgrounds need to be taken or 

baseline correction using a low order polynomial or a linear interpolation of 

background spectra can be used to account for baseline variation. 

 Negative peaks due to e.g. hydroxyl groups: The support may contain adsorbed 

species during background acquisition. This may need to be accounted for if the pre-

adsorbed species overlap with species of interest during reaction conditions. 

 

2.4.3. General remarks on gas phase analysers  

There are of course many other gas analysers that are used for reactor experiments, e.g. 

chemiluminisence detectors for NOX quantification. However, they are often only reliable 

when operated and calibrated correctly, so they will not be described further. In almost any 

analyser there will be a few important issues that really need to be dealt with in order not to 

ruin any subsequent modelling effort. These issues are 

 The sensitivity 

 The selectivity 

 Gas consumption /Time resolution 

 

2.4.4. Temperature sensors 

The temperature inside the reactor where the reactions take place is of outmost importance. 

The measurement should be accurate and non-invasive. The most common temperature 

sensors at KCK is a thermocouple of type K, which is a standard sensor giving accurate 

temperature estimates. However, the precision of the temperature is not as much of an issue as 

is the issue of representativity.  

 By insertion of a thermocouple in a monolith channel, the residence time can be 

affected, thus the conversion and local temperature. 

 The heating coil for the monolith reactor setup will induce a temperature gradient in 

the inlet flow to the monolith. 

 The black-body radiation of the monolith can cause a substantial temperature drop at 

the end of the monolith. 

 

The accuracy of temperature measurements in relation to kinetic modelling was studied by 

Hansen [Hansen 2007] who found that in order to be able to discriminate between two simple 

mechanisms, the precision needed to be better than 2K. The temperature gradients (and thus 

variation in representativity) in a typical monolith reactor is easily more than 5°C. 
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3. MODELLING  
 

òAll models are wrong but some models are useful!ò -  George E.P. Box  

 

In order to get some perspective, we need to define what we mean by a ñmodelò, since it is a 

very frequently used term for many different kinds of models. 

Below is a ñdefinitionò or a specification of models used for heterogeneous catalytic reactors 

applicable in this thesis: 

 

 

 A model is something used to explain observable and unobservable phenomena. The 

model can aim to describe physical phenomena or be more empirical in nature.  

 A model consists of a structure/mechanism which describes how different phenomena 

are related. 

 A model also has a set of model parameters and for complex (nonlinear) models there 

is normally no unique set of parameters
16

 but an infinite number of sets that will fulfil  

the objective function
17

. 

 These parameters should have any (preferably all) of the following properties: 

o Parameter values give the model good fit to experimental data. 

o For physical models, parameter values should be physically reasonable  

Á Values within acceptable limits 

Á Reasonable relationship between parameters 

 
Frame 1. Definition of a model as viewed upon in this thesis. 

 

The statements above imply that the model parameters are NOT the model. The activity 

ñmodellingò is by this definition the extraction of the mechanism (including identifying the 

model parameters). In this thesis the focus is therefore NOT on modelling but rather on 

parameter fitting and model (or model parameter) assessment. This may seem strange to some 

people, who often assume that parameter fitting is always readily achievable and model 

assessment gives satisfactory conclusions (i.e. the model is trustworthy). However, I would 

like to argue that this is seldom the case and in particular for detailed kinetic models applied 

to heterogeneous catalysis. 

 

3.1. Linear models 

 

In order to predict reactor outlet concentrations, one could also use a very simple model: 

 

 ii xkr     (1) 

 

Where xi can be any variable (e.g. concentration, but also temperature, flow rate etc.), 

eventually transformed (squared, inversed, logarithmic, etc) and ki is a linear constant. The 

                                                

 
16 Unless a suitable experimental design can be performed. 
17 The objective function will be described in section 4 and is often defined as a minimization of the square of 

the residual (difference between simulated and experimental data). 
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response r can be any response (e.g. reaction rate, conversion, selectivity etc). The expression 

can also be written in matrix notation: 

 

 bxr     (2) 

 

These models have the advantage that the model parameters can be analysed using classical 

statistical analysis if handled properly. One prerequisite is that the experimental data enables 

independent estimation of b, i.e. that DoE has been applied (see 2.1).  

 

3.1.1. Linear regression 

In linear regression analysis one is concerned about finding a relationship between a response 

variable, y which is assumed to depend on another independent variable. The observations of 

y will be approximated by ñy-hatò, y : 

 

eyy      (3) 

 

Where the residual, e, is preferably as small as possible. 

The ñstandardò linear regression model: 

 

bxyĔ      (4) 

 

Where x is a vector of variables (x0, x1, x2, é) where the first variable x0 is unity ò1ò and 

corresponds to the intercept. b is a vector of regression coefficients where the first element b0, 

is the intercept and the remaining coefficients are the ñslopeò for each corresponding variable 

in x. In order to estimate the parameters in b we need a so called ñobjective functionò. In 

linear regression we almost always apply the ñleast squaresò approach and the objective 

function is to minimize the square of the residual: 
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By derivation of the objective function with respect to the parameters and setting the 

derivative to zero i.e. minimization, the solution becomes: 

 

1

0
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b

XXYXb
1

    (6) 

 

Where we now have extended the least squares to a multivariate case, where we have many x-

variables in an X matrix and many y-variables in a Y matrix. 

