
Specification of Resource Allocation Systems
a STEP towards a unified framework

P E T T E R F A L K M A N

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden, 2005





THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Specification of
Resource Allocation Systems

a STEP towards a unified framework

PETTER FALKMAN

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden, 2005



Specification of Resource Allocation Systems
a STEP towards a unified framework

PETTER FALKMAN

ISBN 91-7291-694-X

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 2376
ISSN 0346-718X

Department of Signals and Systems
Automation Research Group
Chalmers University of Technology
SE-412 96 Göteborg, Sweden
Telephone +46 (0) 31 772 10 00

c© 2005 Petter Falkman

Printed by Chalmers Reproservice
Göteborg, Sweden 2005

Typeset by the author with the LATEX Documentation System



To Kerstin, William and Elsa with love





abstract
Specification of Resource Allocation Systems
a STEP towards a unified framework
Petter Falkman

Department of Signals and Systems
Chalmers University of Technology

In recent years growing demands on flexibility and ability to decrease time to market
has made it increasingly important for engineering companies to find ways of making infor-
mation exchange between product design and manufacturing systems design more efficient.
A much shortened iteration cycle could be obtained if information about product design so-
lutions could be made instantly available for engineers involved in manufacturing systems
design. Due to the high costs associated with modifying and changing system implementa-
tions, the ability to model and simulate systems before they are implemented is becoming
more and more essential. Consequently it is vital that the system specifications used are
as clear and concise as possible. The present thesis deals with the specification of discrete
event systems, especially resource allocation systems. A combination of process algebra and
Petri nets is presented. This combination results in a powerful language, called process alge-
bra Petri nets (PPN), for specifying resource allocation systems, delivering both concise and
easy-to-read specifications of large complex systems. The fact that both Petri net constructs
and algebra expressions can be used in order to decrease specification complexity also makes
it a flexible language. A method is also presented that formally converts the PPN models into
finite state automata, which means that existing formal evaluation techniques for simulation,
verification, and controller synthesis can be easily applied.

The presented language defines an algebra where the process operators express the same
process relations that are possible in the international standard STEP-AP214. To the best of
our knowledge, the PPN language constitutes a first attempt at using a formal language in
order to create a tool that can automatically generate specifications according to the STEP
standard.

So far little has been investigated concerning the connection between information mod-
elling and discrete event systems. The present work, however, researches this connection.
The presented mapping defines the relationship between the information and the DES spec-
ification.

Finally, it can be said that the introduced method guarantees that the expected infor-
mation is delivered fast and without the errors potentially induced by manual handling,
something which is crucial when short lead times are required. Due to the fast informa-
tion exchange it also enables simulation, automatic controller synthesis and verification, to
be conducted early in the development chain.

KEYWORDS: Flexible manufacturing systems, Resource allocation systems, supervisory
control theory, supervis synthesis, specification, Petri nets, Process algebra, finite state au-
tomata, STEP AP214.

v



vi



acknowledgements

I would like to thank everyone that in some way or another helped making this work
come together. First, my sincerest gratitude of course goes to my supervisor Professor Bengt
Lennartson, for introducing me into the world of science so generously sharing his time and
knowledge with me, and always believing in me. Second, I wish to thank my co-supervisor
Associate Professor Martin Fabian for providing invaluable support throughout the process
of writing this thesis. Thank you also to Knut Åkesson for providing valuable comments on
earlier drafts of this work.

Special thanks to my collaborators at KTH, especially Johan Nielsen and Astrid von
Euler-Chelpin.

I would also like to thank all my friends and colleagues within the department of Control
and Automation Laboratory. A special thanks goes to the members of the automation group,
for providing moral support and bandying ideas with me whenever I needed it, in particular
Kristin Andersson, and Johan Richardsson.

Last, but certainly not least, I am forever indebted to my loving and supporting family
for always believing in me: my wife Kerstin and my children William and Elsa, my brothers
Pål and Pär, my parents Jan and Marian, and Gavin and Katarina Watson.

Göteborg, November, 2005
Petter Falkman

vii



viii



publications

The thesis is based on the following appended papers:

Falkman, P. and Lennartson, B. and Åkesson, K. and Fabian, M. (2005), A High Level
Specification Language based on Process Algebra and Petri Nets, Submitted to: IEEE
Transactions on Automation Science and Engineering.

Falkman, P. and Lennartson, B. and Åkesson, K. (2005), Formal Specification of Flexible
Robot Cell using Process Algebra Petri Nets, Submitted to: IEEE Transaction on Con-
trol System Technology.

Falkman, P. and Lennartson, B. and Tittus, M. (2005), Specification of a Batch Plant using
Process Algebra and Petri Nets, Submitted to: Control Engineering Practice.

Falkman, P. and Nielsen, J. and Lennartson, B. (2003), Automatic Generation of Object
Models for Process Planning and Control Purposes using an International standard for
Information Exchange, In: Journal of Systemics, Cybernetics and Informatics, Vol 1,
Number 5.

Note: The paper has been reformatted for uniformity, but is otherwise unchanged.

Falkman, P. and Nielsen, J. and Lennartson, B. and Euler-Chelpin, A. (2005), Automated
Generation of STEP AP214 models from Discrete Event Systems for Process Planning
and Control, Submitted to: IEEE Transactions on Automation Science and Engineer-
ing.

Other publications

Falkman, P. and Lennartson, B. (2001), Combined Process Algebra and Petri Nets for Spec-
ification of Resource Booking Problems, In: Proc. of the IEEE American Control
Conference, Arlington, USA.

Falkman, P. and Lennartson, B. and Tittus, M. (2001), Modeling and Specification of Dis-
crete Event Systems using Combined Process Algebra, In: Proc. of the IEEE/ASME
Advanced Intelligent Mecatronics, COMO, Italy.

Falkman, P. and Vahidi, A. and Lennartson, B. (2002), Modelling and controller Synthesis for
Resource Booking Problems using BDDs, In: Proc. of the IFAC 15th World Congress,
Barcelona, Spain.

ix



Falkman, P. and Nielsen, J. and Lennartson, B. (2002), A Formal Mapping of Static Infor-
mation Models into Dynamic Models for Process Planning and Control Purposes, In:
Proc. of the Workshop on Discrete Event Systems.

Falkman, P. and Nielsen, J. and Lennartson, B. (2003), Automatic Generation of Object
Models for Process Planning and Control Purposes using an International standard for
Information Exchange, In: Proc. of the Systemics, Cybernetics and Informatics, Or-
lando, Florida, USA.

Falkman, P. and Lennartson, B. and Tittus, M. (2005), Specification of a Batch Plant using
Process Algebra and Petri Nets, In: Proc. of the IEEE Conference on Automation
Science and Engineering, Edmonton, Canada.

Lennartson, P. and Fabian, M. and Falkman, P. (2005), Control architecture for flexible pro-
duction systems, In: Proc. of the IEEE Conference on Automation Science and Engi-
neering, Edmonton, Canada.

x



contents

abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

introductory chapters

chapter i: introduction 3

1.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

chapter ii: discrete event systems 7

2.1 Finite state automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Reachability graph . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Process algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Communicating sequential processes, CSP . . . . . . . . . . . . . 11
2.3.2 Calculus of communicating systems CCS . . . . . . . . . . . . . . 13

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

chapter iii: supervisory control theory and resource allocation systems 15

3.1 Supervisory Control Theory . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.1 Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Supervisor synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Resource allocation systems . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Routing specification . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

chapter iv: process algebra petri nets 23

4.1 Combinations of Petri nets and process algebra . . . . . . . . . . . . . . . 23
4.2 PPN language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Process algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xi



4.2.3 Comparison of PPN with CCS, CSP, and StateCharts . . . . . . . . 30
4.3 Example: Specification of a high level routing specification using PPN . . . 31

4.3.1 Relations of operations specification . . . . . . . . . . . . . . . . . 31
4.3.2 Execution of operations and interlocking specification . . . . . . . 32
4.3.3 Routing specification . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

chapter v: process specifications in step-ap214 35

5.1 ISO 10303 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.1 EXPRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Application protocol 214 . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.1 Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.2 Resource Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.3 Operation and interlocking Model . . . . . . . . . . . . . . . . . . 39

5.3 Example: PPN specification to STEP/Express model . . . . . . . . . . . . 40
5.3.1 Relations of operations specification . . . . . . . . . . . . . . . . . 40
5.3.2 Execution of operations specification . . . . . . . . . . . . . . . . 41
5.3.3 Interlocking specification . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

chapter vi: summary of included papers 43

6.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4 Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.5 Paper V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

chapter vii: concluding remarks 47

7.1 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

included papers

paper i: process algebra petri net 51

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2 Process algebra Petri Net (PPN) . . . . . . . . . . . . . . . . . . . . . . . 53

2.1 Process algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2 Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3 PPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Binary process operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1 Processes in sequence . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Choice between alternative processes . . . . . . . . . . . . . . . . 58
3.3 Processes in arbitrary order . . . . . . . . . . . . . . . . . . . . . . 59
3.4 Explicit process synchronization . . . . . . . . . . . . . . . . . . . 60
3.5 Parallel processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Unary process operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xii



4.1 Start and stop operators . . . . . . . . . . . . . . . . . . . . . . . . 65
5 Recursive processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6 Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7 Process functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8 Example: Resource Allocation System . . . . . . . . . . . . . . . . . . . . 69
9 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 71
10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

paper ii: converting ppn to finite state automata 77

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2 Process algebra Petri net (PPN) . . . . . . . . . . . . . . . . . . . . . . . . 79

2.1 Arbitrary order . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.2 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.3 Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.4 Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.5 Textual representation . . . . . . . . . . . . . . . . . . . . . . . . 82

3 Supervisory control theory and finite state automata . . . . . . . . . . . . . 82
3.1 Supervisory control theory . . . . . . . . . . . . . . . . . . . . . . 83
3.2 Finite state automata . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Translation of PPN to automata . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1 PPN model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Tree structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3 Informal translation from the tree structure to automata . . . . . . . 85
4.4 Formal translation . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Industry example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.1 Plant model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3 Supervisor synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

paper iii: specification of a batch plant 99

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2 Process algebra Petri net (PPN) . . . . . . . . . . . . . . . . . . . . . . . . 101

2.1 Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.2 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.3 Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3 Resources and routing specifications . . . . . . . . . . . . . . . . . . . . . 103
3.1 Routing specification . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.2 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.3 Supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4 The join and split operation . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.1 Join operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2 Split operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Tank example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

paper iv: generation of ppns for control purposes 115

xiii



1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2 Mixed Process algebra Petri Net . . . . . . . . . . . . . . . . . . . . . . . 118
3 The STEP AP214 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4 Mapping of AP214 into MPPN . . . . . . . . . . . . . . . . . . . . . . . . 122
5 Conclusions and Future work . . . . . . . . . . . . . . . . . . . . . . . . . 125

paper v: relationship between step and ppn models 127
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
2 Discrete Event Modelling Language . . . . . . . . . . . . . . . . . . . . . 129

2.1 Process Algebra Petri Net . . . . . . . . . . . . . . . . . . . . . . 129
2.2 Process Operation Model . . . . . . . . . . . . . . . . . . . . . . . 131
2.3 Resource and Product Model . . . . . . . . . . . . . . . . . . . . . 133

3 Standard for Information Exchange . . . . . . . . . . . . . . . . . . . . . . 134
3.1 The STEP AP214 Model . . . . . . . . . . . . . . . . . . . . . . . 134
3.2 Process Operation Model . . . . . . . . . . . . . . . . . . . . . . . 137
3.3 Resource and Product Model . . . . . . . . . . . . . . . . . . . . . 138
3.4 Operation and Interlocking Model . . . . . . . . . . . . . . . . . . 139

4 Generation of Discrete Event Models for Control Synthesis and Verification 140
4.1 Process Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.2 Resources and Products . . . . . . . . . . . . . . . . . . . . . . . 144
4.3 Operation and interlocking . . . . . . . . . . . . . . . . . . . . . . 145

5 Example: A robot cell in the Volvo factory . . . . . . . . . . . . . . . . . . 146
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

references

bibliography 157

xiv



introductory chapters





chapter i

introduction

A discrete event system (DES) is a system that, at any time, occupies one out of a finite set
of states, and changes state at the occurrence of an event. Specifications of such systems are
often expressed in text-based natural-language documents. A major drawback with this is
ambiguity, it is possible to interpret the natural-language specification in many ways. This
may lead to misunderstandings that are costly and/or time-consuming if discovered at a late
stage of a project. Consequently, it is very important for a costumer and a supplier to agree
on a specification written in such a way that misunderstandings are avoided. A way of trying
to avoid this kind of problem is to use a formal specification language.

The reasons for using formal methods can be divided in two main areas (Crow, Vito,
Lutz, Roberts, Feather and Kelly 2005). One is the use of formal methods for analytical pur-
poses, e.g. controlling if certain properties are fulfilled. The other is to use these methods for
descriptive purposes, such as the clarification of document requirements, high level design,
or facilitating communication of requirements.

Using a formal specification language comes with a diversity of advantages. One of
the most important is that a formal language will provide everyone involved in a project
with the the same view of, for example, what a product will look like and how it is going
to be manufactured. In other words it is unambiguous and does not leave room for different
interpretations in the way a natural-language document would. Another important advantage
is that after everyone has agreed on a specification it may be automatically converted to a
format that can be used for verification and synthesis. Especially important is of course that
the conversion to a more detailed description can be completely automatic, so that changes
or errors will not be introduced by mistake due to the human factor.

In order to really make the best use of a formal specification language and to motivate
engineering companies to use formal methods for specification, it is very important that it
has the capacity to produce specifications that are concise and easy-to-read.

When it comes to discrete event systems, a number of different formal specification
languages have been presented. Some of them are algebraically based, some are based on
graphical representations, and still others are expressed by temporal logic.

The term ”process algebra” was coined in 1982 by Bergstra & Klop (Bergstra and Klop
1982). A general process algebra includes processes, events, and operators, which are used to
build algebraic expressions describing the discrete behavior of a system, cf (David and Alla
1992, Murata 1989). The communicating sequential processes (CSP) language by Hoare
(Hoare 1985) and the calculus of communicating systems (CCS) language by Milner (Milner
1980) are the major languages based on process algebra. These languages have been further
developed in e.g. (Degano, DeNicola and Montanari 1987, Olderog 1991, Best, Devillers
and Koutny 1998, Brinksma 1995). An example of a language based on temporal logic is



4 1. Introduction

given in (Rescher and Urquhart 1971).
The Petri net (Peterson 1981) introduced by Carl Adam Petri in the sixties, finite state

automata (Hopcroft and Ullman 1979), and StateChart introduced by Harel (Harel, Pnueli,
Schmidt and Sherman 1987) (an extension of finite state automata), have intuitive and precise
graphical representations. The main reason for this is the finiteness of the structures; Petri
nets can with a finite number of elements even represent an infinite state-space. This is typi-
cally not the case with process algebra and temporal logic; only in very special cases are the
graphical representations finite, and thus usefully represented graphically. Combinations of
the mentioned languages have also been considered. These include for example process alge-
bra and Petri Nets given in e.g. (Best, Devillers and Koutny 2001, Mayr 1997, Best, Devillers
and Koutny 2002, Pena and Cortadella 1996, Bloom, Cheng and Dsouza 1997, Jmaiel 2000).
A common limitation of the mentioned languages and combinations of them is that their
strength lies in formal evaluation techniques rather than in visual strength. As an engineer-
ing tool it is however important that a formal specification language also results in a clear
and easy-to-read description of what is specified. This will increase the understanding of
created specifications and thereby also decrease the risk of making mistakes due to misinter-
pretations.

The present thesis is focussed on specification of resource allocation systems, such as
certain classes of flexible production systems. To the best of our knowledge, despite the
many formal specification languages already presented in previous research, there still is a
lack of efficient tools producing the kind of specifications we desire for this kind of systems,
i.e. specifications which are concise as well as easy-to-read and interpret. The aim of this
thesis is therefore to present such a specification language. This language combines the
graphical features of Petri nets with the compact expressions of process algebra. Compared
to earlier work the focus of this language, called process algebra Petri net (PPN), is to a
higher extent on high level constructs, readability, and visual strength. A further aim is to
use the created specifications for supervisor synthesis applying supervisory control theory
(SCT) (Ramadge and Wonham 1987).

More specifically, a process algebra is suggested where the process operators express
the same kind of process relations as in the international standard ISO-10303-214 or STEP-
AP214 (ISO 10303-1: Industrial Automation Systems and Integration - Product Data Rep-
resentation and Exchange - Part 1: Overview and Fundamental Principles 1994). STEP-
AP214 standardizes the exchange of product, process and resource information. It enables
an efficient information exchange between product and manufacturing system design, which
is crucial in order to decrease lead times. For this reason it is also beneficial to be able to use
the presented tool for creating specifications according to this standard. The operators to be
defined in order to automatically generate high level specifications according to the STEP-
214 standard (Falkman, Nielsen and Lennartson 2004) are sequence, alternative, arbitrary
order (in STEP exclusiveness), synchronization and parallel execution.

The suggested PPN language is a powerful formalism for specifying discrete event sys-
tems. It is an extension, generalization and formalization of results presented in (Falkman,
Lennartson and Tittus 2001, Falkman and Lennartson 2001). Use of PPN delivers com-
pact and concise models of large complex systems. It is flexible in the sense that both
Petri net constructs as well as algebra expressions can be used in order to generate easy-
to-read specifications and in that way reduce the complexity for the user. In (Falkman and
Lennartson 2005b) a method is presented that formally converts the PPN models into finite
state automata, which means that existing formal evaluation techniques for simulation, verifi-



1.1. Main contributions 5

cation, and supervisor synthesis are easily applied. PPN introduces new operators, and while
these are defined it still uses the earlier mentioned languages (i.e. Petri nets and process
algebra) as a foundation.

The objective is thus to maintain the Petri net part as is, while creating a suitable process
algebra that can be used to realize a compact, yet graphical, specification formalism. The
process algebra suggested in this thesis is adapted to the international standard for exchange
of product model data STEP. This standard defines a number of operators and the suggested
algebra defines the same operators in a way that the specifications match each other. Those
who use the STEP standard are thus able to recognize the specifications in the Petri net and
process algebra models. The main purposes of defining a new specification formalism are
thus the following; first it coincides with the specifications generated by STEP (in other
words the same operators are in place in both representations), second, a compact yet graph-
ical representation is wanted in order to achieve clear specifications. The reason for choosing
Petri nets and process algebra is that these formal language families are both well known and
well accepted. The Petri nets are also well known in manufacturing programming commu-
nities, since Sequential Function Charts (SFCs) resemble Petri nets to a great extent. The
suggested process algebra is new and therefore an aim in this thesis has also been to keep the
algebra part as simple as possible. A further aim is also to use the resulting specification as a
base for supervisor synthesis. The synthesis is performed according to the supervisory con-
trol theory (SCT) (Ramadge and Wonham 1987), which deals with the interaction between
the (controlled) plant and the (computer) supervisor. For this supervisor synthesis we use
a program called Supremica, where finite state automata (FSA) is the modelling formalism.
We therefore show how PPN models are formally converted into finite state automata.

1.1 Main contributions

The main contributions of this thesis are the following:

• A high level specification language that combines the compactness of process algebra
with the graphical features of Petri net constructs, resulting in a language which can
deliver concise and easy-to-read specifications of complex systems. The suggested
specification language has, in the present work, been used for resource allocation sys-
tems but may be used for other applications as well.

• A formal method for converting the high level specifications into finite state automata.
This is significant firstly because using a formal method for conversion limits the risk
of introducing manual errors, and secondly because it means that existing formal eval-
uation techniques for simulation, verification, and supervisor synthesis are easily ap-
plied.

• A method for enabling mapping between the information models according to the
well accepted international standard ISO10303-214 and discrete event system spec-
ifications. The presented mapping has also defined the relationship between the in-
formation and the DES specification. This method implies a reliable framework for
the exchange of control-related information involving resource, product and process
information.



6 1. Introduction

• The high level specification language is evaluated for specification of nontrivial indus-
trial plants, including both manufacturing systems and chemical batch plants.



chapter ii

discrete event systems

A discrete event system (DES) can be defined as a system that, at any time occupies one out
of a finite set of states, and that changes state at the occurrence of an event. In a research
context it is assumed that events are instantaneous.

Discrete event systems are of great importance both from a practical and a theoretical
point of view, and pose a wide range of new intellectual challenges (Heymann and Meyer
1991). There are several existing formal languages that can be used to model discrete event
systems. The most common are Petri nets (Reisig 1985, Murata 1989), finite state automata
(Hopcroft and Ullman 1979), and process algebra (Hoare 1985, Milner 1989). Petri nets and
finite state automata have a graphical representation that is easy to understand, while process
algebra is a purely symbolic formal language.

A graphically represented specification is often helpful when trying to create something
that can be easily interpreted by many different interested parties, e.g. different departments
within a company, or a supplier and a costumer, as they tend to give an intuitive representa-
tion of a discrete event system. When specifying larger systems, however, the specifications
tend to become unwieldy and the advantage of a purely graphical language decreases. The
fact that these languages, both graphical and algebraic, are formal makes it possible to per-
form analysis of systems. These languages have been around for a long time, mainly within
computer science and are foremost used for verification of computer systems. The aim of
this chapter is to provide a brief introduction to the four most common formal modelling
languages mentioned above.

2.1 Finite state automata

Finite state automata (FSA) (Minsky 1989, Hopcroft and Ullman 1979, Hopcroft, Motwani
and Ullman 2001) is one of the most popular languages for describing the behavior of dis-
crete event systems. FSA is a mathematically well defined formalism for modelling discrete
event systems. They provide a language for both describing and manipulating these systems
when synchronous descriptions are considered. The finite state automata language is built up
of states and transitions. The transitions connect the states, and an event is associated with
each transition. The occurrence of an event is thus associated with a state change. A finite
state automaton models systems with a finite number of states and events, and provides a
lucid representation of discrete event systems.

Formally, a finite state automaton (FSA) has the following structure

A = (Q, Σ, δ, s, F, M) (2.1)

where



8 2. Discrete event systems

• Q is a finite set of states;

• Σ is the alphabet, a finite set of event labels;

• δ : Q × Σ → Q is the partial transition function;

• s ∈ Q is the initial state;

• M ⊆ Q; elements of M are called accept or marked states;

The set Q is the complete set of states that an automaton can visit. The alphabet Σ, on the
other hand, declares all events that an automaton can in any way participate in. Some of the
events in the alphabet may never be executed, something that is important when performing
supervisor synthesis, described in Chapter 3. The transition function δ declares all transitions
from a state via an event to another state. The initial state is given by s. The marked states
of an automaton specify that some significant sub-tasks of an automaton have been fulfilled.

2.1.1 Composition

The ability to reason about systems where a number of finite state automata interact with each
other is important when working with discrete event systems in general, and with supervisor
synthesis in particular, see Chapter 3, especially since finite state automata do not allow
explicitly modelling parallel behavior. To model the interaction between automata, the full
synchronous composition (FSC) concept from Hoare (1985) is used, see section 2.3.1. The
synchronous composition of two finite state automata P and R is a new automaton in which
a common event is defined from a certain state <p,r> if, and only if, both automata define
the event from their respective states p ∈ QQ and q ∈ QR.

Example 1 – Finite state automata The graphical parts of two automata are shown in
Fig. 2.1. States are often modelled with circles, and arrows are used to connect the different
states. Each arrow is labelled with the name of the event that connects the specific states. A
marked state has an extra circle. The initial state has a short arrow pointing at it.

p0.q0

p0.q1 p1.q0

p1.q1 p3.q0

p2.q2 p3.q1

p0

p1

p2 p3

q0

q1

q2

e0

e0

e0

e0
e1

e1

e1

e1

e2
e2

e2

e3

e3

e3

e4

e4

e4

A1 A2 A1‖A2

Figure 2.1: Two finite state automata with three and four states respectively and with one
common event e2.



2.2. Petri nets 9

The two automata, A1 and A2, in Fig. 2.1 have three and four states respectively. Automaton
A1 has Q1 = {q0, q1, q2} and automaton A2 has Q2 = {p0, p1, p2, p3}. The alphabet for
A1 is Σ = {e0, e1, e2} and for A2 it is Σ = {e2, e3, e4, e5}. Automaton A1 has an initial
state s1 = q0 and A2 an initial state s2 = p0. A transition between for instance q0 and q1

is described as << q0, e0 >, q1 >. Both automata have one state specified as marked, ie.
M1 = {q2} and M2 = {p2}, specifying successful completion. The third automaton A1‖A2

describes the synchronous composition of the two automata A1 and A2. This synchronous
composition specifies the parallel behavior of the two automata. They are here synchronized
with respect to common events using Hoare’s full synchronous composition (Hoare 1985),
described in more detail in Section 2.3.1.

�

2.2 Petri nets

Petri nets (Peterson 1981), a formal language used for the modelling of many different kinds
of systems, was introduced already in 1962 by Carl Adam Petri. Since it was first introduced,
Petri net theory has been extended in a number of different ways and applied to a wide variety
of problems. The popularity of Petri net theory is largely based on two factors. First, its easy
to understand graphical representation of nets, and second, its potential as a technique for
formally analyzing concurrent systems.

One of the aims of Petri net theory is to model concurrent systems and thereby allowing
us to reason about them formally. Petri nets can be used as a graphical as well as a math-
ematical tool. As a graphical tool, Petri nets may be used as a visual communication aid
similar to flow charts, block diagrams and graph charts. As a mathematical tool, it enables
the setup of state equations, algebraic equations and other mathematical models governing
the behavior of different systems.

A Petri net is a bipartite graph consisting of places and transitions. Arcs are used to
connect the places to the transitions and vise versa. Each place can be connected to more
than one transition and a single transition can also connect to more than one place. Tokens
are used in Petri nets in order to simulate the behavior of dynamic and concurrent systems.
A place may contain tokens that move from one place to another according to the firing of
the transition. Arcs connecting a place with a transition can also have weights on them,
which define how many tokens or markings that are required in order for the transition to
fire. Arcs connecting a transition with a place on the other hand have weights to define how
many markings that are to be positioned in the place when the transition has been fired. Just
as in finite state automata it is possible to specify marked states in a Petri net (Cassandras
and Lafortune 1999). This is achieved by the use of a marked state vector.

Different kinds of Petri nets exist, e.g. labelled, safe, colored, timed, interpreted, stochas-
tic, continuous. The class of Petri nets used in this thesis are simply labelled Petri nets. Such
a broad term can have several meanings, and must therefore be defined more precisely. In
the present work, a labelled net will be a tuple

PN = (P, T, A, Σ, m0, M) (2.2)

where

• P is a set of places;



10 2. Discrete event systems

• T is the set of transitions;

• A ⊆ (P ×T )∪(T ×P ) is the set of arcs from places to transitions and from transitions
to places in the graph;

• m0 is a vector of initial markings, specifying the initial number of tokens in each place;

• Σ is a finite set of transition labels that correspond to the events;

• M ⊆ N
n is the set of marked state vectors;

The marked states, in this definition given by the set M is completely analogous with the
notion of marked states in the definition of finite state automata in Section 2.1.

Example 2 – Petri net An example of a labelled Petri net is given in Fig. 2.2. This example
models the same system as in Example 1 and involves six Petri net places and five transitions
with labels. The initial state is given by the initial marking m0 =< 1, 0, 0, 0, 0, 0 >. The Petri
net is safe, i.e. no place can, at any moment, have more than one token. Labels corresponding
to the event names are associated with each transition. The Petri net specifies an alternative
between event e0 at transition t2 and event e1 at transition t3, that can occur in parallel with
e3 at t4. A token in both place p3 and p4 enables transition t5 and event e2. A token in p4
enables transition t6 and event e4. The marked state in the example symbolizes a successful
completion and is defined by a marked state vector M =< 1, 1, 0, 0, 0, 0 >. .

p1 p2

p3 p4

p5 p6

t2, e0 t3, e1 t4, e3

t5, e2 t6, e4

Figure 2.2: A Petri net with five
transitions and six places.