 

3.1.2. Assumptions for linear regression 

In order to prove that the estimation of the model parameters are the best un-biased ones, we 

need a few assumptions: 

1. The observations are independent 
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2. The x-variables are exactly known (they have no error) 

3. The residual (in the y-direction) is normally distributed with an expected value of zero 

4. The variance of the residual is constant over the entire calibration range 

 

These assumptions are very seldom fulfilled even though they can be sufficiently fulfilled if:  

1. The experiments were performed according to an experimental design and performed 

in randomized order. 

2. The errors in x are small, compared to the residuals in y. 

3. The data can be transformed so that the residual becomes normally distributed. 

4. The calibration range is sufficiently small or the residuals are weighted so that the 

variance becomes constant.  

 

Very often the above mentioned techniques are not enough and better methods are needed. 

One method is the method of latent variables. 

 

3.2. Multivariate analysis, Latent variable models 

 

The multivariate methods described below (PCA, PCR, PLS) and similar methods are called 

ñLatent variableò methods, because the nature of the low-dimensional hyper plane can be 

regarded as ñlatent variablesò. These methods are very useful in complex systems with many 

correlated variables and observations. 

 

3.2.1. Principal Component Analysis, PCA 

One of the assumptions for linear regression analysis is that the x-variables are exactly 

known. This may mostly be true enough (at least compared to the uncertainty in measuring 

the y-variable). Quite often though there is an interest in handling uncertainties in X as well. 

This was first analysed by Pearson in 1901 [Pearson 1901]. The concept has been developed a 

lot since then and a model type that corresponds to Pearsonôs study is called Principal 

Component Analysis (PCA). The difference between a linear regression situation and a PCA 

model is that the residual to be minimized is not the ñverticalò distance but the distance 

orthogonal to the line (the model). This is depicted in the figure below: 
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a) ñnormalò linear regression.: the residual is 

the vertical distance between the data and the 

model. 

b) PCA: the residual is the distance between 

the data and the model perpendicular 

(orthogonal) to the model. 
Figure 8. Differences in how the residual is defined between standard linear regression and a PCA model. 

 

In the linear regression case, the model is y=kx and the only parameter is k.  

In the PCA case, the model assumes errors in both x and y and the model therefore is  

 

TP'Xyx     (7) 

 

T is called the score matrix and consists of the values along the model plane (in the example 

above, the scores correspond to the values along the line shown in Figure 8b.) The score 

matrix is the new approximation of the original matrix X, but using fewer dimensions. 

P is the ñmodelò and consists of the linear combinations of the original variables that are used 

to project on to the model plane. Here we have two ñparametersò p(1) and p(2)  in the vector 

P. The loading matrix P is orthogonal and normalized to the size of one (orthonormal), i.e.; 

 

IPP'      (8) 

 

The PCA example above can be extended to many more variables and many more 

observations but works out the same way: 

We get a loading matrix P that will be used to project the original matrix X onto a low-

dimensional plane, T. 

The main advantages of PCA (and other LV methods) are 

 It handles errors in x and y. 

 It handles co-linear variables. 

 It produces models that have components that are orthogonal. 

For more details about PCA, see e.g. [Eriksson 2001, Martens 1989] 

 

3.2.2. Principal Components Regression, PCR 

After making a PCA on a set of x-data, we have the situation where we no longer have 

correlation between the variables. One way to proceed then is to make a multivariate linear 

regression but using the scores T instead of the matrix X. the model then becomes: 
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Tby      (9) 

 

Where T is the score matrix from a PCA model of X, T=XP. This method will not be further 

discussed but serves as a ñbridgeò to the PLS method in the next section. 

 

3.2.3. Partial Least Squares, PLS 

The Partial Least Squares method (PLS) or ñProjections to Latent Structuresò as it sometimes 

is called is a regression method very similar to the standard multivariate linear regression and 

the PCR case described above. It uses two separate models for X and Y and then tries to find 

the correlation between these two models. The model now becomes: 

 

bxxyy
_

i

_

i
)'(     (10) 

 

Where b is the regression vector given by: 

 

cWPWb
1)'(     (11) 

 

W, P, and c are loading vectors, i.e. linear combinations of the original x and y variables. A 

geometrical picture is given below: 

 
Figure 9. Geometrical description of the PLS model. 

 

Since the X and Y matrices are ñstrippedò for every component, the corresponding PLS 

loadings (W) are associated with the corresponding, ñstrippedò matrix X. In order to make the 

interpretations more clear, W
* 

is used (W* =W(PôW)
-1
). W* can now be compared to the 

variables in X. Furthermore, this is used in paper II. For further details about calculations and 

algorithms see [Martens 1989]. 
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3.2.4. Multivariate curve resolution: Alternating least squares (ALS) 

Multivariate curve resolution is the process, where a data matrix D
18

 is decomposed into 

different components. One example is the PCA model which decomposes the matrix into 

scores and loadings using the objective function to maximize the variation in DĔ. One 

ñnegativeò side effect is that the components are calculated in order of explained variance and 

not as a function of chemical phenomena. The resulting loadings are thus sometimes hard to 

interpret in terms of ñchemicalò information, such as an IR spectrum. Similarly the scores 

possess both positive and negative values, where it would be desirable to have only positive 

values that could correspond to concentrations. One solution to these objectives is to use 

Alternating Least Squares (ALS). The ALS is in principle very similar to PCA but by adding 

non-negativity as constraints, the resulting scores and loadings can be interpreted as 

concentrations and pure component spectra. The procedure during ALS consists of several 

steps. First the X matrix, D, is approximated using ordinary PCA. Then by using a rotation 

matrix R, the final model becomes: 

 

''''Ĕ CSPTRRTPDD    (12) 

 

where C is a matrix of ñcontributionsò and S a matrix of pure ñspectraò. More details are 

given in the appendix B. The prerequisite for a successful decomposition is that all species are 

visible in the spectra and that they vary between different observations. Another prerequisite 

is that good initial estimates of either concentration or pure spectra (or a combination of both) 

are available 

 

3.2.5. Comments about latent variable models and projection methods 

The phenomenon of projections is not new itself. Plato describes in his book ñThe republicò 

how projections of an unobservable reality is taken for the truth and anyone questioning it 

will be discredited [Lewi 2004]. The same story goes in the novel ñFlatlandò by E. A. Abbott 

[Abbott 1884]. In this chapter only the numerical methods of PCA, PCR PLS and ALS are 

mentioned. There are a large number of similar models and similar algorithms that all produce 

latent variable types of models. The concept of Latent Variables as a frame work for 

multivariable modelling have been well described by Burnham [Burnham 1999, Burnham 

1996]. Another similar method is Factor Analysis which also is used during ALS. 

 

Multivariate Analysis, MVA (or Latent Variable modelling) has been presented in the 

literature for many years and is an entire research area in itself. These applications are (by its 

very nature) often connected to experimental design (see also section 2.1). Applications 

applied to catalysis include: 

 Catalyst synthesis optimization [Tagliabue 2003] 

 Sensitivity analysis (see section 4.4.3, paper II and III) 

 Catalytic system optimization (paper I) 

 

                                                

 
18 The reason to use the notation D instead of X is that ALS is typically applied to a spectral matrix, which is a 

measured matrix D, where as the notation of a matrix X is more general and can be either a measured data matrix 

but also a sensitivity matrix, e.g. the Jacobian matrix. 
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3.3. Nonlinear models 

 

In kinetic modeling of heterogeneous catalytic systems, nonlinear models are frequent. By 

nonlinear models we mean models that are nonlinear in the parameters, i.e. 

 

)(f
y

     (13)

  

This means that the derivative (or sensitivity) of a response with respect to a parameter is 

dependent of the parameter value itself. In contrast, the model in eq. (4) is linear in the 

parameters since the derivative with respect to the parameters (b0 and b1) is just a function of 

x and not of b. One example of a nonlinear model is the Arrhenius expression, eq. (28). The 

aspect of non-linearity becomes important for parameter estimation, since eq. (13) is heavily 

used in this process. Parameter estimation will be described in more detail in section 4.  

The practical treatment of nonlinear models and nonlinear equation systems (e.g. for 

parameter estimation and for solving ODEs) is approximation by finite differences. Thus, no 

further description will be given in this thesis.  

 

3.4. Modelling of the reactor system 

 

The main objective is to understand what is occurring in the reactor. However, it is very 

important to have accurate control of the effects from the rest of the system. A typical reactor 

system consists of 5 parts with individual properties that influence observations: 

 

1. Mass flow controllers (MFC): Response time and accuracy 

2. Pipes upstream: lag time, axial dispersion 

3. The reactor (see section 3.5) 

4. Pipes downstream: lag time, axial dispersion 

5. Detectors: response time and accuracy (selectivity and sensitivity) 

 

The modelling of these parts can be achieved by empty reactor models where simple models 

can be applied. For dispersion effects, for example, ideal stirred tank reactors can be applied 

 

cccc
V

q

dt

dc
ff

d

1
    (14) 

Where q is the volumetric flow, Vd is the (probably fictive) dispersion volume and  is the 

time constant corresponding to the time it would take for a step in feed concentration to reach 

63% of the final level. To model time delay a simple delay model can be applied: 

 

)()( tctc f      (15) 

 

where  is the time constant corresponding to the time lag of the particular component. 

 

By modelling each part individually, a more accurate estimation of the reactor inlet conditions 

(which is used as input to the model) as well as detector conditions (which is used for residual 

calculation) can be obtained. This will be superior to the use of empty reactor data as model 

input, where all dispersion effects are lumped into upstream effects and downstream effects 
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(from pipes and detectors) are ñmovedò upstream. An evaluation of these phenomena is given 

in section 5.5. 

 

3.5. Modelling of transport phenomena in heterogeneous 
catalytic reactors 

 

In this section the different models for transport phenomena are presented. The included 

techniques are not intended to be complete, but rather to describe some common techniques 

and their properties. In section 5.5, quantifications and deeper analysis of the impact of the 

different models will be given using the model from paper IV as an example. A good 

summary of this topic can be found in [Kapteijn 1997]. 