000010 001001

001100

011000

100001

100100

110000

e0

e0

e0

e1

e1

e1e2

e3

e3 e4

e4

Figure 2.3: The reachability graph
for the Petri net in Fig. 2.2.

�



2.3. Process algebra 11

2.2.1 Reachability graph

A Petri net place pi is said to be k-bounded for an initial marking m0 if there is an integer k
so that, for any marking reachable from m0, the number of tokens in pi is no greater than k.
A Petri net is bounded for an initial marking m0 if all the places are bounded for m0. This
thesis uses so-called safe Petri nets, which are bounded Petri nets where k is equal to one.

When a Petri net is bounded it can be converted into a finite state automaton by the
creation of the so-called reachability graph. More specifically, the reachability graph is ac-
complished by writing down the markings resulting from the firing of the transitions starting
from the initial marking. The Petri net presented in Example 2.2 has the reachability graph
presented in Fig. 2.3. The initial marking in the Petri net in Fig. 2.2 corresponds to the ini-
tial state of the reachability graph in Fig. 2.3. The created reachability graph is the same as
the finite state automaton describing the synchronous behavior between A1 and A2 given in
Fig. 2.1.

2.3 Process algebra

When Bergstra & Klop first coined the term process algebra in 1982 (Bergstra and Klop
1982) it referred to a structure in the sense of universal algebra that satisfied a particular set
of axioms. Since 1984, however, they also used the term to denote an area of science (in this
case the term was used as a noun without particle). This means that they sometimes used
the phrase to refer to their own algebraic approach to the study of concurrent processes, the
so-called algebra of communicating processes (ACP) (Bergstra and Klop 1984, Bergstra and
Klop 1985), and sometimes as a referral to such algebraic approaches in general. From this,
process algebra has now come to mean mathematical theories that model concurrent systems
by their algebra and provide a platform for reasoning about the structure and behavior of a
model.

Today, process algebra is the term commonly used to denote an algebra with sequential
and parallel operators plus recursion. The word ”algebraic” implies the ability to build a new
process description from already existing ones. This means that based on two processes P
and Q it is possible to build a third, R, by combining them (building a so-called algebraic
structure). All specification languages referred to as process algebra have in common that
they define and use operators to describe relations between events and processes, and vice
versa. They are often used for the analysis of concurrent system behavior, and particularly
for the comparison of different behaviors. The two most well known process algebras are
Hoares communicating sequential processes (CSP) (Hoare 1985) and Millners calculus of
communicating systems (CCS) (Milner 1989). In this section a short description of both
these process algebras is given.

2.3.1 Communicating sequential processes, CSP

A brief description of the communicating sequential processes language (Hoare 1985) is
provided here. The aim is to show the most common operators that are used to define the
basic CSP algebra and also to relate to finite state automata and Petri nets.

Every process in CSP has an alphabet Σ. The alphabet is a set of all events that the
process (and any other related process) might use.



12 2. Discrete event systems

Sequence: The sequence operator can be divided into two different types, the first is
sequence between an event on the left hand side of the operator and a process on the right
hand side. The process a→P first performs an event a and subsequently behaves like process
P . The second type of sequence operator is the one between processes denoted P1; P2, which
specifies that after successful termination of process P1 it behaves as process P2.

Alternative: There are three different operators for specifying an alternative in the CSP
language. The first is the deterministic choice symbol written as (a.P |b.Q). This choice
operator is not fundamental, and non-essential operators like this are used in CSP to add
clarity. This operator allows the environment to choose between distinct events. The two
events a and b must be uniquely identifiable by the environment. There is no casuality, i.e. it
is not possible to say whether the process or its environment ”caused” a certain event.

The CSP formalism include a special operator for non-deterministic choice. The non-
deterministic choice operator P �Q or a.P �b.Q defines that it is up to the system to choose
which process to execute.

The third is a general choice operator P�Q. The environment can control which of P
and Q that will be selected, provided that this control is exercised on the very first action. If
P can engage in a specific event then it will, irrespective of Q and vice versa. If both P and
Q are able to engage in a specific event, then were are faced with a non-deterministic choice.

Full synchronous composition: The second is the fully dependant composition called
full synchronous composition (FSC) denoted P1‖P2. This operator specifies that events com-
mon to both processes have to occur simultaneously. This means that which processes that
may interact are implicit in the process alphabets. An interaction is visible to the environ-
ment and this is necessary in order to support multidirectional interaction. A multi-party
synchronization allows a number of processes to interact with a single, shared event.

Concealment: The concealment operator P\{e1, . . . , en} allows the user to explicitly
list those events that may occur invisibly, without the participation of the environment. If P is
ready to perform some event ei in the list of concealed events then it may do so immediately,
without the need to interact with any other process.

Renaming: A renaming function f is introduced in order to be able to reuse a specifica-
tion by only replacing one or more of the actions names. A process f(P ) can replace one or
more events with new event names.

Definitions and recursion: The CSP language defines a way of associating a name with
a specified behavior N = P . These definitions may be recursive.

STOP process: The stop process STOPA has an alphabet A and can therefore block
other processes when composing the STOPA with other processes with the same events as
in A.

Successful termination: A successful termination operator SKIP terminates immedi-
ately and denotes successful completion of some task.

Example 3 – CSP The same example already presented as finite state automata in Example 1
and as a Petri net in Example 2 is here given in the CSP formalism. Note that it is not
possible to specify the marked states in CSP. The specification is divided in to three sub-
processes, P1, P2, and P3, together with a main process P . Process P1 in (2.3) specifies the
alternative of performing either event e0 or e1. Either of these two events are followed by



2.3. Process algebra 13

process P2, which performs event e2 and then terminates. Process P3 first performs event
e3 and then either event e2 followed by STOPA or event e4 followed by STOPA where
A = {e0, e1, e2, e3, e4}. The main process P specifies that the processes P1 and P2 are to be
executed in parallel using the full synchronous composition operator ‖, which specifies that
common events are to be synchronized in the same way as in the Petri net in Fig. 2.2.

P1 = e0→P2|e1→P2

P2 = e2→STOPA

P3 = e3→(e2→STOPA|e4→STOPA)

P = P1‖P3

(2.3)

�

2.3.2 Calculus of communicating systems CCS

In this section a short introduction to the calculus of communicating systems (CCS) (Milner
1989) is presented. The aim is to show the most common operators that are used to define
the basic CCS algebra and also to relate to finite state automata and Petri net.

Sequence operator: The most basic process construction in CCS is the action prefixing
(sequence). This sequence operator is, as in the CSP, between an event and a process as a.P .
After event a occurs it will behave as an process P .

Choice operator: In order to be able to define processes whose behavior may follow
different patterns of interactions with their environment, CCS offers the choice operator,
denoted ”+”. The formation rule for choice states that if P and Q are processes, then so is
P + Q. The CCS also provides an indexed choice operator Σi∈IPi.

Composition operator: In order to describe systems consisting of two or more processes
running in parallel, and possibly interacting with each other, CCS offers the parallel com-
position ”|”. Given two CCS expressions P and Q, the process P |Q describes a system in
which P and Q may proceed independently of each other, and may communicate via com-
plementary parts. In order to specify interleaving using this operator it is required that the
two processes have no ”co-names”. An interaction between two processes is immediately
hidden from the environment. If two processes interact, this shared event can never be seen
by any other processes. CCS processes synchronize only on events with complementary
names, e.g. a and a. It is therefore not possible to express multi-party interaction.

Concealment: The concealment, or restriction, operator P\{a1, . . . , an} in CCS is syn-
tactically identical with the concealment operator in CSP. However, they have very different
meanings. The restriction operator in CCS forces a process to interact with its environment.
If an event ai is in the list then it can not visibly occur and only the interaction between two
processes can take place, ie. ai and ai.

Internal event: Internal events result from process interaction. A special notation τ is
used to specify an internal event, which can be used to specify local behavior.



14 2. Discrete event systems

Renaming: A renaming function f is introduced in order to be able to reuse a specifica-
tion by only replacing one or more of the event names. Wherever a process is able to perform
an event a, process P [f ] can perform event f(a).

Definition and recursion: The CCS formalism defines a way of associating a name with
a specified behavior N

def
=P . By introducing names for processes it provides a possibility to

define recursive process behavior.

Inaction: The most basic process is the process 0 (nil), which performs no event. This
process offers the prototypical example of a deadlock behavior (i.e. one that can not proceed
any further in its computation). Milners nil process does not include an alphabet since it is
defined as 0 = Σi∈∅Pi.

Example 4 – CCS The same example already presented as finite state automata in Exam-
ple 1 and as a Petri net in Example 2 is here specified using the CSP language. Note that
it is not possible to specify the marked states in CCS. The example is divided in to three
sub-processes, P1, P2, and P3, together with a main process P . Process P1 in (2.4) specifies
the alternative of performing event e0 or e2. Either of these two events are followed by Pro-
cess P2, which performs event e2 and then finishes. Process P3 first performs event e3 and
then either executes event e4 or executes the complementary action e2 before ending. The
main process P specifies that the processes P1 and P2 are to be executed in parallel using the
parallel operator. The restriction expression is used in order to force events e2 and e2 to be
synchronized in the same way as in the Petri net in Fig. 2.2.

P1
def
= e0.P2 + e1.P2

P2
def
= e2.0

P3
def
= e3.(e2.0 + e4.0)

P
def
= P1\{e2} | P3\{e2}

(2.4)

�

2.4 Summary

All four formalisms described in this chapter, i.e, finite state automata, Petri nets, as well
as the process algebras (CSP and CCS), can be used for the modelling and specification of
discrete event systems. It is, however, important to keep in mind that all of them also have
limitations that make them less suitable for the creation of specifications for communication
purposes when dealing with larger, more complex, systems.

Focus in the present thesis is on supervisor synthesis of resource allocation systems,
which will be described in the next chapter. For this type of system, which tends to become
large and complex it is very important that specifications are easy to interpret. The present
thesis therefore aims at presenting a language that can provide such specifications by com-
bining the compactness of process algebra with the graphical benefits of Petri nets. This
language, called PPN, will be presented in more detail in Chapter 4.



chapter iii

supervisory control theory and resource
allocation systems

This chapter gives a brief introduction to both the supervisory control theory (SCT) (Ramadge
and Wonham 1989) and resource allocation systems. Supervisory control theory is used in
order to automatically generate a supervisor for DES, such as resource allocation systems.

3.1 Supervisory Control Theory

The Supervisory Control Theory developed by Ramadge and Wonham (1987) is a general
approach for the control of discrete event systems. Using this theory, automatic synthesis
of supervisors for discrete event systems can be achieved, given a model of a plant and a
specification. The theory divides the events that a plant can execute into two main groups,
i.e events that are controllable and those that are uncontrollable. A synthesized supervisor
is only able to prevent the plant from executing controllable events. In order to use the su-
pervisory control theory in practice, on larger industry systems, the use of computer tools is
required since the number of states in these systems tend to become very large. An exam-
ple of such a tool is Supremica (Åkesson, Fabian, Flordal and Vahidi 2003), which uses a
modular approach to supervisory control theory. The use of supervisory control theory also
places large demands on the language used to model a plant, as well as on the specifications,
i.e they have to be mathematically well founded. The models of both plant and specification
will, in the present thesis, be given as finite state automata when applying the supervisory
control theory.

3.1.1 Plant

The plant that is to be controlled is modelled as a discrete event system describing all be-
havior that the system is capable of, the so-called uncontrolled behavior. This model should
describe everything that the plant can do. It is, however, important not to make the model
more detailed than is necessary. If the model becomes too detailed this will only result in a
large system with unnecessary states, making the calculations harder. At the same time it is
of course also important to have a detailed enough model of the plant. A plant model should
not include anything that can be interpreted as specification.

It is not self-evident how to model a plant, i.e. which level of detail that is required,
which languages should be used for the modelling and so on. Finite state automata are
typically used, but very little modelling techniques to arrive at a good model exist in the
literature. Ongoing research aims at creating such methods and has also presented a language



16 3. Supervisory Control Theory and Resource Allocation Systems

called sensor activation graphs (SAG) (Alenljung and Lennartson 2005), which focuses on
the modelling of the plant.

In Fig. 3.1 a model of a plant is presented. It consists of two finite state automata Ap1 and
Ap2, which describe the uncontrolled behavior of the plant. A complete model of the plant
is achieved by composing all automata models in the way described in 2.1, ie. Ap1‖Ap2, see
Fig. 3.1.

p0

p1

e3

p2

e2

p3

e4

q0

q1

e0
e1

q2

e2

q0p0

q0p1

e3

q1p0

e0
e1

q0p3

e4

q1p1

e0
e1

q1p3

e0
e1

e3

e4

q2p2

e2

Ap1 Ap2 Ap1‖Ap2

Figure 3.1: Two plant models describing the uncontrolled behavior of the plant.

3.1.2 Specification

A specification describing what the system is intended to do, rather than what it is capable of
doing, is also modelled as a finite state automaton. This specification can be partial or total.
The alphabet of a partial specification is a subset of the alphabet of the plant. A total spec-
ification has the same alphabet as the plant. A partial specification is often used to describe
a smaller part of the desired, or undesired, behavior of the plant. A total specification can
be achieved by composing the plant model and the specification using the full synchronous
composition. In the specification it is possible to specify a state as marked. A marked state
specifies that the particular state is significant in some sense, e.g. that some sub-task has
been fulfilled. The marked states are used in the supervisory control theory in order to find
blocking states, which are states that can never reach a marked state. A partial specification
Sp is in Fig. 3.2 given for the plant in Fig. 3.1. This specification specifies that after event
e0 has occurred event e2 is desired, which is specified by e2 reaching the marked state s2.



3.2. Resource allocation systems 17

3.1.3 Supervisor synthesis

The supervisory control theory describes how a supervisor may be automatically synthesized
so that the closed loop system stays within the given specification while at the same time
making sure that it does not put too many limitations on the plant.

As a first step towards obtaining a supervisor, the plant models are synchronized with
the partial specifications. Assume that m specifications Sp1, . . . , Spm and n plant models
R1, . . . , Rn are given. Then the model

Sp = Sp1|| . . . ||Spm (3.1)

is a specification of the desired behavior of the plant

P = P1|| . . . ||Pn (3.2)

The two models P and Sp together constitute what is called the global specification
S0 = P ||Sp. This is a first candidate for a possible supervisor S. This model may, however,
be blocking, (Ramadge and Wonham 1987). The global specification S0 therefore has to be
manipulated in some way in order to result in an appropriate supervisor. This is formally
expressed by the operator NB, which removes blocking states from S0 to make it trim. The
synthesized supervisor is now expressed as

S = supNB(S0) = NB(P1|| . . . ||Pn||Sp1|| . . . ||Spm) (3.3)

The partial specification in Fig. 3.2 is synchronized with the plant model of Fig 3.1 in
order to obtain a total specification S0 in Fig 3.3, which also constitutes a first supervisor can-
didate. Blocking states are then detected when performing the supervisor synthesis, resulting
in the supervisor S in Fig. 3.4, for the plant which guarantees the specification Sp.

S = supNB(S0) = supNB(AP1 ||AP1||Sp) (3.4)

3.2 Resource allocation systems

The present paper is focused on specification of resource allocation systems, such as certain
classes of flexible production systems. In this section the different building blocks of this
type of resource allocation system are described. These building blocks are made up of a set
of resource models, a set of product specifications, and finally a supervisor that synchronizes
the individual product’s use of shared resources.

Routing and resource allocation systems may be described by a set of shared resources
and a set of products. The products use the set of resources in order to be manipulated
according to a certain product specification. This specification consists of a set of operations
that are to be executed in a certain order by specific resources. The first operation has to be
performed by one resource and the second operation by another resource etc. This results in
a desired product route through the resource system, and hence the product specification is
also called a routing specification.



18 3. Supervisory Control Theory and Resource Allocation Systems

q0

s0

s1

e0

e4

s2

e2

Sp

Figure 3.2: A specifica-
tion describing the de-
sired behavior.

q0.p0.s0

q0.p1.s0

e3

q1.p0.s0

e1

q1.p0.s1

e0

q1.p1.s0

e1

q1.p1.s1

e0e3 e3

q1.p3.q0

e4

q2.p2.s2

e2

S0

Figure 3.3: The synchronous be-
havior of the three models, ie. P1,
P2, and Sp.

q0p0s0

q0p1s0

e3

q1p0s1

e0

q1p1s1

e0 e3

q2p2s2

e2

S

Figure 3.4: The synthe-
sized supervisor S.

3.2.1 Routing specification

Every product to be manipulated has its own route through a system. This route is specified
by a routing specification Si, which may be described on two levels:

• a high level routing specification, describes which operations a product are to undergo,
in which order these operations are to be executed, and which resource(s) that may be
used for each individual operation.

• a booking and unbooking specification, describes on a more detailed level how the
shared resources are to be booked and unbooked, based on the HRS, in order to obtain
the desired route through the resource system.

Information necessary for specifying a high level routing specification for a product can
be divided into three different parts (Richardsson 2005). The first part is the so-called rela-
tion of operations (ROP), which describes on a high level operation sequences, predecessors
and required resources for each operation. This information is created when deciding the
necessary order of operations to meet the demands of the product design, e.g. a geometrical
welding must always precede a weld spot welding operation in order to guarantee a correct
design of the finished product. The second part is the execution of operations (EOP), which
describes on a detailed level the sequence of events for the specific operation. This is de-
scribed by specifying the resources that will change state on a certain event. This means that
an EOP is specified by a number of resources changing states. The third, and last, part is the
interlocking (IL). This describes restrictions on specific events in the EOP. These can be, for
example, security restrictions, i.e. that no person is allowed inside a restricted area when a
robot is to move, or restrictions specified in order to avoid equipment collisions.



3.2. Resource allocation systems 19

Since both the EOP and the IL are described on a more detailed level than the ROP, a
so-called specification synthesis (Andersson, Richarsson, Lennartsson and Fabian 2005) is
performed. In this synthesis the EOP and the IL are compared and, the result is an allowed
sequence of operations taking into account the possible interlocks. The specification synthe-
sis will result in a safety specification, which together with the ROP represents the complete
high level routing specification for a product.

3.2.2 Resource

A model of the manufacturing system, considered as a resource allocation system, is created
by synchronizing all of the involved resource models. The different resources may be mod-
elled as two state models with two events, the booking and the unbooking event. In order to
achieve a deterministic resource allocation model, however, a specific place for each product
is included as in Example 5.

Example 5 – Resource and routing specifications Resources are either booked bi
� or un-

booked ui
� where the indexes � and i refer to the concerned resource, and the routing spec-

ification using it. This can be expressed as a PN as in Fig. 3.5. The use of resource R� is
therefore controlled by the resource model, which models the mutual exclusion between the
routing specifications using it.

R�

b1
�

u1
�

...
bn
�

un
�

Figure 3.5: A resource model with explicit places for each routing specification.

�

3.2.3 Synthesis

In order to synchronize the different products use of the available shared resources, a su-
pervisor is required. This supervisor, which may be thought of as an intelligent booking
procedure, is automatically constructed and adapted to the current resource/routing informa-
tion. From a user point-of-view the basic idea is that the products are to route themselves
through the resource system. In this respect the purpose of the supervisor is simply to prevent
products from visiting undesired states; states leading to forbidden states such as deadlocks.

Example 6 – Booking and unbooking specification In this example a booking and un-
booking specification is described in order to show the main principle of a resource alloca-



20 3. Supervisory Control Theory and Resource Allocation Systems

tion system. In Fig. 3.6 there are two products to be manipulated based on the booking and
unbooking specifications, S1 and S2. S1 requires resource R1 and then R2, and S2 requires
the same resources but in the opposite order. The resources are modelled as in Fig. 3.5. The
second resource in each specification is booked before the first resource is unbooked. A total
specification S0 and a first candidate for a supervisor S0 = R1||R2||S1||S2 is given as a safe
Petri net in Fig. 3.7.

b1
1

b1
2

u1
1

u1
2

b2
2

b2
1

u2
2

u2
1

(a) (b)

S1 S2

Figure 3.6: Routing specifica-
tions S1 and S2 given as book-
ing/unbooking models.

b1
1

b1
2

u1
1

u1
1

b2
2

b2
1

u2
2

u2
2

(a) (b)

R1

R2

S1 S2

Figure 3.7: The synchronization of the resource
models and the routing specifications, i.e. the
global specification S0 as a Petri net.

An automaton (the reachability graph) corresponding to the total specification in Fig. 3.7
is shown in Fig. 3.8, where the blocking state is indicated with a rectangle. This blocking
state represents that S1 has booked resource R1 and wants to book resource R2, while S2 has
booked resource R2 and wants to book resource R1.

q0

q1

q2
q3

q4

q10

q11

q12 q13 q14 q15 q16

q5

q6 q7 q8 q9

b1
1 b1

1

b1
1

b2
2

b2
2

b2
2 b1

2

b1
2

b2
1

b2
1

u1
1

u1
1

u2
2

u2
2

u1
2

u1
2b2

1

b2
1

Figure 3.8: The reachability graph of the total specification in Fig. 3.7.

The operator NB calculates a nonblocking supervisor. A non-blocking supervisor is
shown i Fig. 3.9 which guaranties the specifications in Fig. 3.6.

�



3.3. Discussion 21

q0

q1

q2

q4 q10

q11

q12 q13 q14 q15 q16q5

q6 q7 q8 q9

b1
1

b1
1

b2
2

b2
2 b1

2

b1
2 b2

1

b2
1

u1
1

u1
1

u2
2

u2
2

u1
2

u1
2b2

1

b2
1

Figure 3.9: A non-blocking supervisor, which guaranties the specification in
Fig. 3.6.

3.3 Discussion

In the beginning of Section 3.2.1 it was described how a routing specification can be given on
two different levels, i.e. as a high level specification and as a booking and unbooking spec-
ification. So far, however, only the booking and unbooking specification has been used for
the description of the resource allocation system. Ordinary labelled safe Petri nets have been
used for the creation of this specification. However, since the high level routing specification
involves the ROP, the EOP, and the IL specifications it is necessary that the specification for-
malism used is able to specify sequences of operations on a high level as well as to represent
detailed descriptions of operations and interlock descriptions in a concise and easy-to-read
manner.

In the next chapter such a language will be presented. An example of a high level routing
specification will also be presented, describing all the necessary specifications, ie. ROP, EOP,
and IL, needed to describe a complete routing specification.

An important point in this context is also that a synthesized supervisor is often in the
form of a finite state automata and therefore needs to be converted into a format usable by
the industrial control system. This is not always straight forward and a lot of research has
been carried out within this area. The conversion from finite automata to Sequential Function
Charts (SFC), for example, has been treated in detail in (Hellgren 2000).





chapter iv

process algebra petri nets

All formalisms for specification of discrete event systems that have been described so far
i.e, finite state automata, Petri nets, and process algebras, may be used in order to specify
a resource allocation system. All of them, however, lack specific features that makes them
unsuitable for the purpose of creating specifications that fulfill the criteria of being concise
and easy to read even when larger systems are specified. Finite state automata, for example,
does not explicitly support parallelism and since parallel behavior is very common, this is an
essential drawback. Petri nets, on the other hand, explicitly supports parallelism, but when
the specification concerns larger systems PNs tend to become large with a lot of interconnec-
tions between transitions and places, which makes it difficult to handle and interpret. Process
algebra, finally, does support parallelism but, just like Petri net specifications, specifications
created using a pure algebraic language become very hard to read if the expressions become
too large. One way of avoiding this problem could be to create a lot of smaller processes, but
this instead makes it difficult to grasp the complete specification.

As mentioned above, the visual representations typical of Petri nets, although easily in-
terpreted, are not really helpful when dealing with more complex nets. One way of dealing
with this problem is to create smaller parts of a specification in a modular fashion and then
use existing methods for composing these. This may, however, have a negative effect on
readability. In such cases, it could instead be particularly fruitful to study combinations of
several methods (Basten 1998), or formalisms with different characteristics that might com-
plement each other. Such studies may also lead to improved and more complete methods and
formalisms, as well as a better conceptual understanding, for example, concerning different
strengths and weaknesses of the methods and formalisms used.

4.1 Combinations of Petri nets and process algebra

One possible combination is using Petri nets together with process algebra. These two for-
malisms share important characteristics. First, they both have a precise mathematical defini-
tion, and second, they are both designed for reasoning about so-called concurrent systems.
Many different attempts to join Petri nets and process algebra have been made, for many
different reasons. Many of these attempts have concentrated on the translation from one
formalism to another in order for both formalisms to be used within the same framework.

The many attempts at combining Petri nets and process algebra include, for example
Olderog (1991), who use operational semantics on Petri nets in order to infer process algebra
operators. Another example is Rondogiannis and Cheng (1994) who represents process alge-
bra by safe Petri nets and uses Petri net theory to reason about these programs. Mayr (1997)



24 4. Process algebra Petri nets

presents a method that extends Petri nets with the possibility to call subroutines, thus mak-
ing it possible to model recursion and tree-like structures. A methodology for the automatic
synthesis of asynchronous circuits from descriptions based on process algebra is presented
by Pena and Cortadella (1996). This method combines process algebra and Petri nets in a
way that higher tasks are modelled by the use of process algebra, while the Petri nets plays
the part of an assembly language, describing the low level operations that are to be executed.
Jmaiel (2000) presents a method for specifying a protocol using different formalisms. This
protocol offers the possibility of integrating different process descriptions in the same alge-
braic specifications. Hermanns, Herzog, Mertsiotakis and Rettelbach (1997) has suggested
a method that constructs large generalized stochastic Petri nets by a hierarchical composi-
tion of smaller components. This is a promising way of coping with the complexity of the
design process for models of real hardware and software systems. The composition of nets
is inspired by process algebra operators. Basten (1998) combines process algebra and Petri
nets for specification and verification by using a method where it is not necessary to use both
languages in one and the same model, but rather gives the possibility of using each language
separately for different purposes.

The most comprehensive attempt at combining process algebra and Petri nets, however,
is perhaps the Petri box calculus (PBC), also referred to as Box algebra. Petri box calculus
was developed by Best (Best et al. 2001, Best et al. 2002) in order to show how Petri nets can
be manipulated algebraically. This work also shows how Petri net methods can be applied
to the verification of concurrent algorithms. Petri box calculus aims at supporting Petri net
semantics. It creates an algebra in order to express Petri nets and uses a way of symboliz-
ing Petri net tokens. This can be thought of as an analytical way of combining Petri nets
and process algebra. In order to obtain a compositional translation of PBC expressions into
Petri nets they define for the latter operators corresponding to those introduced for the pro-
cess algebra. A uniform translation from algebra expressions to Petri nets is achieved using
relabelling, which specifies interface changes applied to nets involved in the transitions.

The present thesis also introduces a combination of Petri nets and process algebra. The
single reason for doing so is to create a graphical specification formalism that is able to
achieve compact and easy-to-read specifications of complex systems. In other words, it is
designed with the visual quality of the resulting specification in mind, rather than the formal
evaluation. The specification created is instead formally converted into finite state automata
in order to perform simulation, verification, and supervisor synthesis.

As mentioned previously, the focus of this work is on resource allocation systems, and
there is today, still no existing tool that can be used to create specifications with the desired
qualities for this type of system. For this reason, the present thesis defines a new specification
language to be used for such systems. The suggested language is based on process algebra
and Petri nets and has been called process algebra petri nets (PPN). The Petri nets are used
in order to produce a formal graphical language and process algebra for producing compact
descriptions.