 

In this thesis project, the modelling of transport phenomena is of secondary importance since 

the chemical kinetics is of primary interest. However the transport phenomena must always be 

considered and therefore a number of options are available. Below is a list of actions in order 

to enable various approximations for modelling of monolith reactors: 

Tuning experimental conditions  

 

By adjusting the experimental conditions appropriately, the transport phenomena can be 

neglected: 

 Use low concentrations: 

o Prerequisites for Fickôs law for diffusion (assuming constant diffusion coefficient) 

is not violated. Also low concentrations leads to low reaction rates, which will 

decrease the mass transfer resistance.  

o Heat of reaction is low so that the reactor may be assumed to operate isothermally 

and thus heat transport may be neglected. 

 Use low temperatures to make kinetics more limiting than mass transport. 

 Use high flow rates to decrease external mass transport resistance. 

o High flow rates will also make the reactor more ñdifferentialò, making the axial 
concentration variation over the reactor small and allowing more direct 

measurement of reaction rates.   

 Use a thin washcoat containing the catalytic material so that pore transport resistance 

becomes negligible. 

Dealing with transport phenomena 

 

If the experimental conditions are such that the transport phenomena cannot be neglected, 

they will need to be treated otherwise the kinetics will be masked by transport limitations and 

the validity of the kinetic parameters will be reduced. In many cases, the objective may even 

be to understand the interplay between kinetics and transport phenomena, e.g. for automotive 

catalytic design and process optimisation. There are different options for different phenomena 

 Model axial dispersion
19

 by ñtanks-in-seriesò  (see 3.5.1) 

 Approximate radial diffusion by a ñfilm modelò (see 3.5.2) 

                                                

 
19

 Dispersion is a phenomenon arising from both diffusion and convection. 
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 Neglect pore transport resistance, or model the pore transport using an effectiveness factor 

(see 3.5.3) 

 Neglect heat transfer, or model the heat flux similar to mass transport (see 3.5.4) 

The following sections briefly describe the different methods relevant to this thesis. 

 

3.5.1. Lumping in axial direction: Tanks-in-series 

In order to avoid partial differential equations (PDE) for a transient reactor model, the axial 

dimension may be approximated with a tanks-in-series model.
20

 Considering the monolith 

channel as a tube reactor, this approach approximates the tube reactor with a number of ideal 

continuously stirred tank reactors (CSTRôs) connected in series. This approximation captures 

the axial dispersion but neglects radial diffusion. When the number of tanks becomes large, 

the model approaches a plug flow reactor. 

 

 
Figure 10. The monolith channel is approximated by a series of continuously stirred tank reactors 

(CSTR). 

 

It is possible to calculate the number of tanks needed to capture the same phenomena as a tube 

reactor with dispersion effects, see appendix C, and this number is typically 20-50 for a small 

lab scale reactor depending on flow rate, temperature and composition. However, due to 

computational cost of the ode solver, this relatively large number can be reduced if the 

conversion is low enough, see Figure 11. 
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Figure 11 Effect of low number of tanks in the tanks-in-series model. If the conversion (consumption of 

feed reactants) is low in an overall point of view, the modelling error will be low and computational speed 

is gained. 

 

                                                

 
20 As an alternative to tanks in series, the finite elements method (FEM) can be applied. However, tanks-in-series 

is numerically a more stable/robust model. 
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3.5.2. Lumping in radial direction: film model for external mass 
transport 

In a fully developed laminar flow (which is the case in a monolith reactor except for a small 

entrance region) there is no radial velocity component. The transport of molecules to and from 

the washcoat occurs by diffusion. The diffusion in the bulk gas phase is governed by Ficks 

law of diffusion: j
*
A=DA yA, where j

*
A is the radial flux

21
, DA is the diffusivity and yA is the 

concentration gradient (driving force). Because we do not want to solve dc/dr (i.e. yA or 

resolve the true concentration gradient in the gas phase) we can approximate the overall 

gradient by a film of thickness delta  with a transport resistance related to the diffusivity. The 

film model is often defined as: 

 

 )c-(ckN sA,bA,cAA     (16) 

 

where cA,b is the bulk concentration, cA,s is the gas phase concentration just at the surface and 

kc,A is a mass transport coefficient. kc,A can be derived from 
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DSh
cAk     (17) 

 

where Sh is the  Sherwood number (dimensionless number that characterizes film transport 

resistance), DA is the molecular diffusivity and dh is the characteristic length, in this case the 

diameter of the monolith channel.  

The Sherwood number for monolith channels at steady state conditions was derived by 

Tronconi [Tronconi 1992], and in spite of the importance of transient experiments, this 

correlation is used in this thesis and the potential negative consequences are discussed in 

[Wickman 2007]. See also the appendix C for further details. 

 

3.5.3. Modelling of pore transport resistance 

The diffusion in the washcoat is often neglected by assuming that the diffusion transport 

resistance is sufficiently low, i.e. the rate of surface reaction is slower than the transport in the 

washcoat. This assumption is reasonable as long as the concentration gradient is low (by low 

conversion) but may be incorrect during transient conditions. Modelling of pore transport 

resistance was ignored in all papers in this thesis. The reasons for this are: 

 Thin washcoat (50-100µm) 

 The alumina washcoat is normally full of cracks, which facilitates the transport 

into the pores even further 

One way to evaluate the influence of pore transport resistance is by calculating the Weiss-

Prater parameter which is the ratio of observed reaction rate and pore diffusion. 

 

seff

aterWeiss
cD

rL2
2

Pr     (18) 

 

                                                

 
21 The flux is normally composed by molecular flux (j*) and bulk flux. The sum of these fluxes are referred to as 

the combined flux (N). Due to the low concentration levels the bulk flux becomes negligible.  
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where r is the reaction rate [mole/(s*m
3
cat], L is the characteristic length (washcoat thickness, 

[m]), cs is the concentration at the surface (which is the same as the bulk concentration if we 

can neglect the external mass transport resistance) and Deff is the effective diffusivity [m
2
/s]. 

The  is the effectiveness factor and  is the Thiele modulus. More details are given in 

appendix C. 

 

3.5.4. Heat transfer models 

Heat transfer is very similar to mass transfer [Bird 2002] and the tanks-in-series and film 

models apply equally well to heat transfer. The film model for heat transfer can be written: 
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s

d

Nu

T

h
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    (19) 

 

Where Q is the heat transfer, A is the interfacial area, Tb and Ts are temperatures in the bulk 

and at the surface respecitively and h is the heat transfer coefficient. Here, the Nusselt number 

(Nu) is equal to the Sherwood number (Sh) and  is the thermal conductivity. However, in 

contrast to molecules, heat can be transferred through the monolith channels and out to the 

periphery of the reactor. It then becomes a delicate matter whether to model only one channel 

of the monolith or to take radial heat transfer fully into account. In paper IV the radial heat 

transfer was lumped into heat transfer to the quartz tube via a lumped heat transport 

coefficient UA similar to a film model: 

 

  ps TTUAQ     (20) 

 

Where Q is the heat transferred from the monolith to the quartz tube, Ts is the catalyst surface 

temperature and Tp is the temperature of the quartz tube. 

 

3.5.5. Mass and heat balances for a monolith reactor 

In addition to the mole balances, the heat balances are included in paper IV as shown in 

Figure 12. 

 
 
Figure 12. A schematic view of concentrations and temperatures at different radial positions. The straight 

lines connecting the bulk and the surface is governed by the film model. 

 

The mole and heat balances for the bulk are modelled as tanks-in-series and for each tank the 

balances are: 
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b
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VcC  (22) 

 

where ctot is the total gas concentration (calculated from the ideal gas law), the accumulation 

of mass and heat in the bulk (dyb/dt and dTb/dt) are set to zero.  

The mass balances for the gas at the surface (ys) and on the surface () are: 
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  (23) 
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where i and  i are the stoichiometric coefficients for the gas phase and surface respectively. 

The summations are done over all reactions in the mechanism. The accumulation in the gas 

(i.e. in the film closest to the surface) is set to zero, hence the volume of the film closest to the 

surface never needs to be calculated. 

 

The heat balances for the surface and the quartz tube are: 
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Where æHRi is the heat of reaction, h is the heat transfer coefficient, a is the channel area, UA 

is a lumped expression of the heat transfer coefficient to the outer quartz tube times the 

external area of the monolith. 

 

3.6. Modelling of kinetics in heterogeneous catalysis 

 

When assuming that a certain set of chemical reactions is occurring in a reactor, the resulting 

model will be a ñkinetic modelò. The complexity of this set can vary from small sets (see 

section about lumped expressions 3.6.6) to large sets (see section about microkinetic 

modelling 3.6.3). These sets will then be used to calculate the reaction rates at every time 

point and for every reaction in order to solve the mass balance for all reacting species. The set 

of reactions will implicitly contain a number of kinetic parameters which need to be 

evaluated. If these parameters are not known, different ways of estimating them exists (see 

section 3.6.2 below). A number of thermodynamic constraints are also imposed on the kinetic 

parameters as will be described in section 3.6.4 and an alternative to the Arrhenius expression 
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is presented in section 3.6.5. The technique of parameter fitting by various methods is 

described in a later section (4). 

3.6.1. Lumping of catalytic surface: The Mean Field approximation 

Modern catalytic reactors for NOX reduction described in e.g. paper II and IV have the special 

property that different sites have different tasks. As seen in section 2.3, the different sites 

cannot be (and are not) positioned all over the surface, but are dispersed forming small 

nanoclusters that are hopefully well spread over the surface. It is easy to realize that reactions 

including both Pt and Ba sites depend on the proximity of the sites. To rigorously model these 

(nano-) phenomena on a macro scale is (at least with todayôs computer capacity) practically 

impossible and hence the need for yet another approximation: the mean field (MF) 

approximation. A MF model approximates all sites to be equal and equally distributed, i.e. 

 Uniform particle size and shape 

 Uniform coverage of active sites. 

 Any ñdistance effectò (e.g. between Pt and Ba) must be compensated for by the kinetic 

parameters 

This approximation is of course never true, but by letting the fitted kinetic parameters 

compensate for these defects, the MF approximation becomes very useful. Other methods 

exist like Monte Carlo simulations [Olsson 2003], but again detailed assumptions of the 

surface structure must be postulated and the uncertainty is just ñmovedò to yet another 

ñscaleò. To conclude, for modelling of monoliths at atmospheric conditions, it seems difficult  

to find any better alternatives than the MF approximation. (See also section 6.2.) 