As described in Chapter 3, a resource allocation systems involves resource models, rout-
ing specifications, and a supervisor. As was described in the previous chapter, a routing
specification can be described on two levels, and the focus in this thesis has been to develop
a specification language which is well suited for high level routing specifications. The aim
is to create high level routing specifications of resource allocations systems, which do not
specify explicit booking/unbooking events, cf. Example 6, but instead describe the product
route using operation sequences and required resources for each operation. In the following



4.2. PPN language 25

section a description of the PPN language is presented together with an example of a com-
plete high level routing specification with a relation of operation, an execution of operation,
and an interlocking specification. For detailed definitions of the suggested process algebra
the reader is referred to Paper I.

4.2 PPN language

The PPN language combines Petri nets and process algebra in order to achieve a specification
language that delivers concise and easy to read specifications of complex DES, especially
resource allocation systems. The algebra expressions are used for compactness and Petri
nets for making the PPN language graphical. The suggested language combines Petri nets
and process algebra by allowing a process expression at each Petri net transition. In Paper
II it is shown how the PPN can be used when specifying a a resource allocation system for
a manufacturing system. Paper II also presents a method for converting PPN specifications
into a finite state automata representation. It is in Paper III shown how the PPN language can
be used for the specification of a smaller batch plant.

4.2.1 Petri nets

In the PPN language ordinary labelled safe Petri nets (PNs) are used. This means that there
are no more than one token at each PN place at any time. The PN part of the PPN language
may be used to model simple sequences, but can at the same time also model more complex
constructions such as parallelism and recursion.

PNs used in the PPN language one initial and one connector place. This correspond to a
PN that start (and end) with a single place marked, i.e. a single place with a token. The initial
and the connector places are used when converting the PPN models into PN. This means that
the PN models only allow one place with a token in the initial marking vector. This is no
restriction since a PN with more than one token in the initial marking vector can always be
reconfigured such that only one place has an initial token, see Fig 4.1.

(a) (b)

PN1

PN1

aa bb cc

staPN1

stoPN1

Figure 4.1: Example of how a PN with several initial tokens in several places in (a)
is reconfigured such that only one place has an initial token in (b).



26 4. Process algebra Petri nets

The connector place of a PN, in the PPN, describes that a single place then has a token, in
much the same manner as for the initial place. The reason for these restrictions is to simplify
the translation from PPNs to ordinary labelled safe PNs. The extra transitions that are added
in order to realize this are uniquely labelled with a start event stai and a stop event stoi.

4.2.2 Process algebra

A new process algebra is used in the PPN language and the reason for this is, firstly, that
there does not exist a process algebra that goes hand in hand with the international stan-
dard for information exchange STEP (TC184/SC4 1994), see Chapter 5. This means that
operators defined in the STEP standard do not appear in existing process algebras, e.g. the
exclusiveness composition. Furthermore, as this thesis aims at creating high level routing
specifications of resource allocation systems it is felt that a new synchronization operator
is of great importance to keep the specifications clear and concise. Note, however, that the
suggested process algebra is a simplified one, using existing process algebra as a foundation,
developed to meet our needs in fulfilling the aim of the present work.

The suggested process algebra defines seven operators, →, +, ⊕, &, , P ↑, and P ↓,
which are described in detail in Paper I. The first five operators all involve two processes,
while the last two operate on single processes. Below is given a short description of each
operator defined for the process algebra part of the PPN language.

Two simple processes P1 = a and P2 = b→c will be used to exemplify the different
operators. Corresponding PNs are shown in Fig. 4.2.

(a) (b)

P1 P2

a

p10

p11

b

c

p20

p21

p22

Figure 4.2: Processes P1 = a and P2 = b → c given as PNs.

Sequence The sequence operator describes that one process has to finish before another
process can start to execute. The expression P1 → P2 is a process that begins like P1 and
when P1 has successfully finished, continues as P2. This is illustrated in Fig. 4.3 where the
two processes from Fig. 4.2 are used to model the sequence P1→P2. The transitions in a
PPN can involve more than one process as in Fig. 4.3a or only one process at each transition
as in Fig. 4.3b. The same sequence is in Fig. 4.3c modelled as a PN with explicit events at
each transition.



4.2. PPN language 27

(a) (b) (c)

p1 p1 p1

p2

p2

p2

a

b

c

P1

P2

P1→P2

Figure 4.3: The process P = P1 → P2 given in (a) and (b) as PPN models and in
(c) as a PN where P1 = a and P2 = b → c.

Alternative The alternative operator + defines a choice between two processes. The alter-
native choice between the two processes in Fig. 4.2 is modelled in Fig. 4.4 both as PPNs and
PN.

(a) (b) (c)

p1 p1 p1

p2 p2

p2

a b

c

P1 P2P1 +P2

Figure 4.4: The process P = P1 + P2 given in (a) and (b) as PPN models and in (c)
as a PN where P1 = a and P2 = b → c.

Arbitrary order The arbitrary order operator ⊕ defines that a number of processes can
not execute at the same time. It does not, however, matter in which order they are executed.
The expression ⊕{P1, . . . , Pn} specifies that n processes are to be executed in any order
but never at the same time. This operator is not fundamental, but still necessary in order to
create a process algebra that goes hand in hand with the STEP standard described in Paper
IV and Paper V. The arbitrary order between the two processes in Fig. 4.2 is demonstrated in
Fig. 4.5.

Synchronization A special synchronization operator & is defined for the PPN language.
This operator synchronizes the first and last event of each process. This is very useful when
specifying resource allocation systems since it enables the booking and unbooking of a re-
source to be easily specified. The expression P1&P2 describes that the first event of process



28 4. Process algebra Petri nets

(a) (b) (c)

p1 p1 p1

p2

p2

p2

a b

b c

c a

P1 P2

P2 P1

⊕{P1, P2}

Figure 4.5: The process P =
⊕{P1, P2} is in (a) and (b) given as PPN models and

in (c) as a PN where P1 = a and P2 = b → c.

P1 is synchronized with the first event of process P2, and the same is true for the last events
of each process. This means that if P1 is an operation and P2 is a resource, then the first
event of the operation, e.g. a start event, is synchronized with the booking of the resource
and the finishing of the operation is synchronized with the unbooking of the resource.

The explicit synchronization of the two processes described in Fig. 4.2 is demonstrated
in Fig. 4.6.

(a) (b)

p1p1

p2

p2

a&b

c

sta12

sto12

P1&P2

Figure 4.6: The process P = P1&P2 given in (a) and (b) as PPN models using the
processes P1 = a and P2 = b → c.

Parallel The parallel operator {P1, . . . , Pn} specifies that n processes can execute at the
same time. It is an extension of Hoare’s full synchronous operator in that it can handle
synchronized events. Two processes are given as P3 = d→e&f→g and P4 = h→e→m with
the common event e. These are to be executed in parallel (as shown in Fig. 4.7).



4.2. PPN language 29

(a) (b)

p3 p3

p4

p4

sta34

d h

e& f

g m

sto34

{P3, P4}

Figure 4.7: The process P = {P3, P4}, with B = {3, 4}, given in (a) as a PPN
model and in (b) as a PN (including synchronized events).

The synchronized event e&f in process P3 is required to occur at the same time as the event
e in P4.

Start and stop operator The start and stop operators, P ↑ and P ↓ define that the first and
last events respectively are to be executed. In Fig. 4.8 the sequence P1→P ↑

2 is illustrated.
This expression has the consequence that P1 executes before P2 can start. In this case the
continuation of process P2 is not specified, only the fact that it has to wait until P1 has
finished before it is allowed to start.

(a) (b) (c)

p1p1p1

p2p2

p2

a

b

P1

P ↑
2

P1→P ↑
2

Figure 4.8: The process P = P1 → P ↑
2 given in (a) and (b) as PPN models and in

(c) as a PN where P1 = a and P2 = b → c.

Restrictions One of the reasons that it is not very efficient to use a graphical language
when specifying larger, and more complex, systems is that the specifications can become
hard to interpret due to the many interconnections between different transitions and states.
The restriction expression P [P ↓

1 ∧ P ↓
2 ] specifies that both process P1 and P2 have to have

finished their respective execution, i.e. be in their respective final states, before process P



30 4. Process algebra Petri nets

is allowed to execute. This means that it is possible to specify that specific states have to be
fulfilled, which is what is needed in order to describe both EOP and IL specifications.

4.2.3 Comparison of PPN with CCS, CSP, and StateCharts

In the PPN language the sequence operator, →, is defined for specifying sequence between
processes rather than between an event and a process, or between events. This makes it
similar to the operator ; defined in CSP.

The alternative operator + in the PPN language is the same as Milner’s choice operator.
The synchronization operator & is different from both the FSC operator ‖ and the | in CCS,
since & neither synchronizes common events (CSP) nor complementary events (CCS).

As mentioned earlier, the parallel operator in the PPN language is defined in a way
that is very similar to the full synchronous composition operator ‖ used in CSP. A difference
between them, however, is that the operator is also able to handel synchronous events, e.g.
a&b.

StateCharts (Harel et al. 1987) is an extension of finite state automata, which introduces
concepts such as event-condition, hiding and hierarchy for finite state automata. The restric-
tion expressions defined for the PPN language are very similar to the condition concept in
StateCharts. In Fig.4.9(a) a simple PPN specification is shown.

P1

P ↓
1

ip1

fp1

a(fp4fp5)

b(ip6)

a[P ↓
4 ∧ P ↓

5 ]

b[P6]

(a) (b)

Figure 4.9: A specification with two transitions in (a) given as a PPN model us-
ing the restriction constructs and in (b) given as a StateChart using the condition
construct.

It involves three places and two transitions. Each transition specifies a restricted event.
The first transition specifies that event a cannot occur until processes P4 and P5 have finished
their respective executions, i.e. are in their respective final states. Event b in the second
transition can execute when process P6 is in its initial state. A corresponding stateChart
describing the same specification as the PPN model in Fig. 4.9(a) is given in Fig. 4.9(b).
It uses the condition representation in order to specify that event a may not occur until
processes P4 and P6 are in their respective final states, fp4 and fp5 . A condition also specifies
that event b may occur as long as P6 is in its initial state ip6 .



4.3. Example: Specification of a high level routing specification using PPN 31

4.3 Example: Specification of a high level routing specifica-
tion using PPN

The three parts of a high level routing specification, i.e. the relations of operations, the
execution of operations, and the interlocking specifications for a fictive example are specified
using the PPN formalism. These three parts are, as described earlier, necessary in order to
achieve a complete resource allocation system (Richardsson 2005), and it is in this example
shown that the PPN formalism is flexible enough to be able to specify these three models in a
way that results in easily interpreted specifications that also play a central role in supervisor
synthesis.

4.3.1 Relations of operations specification

This example starts by presenting a relation of operations S1 in Fig. 4.10 specified using
the PPN formalism. The specification constitutes six operations and have a arbitrary order
execution that is followed by two parallel paths, which is specified using the parallel PN
construct.

S1

⊕{O1&R1, O2&R2}

O3&(R3a +R3b) {O4&R4, O5&R5}

O6&R6

Figure 4.10: A ROP given as a PPN.

Operation O1 requires resource R1 and operation O2 requires resource R2. This is spec-
ified using the synchronization operator &, which synchronizes the first and last event of
operation Oi with resource Ri. Operations O1 and O2 can not execute at the same time, but
the specific order in which they execute does not matter. This is specified using the arbi-
trary order operator ⊕. After O1 and O2 have finished their respective execution two parallel
paths are created using the PN construct. The first parallel path specifies that operation O3

can execute. Operation O3 requires either of resources R3a or R3b, which is specified using
the alternative operator +. The second parallel path specifies a sequence between the parallel



32 4. Process algebra Petri nets

execution of operations O4 and O5 and operation O6. The parallel execution of operations
O4 and O5 is modelled using the parallel operator .

This simple ROP specification shows how the PPN language can be used in order to
specify a high level routing specification in a compact, but yet readable, way. It also shows
the flexibility of using either the PN constructs or the process algebra in order to realize the
intended specification.

4.3.2 Execution of operations and interlocking specification

In the method presented in (Richardsson 2005) a resource constitutes a number of sub-
resources, also called components. These components are used in order to create a detailed
description of each operation, or rather the specified states of a component are used to de-
scribe an operation. Resource R6 in this example constitutes two components; R6a and R6b,
and both these components are used in order to create the EOP specification. Component
R6a can either be in state up or down and component R6b can also be in either of two states
on or off.

In Fig. 4.11(a) an EOP specification of operation O6 is presented. This operation de-
scribes a sequence of three events goDownR6a, turnOnR6b

, and finish. Operation O6 is
described by changes in the components states. The first event goDownR6a is executed when
R6a is in state up and R6b is in state off. This event is followed by event turnOn, which
has to wait until R6a has changed state to down before executing. The last event finish is
executed when component R6b has changed state to on. An interlock for event goDownR6a

is described in Fig. 4.11(b). This interlock specifies that another component R2a has to be in
state home before goDownR6a can execute.

O6

goDownR6a[upR6a , offR6b
]

turnOnR6b
[downR6a, offR6b

]

finish[downR6a , onR6b
]

goDownR6a

init[homeR2a ]

goDownR6a

(a) (b)

Figure 4.11: An EOP in (a) describing operation O1 and in (b) and interlocking for
event turn offR1a .

These more detailed specifications show the generality of the PPN language. It is not
only possible to model larger systems on a high level, but it is also possible to create specifi-
cations on a lower level using the restriction expressions from the suggested process algebra.



4.4. Summary 33

4.3.3 Routing specification

The information given in both the EOP and the IL specifications is then used in a specification
synthesis. This synthesis creates a so-called safety specification that describes, on the same
level as in the ROP specifications, i.e. sequence of operations, in which order it is possible to
execute the involved operations in order to guarantee the IL specification. This is described
in detail in (Andersson et al. 2005). The resulting safety specifications together with the
ROP specification specifies the possible order in which the operations for a product can be
executed and thus results in a complete high level routing specification.

4.4 Summary

This chapter has shown how the suggested PPN language can be used to create routing
specifications on a high, as well as a more detailed, level. A further aim of the present thesis
has also been to use the international standard, STEP, in order to be able to communicate
the created information between different computer systems and users. In order to make this
possible a mapping between the PPN language and the STEP, AP-214 is necessary. This
mapping process will be presented in the next chapter.





chapter v

process specifications in step-ap214

As described in (Adlemo, Andreasson, Fabian, Gullander, Hellgren, Lennartson, Liljenvall
and Pernebo 1997) there is a great need for efficient exchange of information from the re-
sources to the routing specifications in order to create truly flexible systems. The main idea
in (Adlemo et al. 1997) is that a routing specification holds information about operations to
be executed and technical demands on the same operations, while the resources present what
they can do. This is to be executed in real time so that a product can be in a certain state,
wanting to execute its next operation and asks which resource that is free and able. There
is always the risk of a resource braking down in the middle of an operation and should this
happen, the product is forced to move on to another resource instead.

The approach in the present work is somewhat different. It is more static in the sense that
when a route, or alternative routes, have been created they are fixed throughout the system
until changes are made and a new route or routes are calculated. The advantages of this
approach is that it uses an international standard for information exchange and is therefore
easily applied to many different systems, industries, and companies.

The present thesis aims at making use of the international standard, ISO10303-214, or
application protocol 214 (AP214) of the STEP-standard (STandard for Exchange of Product
model data) (TC184/SC4 2001), for the communication and storing of process specifications.
To begin with the STEP AP-214 was developed to represent product information. In recent
years, however, it has been extended to include both process- and resource information as
well as product information. The aim of this thesis is therefore to show how process spec-
ifications created with the PPN tool can be mapped to the extended STEP AP-214 format.
The presented mapping should define the relationship between the information and the DES
specification.

Much research has already been conducted, both on information modelling, e.g. (Schenk
and Wilson 1994), (Scheller 1990), and (Eversheim, Marczinski and Cremer 1991) as well
as on discrete event modelling, e.g. (Cassandras and Lafortune 1999), (Hoare 1985). How-
ever, little has been investigated concerning the connection between information and discrete
event models, i.e. how an information structure could be mapped to a discrete event struc-
ture of a process plan. In this research the aim has been to create a method for the automatic
generation of DES specifications according to the STEP standard. There are several reasons
for doing this. Companies do not become dependent on one system, but are able to change
supplier at any time. The standard also enables companies to have control of all their infor-
mation and offers the possibility of withdrawing information from the specific systems that
are used to develop information into a unified framework based on the STEP standard. The
different specifications can then be created using the specific tools that are most suited for a
certain task.



36 5. Process Specifications in STEP-AP214

5.1 ISO 10303

The purpose of the STEP standard is to create a unified framework for sending and receiving
data to and from different systems, companies and so on. It is also an attempt at making
it possible to reuse already created information, and in this sense not having to constantly
”reinvent the wheel”.

STEP is an international standard that ”provides a representation of product informa-
tion along with the necessary mechanisms and definitions to enable product data to be ex-
changed” (TC184/SC4 1994). The term exchange should be interpreted as the exchange of
data between computer systems in environments associated with the complete life-cycle of
a product, including manufacturing. Application protocols define the scope, context, and
information requirements for a particular application, e.g. the automotive industry (AP214),
or the electrical design and installation (AP212). An application protocol is divided into two
different representations of the information requirements: the application reference model
(ARM) and the application interpreted model (AIM). The ARM is used to capture the in-
formation requirements using application-based terminology i.e. terminology that is under-
stood by the domain experts of that particular application. For instance, in AP214 terms like
wheel space and overall axle distance would be used, because they are widely used in the
automotive industry. The AIM provides a mechanism for inter-operability between differ-
ent application protocols to, e.g. describe mechatronic products by using both AP214 and
AP212. In-depth information on application protocols and STEP in general are available in
(Warthen 1990, Kemmerer 1999, Owen 1993).

5.1.1 EXPRESS

The EXPRESS language is a formally specified and structured language (Schenk and Wilson
1994) used to define the ARM models in STEP. The EXPRESS language is an earlier alter-
native to the Unified Modelling Language (UML). Usually, the ARM is also defined in EX-
PRESS and often presented in EXPRESS-G, a graphical subset of the EXPRESS Language.

The basic constructs of EXPRESS (and EXPRESS-G) are the entity and the attribute.
An entity is similar to a class in object-oriented programming, i.e. it is a representation of
something of interest in the real world. The attribute is a kind of property, and as such it
represents a particular aspect of an entity.

In EXPRESS-G an entity is graphically represented as a box with a name in it, cf. Fig-
ure 5.1. The name is the identifier of the item it represents in the real world. Attributes
are represented by a line ending with a small circle, showing the direction of the relation-
ship. They are labelled with the name of the attribute, as well as any cardinality constraints.
A dashed line represents an optional attribute whereas a thick line represents a supertype-
subtype relationship, i.e. the same as inheritance in object-oriented programming, using e.g.
Unified Modelling Language (UML) (Booch, Rumbaugh and Jacobson 1999), cf. Figure 5.2.
A supertype, i.e. the parent of an inheritance relationship, can be abstract (ABS) meaning
that the entity can not be populated with data.

The model in Figure 5.1 is conceptual and will be used to present the AP214 standard.
Another type of model will also be used to exemplify the use of AP214, the so-called in-
stantiated model, which is a model populated with data from the real world. cf. example
in Figure 5.3. The triangle in the lower right corner of the entities in Figure 5.3 indicates
that it is an instantiated model. In some instances a filled triangle will occur, indicating that



5.2. Application protocol 214 37

relating

description

process_plan_

relationship,

(ppr)

process_plan,

(pp)

process_plan_

version, (ppv)

related

relation_type plan_id name

description

STRING

version_id

description

STRING

Figure 5.1: Example of entities
represented in the EXPRESS lan-
guage.

process plan

plan id: STRING
name: STRING
description: STRING

process plan version

version id: STRING
description: STRING

relating

related
description: STRING
realation type: STRING

process plan relationship

Figure 5.2: The same model as in
5.1 given as an UML model.

all mandatory attributes are instantiated, for example the process plan relationship entity
in Figure 5.3. A transparent triangle on the other hand indicates that some, or all, of the
mandatory attributes have been left out.

relating
id

relation_type

process_plan,

(pp)

process_plan,

(pp)

process_plan

_relationship,

(ppr)
'plan_2'id'plan_1'

related

'alternative'

Figure 5.3: Instantiated models of the model in Fig. 5.1. Two process plans relating to each
other by an alternative relationship which means that ”plan 2” is an alternative process plan
to ”plan 1”.

5.2 Application protocol 214

AP214 is an application protocol developed to meet the information exchange needs of the
automotive industry. However, (Johansson 2001b) has shown that the generic structure of
AP214 can be used to represent not only cars, but any type of mechanical product, including
a manufacturing resource.

Figure 5.4 shows the different parts of the design and production project that STEP
AP214 includes. As can be seen in this figure, three different main areas are described:
product, process, and resource (manufacturing system). Control code and Behavior models
are not included in the standard and are therefore not marked in gray.

In order to create the behavior model and the control code, which are not described in
STEP, using the information given by the STEP standard, a mapping i necessary. The map-
ping maps information from a discrete event model into the product, process and resource
part of the STEP standard in Figure 5.4.



38 5. Process Specifications in STEP-AP214

• geometry

• kinematics

• structure

• configuration

• administration

• properties

• documents

• geometry

• kinematics

• structure

• configuration

• administration

• properties

• documents

Product Process Resource

• structure

• configuration

• administration

• properties

• documents

• control code

• behavior model

Figure 5.4: Graph describing three different parts in STEP AP214. These parts are product,
process and resource. All the information marked in gray is included in the standard. Not
included is thus control code and behavior models in the process part.

5.2.1 Process Model

The process model in AP214, cf. Figure 5.5, is the holder of all necessary process infor-
mation, such as the process plan identifier, relationships between processes, sequences etc.
The process model consists of a structure to hold meta-data about a process plan. This
structure is identified by the process plan (pp) in Figure 5.5. A process plan consists of
one or more processes represented by the process operation occurrence (poo). The pro-
cess operation occurrence represents the occurrence of a process in a process plan. More
specifically, it represents the occurrence of a definition of a process, the process operation
definition (pod). This mechanism enables the reuse of a definition in several different places
in the same process plan, as well as in several different process plans.

STRING

relating

name

related

id
id

description

process_plan,

(pp)

process_operation

_occurrence, (poo)

process_operation_

occurrence_

relationship, (poor)

process_operation

_definition, (pod)

plan

operation_definition

STRING

version

id
name

process_type

description

Figure 5.5: Populated process model representing the sequence between two pro-
cesses.

The relationship between two process operation occurences is represented by the pro-
cess operation occurrence relationship (poor) where the attribute relation type holds the
type of relationship. The attribute relating points in the direction of the process operation
occurrence prior to the process operation occurrence pointed out by the attribute related.



5.2. Application protocol 214 39

5.2.2 Resource Model

The manufacturing resources can be represented in several different ways in AP214, depend-
ing on the level of detail and the design life cycle stage. Two different representations have
been identified as important, the single instance and the physical instance, cf. Figure 5.5.

operation

id

serial_number

process_operation

_occurrence, (poo)

process_operation_

resource_assigment,

(pora)

resource_

definition_

select, (rds)

single_

instance, (si)

physical_

instance, (pi)

STRING

(ABS)

item_instance, (ii)

resource_definition

Figure 5.6: Representation of resource data in AP214.

The single instance and the physical instance are both instances of an abstract repre-
sentation of a manufacturing resource (item), but there is one significant difference between
them. The single instance represents one occurrence of a certain type of manufacturing re-
source, whereas the physical instance represents a physical resource on the shop floor. Thus
the single instance is better used for planning purposes before a physical resource exists,
while the physical instance is better used when a physical resource already exists.

5.2.3 Operation and interlocking Model

The main attribute is condition assignment, which connects the process operation occur-
rence with resource information, i.e. physical instance, via state assignment. The condi-
tion assignment defines a state condition that has to be fulfilled before a process operation
occurrence can be executed. A condition assignment can refer to a number of state as-
signments, which describes that there could be more than one resource state that has to be
fulfilled. The condition assignment has an attribute name, which can be either ”interlock”
or ”required resource state”. The ”required resource state” describes that the condition is
for an EOP specification, while ”interlock” naturally specifies that it belongs to an interlock
specification.

The entity state assignment refers to state, which holds the actual state information.
State assignment also refers to physical instance so that the state can be associated with a
specific resource.

In this context it is important to note that because application protocol AP214 is used for
representing processes, process relations, and resources, but is unable to represent resource
states it is necessary to also use AP239. In particular the entities State, State assignment,
and Condition assignment (von Euler-Chelpin, Holmstrm and Richardsson 2004, Falkman
et al. 2004). In this way it is thus necessary to combine two application protocols in order to
represent EOP and IL specifications.



40 5. Process Specifications in STEP-AP214

Physical_instance,

(si)

State

State_ assignment

described_state

assigned_to

Process_

operation_

occurrence, (poo)

Process_

operation_

occurrence_

relationship, (poor)

relatingrelated

Process_

operation_

resource_

assignment, (pora)

operation
resource_definition

described_condition [1,?]Condition_

assignment

name

relation_type

assigned_to

assigned_to

STRING
name

Figure 5.7: Representation of conditions for process operation ocurrence described as a
STEP/Express model.

5.3 Example: PPN specification to STEP/Express model

In this example the connection between the PPN language and the STEP-AP214 standard is
shown. This is done by creating STEP/Express models of the same example that was given
in Chapter 4 where a high level routing specification was created using the PPN language.

5.3.1 Relations of operations specification

The ROP specification in Fig. 4.10 in Chapter 4 is modelled as a STEP/Express model in
Fig. 5.9. Each poo refers to a pod, which describes the actual operation with the attribute
name. The required resources for each operation are described by the pora relating to poo.
A pora in its turn relates to the specific pi, which describes which resource that is required.
Please note that two poos relate to the same pod and that a pora refers to each of the two
poos. The relation between the two poos is ”substitution” (alternative in PPN) described by
the poor. This means that it models an operation O3, in Fig. 5.9, that can be executed by
either using resource R3a or resource R3b.

The arbitrary order execution of operations O1 and O2 is modelled by the attribute rela-
tion type for poor 01 equal to ”exclusiveness”. Both operations O1 and O2 refer to operation
O3 with the relation type for both poor 02 and poor 03 equal to ”sequence”. This specifies
that operation O3 is executed when both operation O1 and O2 have finished their respective
executions. Both operations O1 and O2 also refer to operation O4 and O5 with relation type
equal to ”sequence”. These relations are however left out for clarity. Operations O4 and O5

refer to each other with the relation type for poor 06 ”simultaneity” specifying that these can
be executed in parallel. The poor 06 between O3 and O6 has the relation type ”simultane-
ity” specifying that these can be executed in parallel. There are also poor with relation type
”simultaneity” between O3 and O4 as well as O3 and O5, these are however also left out
here for clarity. In the PPN specification in Fig. 4.10 this parallel behavior is split into two
descriptions, both the PN and the process algebra is used. The fact that operation O6 has
to wait until operations O4, and O5 have finished their respective executions is specified in
Fig. 5.8 using the relation type equal to ”sequence” between, O4 and O6, as well as between
O5 and O6.



5.3. Example: PPN specification to STEP/Express model 41

"exclusiveness"

ing

id

poo poo poo poopoo poo

pora

poor_01 poor_02

ing ed ing ed

poor_03

"sequence"

ed

pora

id

"simultaneity"

poor_06

definition

id

"sequence"

porapora poraporapora

"R1"

porapora porapora poraporapora

operation

definition

operation

definition

operation

definition

operation

definition

operation

definition

operation

definition

operation

id id id id id id id

"R2" "R3a" "R3b" "R4" "R5" "R6"

ing ed

poor_08ing ed

"sequence"

id

poor_09

"simultaneity"

ing ed

id

id

pod pod

pod

podpodpod

odef

"O1"

id

odef odef odef odef

odef

"O2"

id

"O3"

id

"O4"

id

"O5"

id

"O6" id

poo

odef

poor_04

id

"substitution"

ing ed

"sequence"

poor_06

id

ing ed

Figure 5.8: The ROP specification in Fig. 4.10 given as an instantiated STEP/Express model.