 

3.6.2. Atomistic models 

The lower limit of modelling relevant to heterogeneous catalysis is on the atomistic level. If 

one can describe e.g. how atoms move on a surface or how atoms react on a surface, this 

knowledge may be transferred to the macro-scale level. Presently, the dominating modelling 

technique is Density Functional Theory (DFT). These models take into account electron 

densities assuming that an atomôs nucleus moves much more slowly than its electrons. DFT 

finds electron and nuclei positions that minimize the total energy. The theory and application 

of DFT is beyond the scope of this thesis, however it can serve as a beneficial technique to 

estimate various properties to be used in modelling on the macro-scale. These properties 

include: 

 Binding energies, i.e. activation energies for desorption. 

(physisorption/chemisorption) 

 Adsorption conformation, i.e. plausible geometrical position for an adsorbed species. 

 Vibrational frequencies in order to identify adsorbed species (typically reaction 

intermediates) 

 

Although these results may be very accurate; the reliability for a real system is uncertain. This 

is due to the many approximations done during the calculations and in particular assumptions 

about the support:  

 crystal planes or perfectly defined clusters 

 any distribution of crystal planes, surface size or cluster size distribution is neglected 

 

However, the technique can be used to estimate boundary values for Microkinetic models 

which can be extremely useful. Furthermore it can serve as the basis for the kind of models 

presented in section 3.6.5. 
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Calculations on NSR catalysis have been performed by Broquist et al. predicting reaction 

paths [Broqvist 2004] as well as heats of  adsorption [Broqvist 2002]. 

 

3.6.3. Microkinetic modelling 

Microkinetic modelling has been much appreciated in recent years thanks to James A. 

Dumesic et al. who contributed with a textbook in the early 1990s [Dumesic 1991].  

 

ñA fundamental principle in microkinetic analysis is the use of kinetic 

parameters in the rate expressions that have physical meaning and, as 

much as possible, that can be estimated theoretically or experimentally. 

With reasonably good estimates of parameters such as é, this analysis can 

suggest which steps of the mechanism are likely to be kinetically significant 

and which surface species may be most abundant. This information is vital 

for predicting the manner in which the various steps in the mechanism may 

affect catalyst performance. 

 Should the microkinetic analysis be successful in reproducing all available 

experimental data using values of kinetic parameters that are consistent 

with known theoretical and experimental estimates, then microkinetic 

analysis may become an important tool in catalytic reaction synthesis. é 

microkinetic analysis provides a framework for the quantitative 

interpretation, generalization, and extrapolation of experimental data and 

theoretical concepts for catalytic processes.ò 
Frame 2. Citation from introduction section in the textbook ñThe Microkinetics of Heterogeneous 

Catalysis [Dumesic 1991] 

 

A microkinetic model consists of elementary steps, i.e. most stoichiometric coefficients are 

equal to one and all equilibrium reactions are modelled as two separate steps. Each reaction 

rate is expressed as: 

 

reactants

ckr      (27) 

 

Where c is a dimensionless concentration (i.e. mole fraction y for gas phase species or 

coverage ɗ for surface species),  is the stoichiometric coefficient and k is the rate constant 

described by an ñArrhenius expressionò: 

 

RT

Ea

Aek      (28) 

 

Where A is the pre-exponential factor and Ea is the activation energy. This expression was 

actually one of several possible formulations described by Vanôt Hoff [Van't Hoff 1884, 

1896] but was refined and established by Arrhenius [Arrhenius 1889a, b, Partington 1964]. 

For temperatures far from absolute zero (which is the case for experiments relevant to this 

thesis), the exponent (-Ea/RT) will have a large influence on k. This means that a change in 

theoretical reaction rate can be induced either by a change in Ea or in A, i.e. we have 

correlation between these parameters. This is avoided by scaling, also referred to as centred 

pre-exponentials see section 4.3. 

There exist also a number of techniques to theoretically estimate kinetic parameters. These 

calculations always assume some kind of ideality but serve as useful starting guesses. These 

methods are for example DFT (as described above), Bond-Order Conservation (BOC), 
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Transition State Theory and kinetic gas theory. For more details about theoretical parameter 

estimation methods, see [Dumesic 1991] and the appendix C. 

 

The most attractive features of microkinetic modelling are (as cited above): 

 It enables deeper analysis (identification of rate limiting steps, etc) 

 It should be better for extrapolation (compared to other more kinetically lumped 

models) 

Among the drawbacks are: 

 A More complex mechanism 

o Larger system of differential equations to solve (increased computational cost), 

especially for transient (time dependent) simulations. 

o More correlation between parameters (difficult parameter fitting and model 

evaluations) 

o Risk of making inappropriate assumptions about mass transfer limitations (i.e. 

neglecting these effects due to computational limits) 

These parameter fitting aspects will be further discussed in section 6.6. 

Microkinetic modelling has been successfully described in the literature, see e.g. [Stegelmann 

2004, Stoltze 2000] 

 

3.6.4. Thermodynamic constraints 

For equilibrium reactions the thermodynamic laws should be fulfilled at all times and the 

change in Gibbs free energy is given by: 

 

)ln(KRTSTHG     (29) 

 

If the net enthalpy change (Hnet, given by calculation from gas phase species) is constant (for 

all times and all states), the activation energies in the microkinetic mechanism must fulfil: 
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This must also be fulfilled for all coverages and if one uses coverage dependent activation 

energies (Ea), then this must also be taken into account. (see e.g. [Park 1999] 

Similarly for S, the change in entropy must be constant for all temperatures:  
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These thermodynamic constraints can be implemented as restrictions on the parameters, 

adjustment of some chosen parameters (e.g. [Olsson 1999]) or reformulation of the problem 

(modelling of equilibrium instead of separate reaction steps, e.g.[Mhadeshwar 2003]). 

Alternatively, the ñThermodynamic state variable modelling approachò can be applied as 

described in the next section. 
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3.6.5. Thermodynamic state variable modelling 

In order to maintain thermodynamic consistency c.f. eqs. (30) & (31), one pair of parameters 

(A,Ea) needs to be adjusted during parameter fitting (by treating them as ñslackò parameters) 

for each global reaction path. If the slack parameters are chosen carefully, this approach may 

work satisfactory. However, the introduction of a slack step also introduces stiffness in the 

parameter fitting, especially for experimental data with fast transients. Thus, the concept of 

Thermodynamic state variable modelling is an interesting alternative approach that avoids the 

necessity of slack parameters and has additional benefits.  

 

Instead of having model parameters of Arrhenius type, thermodynamic state variables (H, S) 

are used as model parameters. The Ea and A in the Arrhenius expression can then be easily 

calculated for arriving at the conventional rate expressions, when solving the mass balances, 
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    (32) 

 

where superscript # denotes the transition state and the summation j is over the reactants in 

reaction i.  

One drawback with the direct use of A and Ea as model parameters is that they are often 

considered to be independent of temperature even though they mostly have at least a slight 

temperature dependence. By using the present approach, the thermodynamic consistent 

temperature dependence of both H and S can be easily implemented by introducing 

temperature dependence for H and S. Another benefit with this modelling approach is that 

parameter bounds can be made physically sound, e.g. for entropy: S > 0 and Sads < Sgas, 

moreover, these restrictions can be easily implemented. In order to obtain initial estimates for 

S and H, independent methods such as density functional theory (DFT) and calorimetry can 

be used (see also the Appendix). Similar to traditional parameter fitting, a set of parameters 

will be subject to fitting, including adsorbed states and/or transition states. 

 

It should be realized that one important difficulty is to determine the initial values for H and S 

at transition states. However, BOC and Transition state theory (together with other techniques 

and published values) can be applied to retrieve the necessary transition state values. Note, the 

transition state values are easily retrievable from the Arrhenius parameters, H and S for the 

adsorbed species together with eq.(32). 

 

The number of degrees of freedom (d.f.) compared with a traditional Arrhenius type of 

formulation imposing thermodynamic consistency will be the same, i.e. no gain in fewer 

parameters will be achieved. However, the reduced parameter stiffness, the proper description 

of parameter temperature dependence, the easier implementation of DFT estimates and better 

parameter bounds makes this method interesting. 

 

This method was applied to a proposed mechanism for H2-assisted NH3-SCR over a Ag-

Al2O3 catalyst. In Figure 13, an example of an energy diagram displays H and S for single 

adsorbates as well as transition states for the different reactions. 
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Figure 13. Example of an energy diagram using the present method. * indicates adsorbed specie, # 

indicates a transition state for a reaction. 

 

3.6.6. Lumped kinetic models 

Even though detailed (microkinetic) models prevail in this thesis, there are other kinetic 

models worth mentioning in this context. These lumped kinetic models are usually intended to 

express the rate of an overall reaction and not a set of elementary reactions. 

 

Power law model 

A power law model is typically set up as: 

 

  

reactants

ckr     (33) 

 

Which in essence is the same form as the microkinetic form, but with the difference that the 

exponents  can have any value (not only integers), k is still in an Arrhenius expression. 

 

Langmuir -Hinshelwood model 

Here one assumes that adsorption and desorption processes are much faster than the surface 

reaction and the adsorbed species will be in equilibrium with the gas phase. The reaction rate 

will be proportional to the surface concentrations and by analytically expressing these surface 

concentrations in terms of gas phase concentration one can arrive at: 
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This equation is just one example for the reaction A + B => C where A and B is assumed to 

adsorb on separate sites. k is a reaction rate constant, KA and KB are adsorption equilibrium 

constants and PA and PB are the gas phase concentrations (expressed in partial pressure). 

Other models such as Rideal or Eley-Rideal generate similar expressions and assume that the 

reaction occurs between one adsorbed species and one gas phase species. 

These types of kinetic expressions are usually applied to express the rate of overall reactions 

and not to detailed kinetic models. For further reading about common kinetic models, see e.g. 

[Satterfield 1980] 
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4. PARAMETER FITTING AND ASSESSMENT 
 

ñWhen we gather information from the world,  

we contribute to its entropy and hence its unknowability.ò - Otto Rossle 

 

In order to get good estimates of the model parameters that are unknown, some kind of 

adjustment is necessary. In mathematical terms one defines an ñobjective functionò and then 

one wants to manipulate the model parameters so that the objective function reaches some 

criteria. The most common objective function is the residual function: 

 

),(),( mod ɓxɓx elobserved yyf    (35) 

 

The criterion to be met is the minimization of the objective function and therefore the square 

of the residual is often used. In the following we will use  for model parameters, so that the 

objective function can be stated as: 
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In the following sections different approaches to parameter fitting will be briefly described. 