5.3.2 Execution of operations specification

The same EOP specification as described in Fig. 4.11(a) in Chapter 4 is in Fig. 5.9 described
as a STEP/Express model. The two components are described by the physical instances
with the attribute id equal to the components identity. Every pi refers to a pora, which in
turn refers to a poo, as described in Section 5.2.2. A condition assignment refers to the state
state assignments, which refers both to the specific resource as well as its state.

The three events in the EOP specification in Fig. 4.11(a) are described by three pod
entities. Each of these is referred to by a poo, which in turn is referred to by a condi-
tion assigment with the attribute ”required resource state”. The condition assignment refers
to a state assignment that both points out the required state as well as the actual compo-
nent. The sequence between the events is described using the poor entity with the attribute
”sequence”.

5.3.3 Interlocking specification

The interlocking specification in Fig. 4.11(b) in Chapter 4 is specified using a STEP/Express
model in Fig. 5.10. In this figure a single restriction for event goDown for component
R6a is described using a condition assignment entity. The attribute name is in the condi-
tion assignment equal to ”interlock” and refers to the poo. The required state specified by
the condition assignment is described by the state via the state assignment.



42 5. Process Specifications in STEP-AP214

pooring edid

rtype

poo poo

poor

ing

rtype

sa
state

sa
state

ed

poo

sa
statename

name

'up'

'off'

name

name

'down'

'off'

name

name

'down'

'on'

'sequence'sequence

si

sa

'goDown'

id

'turnOn'

id

'finish'

poora
pora

resource_definition

pi

ca

described_condition

operation
assigned_to

si

sa

poora
pora

resource_definition

pi

described_condition

operation

ca

assigned_to

si

sa

poora
pora

resource_definition

pi

operation

ca

assigned_to

id

id'R6a'

'R6b'

name
name

name
'required

resource

state'

required

resource

state

'required

resource

state'
pod pod pod

odef odefodef

assigned_to

sasa

assigned_to

sa

assigned_to

described_condition

described_state described_state described_state

Figure 5.9: EOP specification of operation O6 in Fig. 4.11(a) given as an instantiated
STEP/Express model.

poo

name

caassigned_to sa state
described_condition

nameid 'goDown' 'Interlock'

described_state

'home.'

pod odef

assigned_to

resource_definition
pi

id 'R2a'pora
operation

Figure 5.10: Interlocking specification for goDown in Fig. 4.11(b) described as a
STEP/Express model.

5.4 Discussion

The ability to use the PPN language as a tool for specifying process-related information in
a formal way is, as described earlier, of great importance. It is, however, also important
that information is only created once and then distributed to other users, e.g. departments
within a company. This is important in order to decrease the risk of specifying the same thing
more than once and also in avoiding the risk of having more than one correct version of a
specification. For this reason a connection between the PPN tool and the STEP standard has
been created. As discussed earlier this is beneficial for the efficient exchange of information
between different computer systems and users. This enables different users to only extract
the information needed for their specific purposes, i.e. a high level routing specification
involves different kinds of information and a specific user might, for example, be interested
in only knowing which resources that a certain product requires. This chapter has shown
how the same high level routing specification given as a PPN model in Chapter 4 can be
mapped to a STEP description.



chapter vi

summary of included papers

In this section the papers included in the thesis will be given a brief presentation. There are
five included papers appearing in chronological order, reflecting the development of research
activities. The papers have been reformatted for uniformity, but are otherwise unchanged.

6.1 Paper I

Falkman, P. and Lennartson, B. and Åkesson, K. and Fabian, M. (2005), A High Level
Specification Language based on Process Algebra and Petri Nets, Submitted to: IEEE
Transactions on Automation Science and Engineering.

A formal high level specification language combining process algebra and Petri nets is
presented. The language, called process algebra Petri net (PPN), is a combination of the
compact expressions of process algebra and the visual strength of Petri nets. Compared to
earlier work in the same field, the PPN language is more focused on high level constructs,
readability, and visual strength. The language is created to be used for the specification
of flexible production systems, especially resource allocation systems. The specifications
created by the PPN language are then used as a base for supervisor synthesis using super-
visory control theory (SCT). More specifically, a process algebra is suggested where the
process operators express the same process relations as are possible in the international stan-
dard ISO-10303-214 or STEP-AP214. STEP-AP214 standardizes the exchange of product,
process and resource information, thereby enabling a more efficient information exchange
between product and manufacturing system design, also making it beneficial to be able to
use the presented tool for creating specifications according to this standard. The operators
defined in order to automatically generate specifications according to the STEP-214 standard
are sequence, alternative, arbitrary order (in STEP exclusiveness), synchronization and par-
allel execution. A relation between the suggested PPN language and ordinary labelled Petri
nets is also presented.

6.2 Paper II

Falkman, P. and Lennartson, B. and Åkesson, K. (2005), Formal Specification of Flexible
Robot Cell using Process Algebra Petri Nets, Submitted to: IEEE Transaction on Con-
trol System Technology.

In this paper a real industry case is used to show how the PPN language, presented in



44 6. Summary of included papers

paper I, can be used for the specification of discrete event systems, more specifically flexible
manufacturing systems. The industry case used involves products manufactured in a robot
cell. The studied robot cell is located at Volvo Car Corporation, Torslanda, Sweden and is
used for producing the V70 and S80 cars. The cars are specified in such a way that parts
of the necessary control of the robot cell can be generated automatically, i.e. the resulting
specifications is used as a base for supervisor synthesis. The synthesis is performed using
a program called Supremica implementing the supervisory control theory (SCT) (Ramadge
and Wonham 1987), which deals with the interaction between the (controlled) plant and
the (computer) supervisor. Finite state automata (FSA) is the modelling language used in
Supremica and we show in this paper how PPN models are formally converted into finite
state automata.

6.3 Paper III

Falkman, P. and Lennartson, B. and Tittus, M. (2005), Specification of a Batch Plant using
Process Algebra and Petri Nets, Submitted to: Control Engineering Practice.

In paper III the objective is to show how the PPN language, defined in paper I, can be utilized
in order to simplify the specification of desired routes of a chemical batch process. By doing
this, we point to the generality of the PPN language. It is also made evident how parts of a
specification may be more ideally expressed with either Petri nets or process algebra. Based
on the created specifications a supervisor may also be synthesized, which synchronizes the
utilization of available resources. The language is illustrated for different combinations of
multiple and alternative resource allocation systems, especially for a batch-process problem
that follows throughout the paper, where process operators such as synchronization and al-
ternative choice are shown to be very powerful. Two additional building blocks are also
introduced in the PPN language. These may be used to model material transfer in both flexi-
ble manufacturing systems and batch processes. These building blocks are the split and join
operations. The join operation combines two or more material flows and the split operation
separates two or more material flows. The join and split operations are exemplified using the
batch plant example that is developed throughout the paper.

6.4 Paper IV

Falkman, P. and Nielsen, J. and Lennartson, B. (2003), Automatic Generation of Object
Models for Process Planning and Control Purposes using an International standard for
Information Exchange, In: Journal of Systemics, Cybernetics and Informatics, Vol 1,
Number 5.

In paper IV a formal mapping between static information models and dynamic mod-
els is presented. The information structure is given according to the ISO10303-214 or the
STEP-standard (STandard for Exchange of Product model data). The mapping is achieved
by analyzing the information structure, (ISO 10303-214), and the dynamic structure, (the
MPPN-model) which was introduced in (Falkman and Lennartson 2001) and represents an
earlier version of the PPN language introduced in paper I, in order to gain knowledge of



6.5. Paper V 45

the semantics of their respective objects and structures. The gained knowledge is then syn-
thesized to result in the semi-formally defined mapping model. Finally, the result is vali-
dated using a case study at Scania Oskarshamn, Sweden. This is done by populating the
ISO 10303-214 model with data from the Scania case, and then implementing the mapping
method in order to automatically create an MPPN-model based on the Scania data.

6.5 Paper V

Falkman, P. and Nielsen, J. and Lennartson, B. and Euler-Chelpin, A. (2005), Automated
Generation of STEP AP214 models from Discrete Event Systems for Process Planning
and Control, Submitted to: IEEE Transactions on Automation Science and Engineer-
ing.

The present research is a more thorough and complete description of the ideas presented
in paper IV, and aims at making use of an international standard, ISO10303-214, or applica-
tion protocol 214 (AP214) of the STEP-standard (STandard for Exchange of Product model
data) (TC184/SC4 2001), for the communication and storing of process specifications. The
suggested tool for producing process information uses the PPN language presented in Paper
I. Paper V shows how process specifications created with the PPN tool can be mapped to the
STEP AP-214 format. The presented mapping defines the relationship between the informa-
tion and the DES specification. The created DES specifications are used for simulation and
also for verification and automatic supervisor synthesis. The detailed control, also specified
using the PPN language, involves specific control of each resource. The result is validated
through a case study at Volvo Car Corporation, Torslanda, Sweden. This is done by creating
PPN-specifications based on the Volvo data and then implementing the mapping method in
order to automatically generate an ISO 10303-214 model.





chapter vii

concluding remarks

The market needs of today are rapidly changing, making it increasingly important for engi-
neering companies to meet with growing demands on flexibility and ability to decrease their
time to market while still maintaining product quality - all at a low cost. One piece of the
puzzle in achieving this is to make the information exchange between product design and
manufacturing systems design more efficient. A much shortened iteration cycle could be
obtained if information about product design solutions could be made instantly available for
engineers involved in manufacturing systems design.

The present thesis deals with the specification of discrete event systems, especially re-
source allocation systems. To the best of our knowledge, despite the many formal specifica-
tion languages already presented in previous research, efficient tools for producing specifi-
cations which are concise as well as easy to read and interpret are still lacking. A common
limitation of formal languages presented in previous research is that their strength lies in for-
mal evaluation techniques rather than in visual strength. To be employed as an engineering
tool, however, it is important that a formal specification language also results in a clear and
easy-to-read description of what is specified. This will increase the understanding of created
specifications and thereby also decrease the risk of mistakes happening due to misinterpre-
tations. In this thesis an attempt has therefore been made to present such a tool, based on
a formal high level specification language. This language, called process algebra Petri nets
(PPN), combines process algebra with ordinary labelled safe Petri nets. The PPN language
is an extension, generalization and formalization of the earlier MPPN language (still used in
Paper IV). The suggested process algebra defines two new operators, i.e. the synchroniza-
tion and the arbitrary order operators. These operators have proven to be very useful for the
purpose of creating the desired high level routing specifications.

The fact that both Petri net constructs and algebra expressions can be used in order
to decrease specification complexity also makes PPN a flexible language. The high level
routing specifications include relation of operations (ROP), execution of operation (EOP) as
well as interlocking (IL) specifications which are described on different levels of detail. That
the PPN language is able to provide descriptions on all these different levels is yet another
piece of evidence for it being a flexible language. This is also shown by the fact that the PPN
language is able to accommodate restriction expressions. These expressions have proven to
be very valuable when it comes to decreasing the complexity of the high level specifications.
They have also been a necessity when modelling the EOP and IL specifications where these
are specified by changes of resource states.

A method is also presented that formally converts the PPN models into finite state au-
tomata, and thus existing formal evaluation techniques for simulation, verification, and su-
pervisor synthesis can be easily applied.



48 7. Concluding Remarks

The presented language defines a limited process algebra where the process operators
express the process relations avaible in the international standard STEP-AP214. To the best
of our knowledge, the PPN language constitutes a first attempt at using a formal language in
order to create a tool that can automatically generate specifications according to the STEP
standard. The STEP AP-214 was originally developed to represent product information. In
recent years, however, it has also been extended to include both process- and resource infor-
mation as well as product information. Even though there are a lot of software tools available
for the generation of both product- and resource information, there is still no tool for pro-
ducing process information. In the present thesis, however, such a tool is presented. The
presented tool makes use of the PPN language for the generation of process-specifications,
i.e. the specifications of discrete event systems, especially resource allocation systems. Even
though much research has already been conducted, both on information modelling and dis-
crete event systems, little has been investigated concerning the connection between the two.
The present work, however, researches this connection. The presented mapping defines the
relationship between the information and the DES specification.

Finally, it can be said that the method introduced guarantees that the expected informa-
tion is delivered fast and without the potential errors induced by manual handling, something
which is crucial when short lead times are required. Due to the fast information exchange
it also enables simulation, automatic supervisor synthesis and verification to be conducted
early in the development chain.

7.1 Further Research

Further work is of course needed, for example a complete implementation of a tool for the
PPN language. This tool should have the capacity to create high level specifications accord-
ing to the PPN language, translations of PPN models into finite state automata representa-
tions, as well as the ability to convert a PPN model into a STEP representation. So far only
preliminary implementations have been achieved.

Another area where further work is needed is the ability to translate a finite state au-
tomata representation back into a PPN representation. This is important since after supervi-
sor synthesis, the resulting supervisor will be described as finite state automata, which can
be very difficult to overview. Thus, in order to obtain a clear picture of how the resulting
supervisor is constructed it should be converted into a PPN representation. Preliminary re-
sults have recently been obtained by Andersson et al. (2005). Another interesting approach
would be to investigate how supervisor synthesis could be performed on PPN models without
translating these into finite state automata.

Finally, it would be challenging to apply the suggested ideas to their full extent to a real
industry case, where the PPN language would be used for the specification. A first attempt
of doing this is planned in a coming project.



included papers





paper i

process algebra petri net

Submitted to: IEEE Transactions on Automation Science and Engineering:

A High Level Specification Language
based on Process Algebra and Petri Nets

P. Falkman and B. Lennartson and
K. Åkesson and M. Fabian

†Signals and Systems
Chalmers University of Technology

This paper presents a formal high level specification language combining process algebra
and Petri nets, to be used for the specification of resource allocation systems, such as certain
classes of flexible production systems. This language, process algebra Petri net (PPN), com-
bines the visual strength of Petri nets with the compactness of process algebra expressions.
The aim is to use the specifications expressed in the PPN language as a base for supervisor
synthesis using supervisory control theory. A process algebra is suggested where the process
operators express the same process relations as are possible in the international standard for
information exchange STEP-AP214. The suggested PPN language is a powerful tool for
specification of discrete event systems in general, and resource allocation systems in particu-
lar, delivering concise and easy-to-read specifications of large complex systems. It is flexible
in the sense that both Petri net constructs as well as algebra expressions can be used in order
to decrease the complexity for the user. A relation between the suggested PPN language and
ordinary labelled safe Petri nets is also presented.

1 Introduction

A discrete event system (DES) is a system that, at any time, occupies one out of a finite set
of states, and changes state at the occurrence of an event. Specifications of such systems are



52 I. Process algebra Petri net

often expressed in text-based natural-language documents. A major drawback with this is
ambiguity, it is possible to interpret the natural-language specification in many ways. This
may lead to misunderstandings that are costly and/or time-consuming if discovered at a late
stage of a project. Consequently, it is very important for a costumer and a supplier to agree
on a specification, written in such a way that misunderstandings are avoided. A way of trying
to avoid this kind of problem is to use a formal specification language.

When it comes to discrete event systems, a number of different formal specification
languages have been presented. Some of them are algebraically based, some are based on
graphical representations, and still others are expressed by temporal logic.

The term ”process algebra” was coined in 1982 by Bergstra & Klop (Bergstra and
Klop 1982). A general process algebra includes processes, events, and operators, which are
used to build algebraic expressions describing the discrete behavior of a system. The com-
municating sequential processes (CSP) language by Hoare (Hoare 1985) and the calculus of
communicating systems (CCS) language by Milner (Milner 1980) are the major languages
based on process algebra. These languages have been further developed in e.g. (Hopcroft
and Ullman 1979, Degano et al. 1987, Olderog 1991, Best et al. 1998, Brinksma 1995). An
example of a language based on temporal logic is given in (Rescher and Urquhart 1971).

The Petri net (Peterson 1981) introduced by Carl Adam Petri, finite state automata,
see e.g. (Hopcroft and Ullman 1979, Kozen 1997), and StateChart, introduced by Harel
(Harel et al. 1987) (an extension of finite state automata), have intuitive and precise graphical
representations. The main reason for this is the finiteness of the structures; Petri nets can
with a finite number of elements even represent an infinite state-space. This is typically
not the case with process algebra and temporal logic; only in very special cases are the
graphical representations finite, and thus usefully represented graphically. Combinations of
the mentioned languages have also been considered. These include for example process
algebra and Petri Nets given in e.g. (Best et al. 2001, Mayr 1997, Best et al. 2002, Pena and
Cortadella 1996, Bloom et al. 1997, Jmaiel 2000). A common limitation of the mentioned
languages and combinations of them is that their strength lies in formal evaluation techniques
rather than in visual strength. As an engineering tool it is however important that a formal
specification language also results in a clear and easy-to-read description of what is specified.
This will increase the understanding of created specifications and thereby also decrease the
risk of making mistakes due to misinterpretations.

The present paper is focussed on specification of resource allocation systems, such as
certain classes of flexible production systems. To the best of our knowledge, despite the
many formal specification languages already presented in previous research, there still is a
lack of efficient tools producing the kind of specifications we desire for this kind of systems,
i.e. specifications that are concise as well as easy to read and interpret. The aim of this paper
is therefore to present such a specification language. This language combines the graphical
features of Petri nets with the compact expressions of process algebra. Compared to earlier
work, the focus of this language, called process algebra Petri net (PPN), is to a higher extent
on high level constructs, readability, and visual strength. A further aim is to use the created
specifications for supervisor synthesis applying supervisory control theory (SCT) (Ramadge
and Wonham 1987).

More specifically, a process algebra is suggested where the process operators express the
same kind of process relations as in the international standard STEP-AP214 (ISO 10303-1:
Industrial Automation Systems and Integration - Product Data Representation and Exchange
- Part 1: Overview and Fundamental Principles 1994), also more formally known as ISO-



2. Process algebra Petri Net (PPN) 53

10303-214. STEP-AP214 standardizes the exchange of product, process and resource in-
formation. It enables an efficient information exchange between product and manufacturing
system design, which is crucial in order to decrease lead times (Richardsson 2005). For this
reason it is also beneficial to be able to use the presented tool for creating specifications ac-
cording to this standard. The operators to be defined in order to automatically generate high
level specifications according to the STEP-214 standard (Falkman et al. 2004) are sequence,
alternative, arbitrary order (in STEP exclusiveness), synchronization and parallel execution.

The suggested PPN language is an extension, generalization and formalization of results
presented in (Falkman et al. 2001, Falkman and Lennartson 2001). Using PPN may deliver
compact and concise models of large complex systems. It is flexible in the sense that both
Petri net constructs as well as algebra expressions can be used in order to generate easy-
to-read specifications and in that way reducing the complexity for the user. In (Falkman
and Lennartson 2005b) a method is presented that formally converts the PPN models into
finite state automata, which means that existing formal evaluation techniques for simulation,
verification, and supervisor synthesis are easily applied.

The paper is organized as follows: first a thorough introduction to the suggested PPN
language is given in Section 2 through 4. Recursive processes are described in Section 5,
and process requirements are introduced in Section 6. Finally a resource allocation example
is given in Section 8.

2 Process algebra Petri Net (PPN)

Process algebra is in (Dictionary of Algorithms and Data Structures, process algebra 2004)
defined as ”an algebraic theory to formalize the notion of concurrent computation, best ex-
emplified in CSP and CCS”. The Petri net formalism is used to describe concurrent transition
systems, but contrary to process algebra it uses a graphical representation. Petri nets consist
of places, transitions, and arcs connecting the places to the transitions and vice versa, see
e.g. (Peterson 1981). The PPN language, suggested in this paper uses a combination pro-
cess algebra and Petri nets, allowing a process expression at each Petri net transition. The
following sections will define the process algebra and Petri nets of the PPN language.

2.1 Process algebra

A process is defined as

P
a� P ′ (1)

which means that a process P can execute an event a and then behave as a process P ′.
A process P1 followed by a process P2 is expressed using the sequence operator → as

P1→P2 defined in Section 3.1. This means that P2 starts immediately when P1 has success-
fully finished its execution. In PPN an atomic process is a process that can only execute one
event and then successfully finish. Without confusion we allow the same name for both an
event and the corresponding atomic process. A similarity concerning atomic processes can
be found in (Aceta, Larsen and Ingólfsdóttir 2004). Using the sequence operator the basic
process definition (1) is therefore alternatively expressed as



54 I. Process algebra Petri net

P = a→P ′ (2)

using the assignment = defining the identifier on the left to be the process on the right where
the atomic process a is followed by the process P ′. If P ′ = b then P = a→b. Throughout the
present paper, lower-case letters will denote events and atomic processes as will also words
written in lower-case letters, while general processes are denoted with upper-case words or
letters.

Processes and states

There is no conceptual difference between processes and their states (Aceta et al. 2004).
Take a process P1 = a→b→P3, which can be described as P1 = a→P2 and P2 = b→P3.
Then P1, P2 and P3 can also be considered as states of the process P1. In general the name
of a process coincide with the name of its initial state.

Furthermore, we will use a process F to specify that a process has successfully finished
arriving at the final state F . This process is necessarily introduced in some definitions, but
is otherwise not explicitly expressed. The process P1 = a ends in the state F after executing
the event a. This process obviously has two states, see Fig. 1, denoted P1 (initial state) and
F (final state).

a

P1

F

Figure 1: Process P1 = a given as a PN.

Process alphabet

The alphabet for a process Pi, ΣPi
, is a finite set of events. This can be divided into two

disjunct subsets, ΣPi
= Σe

Pi

⋃̇
Σne

Pi
. Σe

Pi
is a set of events executed by process Pi and Σne

Pi
is a

set of events that are never executed.

Process operators

In this paper two sets of operators will be defined, binary and unary process operators. The
binary process operators involve two (or more) processes. These operators are sequence,
alternative, arbitrary order, synchronization and parallel, denoted as follows

→, + , ⊕ , &, (3)

We will use ∗ to denote a generic binary operator.
The unary process operators are operators that only involve one process and these are

the start and stop operator, denoted as

P ↑, P ↓, (4)



2. Process algebra Petri Net (PPN) 55

respectively.
Note that all operators are defined for processes, which include atomic process expres-

sions such as a+b, a&b, and a→P .

Operational semantics

In order to formally define the behavior of each algebraic operator so-called Structured Op-
erational Semantics (SOS) (Plotkin 1991) will be used. SOS is a method for the precise
description of the meaning of operators in labelled transition systems.

The definition of an operational semantics for a language will usually take the form of a
set of inference rules, which can be seen as implications, defining the valid transitions of the
system. The intention is to infer P1 ∗P2

c� P ′
1 ∗P2 from P1

c� P ′
1, given two processes

P1 and P2. Process P1 performs event c and then behaves as process P ′
1. In SOS this is

expressed in the following way

P1
c� P ′

1

P1 ∗ P2
c� P ′

1 ∗ P ′
2

with P1
c� P ′

1 as the hypothesis and P1 ∗P2
c� P ′

1 ∗P ′
2 as the conclusion. The transition

rule may also have a side-condition which is placed to the right of the actual transition rule.

2.2 Petri Nets

The PPN language uses ordinary labelled safe Petri nets (PNs). This means that there is at
most one token in each PN place at any time. The PN part of the PPN language may be used
to model simple sequences, but can very well be used to model more complex constructs
such as parallelism and loops.

PNs used in the PPN language have one initial place and one connector place. This
correspond to a PN that start (and end) with a single place marked, i.e. a single place with
a token. This means that the PN models only allow one place with a token in the initial
marking vector. This is no restriction since a PN with more than one token in the initial
marking vector can always be reconfigured such that only one place has an initial token, see
Fig 2. Both the initial and the connector place can have loops, see Section 5. The initial
and the connector places are used when converting the PPN models into PN. The connector
place of a PN, in the PPN, describes that a single place then has a token, in much the same
manner as for the initial place. The reason for these restrictions is to simplify the translation
from PPNs to PNs. The extra transitions that are added in order to realize this are uniquely
labelled with a start event stai and a stop event stoi.

Alphabet and language

The alphabet for a PNi, ΣPNi
, is a finite set of events and Σ∗

PNi
is the set of all finite

strings of symbols from ΣPNi
including the empty string ε. Since only safe PNs are used

in the PPN language these can always be represented by a finite reachability graph with
finite set of events σi ∈ ΣreachPN and with a finite set of states QreachPN . This reachability
graph can always be described by a finite state automaton. The language for a reachability



56 I. Process algebra Petri net

PN1 PN1

...
...

...

...
...

...

sta1

Figure 2: Example of how a PN with several initial tokens in several places is reconfigured
such that only one place has an initial token.

graph L(reachPNi) is therefore the same as for the language of a corresponding finite state
automata (Hopcroft et al. 2001), i.e. a regular language.

The modified language L′(reachPNi) of a reachability graph is defined as

L′(reachPNi) = projΣ′(L(reachPNi)) (5)

using a function proj, defined as

projΣ′(sσ) =

⎧⎨
⎩

proj(s) if σ ∈ Σ′

proj(s)σ else
(6)

projΣ′(ε) = ε (7)

and describes that if the next event after a string s is in Σ′ then this event is removed.

2.3 PPN

The PPN language allows a process expression at each PN transition, see e.g. Fig. 4b. There
are no definite rules on how to combine PN and process algebra in the PPN language, which
means that the PN part can be used to model not only simple sequences but also more com-
plex parts of a specification, see Fig. 12b. The aim is to create specifications of DES using
the PPN language. Since a specification specify the allowed language L(reachPN) it is
no limitation to assume that only deterministic specifications are considered for the PPN
language. Thus, a language based notation of equivalence is sufficient for our purposes.

Equivalence

Two PNs, ΣPN1 = ΣPN2 , are assumed to be equal if they have the same alphabets and their
respective reachability graphs have the same language, L′(reachPN1) = L′(reachPN2).
That is,

PNi � PNj ⇒
⎧⎨
⎩

ΣPNi
= ΣPNj

L′(reachPNi) = L′(reachPNj)
(8)



3. Binary process operators 57

Two PPN models, PPN1 � PPN2, are assumed to be equal if their corresponding PNs
are equal PN1 � PN2. That is,

PPNi � PPNj ⇒ PNi � PNj (9)

The translation from PPN to PNs is defined later on. As previously mentioned two sets of
operators, binary and unary, will be introduced in the present paper, and in the following
sections these operators are defined and exemplified. Two simple processes P1 = a and
P2 = b→c will be used throughout the paper to exemplify different operators. Corresponding
PNs are shown in Fig. 3.

(a) (b)

P1 P2

a

p10

p11

b

c

p20

p21

p22

Figure 3: Processes P1 = a and P2 = b → c given as PNs.

3 Binary process operators

The binary process operators to be defined in this section are sequence →, alternative + ,
arbitrary order ⊕ , synchronization & and parallel . The alphabet for a new process P1 ∗ P2

is ΣP1∗P2 = ΣP1

⋃
ΣP2 .

3.1 Processes in sequence

As was noted in Section 2.1 the notation

P1→P2 (P1 then P2) (10)

expresses a process which behaves first like a process P1 and then as a process P2. Process
P2 will begin its execution as soon as process P1 has finished its execution, in other words
when it has reached its connector state.

A PN representation of the process P1→P2 is obtained by first creating a PN represen-
tation of each process involved, and then merge the connector place in P1 and the initial
place in P2 into one single place. The initial place for the new process P1→P2 is given by
the initial place of P1 and the connector state is given by the connector place of P2. This is
similar to concatenation in (Peterson 1981).

This is illustrated in Fig. 4 where the two processes are used to model the sequence
P1→P2 of Fig. 3. The transitions in a PPN can involve more than one process as in Fig. 4a



58 I. Process algebra Petri net

or only one process at each transition as in Fig. 4b. The same sequence is in Fig. 4c modelled
as a PN with explicit events at each transition. Note that the PN place p1 in Fig. 4a-4c is the
same, which also is the case for place p2.

(a) (b) (c)

p1 p1 p1

p2

p2

p2

a

b

c

P1

P2

P1→P2

Figure 4: The process P = P1 → P2 given in (a) and (b) as PPN models and in (c) as a PN
where P1 = a and P2 = b → c.

The laws governing the sequence operator are as follows

L1: F → P1 � P1

L2: P1 → F � P1

Associative: P1→(P2→P3) � (P1→P2)→P3

3.2 Choice between alternative processes

The expression

P1 +P2 (P1 or P2) (11)

denotes a process, which behaves either like a process P1 or as a process P2 but not both.
The transition rules for the alternative (choice) operator are

P1
a1� P ′

1

P1 +P2
a1� P ′

1

(12)

P2
a2� P ′

2

P1 +P2
a2� P ′

2

(13)

The first of these two rules defines that if process P1 can perform event a1 and subsequently
behave like P ′

1, then process P1 +P2 is capable of the same transition. The second alternative
rule (13) is symmetric to the first one (12). In the continuation of this paper, when rules are
symmetric, only the first of the rules will be described due to limited space.



3. Binary process operators 59

The expression P1 +P2 can be represented as a PN by first creating a PN representation
of each involved process, and then merging the initial place of P1 and the initial place of P2.
The connector places of each PN are also merged. This is no restriction since (11) behaves
like either of the processes. As is described in Section 5, there are restrictions on how P1 and
P2 can be specified when composing them with the alternative operator.

The alternative choice between the two processes in Fig. 3 is modelled in Fig. 5 both as
PPNs and PN. Observe that the PN places p1 and p2, respectively, in Fig. 5a-5c are the same.

(a) (b) (c)

p1 p1 p1

p2 p2

p2

a b

c

P1 P2P1 +P2

Figure 5: The process P = P1 + P2 given in (a) and (b) as PPN models and in (c) as a PN
where P1 = a and P2 = b → c.

The algebraic laws governing the alternative operator are as follows

L1: P1 +F � P1

Idempotence: P1 +P1 � P1

Symmetry: P1 +P2 � P2 +P1

Associative: P1 +(P2 +P3) � (P1 +P2)+P3

Note that → has higher precedence than +. The alternative operator is not distributive with
respect to the alternative operator, i.e. P1→(P2 +P3) �� P1→P2 +P1→P3. This is due to
the fact the choice in the expression P1→(P2 +P3) is made after process P1 has finished its
execution, while in the expression P1→P2 +P1→P3 there is a non-deterministic choice.

3.3 Processes in arbitrary order

An arbitrary order operator between events was introduced in (Lennartson, Fabian, Tittus and
Hellgren 1998) and is here extended to include processes. This operator can be described by
a set of processes that are all to be executed, but not at the same time. This means that they
must be executed in a sequence, and if the order does not matter this will imply that there are
n! correct sequences where n is the number of processes.

There are two main reasons for introducing this operator. The first, and maybe most ob-
vious, is that it provides a compact way of expressing alternative sequences e.g. P1→P2 +P2

→P1. The second and equally important reason is that this operator is defined in the interna-
tional standard STEP (TC184/SC4 1994). In order to automatically generate specifications
according to STEP it is advantageous to define the same operator in the PPN language.



60 I. Process algebra Petri net

The arbitrary order operator can generally be expressed as

P = ⊕{Pi, . . . , Pn} = Pperm(A) (14)

where A is the set of involved processes and the recursive function Pperm is defined as

Pperm(Ω) =
{∑

Pi∈Ω(Pi→Pperm(Ω − {Pi}))}
Pperm(∅) = F

where Ω is a set of involved processes. This recursive function returns all permutations as
a deterministic process algebra expression if none of the involved processes have the same
first event.

The arbitrary order between the two processes in Fig. 3 is demonstrated in Fig. 6.

(a) (b) (c)

p1 p1 p1

p2

p2

p2

a b

b c

c a

P1 P2

P2 P1

⊕{P1, P2}

Figure 6: The process P =
⊕{P1, P2} is in (a) and (b) given as PPN models and in (c) as a

PN where P1 = a and P2 = b → c.

3.4 Explicit process synchronization

There are many synchronization operators defined in the literature, e.g. composition in CCS
| (Milner 1980), full synchronous composition (FSC) in CSP ‖ (Hoare 1985), general par-
allelism in LOTOS P1|[a1, . . . , an]|P2 (Bolognesi and Brinksma 1987), and parallelism ‖
(Arnold 1994). However, for flexibility and reuseability we do not consider those opera-
tions appropriate. Instead we propose the explicit synchronization operator &, which is a
modification of the synchronization operator between events in (Lennartson et al. 1998). A
synchronized process P1&P2 specifies that both the first event of each involved process need
to execute simulatively as well as last event of each process. If a synchronized process only
involves an atomic process, then this will be synchronized with the first event of the other
synchronized processes, and then taking no part in the synchronization of the last events.

The explicit synchronization operator & is useful when flexibility and reuseability is
desired. Consider the following example: the task is to synchronize the processes P1 and



3. Binary process operators 61

P2 at one moment in time and later on P1 with another process P3. To specify these syn-
chronizations by FSC it is necessary to introduce specific event labels for these two different
situations in the corresponding models. By the suggested synchronization operator & a spec-
ification process S including P1&P2, later followed by P1&P3, does not require the processes
to be modified. This is very useful when modelling resource allocation systems, as shown in
Section 8. A similar concept for event synchronization was suggested by Fabian (Fabian and
Lennartson 1994), but then denoted coupled events. Similar ideas for event synchronization
can also be found in (Arnold 1994, David and Alla 1992, Stirling 1996). Note that the event
synchronization (avoiding relabelling) is generalized in this paper to process synchroniza-
tion.

The explicit synchronization between two processes P1 and P2 is denoted

P1&P2 (P1 synchronized with P2) (15)

Process P1 has a set Σs1 of start events. There can be a single event in Σs1 or, if process P1

begins with an alternative, more than one event. Process P1 also has a set Σf1 of final events.
Two similar sets, Σs2 and Σf2 , are in the same way defined for process P2. The transition
rules for this synchronization operator use these sets in order to define the intended behavior.
A PN representation of the expression P1&P2 include two parallel paths and therefore two
extra transitions modelling the parallelism, see Fig. 7(b), in order to achieve an initial and a
connector place. These two transitions are uniquely labelled with a start event stai and a stop
event stoi, respectively. Processes involved in an synchronization can cannot be recursive
processes, see Section 5.

The first and most obvious rule (16) describes that both processes are able to execute
either their start events or final events. The process P1&P2 then executes the synchronized
event a1&a2 and after that behaves as P ′

1&P ′
2.

P1
a1� P ′

1 P2
a2� P ′

2

P1&P2
a1&a2� P ′

1&P ′
2

\ a1 ∈ Σs1 , a2 ∈ Σs2 or
a1 ∈ Σf1 , a2 ∈ Σf2

(16)

Note that if a1 ∈ Σf1 and a2 ∈ Σf2 then P ′
1&P ′

2 = F . Rule (17) defines that if a1 is the
next event in P1 and a1 is neither the start or final event, i.e. a1 /∈ Σs1 ∪ Σf1 , then P1 can
execute a1 independently of P2. This parallel behavior is described by executing event a1

and subsequently behaving as process P ′
1&P2 in

P1
a1� P ′

1

P1&P2
a1� P ′

1&P2

\ a1 /∈ Σs1 ∪ Σf1 (17)

A symmetric rule for a2 is not presented.
The last transition rule, (18), defines that if one process P2 is successfully finished F ,

then the other process P1 will execute its remaining events independently, resulting in P ′
1&F .

P1
a1� P ′

1 F

P1&F
a1� P ′

1&F
(18)



62 I. Process algebra Petri net

(a) (b)

p1p1

p2

p2

a&b

c

sta12

sto12

P1&P2

Figure 7: The process P = P1&P2 given in (a) and (b) as PPN models using the processes
P1 = a and P2 = b → c.

The explicit synchronization of the two processes described in Fig. 3 is demonstrated in
Fig. 7, where we note that the transition rule in (18) is applied.

Example 7 – Synchronization
The synchronized process P3&P4 is given as a PPN specification in Fig. 8a. The two

processes P3 = a→b and P4 = c→d→e are synchronized by their first and last events
respectively, resulting in the specification seen in Fig. 8b. This means that two synchronized
events are created, a&c and b&e. Events executed in a process after the first event, and before
the final event, are executed independently of the other processes. In our example this means
that event d in P4 can execute without any concern for process P3.

(a) (b)

p1p1

p2

p2

a&c

d

b&e

sta34

sto34

P3&P4

Figure 8: The process P = P3&P4 given in (a) and (b) as PPN models using the processes
P3 = a → b and P4 = c → d → e.

�



3. Binary process operators 63

The algebraic laws governing the explicit synchronization operator are

L1: P1&F � P1

Symmetry: P1&P2 � P2&P1

Associativity: P1&(P2&P3) � (P1&P2)&P3

Distributive: P1&(P2 +P3) � (P1&P2) + (P1&P3)

The synchronization operator & has higher precedence than + and →. Note that the sequence
operator is not distributive with respect to the synchronization operator, i.e. P1&(P2→P3) ��
P1&P2→P1&P3.

3.5 Parallel processes

A parallel execution offers the possibility for processes to execute independently of each
other. The expression

P = {P1, . . . , Pn} (Pi in parallel) (19)

denotes a process P which executes all processes Pi in parallel. If the alphabets of all
processes involved are disjunct they will execute independently, see Fig. 9, resulting in inter-
leaving, cf. (Hoare 1985). If, on the other hand, processes have common events these events
are synchronized, see Example 9 (event e). The operator is an extension of Hoares full
synchronous composition (FSC) (Hoare 1985), involving the explicit process synchroniza-
tion operator &. This parallel operator is not associative and it is therefore required that all
involved processes are synchronized at the same time and in a given order. When convert-
ing the expression {P1, . . . , Pn} to a PN, parallel paths, one for each process involved, are
created and two extra uniquely labelled transitions are created, as in the synchronous case,
with a start and stop event. The start transition connect to the initial place of each involved
process and the connector places of each process connects to the stop transition.

In the transition rule (20) for the parallel operator given, consider the index set A =
{1, . . . , n} covers all involved processes, cf. (19), and the index set B = {�1, . . . , �m} which
includes the processes taking part in the synchronized transition in (20); hence B ⊆ A. Each
process P�i

represented in B defines a set Ei of all events involved in the synchronized event
for the specific process. For each process transition there exists at least one event common
to more than one other process when m > 1. This means that for all elements �i in the set
B there is at least one element �j ∈ B for which Ei ∩ Ej �= ∅. It is also possible for the
number of involved processes in B to be one, i.e. m = 1, which specifies a single process
performing an event independently of the other processes (interleaving).

The rule in (20) defines that m processes are executed in parallel. Each of these pro-
cesses specifies a transition involving a single event, or a synchronized event if |Ei| > 1.
A new synchronized event is created for the parallel process {P1, . . . , Pn}, which is a syn-
chronization of all involved single and synchronized events.

P�1

&
iεE1

σi� P ′
�1

, . . . , P�m

&
iεEm

σi� P ′
�m

{P1, . . . , Pn}
&

iεE1
σi& . . . &

&
iεEm

σi� {P ′
1, . . . , P

′
n}

(20)



64 I. Process algebra Petri net

with P ′
i = Pi if i /∈ B. Note that σi&σi = σi and σi&σj = σj &σi.

Example 8 – Processes with disjunct alphabets The parallel execution of the two processes
in Fig. 3 is illustrated in Fig. 9. The alphabets of these two processes are disjunct ΣP1∩ΣP2 =
∅, which means that P1 and P2 can execute in parallel independently of each other. Observe
that the PPN model in Fig. 9b is only valid if the alphabets of the involved processes are
disjunct. Example 9 illustrates both independency and synchronization.

(a) (b) (c)

p1 p1 p1

p2

p2

p2

a b

c

sta12 sta12

P1 P2

sto12

sto12

{P1, P2}

Figure 9: The process P = {P1, P2} given as PPN models in (a) and (b). In (c) it is given
as a PN where P1 = a and P2 = b → c.

�

Example 9 – Processes with common events Two processes are given as P3 = d→e&f→g
and P4 = h→e→m with the common event e. These are to be executed in parallel (as shown
in Fig. 10). The synchronized event e&f in process P3 is required to occur at the same time
as the event e in P4.

�

Example 10 – Processes with common events Three processes P5 = a1&a2, P6 = a2&a3,
and P7 = a3&a4 are to be executed in parallel. Process P5 has event a2 in common with pro-
cess P6 and processes P6 and P7 have event a3 in common. Executing these three processes in
parallel results in the synchronized event a1&a2&a3&a4, ie. {P5, P6, P7} = a1&a2&a3&a4.
�

Relabelling

Since the focus of the suggested language is on the specification of complex systems, one
major aim has been to keep the final specifications as compact, concise and readable as
possible. It is therefore also desirable that a relabelling operator can be left out. The intro-
duced parallel operator is however unfortunately not associative. As a consequence only
monolithic verification and synthesis can then be performed. Recently, modular verification



4. Unary process operators 65

(a) (b)

p3 p3

p4

p4

sta34

d h

e& f

g m

sto34

{P3, P4}

Figure 10: The process P = {P3, P4}, with B = {3, 4}, given in (a) as a PPN model
and in (b) as a PN (including synchronized events). The processes P3 and P4 are defined in
Example 9.

and synthesis has become a powerful way of dealing with state explosion for large complex
systems (Åkesson, Flordal and Fabian 2002a). For this reason it is advantageous to use an
existing parallel operator that is associative e.g. Hoares full synchronous composition (FSC).
In order to use FSC a relabelling is required though. This relabelling, see Appendix, is per-
formed when the final specifications are to be used for supervisor synthesis and does not
influence the PPN language.

4 Unary process operators

In this section we will introduce a few additional operators, which operate on a single pro-
cess. The alphabet for a new process P ↑, ΣP ↑ , is the union of Σne

Pi
and the first executed

event of process Pi and in the same way ΣP ↓ , is the union of Σne
Pi

and the last executed event
of process Pi.

4.1 Start and stop operators

Start and stop operators denote the starting and ending of the execution of process P . The
start operator declares that a process will start by executing its first event. It is therefore used
to control when a process is allowed to start. In the same way the stop operator tells that a
process will finish by performing its last event. Consequently it can be used to control when
a process is permitted to finish.

In Fig. 11 the sequence P1→P ↑
2 is illustrated. This expression says that P1 executes

before P2 can start. In this case the continuation of process P2 is not specified, only the fact
that it has to wait until P1 has finished before it is allowed to start.

Note that the start and stop operators can also be used on process expressions. For
instance (P1 +P2)

↑ � P ↑
1

+P ↑
2 specifies that the first event of P1 or P2 is to be executed.



66 I. Process algebra Petri net

(a) (b) (c)

p1p1p1

p2p2

p2

a

b

P1

P ↑
2

P1→P ↑
2

Figure 11: The process P = P1 → P ↑
2 given in (a) and (b) as PPN models and in (c) as a PN

where P1 = a and P2 = b → c.

Example 11 – Start and stop of processes In this extended example four processes Q1, Q2,
Q3 and Q4 are defined as Qi = a1→bi→ci for i ∈ {1, 2, 3, 4}. A specification involving a
sequence of three processes is modelled in Fig. 12. The first process is {Q↑

1, Q
↑
2, Q

↑
4} where

A={1,2,4} which implies that Q1, Q2 and Q4 can be started in arbitrary order (executed in
parallel). The second process Q↑

3&Q↓
1 implies that the start of Q3 is to be synchronized with

the ending of Q1. The third and last process Q↓
2&Q↓

3&Q↓
4 defines that the finishing of Q2, Q3,

and Q4 has to be synchronized. The extra transitions and labels created in the conversation
to the PPN in Fig. 12(c) and the PN in Fig. 12(c) have been left out for clarity.

(a) (b) (c)

p2p2

p2

p1p1p1

{Q↑
1, Q

↑
2, Q

↑
4}

Q↑
1 Q↑

2 Q↑
4Q↑

3&Q↓
1

Q↑
3&Q↓

1

Q↓
2&Q↓

3&Q↓
4

Q↓
2&Q↓

3&Q↓
4

a1 a2 a4

a3&c1

c2&c3&c4

Figure 12: The specification in Example 11 given in (a) and (b) as PPN models and in (c) as
a PN.

�



5. Recursive processes 67

5 Recursive processes

Recursive behavior can be specified as P = P1→P , where P is repeated after the execution
of process P1. We distinguish between two types of recursive processes, explicit and implicit
recursive processes. An explicit recursive process is a process that is present on both sides
of the assignment operator =, i.e. P = a→P . An implicit recursive process is a process that
involve recursion, i.e. P = a→P1 where P1 = b→P1. The initial and the connector states
in an explicit recursive process are the same. For a implicit recursive process, P = a→P1

where P1 = b→P1 P , is the initial state and P1 is the connector state.
The stop operator can not be used on explicit nor implicit recursive processes due to

the fact that there is no final event. However, when the recursive process is a subprocess as
in Fig. 13 the stop operator may still be relevant. There is no limitation for the use of the
start operator on recursive processes. The expression P ↑ simply states that the first event of
process P is to be executed.

When specifying an alternative between two processes, P1 +P2, it is required that none
of these processes are explicit recursive processes. This is because the expression P1 +P2

specifies that only one of the two processes can execute. If there is an alternative between
P1 = a→P1 and P2 = b→c the initial states of both processes are merged when converting
the expression to a PN. This leads to a choice event a and event b and if event a is executed
then the loop takes the process back to the same choice again. This behavior is not what we
want to specify when using the + operator.

In Fig. 13 there is a model describing a sequence including three processes P1 = a→P ′
1,

P2 = b → P2, and P3 = c→P ′
3. Each process P1, P2, and P3 is described as a PN in

Fig. 13(a)-(c). The initial place for process P1 is q0 and the connector place is q1. Process
P3 has initial place p0 and connector place p1. The initial and connector place for process
P2 is the same r0. The three Petri nets in a sequence, see Fig 13(d), are put together into an
ordinary PN by joining the connector place place q1 of P1 and the initial place r0 of P2 and
the connector place r0 of P2 with the initial place p0 of P3 in Fig. 13(e). Note that P ↑ = a
and P ↓ = c.

PPP1

P1

P2

P2

P3

P3

aa

bb

c

c

(d)(a) (b) (c) (e)

q0q0q0

q1

r0 p0

p1

p1

p1

Figure 13: Processes P1, P2, and P3 given as PNs in (a)-(c). Process P given as a PPN in (d)
and as a PN in (e).

A recursive process can also involve some alternative processes, which can be written



68 I. Process algebra Petri net

as

P = (
∑
i∈A

Pi)→P (21)

where there is a choice between a number of sub-processes Pi before the process P is re-
peated. Observe that the explicit introduction of the sub-processes Pi makes it possible to
apply the generic start and stop operators on these individual processes Pi.

Process P , in (21), can be interpreted as a general booking model for a resource which
can be booked by a number of tasks (products). Assume that Pi = ai→bi, where ai represents
the booking of resource P by product i and event bi represents the corresponding unbooking
event.

Instead of initially elaborating with a general model and then moving on to a specific
model when the actual tasks are given, we suggest that the general form (21) is introduced but
with the option to avoid specifying the set A. This kind of model is called a parameterized
model, since the index i is a free, nonevaluated parameter. Using object-oriented terminology
the parameterized model can be considered as a class, while the evaluated model for a given
set A is an instance of the model.

This technique is suitable when general and reusable models are required. Parameterized
models and events were preliminary introduced in (Lennartson et al. 1998). The concept is
related to CCSs value passing calculus, (Milner 1989).

6 Restrictions

The introduction of additional requirements on the execution of processes is highly important
when attempting to model discrete event systems in a compact, but yet readable manner.
The requirements are described by logical expressions typically specifying when a particular
process can begin and/or end its execution.

The logical expressions are introduced inside square brackets, [], following the process
to be restricted. The logical expressions specify a specific state (e.g. an initial state) or a
set of states. Common logic operators, ∧ (and), ∨ (or), and P (negation) are allowed inside
these expressions.

The expression

P = P1[P
↓
2 ∧ P ↓

3 ] (22)

specifies that a process P1 is not allowed to start before process P2 and process P3 have
finished their executions. In other words, P2 and P3 must be in their final state before P1 can
begin. Table I.1 summarizes the basic atomic restrictions and related state(s).

The last restriction is typical when a process must wait until a specific event has occurred
in another process. Also, observe that [P ] refers to all states except the initial one, and [P a]
refers to all states in P before the event a occurs for the first time.

Finally, note that in a recursive process such as the resource model in (21), the initial
state [P ] rather represents a free state. This means that [P ] corresponds to all states except
the free state, which means that the resource is occupied.



7. Process functions 69

Table I.1: Atomic restrictions and related state(s).

Restriction State(s)

[P ] Initial state in process P .

[P ↓] Final state of process P .

[P a] All states in process P after the event a has occurred (for the first time if it
is repeated).

7 Process functions

In this section we will introduce process functions that can be used to further simplify ex-
pressions.

In the following example a choice between two processes is made depending on com-
plementary restrictions.

AJ(X, Y, Z) = X[Z] + Y [Z] (23)

The three variables X, Y and Z are processes, and the choice between process X or process
Y is determined by the state of process Z, more specifically whether it is in its initial state or
not. This function is very helpful when specifying asynchronous join and split that are more
thoroughly presented in (Falkman, Lennartson and Tittus 2005).

8 Example: Resource Allocation System

An example cell is illustrated in Fig. 14, where product PT is produced. This cell consists
of five robots R1-R5, a magazine M1, two output buffers B1 and B2, a fixture F1, and a
conveyor C1.

Each resource in the robot cell is modelled as a recursive process as described in Sec-
tion 5, with R� representing any of the resources, see Fig. 15. Each resource can be booked
by a number of routing specifications 1, . . . , n.

A single product type PT is manipulated by the cell. The product is a partly assembled
car-door. The task of the present cell can be divided into two parts. One is to weld a number
of remaining weld spots on the door and also to apply a waterproof paste. The other task
is to weld a new part to the existing door. During a work cycle a new door is transported
into the cell by the conveyor. The new part is placed in the fixture, and when both door and
fixture are in place a number of weld spots is done. Then the manipulated door is moved to
one of the two buffers.

Nine different processes P1 − P9 can be identified for product PT

P1 : Performs additional welding on parts of the door that has already been assembled. Uses
robot R1. This process may not execute at the same time as process P2.

P2 : Applies waterproof paste. Requires robot R2. This process may not execute at the same
time as process P1.



70 I. Process algebra Petri net

Magazine M1

Robot R1 Robot R2

Robot R3 Robot R4 Robot R5

Buffer B1

Buffer B2

Conveyor C1

Fixture F1

Figure 14: The example cell with five robots R1 − R5, a magazine M1, two output buffers
B1 and B2, a fixture F1, and a conveyor C1.

b1
�

u1
�

...
...

bn
�

un
�

R� R�

R1
�

Rn
�

(a) (b)

Figure 15: Resource model R� given as (a) a PPN model and (b) a PN. The resource can be
booked by a number of routing specifications 1, . . . , n.

P3 : Places a new part from magazine M1 into the fixture F1. Requires resources R3, F1,
and M1.

P4 : Geometrical welding is performed on the new part. Requires resources R5 and F1. Has
to wait until process P9 and P3 have finished their execution.

P5 : Welds a number of welding spots on the new part using robot R3. Can not start its
execution before process P4 is done.

P6 : Welds a number of welding spots on the new part using robot R4. Can not start its
execution before process P4 is done.

P7 : Moves the door into one of two buffers, either B1 or B2, using robot R5. All other
processes have to have finished their respective execution.

P8 : A new door is moved into the cell using conveyor C1.

P9 : Locks door and fixture to the right position. This process can not execute before P3.

A specification for product PT is given in Fig. 16 using the PPN language. It is divided
into three parallel paths using PN constructs. The path to the left in Fig. 16 describes that



9. Conclusion and future work 71

processes P1 and P2 can execute in arbitrary order by booking and unbooking their respective
resource. The right parallel path begins by executing process P8, i.e. transport a new door
to the cell using the conveyor. This is followed by process P9 that fixates the door and
the fixture. This, however, cannot be done until process P3 is executed, which results in a
restriction on P9. The middle path starts with placing a new part into the fixture in process
P3. This is followed by a geometrical welding specified by P4. In order for this, process P9

has to have finished. Then, processes P5 and P6 executing in parallel weld the new part to
the door. When all parallel paths are finished process P7 is executed, moving the door using
either buffer B1 or B2.

⊕{P1&RPT
1 , P2&RPT

2 } P3&RPT
3 &MPT

1 &FPT↑
1 P8&CPT↑

1

P9[P
↓
3 ]P4[P

↓
9 ]&RPT

5 →FPT↓
1

{P5&RPT
3 , P6&RPT

4 }

P7&(BPT
1 +BPT

2 )→CPT↓
1

Figure 16: Specification PT , given as a PPN model specifies the manufacturing of the first
product type in the robot cell in Fig. 14.

9 Conclusion and future work

The PPN language presented in this paper defines an algebra where the process opera-
tors express the same process relations as are possible in the international standard STEP-
AP214 (ISO 10303-1: Industrial Automation Systems and Integration - Product Data Rep-
resentation and Exchange - Part 1: Overview and Fundamental Principles 1994). These
include sequence, alternative (choice), parallel, synchronization, and arbitrary order as well
as unary process operators for start and stop. PPN also includes the concept of process re-
striction. The PPN language, to the best of our knowledge, constitutes a first attempt to create
a tool, based on a formal language, that can automatically generate specifications according
to the STEP standard.

The defined process algebra is combined with ordinary labelled safe Petri nets in order
to realize a specification language for discrete event systems, and especially resource allo-
cation systems. It has also been shown how this language can be used for concise and easy-
to-read specifications of complex systems, something which is crucial in avoiding costly



72 I. Process algebra Petri net

mistakes. The possibility to translate the PPN specifications into ordinary safe PNs has also
been shown. The PPN language has been applied to both batch plants (Falkman et al. 2005)
and robot cells (Falkman and Lennartson 2005b), which also shows the generality of the
suggested specification language.

An algorithm that performs a translation from a PPN description to a finite state au-
tomata representation is presented in (Falkman and Lennartson 2005b). This enables the use
of existing formal methods for supervisor synthesis applying supervisory control theory. A
method, as well as an algorithm, for the automatic generation of specifications according to
the STEP-AP214 from PPN is also being developed (Falkman et al. 2004). Furthermore,
a case study of a more complex robot cell at Volvo Car Corporation, Torslanda, Sweden is
currently in progress.

Finally it can be said that the suggested process algebra Petri net (PPN) is a powerful
language for specifying resource allocation systems, delivering both concise and easy-to-
read specifications of large complex systems. The fact that both Petri net constructs and
algebra expressions can be used in order to decrease specification complexity also makes
PPN a flexible language.

10 Appendix

The relabelling of three PPNs with two transitions each is described in Fig.17.
A transition set (24) for each PN involved in the parallel synchronization is created. An

additional transition is added to each transition set. This is called a virtual transition vt and
this does not have any events associated to it. The virtual transitions are used in order to
represent a transition set which enables transitions not involving all PNs.

TPPN1 = {t11, t12, vt1}
TPPN2 = {t21, t22, vt2}
TPPN3 = {t31, t32, vt3}

(24)

The cartesian product of all transition sets is

T = TPPN1 × TPPN2 × TPPN3 = {{t11, t21, t31}, {t11, t21, t32}, . . . , {vt1, vt2, vt3}}
All transitions in T are labelled

{t11, t21, vt3} ≡ f1

{t12, t21, vt3} ≡ f2

...

{vt1, vt2, vt3} ≡ f27

(25)

The set T involves a large number of transitions that are neither relevant nor enabled. It
is therefore necessary to exclude these from the set T . Finding out which transitions in T to
exclude, it is necessary to know how the involved transitions are connected to each other.

A transition f in T is enabled if its involved transitions are strongly connected compo-
nents (Cormen, Leiserson, Rivest and Stein 2001) and if no events in f are disabled. In Fig.



10. Appendix 73

PPN1

PPN1

PPN2

PPN2

PPN3

PPN3

a&b

b

t11

t11

t12

t12

q1

q1

q1

q2

q2

q2

q3

q3

q3

t21 b&c&d

h

t21a t21b

t22

t22

p1

p1

p1

p2

p2

p2

p3

p3

p3

e

h&g

t31

t31

t32

t32

r1

r1

r1

r2

r2

r2

r3

r3

r3

f1

f1

f1 f2

f2

f2 f3f3

f3

f4

f4

(a)

(b)

(c)

PPN1||PPN2||PPN3

Figure 17: Three PPNs are given in (a) and these are relabelled in (c) and synchronized using
Hoares FSC in (c).

17(a) for instance transition t11 in PPN1 enables events a and b and transition t21 in PPN2

enables events b, c and d. Then transition {t11, t12, vt3} is strongly connected component
since they connect through event b. If transition t31 in PPN3 would involve event c, transi-
tion t11, t12, t13 would be strongly connected component since t11 connects to t12 via event b
and t13 connects to t12 via event c.

A predicate enab(f) can either be true which means that transition f is enabled, or it
can be false. If it is false we know that f is not enabled and can be discarded.

enab(f) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

true
i f is a strongly connected component

ii no event in f is disabled

false otherwise

Algorithm 1 describes how this relabelling is performed. A function trans(f) returns all
original PPN transitions t and is used in order to identify which transitions to be relabelled.
New PNs are created using CreateAndAddNewTransition where •t and t• is the pre and
post place respectively.



74 References

Algorithm 1: Relabels all transitions involved in a parallel
execution.

Input : PPN
Output : Relabelled PPN

foreach f such that enab(f) == true do
foreach t ∈ trans(f) do

CreateAndAddNewTransition(•t, t•, f )

In Fig.17b four new labels are created, f1, f2, f3, and f4. A synchronization is in Fig.17c
performed using Houre’s FSC that synchronizes the three PNs with respect to the common
there common events.

References

Aceta, L., Larsen, K. and Ingólfsdóttir, A. (2004). An introduction to milners ccs.

Åkesson, K., Flordal, H. and Fabian, M. (2002). Exploiting modularity for synthesis and
verification of supervisors, Proc. of 15’th IFAC World Congress on Automatic Control,
Barcelona, Spain.

Arnold, A. (1994). Finite Transition Systems: Semantics of Communicating Systems, In-
ternational Series in Computer Science, Prentice–Hall International, Englewood Cliffs,
NJ.

Bergstra, J. and Klop, J. (1982). Strong normalization and perpetual reductions in the lambda
calculus, Elektronische Informationsverabeitung und Kybernetik 18: 403417.

Best, E., Devillers, R. and Koutny, M. (1998). Petri nets, process algebras and concurent
programming languages, Proc of ICM’98, Berlin, Germany.

Best, E., Devillers, R. and Koutny, M. (2001). Petri net algebra, EATCS monographs on
theoretical computer science, Springer, Berlin.

Best, E., Devillers, R. and Koutny, M. (2002). The box algebra = petri nets + process ex-
pressions, Information and Computation (178): 44–100.

Bloom, B., Cheng, A. and Dsouza, A. (1997). Using a protean language to enchance expres-
siveness in specification, IEEE Transactions on Software Engineering 23(4): 224–234.

Bolognesi, T. and Brinksma, E. (1987). Introduction to the iso specification language lotos,
Computer Networks and ISDN Systems 14(1): 25–59.

Brinksma, E. (1995). Performance and formal design: a process algebraic perspective,
Proc. of Sixth International Workshop on Petri Nets and Performance Models, IEEE,
Durham, NC USA, pp. 124 – 125.



References 75

Cormen, T., Leiserson, C., Rivest, R. and Stein, C. (2001). Introduction to Algorithms,
Second Edition, 2nd edn, The MIT Press.

David, R. and Alla, H. (1992). Petri Nets and Grafcet, Prentice Hall International (UK) Ltd,
Hertfordshire HP2 4RG.

Degano, P., DeNicola, R. and Montanari, U. (1987). Ccs is an (augmented) contact-free c/e
system, in E. M. Venturini Zilli (ed.), Mathematical Models for the semantics of Paral-
lelism, Vol. Lecture Notes in Computer Science, Springer-Verlag, New York, pp. 144–
165.

Dictionary of Algorithms and Data Structures, process algebra (2004).
URL: http://www.nist.gov/dads/HTML/processalgbr.html

Fabian, M. and Lennartson, B. (1994). Petri nets and control synthesis; an object oriented
approach., Proc of the 2nd IFAC/IFIP/IFORS Workshop on Intelligent Manufacturing
Systems, IMS ’94, Vienna, Austria.

Falkman, P. and Lennartson, B. (2001). Combined process algebra and petri nets for speci-
fication of resource booking problems, 2001 IEEE American Control Conference, Ar-
lington, VA, USA.

Falkman, P. and Lennartson, B. (2005). Using a high level language for verification and
control synthesis of discrete event systems, Submitted to Transaction on Control System
Technology .

Falkman, P., Lennartson, B. and Tittus, M. (2001). Modeling and specification of discrete
event systems using combined process algebra, Proc. of 2001 IEEE/ASME Advanced
Intelligent Mecatronics, COMO, Italy.

Falkman, P., Lennartson, B. and Tittus, M. (2005). Specification of a batch plant using
process algebra and petri nets, To be submitted to Transactions on Control Engineering
Practice .

Falkman, P., Nielsen, J. and Lennartson, B. (2004). A method for automated generation of
discrete event systems from step ap214 for process planning and control, Submitted to
Journal of Manufacturing Systems .

Harel, D., Pnueli, A., Schmidt, J. and Sherman, R. (1987). On the formal semantics of
statecharts., Proc. of Symposium on Logic in Computer Science., pp. 55–64.

Hoare, C. (1985). Communicating Sequential Processes, International Series in Computer
Science, Prentice–Hall International, Englewood Cliffs, NJ.

Hopcroft, J., Motwani, R. and Ullman, J. (2001). Introduction to Automata Theory, Lan-
guages and Computation, 2nd ed. edn, Addison-Wesley Series in Computer Science,
Addison-Wesley.

Hopcroft, J. and Ullman, J. (1979). Introduction to Automata Theory, Languages and Com-
putation, Addison-Wesley Series in Computer Science, Addison-Wesley.



76 References

ISO 10303-1: Industrial Automation Systems and Integration - Product Data Representation
and Exchange - Part 1: Overview and Fundamental Principles (1994). ISO standard.

Jmaiel, M. (2000). A unified algebraic framework for specifying communication protocols,
Proc. of Third international Conference on Formal Engineering Methods, York UK,
pp. 57–65.

Kozen, D. (1997). Automata and Computability, ISBN 0-387-94907-0, Springer-verlag New
York, inc.

Lennartson, B., Fabian, M., Tittus, M. and Hellgren, A. (1998). Modeling primitives for
supervisory control, Proc of WODES ’98, Cagliari, Italy.

Mayr, R. (1997). Combining petri nets and pa-processes, Theoretical Aspects of Com-
puter Software (TACS’97), volume 1281 of Lecture Notes in Computer Science, Sendai,
Japan.

Milner, R. (1980). A Calculus of Communicating Systems, Vol. Lecture Notes in Computer
Science, Springer-Verlag Berlin Heidelberg New York.

Milner, R. (1989). Communication and Concurrency, International Series in Computer Sci-
ence, Prentice–Hall International, Englewood Cliffs, NJ.

Olderog, E.-R. (1991). Nets, Terms and Formulas, Cambridge University Press, Trumpington
Street, Cambridge CB2 1RP, Great Britain.

Pena, M. and Cortadella, J. (1996). Combining process algebras and petri nets for the spec-
ification and systethis of asynchronious circuits, Proc of International Symposium on
Advanced Research in Asynchronous Circuits and Systems, Fucushima, Japan.

Peterson, J. (1981). Petri Net Theory and the Modeling of Systems, Prentice-Hall, Inc.

Plotkin, G. D. (1991). A Structural Approach to Operational Semantics, Computer Schience
Department Aarhus University, DAIMI FN-19, Ny Munkegade, Building 540, DK-
8000 Aarhus C, Denmark.

Ramadge, P. and Wonham, W. (1987). Supervisory control of a class of discrete event pro-
cesses, SIAM J. Control Optim. 25(1): 206–230.

Rescher, N. and Urquhart, A. (1971). Temporal logic, Springer-Verlag, New York .

Richardsson, J. (2005). Development and Verification of Control Systems for Flexible Au-
tomation, Licentiate thesis, Control and Automation Laboratory, Chalmers University
of Technology, Göteborg, Sweden. Technical report 015.

Stirling, C. (1996). Logics for Concurrency: Structure versus automata, Springer Verlag,
chapter Modal and temporal logics for processes., pp. pp 149–237.

TC184/SC4, I. (1994). Iso 10303-1: Industrial automation systems and integration - product
data representation - and exchange - part 1: Overview and fundamental principles, ISO
Standard.



paper ii

converting ppn to finite state automata

Submitted to: IEEE Transaction on Control System Technology:

Formal Specification of Flexible Robot Cell
using Process Algebra Petri Nets

P. Falkman and B. Lennartson and K. Åkesson
Signals and Systems

Chalmers University of Technology

In this paper a high level specification language, which is a combination of Petri nets and
process algebra, is used for specification of discrete event systems, more specifically flexible
manufacturing systems. This high level language, called process algebra Petri net (PPN),
has been specifically developed in accordance with the international standard STEP-AP214.
The PPN language takes advantage of the Petri nets graphical qualities together with the
compactness of process algebra, making it possible to create specifications that are both con-
cise and unambiguous. This paper has two aims. The first is to show how the PPN language
can be used for specification of a real industry case. The second is to use the resulting spec-
ification as a base for supervisor synthesis. This synthesis, based on supervisory control
theory (SCT), is performed using a program called Supremica, a powerful tool which is able
to perform vast calculations on large systems. The modelling language used in Supremica is
finite state automata (FSA), and this paper therefore shows how PPN models can be formally
converted into such FSA.

1 Introduction

The focus of the present paper is on specification of discrete event systems (DESs) (Cassandras
and Lafortune 1999). This can be done in a number of different ways, including straight for-
ward textual documents. It is, however, extremely difficult to produce a text-based document



78 II. Converting PPN to finite state automata

that is completely unambiguous. In fact, it is often possible to interpret the textual specifica-
tion in many different ways, depending on the reader. The result is often misunderstandings,
which might be very costly, and/or time consuming, if they are detected at later stages of a
project. With this in mind it is natural to recommend formal languages to obtain unambigu-
ous specifications, such that misinterpretations are avoided.

Previous research within the area of DESs has resulted in a number of suggested for-
mal specification languages. These languages are not finished products, rather they are
continuously under development to suit new applications. Some are based on process al-
gebra, the communicating sequential processes (CSP) language by Hoare(Hoare 1985) and
the calculus of communicating systems (CCS) language by Milner (Milner 1980) being the
major examples. These languages have also been further developed in e.g. (Hopcroft and
Ullman 1979, Degano et al. 1987, Olderog 1991, Best et al. 1998, Brinksma 1995). An-
other commonly used, algebraically based, specification language worth mentioning here is
Temporal logic (Rescher and Urquhart 1971).

Among graphical languages one of the major examples is the Petri net (Peterson 1981),
introduced by Carl Adam Petri in the early 1960s. Another common graphical language is
finite state automata, see e.g. (Hopcroft and Ullman 1979, Kozen 1997), where StateChart
introduced by Harel (Harel et al. 1987) is an interesting extension including hierarchical
structure.

Combinations of the mentioned algebraic and graphical languages have also been con-
sidered. These include for example the mixture of process algebra and Petri Nets given
in e.g. (Best et al. 2001, Mayr 1997, Best et al. 2002, Pena and Cortadella 1996, Bloom
et al. 1997, Jmaiel 2000).

Most of the suggested specification languages, as well as the different combinations of
them, have one limitation in common. Their main focus is on formal evaluation techniques
rather than on visual strength. In order to really make the best use of a formal specification
language, from a user perspective, it is however important that it also results in a clear and
easy-to-read description of what is specified. This will not only increase the understanding
of the modelled system, but also decrease the risk of unnecessary mistakes being made due
to different readers making personal interpretations of certain specifications.

An attempt to create such a language has been made using a combination of Petri nets
and process algebra previously presented in (Falkman and Lennartson 2005a). Taking advan-
tage of the Petri nets graphical qualities, together with the compactness of process algebra,
this results in a language that can deliver both concise and unambiguous specifications. The
suggested language, called process algebra Petri net (PPN), is created in agrement with the
international standard for information exchange STEP-AP214 (ISO 10303-1: Industrial Au-
tomation Systems and Integration - Product Data Representation and Exchange - Part 1:
Overview and Fundamental Principles 1994). More details are given in (Falkman, Nielsen
and Lennartson 2003a), where a mapping between the STEP standard and the suggested
PPN language is presented. One aim of the present paper is to show how this language can
be used for specification of a nontrivial DES. This is achieved by specifying a real industry
application, a robot cell in a body-in-white production line.

A further aim is to use the resulting specification as a base for supervisor synthesis. This
synthesis is based on the supervisory control theory (SCT) (Ramadge and Wonham 1987),
which deals with the interaction between a (controlled) plant and its supervisor (computer).
The synthesis is performed using a program called Supremica (Åkesson et al. 2003). Finite
state automata (FSA) is the modelling language used in Supremica, and we will therefore in



2. Process algebra Petri net (PPN) 79

this paper show how PPN models are formally converted into finite state automata.
The industry case used as an example involves products manufactured in a robot cell.

The studied robot cell is located at Volvo Car Corporation, Torslanda, Sweden and is used
for producing the V70 and S80 cars. The aim is to specify desired operations such that parts
of the necessary control of the robot cell can be generated automatically. This supervisor
synthesis puts great demands on how both product operations and resources are modelled. In
order to maintain a relevant overview of the involved operations, the specification is divided
into an hierarchical structure.

The paper is outlined as follows; it starts with an introduction to the suggested high
level PPN language in Section 2, including a description on how the specifications are stored
and communicated in Section 2.5. Section 3 introduces briefly supervisory control theory
and related finite state automata. A description of the translation to finite state automata
from process algebra Petri nets is given in Section 4. Finally a larger example is provided in
Section 5.

2 Process algebra Petri net (PPN)

A powerful specification language, called process algebra Petri net (PPN), is presented in
this section. It makes use of the graphical representations of ordinary labelled safe Petri nets
(PNs) as well as the compact representations of process algebra, in order to generate concise
specifications of complex systems. A more formal definition of the PPN formalism is given
in (Falkman and Lennartson 2005a), where operational semantics are used to describe the
behavior of each operator. Operator laws together with the relationship between the PPN
models and PNs are also given. Earlier versions of the suggested language can also be found
in (Falkman et al. 2001, Falkman and Lennartson 2001). Table II.1 briefly describes the
different operators defined for the PPN language.

Table II.1: Operators in the PPN language.

Operator Description

P1 → P2 Process P1 followed by process P2

P1 + P2 Alternative choice between P1 and P2

⊕{P1, . . . , Pn} Arbitrary order execution of P1, P2, . . ., Pn

P1&P2 The start and end of P1 and P2 is synchronized

{P1, . . . , Pn} Parallel execution of P1, P2, . . ., Pn

P ↑ First event in P is executed

P ↓ Last event in P is executed (arriving at the final state)

P ↑
1 &P ↑

2 The start of P1 and P2 is synchronized



80 II. Converting PPN to finite state automata

2.1 Arbitrary order

The arbitrary order operator can be described as a set of processes that are all to be executed,
but not at the same time. This means that they must be executed in a sequence, and if the
order does not matter this will imply n! possible alternative sequences, where n is the number
of processes.

The arbitrary order between two processes, P1 = a and P2 = b → c, is demonstrated in
Fig. 1.

(a) (b) (c)

p1 p1 p1

p2

p2

p2

a b

b c

c a

P1 P2

P2 P1

⊕{P1, P2}

Figure 1: The process P =
⊕{P1, P2} is in (a) and (b) given as PPN models and in (c) as a

PN where P1 = a and P2 = b → c.

2.2 Synchronization

The synchronization operator & implies that one or more processes are to synchronize their
first and last events respectively. Similar ideas for event synchronization can be found in
(Arnold 1994). Note that the processes are not synchronized by common events. This is
the opposite to Hoare’s full synchronous composition (Hoare 1985) denoted ‖, where events
common to two processes P and Q must occur in both of them in order to occur in P ‖ Q.

The synchronized process P3&P4 is given as a PPN specification in Fig. 2a. The two
processes P3 = a→b and P4 = c→d→e are synchronized by their first and last events
respectively, resulting in the specification seen in Fig. 2b. This means that two synchronized
events are created, a&c and b&e. Events executed in a process after the first event, and before
the final event, are executed independently of the other processes. In our example in Fig. 2
this means that event d in P4 can execute without any concern for process P3.

2.3 Parallel

The expression P = {P1, . . . , Pn} denotes a process P , which executes all processes Pi

in parallel. If processes have common events these events have to be synchronized. The
operator is an extension of Hoares full synchronous composition (FSC) (Hoare 1985),
involving the explicit process synchronization operator &.



2. Process algebra Petri net (PPN) 81

(a) (b)

p1p1

p2

p2

a&c

d

b&e

sta34

sto34

P3&P4

Figure 2: The process P = P3&P4 given in (a) as a PPN model and in (b) as a PN model
(including synchronized events) using the processes P3 = a → b and P4 = c → d → e.

Two processes, P3 = d→e&f→g and P4 = h→e→m, have a common event e. These
are to be executed in parallel (as shown in Fig. 3). The synchronized event e&f in process
P3 is required to occur at the same time as the event e in P4.

2.4 Restrictions

The introduction of additional requirements on the execution of processes is of great impor-
tance when modelling discrete event systems in a compact, but yet readable, manner. The
requirements are described by logical expressions specifying when a particular process can
begin and/or end its execution.

Table II.2 summarizes the basic atomic restrictions and related state(s).

Table II.2: Restriction expressions in the PPN language.

Restriction State(s)

[P ] Initial state in process P

[P ↓] Final state in process P

[P ] All states except the initial state

P1[P2] P1 executed when P2 is in its initial state

P1[P
↓
2 ] P1 executed when P2 is in its final state

P1[P2 ∧ P3] P1 executed when P2 is in its initial state while P3 is not



82 II. Converting PPN to finite state automata

(a) (b)

p3 p3

p4

p4

sta34

d h

e& f

g m

sto34

{P3, P4}

Figure 3: The process P = {P3, P4} given in (a) as a PPN model and in (b) as a PN
(including synchronized events).

2.5 Textual representation

A textual representation of the specifications created with the PPN language has also been
developed using the extensible markup language (XML). The main reason for using XML
as a textual representation of PPN models is that we want to use a well founded standard for
the communication of information to other software systems.

The intended use of the PPN specification language is described in Fig. 4. This figure
shows how a PPN specification, created by a user, can be represented as an XML file, which
can in its turn be converted into both an automata and a STEP-AP214 representation.

STEP-AP214
Textural representation (XML)

XMLPPN AutomataUser

Figure 4: Relations between PPN, STEP-AP214, and finite state automata.

3 Supervisory control theory and finite state automata

In this section a brief description of both the supervisory control theory and finite state au-
tomata is provided.



4. Translation of PPN to automata 83

3.1 Supervisory control theory

Supervisory control theory is a theory for supervisor synthesis given two types of models,
the plant model and the specification model. The task of the plant model is to model all
the possible events that, for example, a resource may go through, while the specification
model describes the desired and allowed behavior of the plant. Supervisory control theory
also defines how to treat different kinds of events, for instance controllable, uncontrollable,
observable and unobservable events. By synchronizing the plant and the specification models
a description of the whole closed loop system, also called total specification S0, is generated.
This total specification is then manipulated in order to remove uncontrollable states and other
forbidden states, including blocking states (Ramadge and Wonham 1987). The result is the
final supervisor S.

Formal high level specifications, based on the PPN language introduced in the previ-
ous section, are meant to be used as a communication link between, for instance, different
departments within a company, or between supplier and costumer. It is however also possi-
ble to use these specifications for supervisor synthesis applying supervisory control theory
(SCT) (Ramadge and Wonham 1987).

We have chosen to use Supremica (Åkesson et al. 2003) as a tool for SCT. This is a
program that uses finite state automata (FSA) as its input and output language. In order to
use Supremica for supervisor synthesis, all PPN specifications are therefore formally and
automatically converted into FSA models.

3.2 Finite state automata

A finite state automaton is a structure A = (Q, Σ, δ, q0) where Q is the set of finite states
in the automaton. The alphabet Σ declares all events that an automaton can participate in.
Some of the events in the alphabet may never be executed, an important fact when supervisor
synthesis is performed. The partial transition function δ declares all defined transitions from
a state via an event to another state. The initial state is given by q0. Note that parallel
behavior is not explicitly modelled using finite state automata. This is instead described
indirectly using a parallel composition between two or more automata. In this paper Hoares
full synchronous composition (Hoare 1985) is applied.

4 Translation of PPN to automata

In the following section the translation between a PPN model and automata models is pre-
sented. In order to describe this procedure an example is introduced. As the previously
mentioned Volvo case does not involve all the operators offered by the PPN language, a
fictive example including the whole range of operators will be used instead.

4.1 PPN model

Consider the PPN model in Fig. 5, where the order between a number of operation pro-
cesses O1–O10 is specified. The purpose of the specification is to describe when each of the
processes is actually allowed to execute.

In more detail Fig. 5 describes four parallel paths followed by a final process expression.



84 II. Converting PPN to finite state automata

O2[O1∧O↓
5] O↑

1

⊕{O3, O4}

O5

{O6, O7}

O9 O10[O↓
3 ∨O9]

O8&R8→O↓
1

Figure 5: Example given as a PPN specification.

Two of the parallel paths involve one operation each with restrictions on the start of their
executions. Operation O2 cannot execute before operation O5 has finished its execution and
operation O1 has not started (initial state). Operation O10 is not allowed to start its execution
until operation O3 has finished its execution or operation O9 has started its execution. The
two other paths in Fig 5 involve a sequence and an alternative respectively. The sequence path
specifies that operation O1 starts its execution followed by O3 and O4 executed in arbitrary
order. The alternative path specifies the execution of either O9, or O5 followed by O6 and O7

executed in parallel. When all four parallel paths have finished their respective transitions,
the operation O8 and process R8 are started as well as ended at the same time. This is
followed by the ending of O1. Operation R8 in this example represents a resource, which
can be booked as well as unbooked, see Fig. 13.

4.2 Tree structure

The PPN model in Fig.5 has the tree structure in Fig. 6. This tree structure is a first step in
the translation from PPN to automata.

Starting from the leaf nodes, composition operators are encountered when going up
the syntax tree. The encountered operators describe how the nodes on a lower level are
composed. Doing this all the way up in the syntax tree, node by node, means that the root
node, symbolizing the main process, is finally reached.

There are two types of nodes in the tree structure in Fig. 6, process nodes and operator
nodes. Process nodes involve the basic processes including optional restrictions. All other
nodes involve the different operators and are also called operator nodes, e.g. sequence node,
alternative node etc. Each node in the tree has an identity (a number), which will be used in
the naming of automata models.



4. Translation of PPN to automata 85

=

+

⊕ →

→

→

→

&

P

O1

O↓
1

O3 O4 O5

O6 O7

O9 O8 R8

O2[O
↑
1 ∧ O↓

5 ] O10[O
↓
3 ∨ O9]

1

2 3

4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21

22 23

Figure 6: Tree structure for the PPN example in Fig. 5.

4.3 Informal translation from the tree structure to automata

Using the tree structure in Fig. 6 as an example, it is now informally shown how a PPN
specification is converted into a finite state automata representation. In the translation from
the tree structure to finite state automata we note that modular automata are preferable. The
reason is that our software for synthesis and verification Supremica uses modular approaches
to avoid the state space explosion problem for large complex systems. Two automata are
created for every process node, while a single automaton is created for every operator node,
except for the parallel node where one automaton is created for each child. Restriction
expressions are not translated into ordinary automata, but modified to include actual states.
The reason for this flexibility is that Supremica accepts extended automata, including such
logical restrictions at the state transitions (similar to StateChart). Furthermore, note that
all modular automata are finally connected applying Hoares full synchronous composition
(FSC) (Hoare 1985).

In Fig. 7 a simple tree structure is given involving three nodes, two process nodes, m
and n, and a general operator node �. Node m specifies the start of process Oi using the start
operator ↑. Node n specifies the execution of process Oj when process Ok is in its initial
state and process Op is in its final state. The operator node � specifies any operator using
the generic operator notation ∗. This tree structure will be used to describe how finite state
automata are created for every type of node.

�

m n

O↑
i Oj[Ok ∧ O↓

p]

∗

Figure 7: A tree structure with two process nodes and one operator node.



86 II. Converting PPN to finite state automata

Process node

Two automata are created for every process node. The first automaton, called process au-
tomaton, see Oi and Oj in Fig. 8, includes three states and two events. The states are uniquely
named using the process name together with number 1, 2, or 3, e.g. Oj 1. This is done be-
cause the state names in process automata are used when translating a restriction expression
into the automata model, see automaton Oj in Fig. 8. The two events in an process automa-
ton are a start event including possible restriction expression followed by a stop event for the
specific process to be executed, e.g. sta Oj[Ok 1 ∧ Op 1] and sto Oj in the automaton Oj.

The second automaton created for a process node, called process node automaton, i.e.
Am and An in Fig. 8, includes a sequence of three or four events. A start event for the specific
node, i.e. sta m in automaton Am, is followed by the process to be executed. This can be
only one event, if the beginning or end of the process is specified using start or stop operator
as for process Oi in Fig. 7. Otherwise, both the start event and the stop event for the specific
process is included in the process node automaton followed by a stop event for the actual
node.

Am An

q0

q1

q2

q3

q0

q1

q2

q3

q4

sta m

sto m

sta n

sto n

sta Oi sta Oj [Ok 1 ∧ Op 3]

sto Oj

Oi 1

Oi 2

Oi 3

Oj 1

Oj 2

Oj 3

sta Oi

sto Oi

sta Oj [Ok 1 ∧ Op 3]

sto Oj

Oi Oj

(a)

(b)

Figure 8: (a) Process automata and (b) process node automata for each process node of the
tree structure in Fig. 7.



4. Translation of PPN to automata 87

(a)

q0

q1

q2

q3

q4

q5

q6

A�(→)

sta �

sta m

sto m

sta n

sto n

sto �

(b)

q0

q1

q2 q3

q4

q5

A�(+)

sta �

sta m

sto m

sta n

sto n

sto �

(c)

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

A�(⊕)

sta �

sta m

sto m

sta n

sto n

sta m

sto m

sta n

sto n

sto �

(d)

q0q0

q1q1

q2q2

q3q3

q4q4

A� m( ) A� n( )

sta�sta�

stam

stom

stan

ston

sto�sto�

Figure 9: Automata models for the operator node in Fig. 7 where node � is (a) a sequence
node, (b) an alternative node, (c) an arbitrary order node, and (d) a parallel node.

Operator node

The automaton for the operator nodes consist of three parts, a start event followed by an
automata model for the actual operator and then a stop event.

Sequence node A sequence node automaton is given in Fig. 9(a) for node � in Fig.7 with
∗ equal to →. An automaton for a sequence node always includes six events, beginning with
the start event of the sequence node. This event is followed by the start and stop events of its
first child, sta m and sto n in Fig. 9(a), followed by the start and stop events of the second
child node, sta n and sto n. The sequence is ended by executing its stop event.

Alternative node A corresponding alternative node automaton is given in Fig. 9(b). This
automaton, A�, begins with a start event sta � and ends with a stop event sto �. The start
event of the alternative node is followed by the start and stop events of either child m or child
n.

Arbitrary order node The arbitrary order node can have more than two child nodes,
which means that the corresponding node automaton does not have a fixed number of states.
After the start event follows all possible permutations of the child nodes start and stop events.
Fig. 9(c) shows an automaton for the arbitrary order node in Fig. 7 with ∗ equal to ⊕.

Parallel node A set of automata is created for a parallel node, one for each of its child
nodes. All these automata include a sequence of four events with the same first and last
events, which are the start and stop events for the parallel node. Two automata for the
parallel node in Fig. 7, with ∗ equal to , is given in Fig. 9(d). The common start event
in each of these automata models is followed by the start and stop events of its child node.
The parallel behavior is finally obtained by connecting all involved automata by Hoares full
synchronous composition (FSC). This means explicitly that the common start and stop events
in the parallel node automata are synchronized.



88 II. Converting PPN to finite state automata

Synchronization node The synchronization operator & is mainly used between individual
basic processes, e.g. between a number of resources and an operation (Ri&Rj &Ok). To
avoid complications in the automata translation we therefore restrict the children nodes of the
synchronization operator to involve only process nodes. Multiple process synchronization
means that there is one child node for each involved process. Fig. 10 shows an operator
automaton for the synchronization operator in Fig. 7 with ∗ equal to &. The start event sta �
is followed by a synchronized event between the start events of the actual processes to be
executed, i.e. sta Oi&sta Oj[Ok 1 ∧ Op 1]. This is then followed by the synchronized event
of the stop events, in this case only the event stoOj

since the first synchronized process O↑
i

only includes one event.
It is not possible to have any synchronized events in the automata when supervisor syn-

thesis is performed using Supremica. Since the synchronized events are preserved when the
PPN models are converted into FSA, it is also necessary to finally perform a relabelling of the
created automata to avoid such synchronized events, e.g. a&b. This relabelling is described
in further detail in (Falkman and Lennartson 2005a).

A�

sta�

sta Oi&sta Oj[Ok 1 ∧ Op 3]

sto Oj

sto�

q0

q1

q2

q3

q4

Figure 10: Automaton for the operator node in Fig. 7 where node � is a synchronization node.

Example: In Fig. 11 a small part of the tree structure in Fig. 6 is given, representing
the expression (O5→ {O6, O7}) + O9. The corresponding eight automata models are also
shown in Fig. 11. Note that the process automaton for each process node have been left out.



4. Translation of PPN to automata 89

8

14 15

20 21

22 23

A20 A22 A23 A15

A21a A21b A14 A8

+

→

O5

O6 O7

O9

q0

q1

q2

q3

q4

q0

q1

q2

q3

q4

q0

q1

q2

q3

q4

q0

q1

q2

q3

q4

q0q0q0q0

q1q1q1q1

q2q2q2q2

q3q3q3q3

q4

q4q4q4 q5

q5

q6

sta 8

sto 8

sta 14

sto 14

sta 15

sto 15

sta 20

sta 20

sto 20

sto 20

sta 21

sta 21sta 21

sto 21

sto 21sto 21

sta 22

sta 22

sto 22

sto 22

sta 23

sta 23

sto 23

sto 23

sta 14

sto 14

sta 15

sto 15

sta O5

sto O5

sta O6

sto O6

sta O7

sto O7

sta O9

sto O9

Figure 11: A small part of the tree in Fig. 6, representing the expression (O5 → {O6, O7})+
O9 together with corresponding automata models. One automaton is created for each node.
Each individual automaton begins with a start event and ends with a stop event for that
specific node.

4.4 Formal translation

A translation between two different languages can be defined more formally by the use of
an algorithm. In this section part of the algorithm necessary for the translation from the



90 II. Converting PPN to finite state automata

PPN language to a finite state automata representation is presented. The algorithm includes
a recursive function, which goes through the entire tree structure. It creates an automaton for
each node, starting at the root node and proceeding down in the tree, node by node.

The function visit given in Algorithm. 1 describes how the conversion from a PPN rep-
resentation to an automata representation is performed.

A process node has three attributes, node identity id, process identity pid, and operator
op. The attribute pid defines the actual process to be executed and the attribute op describes
if the start or stop operator is used. An operator node also has three attributes, node identity
id, type, and children ch. What kind of operator is given by the attribute type and the attribute
children refers to the current nodes children.

Three functions, CreateSynchronizationAutomaton, CreateAlternativeAutomaton, and
CreateArbitraryAutomaton are used in Algorithm 1. Function CreateSynchronizationAu-
tomaton creates a set of automata which defines the synchronization as in Fig. 10, and Cre-
ateAlternativeAutomaton creates an automaton describing the alternative execution of two
children and returns an automaton as in Fig. 9(b). Function CreateArbitraryAutomaton is
a function which returns an automaton describing the arbitrary order execution of involved
children as in Fig.9(c).

An automaton is created for the synchronization node, in Algorithm 1. A sequence
of four events with the same first and last events, which are the start and stop events for
the synchronization node is created. The start event is followed by a synchronized event
between the start events of the actual processes to be executed. This is then followed by
the synchronized event of the stop events. The case when the start or stop operator is used,
e.g. O↑

i , only the first transition will include a synchronized event since O↑
i only includes

one event, cf. Fig. 10. If all processes are specified using the start or stop operator only one
transition, with a synchronized event, is created.

A set of automata is created for a parallel node, one for each of its child nodes. All these
automata include a sequence of four events with the same first and last events, which are the
start and stop events for the parallel node. The common start event in each of the automata
models is followed by the start and stop events of its child node.

5 Industry example

The proposed language may be used for modelling of flexible manufacturing systems (FMS),
especially resource allocation systems. In a FMS a range of different products make use of a
number of different resources in order to perform a specified sequence of operations. These
operations have to be executed in a certain order using specific resources. All products
may want to use the same resources, and it is therefore necessary to control that only one
product will use a specific resource at a time. This kind of control system is called a resource
allocation system.

The following example describes how a resource allocation system may easily be mod-
elled using the suggested PPN language. The plant to be controlled is a robot cell at Volvo
Car Corporation, Torslanda, Sweden, see Fig. 12. A detailed description of this cell is pre-
sented in (Richardsson 2005).

The robot cell in Figure 12 consists of four robots R1-R4, two Fixtures F1-F2, two turnta-
bles T1-T2, and a conveyor C1. Due to symmetry only the resources below the conveyor, in
Figure 12, is considered in the example.



5. Industry example 91

Algorithm 1: visit
Input : Node n
// Create automata for current node;

1 case n.type is process
// Create a process automaton, cf. Fig. 8(a);

2 createState(n.pid + ” 1”, initial);
3 createState(n.pid + ” 2”);
4 createState(n.pid + ” 3”);
5 createTransition(n.pid + ” 1”, n.pid + ” 2”, ”sta ” + n.pid);
6 createTransition(n.pid + ” 2”, n.pid + ” 3”, ”sto ” + n.pid);

// Create a process node automaton, cf. Fig. 8(b);
if n.op = null then

7 createState(”q0”, initial);
for i = 1 ... 4 do

8 createState(”q” + str(i));

9 createTransition(”q0”, ”q1”, ”sta ” + n.id);
10 createTransition(”q1”, ”q2”, ”sta ” + n.pid);
11 createTransition(”q2”, ”q3”, ”sto ” + n.pid);
12 createTransition(”q3”, ”q4”, ”sto ” + n.id);

if n.op �= null then
13 createState(”q0”, initial);

for i = 1 ... 3 do
14 createState(”q” + str(i));

15 createTransition(”q0”, ”q1”, ”sta ” + n.id);
if n.op = ↑ then

16 createTransition(”q1”, ”q2”, ”sta ” + n.pid);

if n.op = ↓ then
17 createTransition(”q1”, ”q2”, ”sto ” + n.pid);

18 createTransition(”q2”, ”q3”, ”sto ” + n.id);

19 case n.type is sequence
// Create an automaton specifying sequence, cf. Fig.9(a);

20 createState(”q0”, initial);
for i = 1 ... 6 do

21 createState(”q” + str(i));

22 createTransition(”q0”, ”q1”, ”sta ” + n.id);
23 createTransition(”q1”, ”q2”, ”sta ” + n.ch[1].id);
24 createTransition(”q2”, ”q3”, ”sto ” + n.ch[1].id);
25 createTransition(”q3”, ”q4”, ”sta ” + n.ch[2].id);
26 createTransition(”q4”, ”q5”, ”sto ” + n.ch[2].id);
27 createTransition(”q5”, ”q6”, ”sta ” + n.id);

28 case n.type is alternative
29 CreateAlternativeAutomaton;

// Create an automaton specifying alternative, cf. Fig.9(b);

30 case type is arbitrary order
31 CreateArbitraryAutomaton;

// Create an automaton specifying arbitrary order, cf. Fig.9(c);

32 case n.type is synchronization
33 CreateSynchronizationAutomaton;

// Create an automaton specifying synchronization, cf. Fig.10;

34 case n.type is parallel
35 for i = 1 ... number of children to current node do
36 createState(”q0”, initial);

for j = 1 ... 4 do
37 createState(”q” + str(j));

38 createTransition(”q0”, ”q1”, ”sta ” + n.id);
39 createTransition(”q1”, ”q2”, ”sta ” + n.ch[i].id);
40 createTransition(”q2”, ”q3”, ”sto ” + n.ch[i].id);
41 createTransition(”q3”, ”q4”, ”sto ” + n.id);

42 //Add current automaton to a set of created automata;
43 for i = 1 ... number of children to current node do
44 visit(n.ch[i]);



92 II. Converting PPN to finite state automata

Conveyor 1

Fixture 1

Fixture 2

Robot 1

Robot 2

Robot 3

Robot 4

Turntable 1

Turntable 2

Figure 12: The example cell with four robots, two fixtures, and two turntables, and a con-
veyor.

5.1 Plant model

Each resource in the robot cell is modelled as a recursive process, see Fig. 13(a), and R�

represents any of the resources. Assume that Ri
� = bi

�→ui
�, where bi

� represents the booking
of resource R� by product i and event ui

� represents the corresponding unbooking event. A
corresponding PN for R� where R1

� = a1
� → b1

� and Rn
� = an

� → bn
� is given in Fig. 13(b).

b1
�

u1
�

...
...

bn
�

un
�

R�
R�

R1
�

Rn
�

(a) (b)

Figure 13: Resource model R� given as (a) a PPN model and (b) a PN. The resource can be
booked by a number of routing specifications 1, . . . , n.

5.2 Specifications

The task of the example cell in Fig. 12 is to weld a plate to the side of the floor of the car,
underneath the doors. This operation is to be executed on both car models produced in the
cell, i.e. Volvo V70, and S80. During a work cycle Robot 4 picks a part from the rack on
Turntable 2 and then places it in Fixture 2. Simultaneously Robot 2 starts to weld previously
loaded, but not completely welded, parts of the body. Robot 4 changes tool from gripper to



5. Industry example 93

O2&T 1↑
2

O8[O
↓
7 ]

T 1↓
2

O32[O↓
1 ]&R1

2

O33[O↓
13]&R1

2

O34[O↓
18]&R1

2

O3&R1↑
4

O4[O
↓
2 ]

O5

O7

O9[O
↓
6 ]

O11[O↓
10]

O12

O15

⊕{O29[O↓
1 ], O30[O↓

1 ∧ O↓
13]→

O31[O↓
1 ∧ O↓

18]}
O22

O23[O
↓
26]→R1↓

4

O6&F 1↑
2

O10[O↓
9 ]

O13[O↓
1 ∧ O↓

11]

O18[O↓
30 ∧ O↓

33]

F 1↓
2

O1&C1↑

O26[O
↓
18 ∧ O↓

29 ∧ O↓
30 ∧ O↓

31

∧O↓
32 ∧ O↓

33 ∧ O↓
34]

C1↓

Figure 14: A relation of operation ROP specification, given as a PPN model, for production
of a Volvo V70 in a robot cell at Volvo Car Corporation, Torslanda, Sweden.

weld gun, the fixture positions the plate on the body, and both robot 2 and 4 weld the new
part to the body.

A relation of operation (ROP) (Richardsson 2005) specification is presented in Ta-
ble II.3. A ROP specification is an progress specification specifies what all the operations
do and which resources they require. It is also specified if an operation have predecessors,
which are operations that have to have finished their execution before the actual operation
starts. The ROP in Table II.3 is given as a PPN model in Fig. 14. This PPN model uses the
PN constructs in order to create five parallel sequences, one for each resource. A sequence of
operations is also identified, for each resource, by looking at the predecessors in Table II.3.

A single product, V70, is using the resources in this example, which means that a sin-
gle process R1

� , cf. Fig. 13, is created for each resource. Every operation requires a single
resource, which is specified using the synchronization operator & in Fig. 14. The Conveyor,
Turntable 2, Fixture 2, and Robot 4, are booked by the first operation that requires them
and are unbooked after the last operation that requires them. Robot 2 is both booked and
unbooked by every operation using it. This is advantageous if more than one routing speci-
fication at a time wants to use the specific resource.

The PPN model in Fig. 14 uses the arbitrary order operator as well as restriction ex-
pression in order to achieve a compact model without sacrificing readability. The restriction
expressions reduce the number of PN arcs crossing the parallel paths and thereby reducing
the complexity and increasing the readability of the PN. In the next subsection it is shown
how the achieved ROP specification can be used for supervisor synthesis.



94 II. Converting PPN to finite state automata

operation resource comment predecessor product

1 conveoyr move in floor - all

26 conveoyr move out floor

18,29,30,31,

32,33,34 V70

6 fixture 2 ready to receive part? - all

10 fixture 2 clamp part 9 all

13 fixture 2 go to work position 1,11 all

18 fixture 2 go to home position 30,33 V70

32 robot 2 weld job 1 1 V70

33 robot 2 weld job 2, weld part hold by fixture 1,13, 32 V70

34 robot 2 weld job 3, weld new part without fixture 1,18, 33 V70

3 robot 4 get gripper 1 - all

4 robot 4 go to rack 2,3 all

5 robot 4 pick part 4 all

7 robot 4 go to fixture 5 all

9 robot 4 put part in fixture 6, 7 all

11 robot 4 go out of fixture 10 all

12 robot 4 go to tool change pos 11 all

15 robot 4 get weld gun 12 all

22 robot 4 go to tool change pos 29,30,31 all

23 robot 4 get gripper 2 26 all

29 robot 4 weld job 4 1,15 V70

30 robot 4 weld job 5, weld part hold by fixture 1,13,15 V70

31 robot 4 weld job 6, weld new part without fixture 1,15,18 V70

2 turntable 2 part ready? - all

8 turntable 2 rotate turntable 7 all

Table II.3: A description of operations, required resources, and predecessors for Volvo v70.

5.3 Supervisor synthesis

A supervisor synthesis include the plant models and the specifications, see Fig. 15. The re-
sources, cf. Fig. 13, specify what is possible to do in the system and thus constitute the plant
models. The specification models describe both what we want to do (progress specification)
and what we must or must not do (high level safety specification). The high level safety spec-
ifications restrict the possible operation sequences in the ROP. These safety specifications are
the result of a specification synthesis (Andersson et al. 2005), see Fig. 15, performed on de-
tailed operation descriptions called execution of operations (EOP) and interlocks (IL). An
EOP specifies a sequence of events, which correspond to state changes in one or more of the
used resources. Interlocks are safety requirements that prevent damage of the resources and
these are specified as boolean expressions of resource and/or operation states. One or more
IL expressions are associated with an event in an EOP. More detailed description of EOP and
IL can be found in (Richardsson 2005).

Both the EOP and the IL are described on a lower level than the ROP and it is therefore
necessary to produce high level specifications (Andersson et al. 2005), which is done by
performing the specification synthesis. In this synthesis, ILs are processed together with the
EOPs, and the ILs are transformed into restrictions on the operation sequences in the ROP. A
supervisor synthesis can now be performed between the ROP, high level safety specifications,
and the plant, resulting in a sequence of operations SOP. This SOP can be used as a supervisor
for the system.

In order to perform supervisor synthesis, using Supremica, both the resource models
in Fig. 13 as well as the PPN specification in Fig. 14 are converted into finite state au-
tomata. The conversion is followed by a relabelling, since synchronized events are preserved



6. Conclusion 95

Execution of
operations (EOPs)

Interlocks (ILs)

Relations of
operations (ROPs)

High level safety
specifications

Plant

Sequence of operations SOP (supervisor)

Specification synthesis

Supervisor synthesis

Specification

Figure 15: Different models included in the specification and supervisor synthesis.

when the PPN models are converted into FSA. This relabelling is described in further detail
in (Falkman and Lennartson 2005a).

The supervisor synthesis use a modular approach (Åkesson, Flordal and Fabian 2002b)
in order to handle the state explosion that arise when working with large complex systems.
This modular approach can, however, be insufficient and then the supervisor synthesis can
be performed using BDDs (Vahidi, Lennartson and Fabian 2005).

6 Conclusion

The PPN language defines an algebra that is combined with ordinary labelled PNs in order
to realize a powerful specification language for discrete event systems, and especially flex-
ible manufacturing systems. The present paper has shown how the PPN language can be
successfully used for the specification of such systems. This was achieved by providing a
real industry case involving the specification of a product to be manipulated within a robot
cell. The included example has shown that the PPN language realizes concise descriptions
of large complex systems, which is crucial for readability and understanding.

A translation method has also been presented, which automatically translates the PPN
models into finite state automata in order to use an existing tool, Supremica, for supervisor
synthesis.

References

Åkesson, K., Fabian, M., Flordal, H. and Vahidi, A. (2003). Supremica - a tool for verifi-
cation and synthesis of discrete event supervisors, 11th Mediterranean Conference on
Control and Automation, Rhodos, Greece.



96 References

Åkesson, K., Flordal, H. and Fabian, M. (2002). Exploiting modularity for synthesis and
verification of supervisors, Proc. of the IFAC World Congress on Automatic Control.,
Barcelona, Spain.

Andersson, K., Richarsson, J., Lennartsson, B. and Fabian, M. (2005). Hierarchical control
applying information reuse and supervisor synthesis, To be submitted to Transactions
on Automation Science and Engineering .

Arnold, A. (1994). Finite Transition Systems: Semantics of Communicating Systems, In-
ternational Series in Computer Science, Prentice–Hall International, Englewood Cliffs,
NJ.

Best, E., Devillers, R. and Koutny, M. (1998). Petri nets, process algebras and concurent
programming languages, Proc of ICM’98, Berlin, Germany.

Best, E., Devillers, R. and Koutny, M. (2001). Petri net algebra, EATCS monographs on
theoretical computer science, Springer, Berlin.

Best, E., Devillers, R. and Koutny, M. (2002). The box algebra = petri nets + process ex-
pressions, Information and Computation (178): 44–100.

Bloom, B., Cheng, A. and Dsouza, A. (1997). Using a protean language to enchance expres-
siveness in specification, IEEE Transactions on Software Engineering 23(4): 224–234.

Brinksma, E. (1995). Performance and formal design: a process algebraic perspective,
Proc. of Sixth International Workshop on Petri Nets and Performance Models, IEEE,
Durham, NC USA, pp. 124 – 125.

Cassandras, C. and Lafortune, S. (1999). Introduction to Discrete Event Systems, Kluwer
Academic Publishers.

Degano, P., DeNicola, R. and Montanari, U. (1987). Ccs is an (augmented) contact-free c/e
system, in E. M. Venturini Zilli (ed.), Mathematical Models for the semantics of Paral-
lelism, Vol. Lecture Notes in Computer Science, Springer-Verlag, New York, pp. 144–
165.

Falkman, P. and Lennartson, B. (2001). Combined process algebra and petri nets for speci-
fication of resource booking problems, 2001 IEEE American Control Conference, Ar-
lington, VA, USA.

Falkman, P. and Lennartson, B. (2005). A high level specification language based on process
algebra and petri nets, To be submitted to Transactions on Automation Science and
Engineering .

Falkman, P., Lennartson, B. and Tittus, M. (2001). Modeling and specification of discrete
event systems using combined process algebra, Proc. of 2001 IEEE/ASME Advanced
Intelligent Mecatronics, COMO, Italy.

Falkman, P., Nielsen, J. and Lennartson, B. (2003). Automatic generation of object models
for process planning and control purposes using an international standard for informa-
tion exchange, Proc. of SCI 2003, Orlando, Florida, USA.



References 97

Harel, D., Pnueli, A., Schmidt, J. and Sherman, R. (1987). On the formal semantics of
statecharts., Proc. of Symposium on Logic in Computer Science., pp. 55–64.

Hoare, C. (1985). Communicating Sequential Processes, International Series in Computer
Science, Prentice–Hall International, Englewood Cliffs, NJ.

Hopcroft, J. and Ullman, J. (1979). Introduction to Automata Theory, Languages and Com-
putation, Addison-Wesley Series in Computer Science, Addison-Wesley.

ISO 10303-1: Industrial Automation Systems and Integration - Product Data Representation
and Exchange - Part 1: Overview and Fundamental Principles (1994). ISO standard.

Jmaiel, M. (2000). A unified algebraic framework for specifying communication protocols,
Proc. of Third international Conference on Formal Engineering Methods, York UK,
pp. 57–65.

Kozen, D. (1997). Automata and Computability, ISBN 0-387-94907-0, Springer-verlag New
York, inc.

Mayr, R. (1997). Combining petri nets and pa-processes, Theoretical Aspects of Com-
puter Software (TACS’97), volume 1281 of Lecture Notes in Computer Science, Sendai,
Japan.

Milner, R. (1980). A Calculus of Communicating Systems, Vol. Lecture Notes in Computer
Science, Springer-Verlag Berlin Heidelberg New York.

Olderog, E.-R. (1991). Nets, Terms and Formulas, Cambridge University Press, Trumpington
Street, Cambridge CB2 1RP, Great Britain.

Pena, M. and Cortadella, J. (1996). Combining process algebras and petri nets for the spec-
ification and systethis of asynchronious circuits, Proc of International Symposium on
Advanced Research in Asynchronous Circuits and Systems, Fucushima, Japan.

Peterson, J. (1981). Petri Net Theory and the Modeling of Systems, Prentice-Hall, Inc.

Ramadge, P. and Wonham, W. (1987). Supervisory control of a class of discrete event pro-
cesses, SIAM J. Control Optim. 25(1): 206–230.

Rescher, N. and Urquhart, A. (1971). Temporal logic, Springer-Verlag, New York .

Richardsson, J. (2005). Development and Verification of Control Systems for Flexible Au-
tomation, Licentiate thesis, Control and Automation Laboratory, Chalmers University
of Technology, Göteborg, Sweden. Technical report 015.

Vahidi, A., Lennartson, B. and Fabian, M. (2005). Efficient supervisory synthesis of large
systems, Control Engineering Practice. Accepted.





paper iii

specification of a batch plant

Submitted to: Journal of Control Engineering Practice:

Specification of a Batch Plant
using Process Algebra and Petri Nets

P. Falkman† and B. Lennartson† and M. Tittus∗
†Signals and Systems

Chalmers University of Technology

∗School of Engineering, University of Borås

The focus of the present paper is on the specification of routing and resource allocation sys-
tems. Such systems can be described as a set of shared resources and a set of products. The
products utilize the resources in order to be manipulated according to a certain specification.
This product specification consists of a set of operations that are to be executed in a cer-
tain order by specific resources. This results in a desired product route through the resource
system, and hence the product specification is also called a routing specification. The pro-
cess algebra Petri net (PPN) formalism, i.e. a combination of Petri nets and process algebra,
implies efficient and less complex models for routing specifications compared to PNs and
automata descriptions. The aim of this paper is to show how the PPN language, can be used
in order to simplify the specification of desired routes of the chemical batch process.

1 Introduction

Due to the high costs of modifying and changing system implementations, the ability to
model and simulate systems before they are implemented is becoming more and more im-
portant. The focus in this paper is on concurrent systems that may be modelled as discrete



100 III. Specification of a Batch Plant

event systems (DES) (Cassandras and Lafortune 1999), especially routing and resource allo-
cation systems (Åkesson 2002). Such systems may be described as a set of shared resources
and a set of products. The products utilize the resources in order to be manipulated according
to a certain specification. This product specification consists of a set of operations that are to
be executed in a certain order by specific resources. The first operation has to be performed
in one resource and the second one in another resource etc. This results in a desired prod-
uct route through the resource system, and hence the product specification is also called a
routing specification.

In order to synchronize the product utilization of the shared resources available, a su-
pervisor is required. This supervisor is automatically constructed and adapted to the current
resource/routing information. From a user point of view the basic idea is that the products
are to route themselves through the resource system. In this perspective the supervisor only
prevents the products from visiting undesirable states.

The present paper uses a high level language called process algebra Petri nets (PPN),
presented in (Falkman and Lennartson 2005a), in order to simplify the specification of de-
sired routes. This is not a first attempt at combining Petri nets and process algebra. Previous
examples are, for instance; PAN (process algebra and Petri nets) (Mayr 1997) and Petri nets,
process algebras and concurrent programming languages, (Best et al. 1998, Best et al. 2002).
These languages focus on the introduction of Petri net concepts in process algebra. Methods
have also been developed in order to represent process algebra programs by Petri nets e.g.,
(Rondogiannis and Cheng 1994, Olderog 1987). A combination of process algebra and Petri
nets that focuses on parallel composition has also been defined for the specification and syn-
thesis of asynchronous circuits, (Pena and Cortadella 1996). Another language that combines
Petri nets and process algebra is given in (Basten 1998) where the focus is on a method sup-
porting compositional design. The present paper shows how Petri nets and process algebra
can be combined in order to achieve a modelling language that uses the graphical advantages
from Petri nets and the powerful modelling features from process algebra. Hence, the focus
is on the introduction of process algebra constructs in Petri nets instead of the opposite.

Previous work has defined the PPN language in detail (Falkman and Lennartson 2005a)
and its relation to the international standard for information exchange STEP has been shown
in (Falkman et al. 2004). It has also been shown how PPN specifications can be formally
converted into finite state automata in (Falkman and Lennartson 2005b). The aim of the
present work is to show how the PPN language can be utilized in order to simplify the spec-
ification of desired routes of a chemical batch process. The following batch plant example
will be used and developed throughout the paper to illustrate the presented ideas.

Example 12 – The batch plant
We start with the batch plant shown in Fig. 1. It consists of twelve processors, three

supply tanks (T1 to T3) containing raw materials M1, M2 and M3, respectively, three reactors
(P19 to P21), two separation filters (P22 and P23), and the four storage tanks (P24 to P28). It is
assumed that all outlets of the supply tanks can be used simultaneously. A pipeline system
equipped with eighteen valves V1 to V18 connects these processors.

�

The process algebra Petri net (PPN) language is described in Section 2, after that gen-
eral models for resources and routing specifications are given in Section 3. Split and join
operations are introduced in Section 4 and a larger example is given in Section 5.



2. Process algebra Petri net (PPN) 101

P
19

T
28

P
20

T
29

P
21

T
30

P
23

P
22

P
24

P
25 P

27

V
1 V

2
V

5

V
8

V
7 V

9

V
12

V
16

V
10

V
15

V
18

V
14

V
13

V
6

V
4 V

3

V
17

P
26

V
11

Figure 1: A batch Plant.

2 Process algebra Petri net (PPN)

In order to achieve a high level formalism for creating the routing specification, a language
which combines ordinary labelled safe Petri nets (PNs) and process algebra will be used.
The suggested formalism called process algebra Petri net (PPN), introduced in (Falkman
and Lennartson 2005a), uses the graphical representations of Petri nets and the compact
representations of process algebra in order to realize a language that may deliver concise
descriptions of complex systems. In this section a brief description of some of the operators
defined for the PPN language is given. A method is also presented which allows us to restrict
when a process may execute. This is very useful when modelling split and join processes in
Section 4.

A more formal definition of the PPN language is given in (Falkman and Lennartson
2005a). Operator laws together with the relation between the PPN models and PNs are
also given. A mapping method and an algorithm to automatically convert PPN models into
finite state automata (FSA) (Hopcroft et al. 2001) are given in (Falkman and Lennartson
2005b). Earlier versions of the suggested language can also be found in (Falkman et al.
2001, Falkman and Lennartson 2001). A selection of the operators, defined in the PPN
language, are used in this paper and these are presented in Table III.1.

2.1 Alternative

The alternative between three processes P1 = a, P2 = b → c, and P3 = d → e is modelled
in Fig. 2 both as PPNs and PN.

2.2 Synchronization

The synchronization operator & implies that one or more processes are to synchronize their
first and last events respectively. Similar ideas for event synchronization can be found in



102 III. Specification of a Batch Plant

Table III.1: Operators and restriction expressions in the PPN language.

Operator Description

P1 → P2 Process P1 followed by process P2

P1 + P2 Alternative choice between P1 and P2

P1&P2 The start and end of P1 and P2 is synchronized

{P1, . . . , Pn} Parallel execution of P1, P2, . . ., Pn

Restriction State(s)

[P ] Initial state in process P

[P ] All states except the initial state

P1[P2] P1 executed when P2 is in its initial state

P1[P2 ∧ P3] P1 executed when P2 is in its initial state while P3 is not

(a) (b) (c)

p1 p1 p1

p2 p2

p2

a b

c

d

e

P1 P2 P3P1 +P2 +P3

Figure 2: The process P = P1 + P2 + P3 given in (a) and (b) as PPN models and in (c) as a
PN where P1 = a, P2 = b → c, and P2 = d → e.

(Arnold 1994). The processes are not synchronized by common events, which is the oppo-
site to Hoare’s full synchronous composition (Hoare 1985). If a synchronized process only
involves an atomic process, then this will be synchronized with the first event of the other
synchronized processes, and then taking no part in the synchronization of the last events.
The explicit synchronization of two processes P = P1&P2 where P1 = a and P2 = b → c is
demonstrated in Fig. 3.

2.3 Parallel

The expression P = {P1, . . . , Pn} denotes a process P , which executes all processes Pi

in parallel. If processes have common events these events have to be synchronized. The
operator is an extension of Hoares full synchronous composition (FSC) (Hoare 1985),
involving the explicit process synchronization operator &.

Two processes, P6 = a&c→b and P7 = c&e→d, have one common event c. These
processes are to be executed in parallel (as shown in Fig. 4). The synchronized event a&c in
process P6 is required to occur at the same time as the synchronized event c&e in P7.



3. Resources and routing specifications 103

(a) (b)

p1p1

p2

p2

a&b

c

sta12

sto12

P1&P2

Figure 3: The process P = P1&P2 given in (a) and (b) as PPN models using the processes
P1 = a and P2 = b → c.

(a) (b)

p3 p3

p4

p4

sta67

a&c&e

b d

sto67

{P6, P7}

Figure 4: The process P = {P6, P7} given in (a) as a PPN model and in (b) as a PN
(including synchronized events).

3 Resources and routing specifications

In this section a formal description of the different building blocks in a resource allocation
system is presented. These building blocks are a set of resource models (representing the
plant), a set of routing specifications, and a supervisor which synchronizes the individual
products utilization of the shared resources.

We assume in this paper the plant to consist of two generic classes of resources (equip-
ment devices), namely processors (units) and transporting devices. Processors are typically
tanks, reactors, and other container-like units. Transporting devices, on the other hand, have
as their main task to open and close connections between processors causing and preventing
material flow. Typical examples are valves and pumps. In this paper we exemplify processors
with tanks and transporting devices with on/off valves.



104 III. Specification of a Batch Plant

3.1 Routing specification

Every product to be manipulated have its own route through a system. This is specified by a
routing specification Si that describes which operations an product are to undergo, in which
order these operations are to be executed, and which resource(s) that may be used for each
individual operation.

3.2 Resources

There are two different resources in our batch plant example, producers and transporters.
Producers are either booked bi

� or unbooked ui
�, Fig. 5a, where the index � and i refers to

which resource it is and which routing specification using it. In the rest of this paper it will
be assumed that only a single routing specification is using a specific resource which means
that the index specifying this can be skipped.

Transporters, Fig. 5b, can either be booked bi
� or closed (blocked) ci

� as well as unbooked
ui

� and unblocked ri
�. It can be blocked in order to guarantee that no other routing specifica-

tion can use the particular resource at the same time. A transporter can be blocked by more
than one routing specification (recipe) cj

�. Note that a blocked transporter can be booked by
the same routing specification and vice versa.

b1
�

u1
�

...
bn
�

un
�

ui
�

bi
�

bi
�

ci
�

ci
�

ri
� rj

�

cj
�

(a) (b)

Figure 5: (a) Resource model of producers, and (b) resource model of transporters.

3.3 Supervisor

The purpose of the supervisor is to synchronize the products utilization of the common,
available resources. It is important for this utilization to be as efficient as possible. Unneces-
sary restrictions must be avoided, and as much flexibility as possible be given to the system,
without danger of running into blocking states or other forbidden configurations.

As a first step to obtain a supervisor, the parameterized resource models are transformed
based on the current routing specifications. The transformed resource models are synchro-
nized with the routing specifications. Assume that m specifications Sp1, . . . , Spm are given
which altogether use n resources R1, . . . , Rn. Then a complete model of the system is given
by applying the parallel operator on all resource and specification models.



4. The join and split operation 105

Then the model

Sp = {Sp1, . . . , Spm} (1)

is a first specification of the desired behavior of the plant

R = {R1, . . . , Rn} (2)

Also note that the specifications Si run independently of each other, since our modelling
approach implies that the specification alphabets are disjunct.

The resulting model give what is called the global specification

S0 = {Sp1, . . . , Spm, R1, . . . , Rn} (3)

This is a first candidate for a possible supervisor S, and in fact it is a model of the con-
trolled closed loop system. This model may however be blocking or noncomplete, (Ramadge
and Wonham 1987). The first aspect has to do with liveness and the second one is related to
uncontrollable events, which we do not consider in this paper.

The global specification S0 therefore has to be manipulated to result in an appropriate
supervisor. This is formally expressed by the operator NB, which removes blocking states
from S0 to make it trim. The synthesized supervisor is now expressed as

S = NB(S0) = NB( {Sp1, . . . , Spm, R1, . . . , Rn}) (4)

4 The join and split operation

In this section we will introduce two additional building blocks that may be used to model
material transfer in both manufacturing systems and batch processes. These building blocks
are the split and join operation.

A process function

AJ(X, Y, Z) = X[Z] + Y [Z] (5)

with three variables, X , Y , and Z is introduced in order to simplify the specification of asyn-
chronous material flows. The three variables are processes and the choice between process
X or process Y is determined by the state of process Z, whether it is in its initial state or not.

4.1 Join operation

The join operation combines two or more material flows. One special case of the join oper-
ation is the synchronous join. This operation requires that all the joining parts are ready and
all the required resources can be booked.



106 III. Specification of a Batch Plant

The other extreme is an asynchronous join. Taking the same interpretation as above,
in the asynchronous case neither of the joining parts has to wait for the other in order to
execute. The joining material flows act independently of each other and are synchronized
after the joined material flows has finished. The asynchronous join is more complex to
model, because all the material flows that are to be joined together can not book the same
resources. Therefore it is necessary that the model restricts the booking of the required
resources so that each resource is only booked once.

P10

P8 P9

V1

V2 V3
V4

V5
V6 V7

O1&AJ(B1, B2, O2) O2&AJ(B3, B4, O1)

Figure 6: Asynchronous join given as a PPN model with booking processes given in Ta-
ble III.2. Note that, a join operation involves only one recipe S and S can therefore first
block a valve and then book it, see Fig. 5.

In Fig. 6 a PPN model with two operations O1 and O2 is given. The required resources
for each operation is listed in Table III.2. A resource can only be booked once and it is
therefore necessary to specify so that this is guarantied. It is done by using two booking
processes for each operation cf. Table III.2. The operation that start its execution first book
all the required resources for that operation. When the second operation starts its execution
it only books the additional resources that are not already booked. This is controlled using
the process function in (5).

Note that apart from the valves and tanks that are booked, it is necessary for the recipe
to close (block) some valves in order to secure the path through the plant. Parenthesis around
the required resource in Table III.2 specifies that it need to be blocked. The blocking events
is denoted ci.



5. Tank example 107

Table III.2: Required resources for operation O1 and O2 for asynchronous join.

Operations Required resources

O1 P8, P10, (V2), V3, V4, (V5), V7

O2 P9, P10, (V3), V4, V5, (V6), V8

Booking processes

B1 = b8&b10&c1&b2&b3&c4&b6

B2 = b8&c1&c4&b6

B3 = b9&b10&c2&b3&b4&c5&b7

B4 = b9&c2&c5&b7

4.2 Split operation

The split operation separates two or more material flows. In the same way as for the join
operation there are two special cases for the split operation. The first is the synchronous split
operation, which requires that all the involved parts are ready and all the required resources
can be booked or blocked.

The other extreme is an asynchronous split. Taking the same interpretation as above,
in the synchronous case neither of the involved parts has to wait for the other in order to
execute. The separated material flows act independently of each other and are synchronized
after the separated material flows has finished. In the same way as for the asynchronous
join it is necessary to control so that only the first of the material flows books the common
resources.

In Fig. 7 tank P9 and P10 are to be filled with the material from a third tank P8. If it
is not required that both tank P9 and P10 are filled at the same time it can be modelled as
an asynchronous split. If for instance tank P8 and P9 are ready together with the necessary
valves but tank P10 is occupied then tank P8 and P9 can be booked together with the involved
valves in order to start filling tank P9. When tank P10 becomes ready it is booked together
with the valves that are needed except for those valves that are already booked.

In Fig. 7 the PPN model for the asynchronous split operation is presented together with
the two operations O1 and O2. The required resources for each operation are listed in Ta-
ble III.3.

5 Tank example

Two products with recipes S1 and S2 will be produced in the plant given in Fig. 12. Recipe
S1 describes two alternative paths throw the plant. The raw materials M1 and M2 in T28 and
T29 respectively, are first combined into either reactor P19 or P21. This combination needs
to be synchronized in order to keep the concentration level of the mixture kept between
certain boundaries. After this the content of P19 or P21 is emptied into the adjacent filter
P22 and P23 respectively. The content is then separated into T28 and P24 or P27. Recipe S2

combines raw materials M2 and M3 into reactor P20. M2 and M3 can be filled into the reactor



108 III. Specification of a Batch Plant

D

P8

P9 P10

V1

V2

V3

V4

V5

V6 V7

O1&AJ(B1, B2, O2) O2&AJ(B1, B2, O2)

Figure 7: Asynchronous split given as a PPN model with booking models given in Table III.3.

independently. The content in P20 is then dumped into either storage tank P25 or P26.
Table III.4 and Table III.5 show all the required resources for each operation in S1 and

S2 respectively. Observe that supply tanks do not need to be booked or unbooked. The
reactors have the simple resource model with only two states for each routing specification
as in Fig. 5a. The valves are modelled as in Fig. 5b and can be both booked and blocked
from the initial state. It is required to create booking and unbooking processes that explicitly
declare if a valve is to be booked or blocked for a specific operation. Note that the booking
and unbooking processes are automatically generated from the list of required resources, Bi

and Ui cf. Table III.2.
Recipe S1 is in Fig. 8 modelled with six operations O1 . . . O6 one for each material

Table III.3: Required resources for operation O1 and O2 for asynchronous split.

Operations Required resources

O1 P8, P9, (V2), V3, V4, (V5), V7

O2 P8, P10, (V3), V4, V5, (V6), V8

Booking processes

B1 = b8&b9&c1&b2&b3&c4&b6

B2 = b9&c1&b2&b6&c4

B3 = b8&b10&c2&b3&b4&c5&b7

B4 = b10&c2&b4&c5&b7



5. Tank example 109

transfer. The merging of material from the supply tanks in this recipe is synchronous since it
requires that both material flows are available before any transfer can occur. The first choice
creates two separate paths in the batch plant and it is natural to model this as an alternative
between two sequences of operations, O1→O3→O5 and O2→O4→O6. Every transition
in the PPN is modelled with the specific operation together with booking processes for all
required resources. Each transition expression involve the booking of the resources required
for the particular operation as well as the unbooking of the resources when the operation has
completed its execution. In that a few resources are required for the following operations
and are not included in the unbooking process.

Table III.4: Required resources for each operation, O1 - O6 given for routing specification
S1. Resources within bars are only required to be blocked cf. Fig. 5b.

Operation Required resources

O1 P1, V1, V2, V4, V7, (V5), (V10)

O2 P3, V1, V2, V4, V5, V6, V9, (V3), (V7), (V8), (V12)

O3 P1, P4, V10, (V13, (V15))

O4 P3, P5, V12, (V14), (V18)

O5 P4, P6, V13, V15, (V14)

O6 P5, P8, V14, V18, (V13)

Booking process

B1 = b19&b1&b2&b4&b7&c5&c10

B2 = b21&b1&b2&b4&b5&b6&b9&c3&c7&c8&c12

B3 = b22&b10&c13&c15

B4 = b23&b12, c14, c18

B5 = b24&b13&b15&c14

B6 = b26&b14&b18&c13

Unbooking process

U1 = u1&u2&u4&u7&r5&r10

U2 = u1&u2&u4&u5&u6&u9&r3&r7&r8&r12

U3 = u19&u10&r13&r15

U4 = u21&u12, r14, r18

U5 = u22&u24&u13&u15&r14

U6 = u23&u26&u14&u18&r13

Recipe S2 in Fig. 9 is modelled with three operations O1, O2, and O3. Operations O1



110 III. Specification of a Batch Plant

S1

O1&B1→U1

O3&B3→U3

O5&B5→U5

O2&B2→U2

O4&B4→U4

O6&B6→U6

Figure 8: Recipe S1 given as a PPN model with booking/unbooking processes cf. Table III.2.

and O2 can be executed in parallel since M2 and M3 can be transferred independently. This
results in an asynchronous join and places high demands on how the resources are booked,
which is described in Section 4. The last operation O3 dumps the material in either of two
storage tanks. Due to the asynchronous join in this specification it is necessary to use two
booking and two unbooking processes for each operation, cf. Section 4.1. Observe that the
unboking of the resources is also restricted in Fig. 9. This is important because it would
otherwise be possible to unbook resources that are still required by another operation. In
Fig. 9 every transition in the PPN is modelled with the specific operation, O1, O2, and O3

together with booking processes for all required resources.

S2

O1&AJ(B1, B2, O2)

AJ(U1, U2, O2)

O2&AJ(B3, B4, O1)

AJ(U3, U4, O1)

O3&B5→P ↓
2 &U5

Figure 9: Recipe S2 given as a PPN model using process functions for asynchronous join
and with booking/unbooking processes cf. Table III.3.



5. Tank example 111

Table III.5: Required resources for each operation given for routing specification S2. Re-
sources within bars are only required to be blocked cf. Fig. 5b.

Operation Required resources

O1 P2, V2, V5, V8, (V4), (V6), (V11)

O2 P2, V3, V6, V8, (V5), (V9), (V11)

O2 P2, P7, V11, V16, (V17) or P2, P8, V11, V17, (V16)

Booking processes

B1 = b20&b2&b5&b8&c4&c6&c11

B2 = b2&b5&c4

B3 = b20&b3&b6&b8&c5&c9&c11

B4 = b3&b6&c9

B5 = b25&b11&b16&c17 + b26&b11&b17&c16

Unbooking processes

U1 = u20&u2&u5&u8&r4&r6&r11

U2 = u2&u5&r4

U3 = u20&u3&u6&u8&r5&r9&r11

U4 = u3&u6&r9

U5 = u25&u11&u16&r17 + u26&u11&u17&r16



112 References

6 Conclusion

Specifications of resource allocation systems tend to become very complex for large sys-
tems. The present work suggested a way of dealing with specification of complex systems in
a more efficient manner, by the use of a specification formalism called PPN. By combining
the graphical advantages of PNs with the compactness of process algebra we achieve a for-
malism, which is able to deliver specifications of resource allocation systems that are both
concise and easily interpreted.

More specifically, the present paper has specified high level routing specifications for
products to be produced in a chemical batch plant. It is also made evident how parts of a
specification may be more ideally suited for either PN or process algebra expressions. Based
on the created specifications a supervisor may also be synthesized, which synchronizes the
utilization of available resources.

The language is illustrated for different combinations of multiple and alternative re-
source allocation systems, especially for a batch process problem that follows throughout
the paper, where process operators such as synchronization and alternative and restriction
expressions are shown to be very useful.

References

Åkesson, K. (2002). Methods and tools in supervisory control theory, Phd thesis, Control
and Automation Laboratory, Chalmers University of Technology, Göteborg, Sweden.
Technical report 431.

Arnold, A. (1994). Finite Transition Systems: Semantics of Communicating Systems, In-
ternational Series in Computer Science, Prentice–Hall International, Englewood Cliffs,
NJ.

Basten, T. (1998). In Terms of Nets:System Design with Petri Nets and Process Algebra, PhD
thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.

Best, E., Devillers, R. and Koutny, M. (1998). Petri nets, process algebras and concurent
programming languages, Proc of ICM’98, Berlin, Germany.

Best, E., Devillers, R. and Koutny, M. (2002). The box algebra = petri nets + process ex-
pressions, Information and Computation (178): 44–100.

Cassandras, C. and Lafortune, S. (1999). Introduction to Discrete Event Systems, Kluwer
Academic Publishers.

Falkman, P. and Lennartson, B. (2001). Combined process algebra and petri nets for speci-
fication of resource booking problems, 2001 IEEE American Control Conference, Ar-
lington, VA, USA.

Falkman, P. and Lennartson, B. (2005a). A high level specification language based on pro-
cess algebra and petri nets, To be submitted to Transactions on Automation Science and
Engineering .



References 113

Falkman, P. and Lennartson, B. (2005b). Using a high level language for verification and
control synthesis of discrete event systems, Submitted to Transaction on Control System
Technology .

Falkman, P., Lennartson, B. and Tittus, M. (2001). Modeling and specification of discrete
event systems using combined process algebra, Proc. of 2001 IEEE/ASME Advanced
Intelligent Mecatronics, COMO, Italy.

Falkman, P., Nielsen, J. and Lennartson, B. (2004). A method for automated generation of
discrete event systems from step ap214 for process planning and control, Submitted to
Journal of Manufacturing Systems .

Hoare, C. (1985). Communicating Sequential Processes, International Series in Computer
Science, Prentice–Hall International, Englewood Cliffs, NJ.

Hopcroft, J., Motwani, R. and Ullman, J. (2001). Introduction to Automata Theory, Lan-
guages and Computation, 2nd ed. edn, Addison-Wesley Series in Computer Science,
Addison-Wesley.

Mayr, R. (1997). Combining petri nets and pa-processes, Theoretical Aspects of Com-
puter Software (TACS’97), volume 1281 of Lecture Notes in Computer Science, Sendai,
Japan.

Olderog, E.-R. (1987). Petri nets and algebraic calculi of processes, Advances in Petri Nets,
266 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany pp. 196–
223.

Pena, M. and Cortadella, J. (1996). Combining process algebras and petri nets for the spec-
ification and systethis of asynchronious circuits, Proc of International Symposium on
Advanced Research in Asynchronous Circuits and Systems, Fucushima, Japan.

Ramadge, P. and Wonham, W. (1987). Supervisory control of a class of discrete event pro-
cesses, SIAM J. Control Optim. 25(1): 206–230.

Rondogiannis, P. and Cheng, M. (1994). Petri-net-based analysis of process algebra pro-
grams, Elsevier Science Publisher B.P., Science of Computer Programming pp. 55–89.





paper iv

generation of ppns for control purposes

In: Journal of Systemics, Cybernetics and Informatics, Vol 1, Number 5. :

Automatic Generation of Object Models
for Process Planning and Control Purposes

using an International standard for
Information Exchange

P. Falkman† and J. Nielsen∗ and B. Lennartson†
†Control and Automation Laboratory
Chalmers University of Technology

∗Department of Precision Machinery Engineering
The University of Tokyo Hongo 7-3-1

In this paper a formal mapping between static information models and dynamic models is
presented. The static information models are given according to an international standard for
product, process and resource information exchange, (ISO 10303-214). The dynamic models
are described as Discrete Event Systems. The product, process and resource information is
automatically converted into product routes and used for simulation, controller synthesis and
verification. A high level language, combining Petri nets and process algebra, is presented
and used for specification of desired routes. A main implication of the presented method is
that it enables the reuse of process information when creating dynamic models for process
control. This method also enables simulation and verification to be conducted early in the
development chain.



116 IV. Generation of PPNs for Control Purposes

1 Introduction

In order to be competitive, engineering companies of today have to be flexible and responsive
to rapidly changing market needs. For this reason, it is important for companies to decrease
the time to market while still maintaining or increasing product quality, all at a low cost. A
step towards decreasing the time to market is a more efficient information exchange between
product and manufacturing systems design.

Making the information exchange more efficient means that information about prod-
uct design solutions becomes instantly available to engineers involved in the manufacturing
system design. More concretely a process planner will start the documentation of how to
manufacture a product based on preliminary design solutions already during the product de-
sign. If information can be made instantly available to engineers, the iteration cycle between
product and manufacturing systems design can also be made shorter.

This process documentation will be used as a base for simulating how the introduction
of a new product will affect an existing, or new, manufacturing system. The outcome of the
simulation will influence the final design solution of the product as well as the manufacturing
system. The created dynamic models will, in addition to this, also be used for verification
and automatic controller synthesis.

This paper focuses on verification and automatic controller synthesis. The controller
synthesis includes two levels of control descriptions. First, the resource allocation system
and second, a more detailed control of specific applications, e.g. control of a robot cell. In
the resource allocation system a number of products utilize a number of shared resources
which are to be booked and unbooked. A high level language intended to simplify the speci-
fication of desired routes is presented here. This modelling language combines Petri nets and
process algebra in order to achieve compact representations of the product routes. The more
detailed control descriptions involves specific control for each resource and can be seen as
a decomposition from the higher level resource allocation system which is not dealt with in
this paper. The focus in this paper is, however, on the resource allocation system.

The process plan defines process information as a set of product, process and resource
characteristics, defining what to produce, and how it should be done. This information can
be created using several different systems, such as CAD-systems, Robot simulation and Off-
Line Programming (OLP) systems.

In order to automatically generate dynamic process models for process control purposes,
a mapping is necessary. This mapping should define the relationship between the static
information and the dynamic process models.

Much research has already been conducted on information and discrete event modelling,
e.g. (Schenk and Wilson 1994), (Scheller 1990), and (Eversheim et al. 1991) discussing in-
formation modelling and (Cassandras and Lafortune 1999), (Hoare 1985), and (Ramadge
and Wonham 1987) discussing discrete event modeling. However, little has been investi-
gated concerning the connection between information and dynamic models, i.e. how an
information structure could be mapped to the dynamic structure of a process plan. The pur-
pose of this paper therefore is threefold: first to capture the requirements of the information
structure, second to capture the requirements of the dynamic structure, and third to show
how the mapping between the information and dynamic structure could be realized.

The information structure is given according to the ISO10303-214 or the STEP-standard
(STandard for Exchange of Product model data). The mapping has been achieved by ana-
lyzing the information structure, (ISO 10303-214), and the dynamic structure, (the MPPN-



1. Introduction 117

model) which was introduced in (Falkman and Lennartson 2001), to gain knowledge of the
semantics of their respective objects and structures. The gained knowledge has then been
synthesized to result in the semi-formally defined mapping model. Finally, the result has
been validated using a case study at Scania Oskarshamn, Sweden. This has been done by
populating the ISO 10303-214 model with data from the Scania case, and then implementing
the mapping method in order to automatically create an MPPN-model based on the Scania
data. The case is presented below and developed throughout the paper.

Example 13 – A robot cell in a Scania factory The robot cell shown in Figure 1 consists
of six resources, a robot R, a gripper G, a welding machine W , two output buffers B1 and
B2, an input buffer I , an operator O, and two fixtures left FL and right FR.

WG

S G

SWG

IR

O1

O2

Fl Fr

G = Gripper.

I = Input buffer.

O1 = Output buffer 1.

O2 = Output buffer 2.

R = Robot.

SWG = Stationary weld gun.

WG = Weld gun.

S = Stand for G and WG.

FL = Fixture Left.

FR = Fixture Right.

Figure 1: A manufacturing cell.

The Scania robot cell involves two main processes, StationaryWelding and RobotWelding.

StationaryWelding As input to the robot cell there are geometrically welded plates placed
on the turn table. StationaryWelding involves three sub-processes: Get, robot and gripper is
used to get workpiece from instation. Weld, robot, gripper, and stationary weld gun is used
to weld approximately 30 weld spots. Put, robot and gripper is used to put the workpiece in
outstation O1 or O2.

RobotWelding As input to the robot cell an operator places the geometrically welded plates
in one of two fixtures. RobotWelding also involves three sub-processes: The first is Place
and involves an operator placing a workpiece on either the right or the left fixture. The
second is Weld where the robot, the weld gun, and one of the fixtures LF or RF is used to
weld about 30 weld spots and finally the third and final process Put where the robot together
with the gripper is used for putting the workpiece in outstation O1 or O2.

�

In the following two sections an introduction to both the MPPN modelling language and the
ISO 10303-214 standard is presented. In addition to this a comparison between the static and
dynamic models is made with respect to the product, process, and manufacturing resource
(PPR) representation in both MPPN and ISO 10303-214 (AP214).



118 IV. Generation of PPNs for Control Purposes

2 Mixed Process algebra Petri Net

The MPPN language combines Petri nets and process algebra in order to create product
specifications. The MPPN language uses process operators for alternative, synchronization
in order to realize compact specifications.

Process operators

The transition between two Petri net places in an MPPN is a process P . A process P =
a1 → P1 describes that, first the event a1 occurs, then it behaves like a process P1.

Alternative The alternative operator + specifies that there is a choice between two pro-
cesses. Let two processes be defined as P = a1 → P1 and Q = b1 → Q1. Then an alternative
between these two processes is described as

P + Q = a1 → P1 | b1 → Q1 (1)

using Hoare’s (Hoare 1985) choice symbol |. This implies that either event a1 occurs fol-
lowed by process P1 or event b1 occurs followed by process Q1.

Synchronization The nonstandard synchronization operator & implies that one or more
processes are to be synchronized, with no respect to common events, and executed in parallel.
Similar ideas for event synchronization can be found in (Arnold 1994). Again, consider two
processes P = a1 → P1 and Q = b1 → Q1. The synchronization operator & can be described
as

P&Q = a1&b1 → P1&Q1 (2)

This means that a1 in P occurs at the same time as b1 in Q. This synchronized event is
denoted a1&b1. The synchronization operator & is useful when flexibility and reusability is
desired.

1

Parallel processes Parallel processes are defined using the Petri net constructs instead of
introducing a parallel process operator. This is done in order to preserve a good graphical
presentation of the modelled system. In Figure 2 there are two processes P and Q which are
to be executed in parallel.

Product Model

The dynamic model of a product is the process model that will be described in the next
section. However, the static information for a product, e.g. product id, may, in the MPPN
model, be assigned to a token. The number of tokens control the number of products manu-
factured and the number of products or product parts that are allowed in to the manufacturing
system at the same time. Note that this may involve colored Petri nets but this extension is
not emphasized in this paper.

1The synchronization operator is redefined in the PPN language (Falkman and Lennartson 2005a).



2. Mixed