 

4.1. Linear least squares method 

 

The least squares method was already reviewed in section 3.1.1. This method is the most 

fundamental method and will be referred to many times. The solution to the problem above, 

eq (36), is given by: 

 

YXXXb
1 ')'(     (37) 

 

The term ñlinearò arises from the fact that y is a linear function of b,  i.e. 
2
y/ bi bj=0 for all i 

and j. Note that the roman letter b is used for parameters in linear models, where as the Greek 

letter  is used for nonlinear models. 

 

4.2. Nonlinear least squares methods 

 

Below is a very short version of nonlinear regression analysis from [Bates 1988]. 

 

For a nonlinear function y, the partial derivative of the function is still dependent on at least 

some parameter, i.e. 
2
y/ i j 0. This means that the parameter vector that minimizes the 

residual cannot be directly calculated as in eq (37) above. When optimizing in the least 

squares sense, the objective function is: 
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where ( ) = ymodel(x, ) with the dependence on x being dropped because we consider a 

specific set of observations. z( ) is the residual corresponding to f in the linear case. 

 

The solution is obtained in several steps: 

1. Approximate the objective function S(ɗ) by a Taylor expansion: 
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2. The quadratic approximation will have a minima when the gradient is zero, i.e.: 

 

0)( 0
ɓɓɋɤ               (40) 

 

and if  is positive definite =-
-1

. When the linearization is exact, the optima will 

be reached with the step  (called the Newton-Raphson step).  

3. For the function S()=(y- )ô(y- ), the gradient  and Hessian ɋ are given by: 
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When setting the second term of the Hessian to zero, we obtain the ñGauss-Newtonò method. 

For further details, see [Bates 1988].  

 

The above citations were given to illustrate what needs to be calculated during parameter 

fitting of nonlinear systems. If one has for example 10
4
 experimental data points, the 

calculation of these data points constitutes one function call. If one then has p adjustable 

parameters, then the Jacobian takes about p function calls. The Hessian takes about p
2
 

function calls which becomes considerable if p is moderately large, since this must be 

performed for every iteration during the fitting procedure. See also section 6.8. 

 

4.2.1. Quadratic Programming, Lsqnonlin 

Quadratic programming is a procedure for carrying out nonlinear least squares optimization 

but with constraints on the parameters. For more information, see e.g. [Edgar 2001]. 

An example of one such is Lsqnonlin found in the Matlab optimization toolbox,. Lsqnonlin is 

a least squares optimizer for nonlinear problems. There are several options of algorithms and 

when bounds on the parameters are specified (e.g. activation energies greater than zero) the 

lsqnonlin function uses a ñlarge scaleò algorithm. 
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The large scale algorithm uses a trust region method and preconditioned gradients. The 

description of these algorithms can be found in the Matlab documentation,  [Coleman 2001, 

Mary Ann Branch 1999, Thomas Coleman 1996] 

 

4.2.2. Gradient Free fitting algorithms 

One alternative way of minimizing the objective function is to use gradient free methods. 

These methods do not assume any gradient, but must evaluate more parameter settings during 

the fit. This introduces a trade-off between deviation from a trustworthy gradient and 

computational cost. For a parameter space that is limited to two levels, a factorial design will 

cover the parameter spaces and 2
p
 function evaluations would be enough to find the most 

optimal point (for 20 parameters, 2
20

  10
6
 function evaluations). If each parameter can have 

many values (e.g. discretized in 10 intervals), the number of function evaluations increases 

dramatically to 10
p 
(for 20 parameters, 10

20
 function evaluations).  

Gradient free methods are not within the scope of this thesis but are still very interesting since 

the reliability of gradients is low for highly non-linear systems, especially with poor 

parameter estimates (parameter values far from optimum). Examples of a gradient free 

algorithms are simulated annealing [Aghalayam 2000, Eftaxias 2002, Kalivas 1992, 

Raimondeau 2003, S. Kirkpatrick 1983] and Genetic Algorithms [Routray 2005]. 
 

4.3. Parameter pre-treatment 

 

As in every regression situation we assume independence and specifically independent 

variables. In Quadratic Programming for NSR systems, the variables are the model 

parameters and the objective of the parameter pre-treatment is to transform them to be as 

uncorrelated as possible. The concept is ñtakenò from DoE (section 2.1) where a classical 

scaling is the ñUV-scalingò which means centring of the variables and scaling them to unit 

variance. In the case of parameter fitting this means: 
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where raw is the unscaled current parameter value, mean does not necessarily mean the 

average, but rather the ñsetpointò or ñbest guessò of the parameter value. Std() does not 

necessarily mean the spread of the parameter but rather a measure of the allowed range for the 

parameter value. 

By applying this transformation to all parameters regardless of their physical meaning (i.e. 

treating pre-exponential and activation energies separately) we obtain all the parameters on 

the same ñlevelò as well as on the same ñscaleò. 

The ñallowed rangeò can be implemented in (at least) two ways: 

1. to correspond to the actual allowed range, which implies that an extreme parameter 

value (on the border of allowed range) will have a scaled value of +/- 1. 

2. to correspond to a defined response in the system. For example that the ñallowed 

rangeò will correspond to a doubling of halving of the reaction rate. This will make the 

settings of the bounds much easier. 

 

In order to get the pre-exponential and the activation energies to be as uncorrelated as 

possible, one performs ñcentringò of the pre-exponentials: 










































































































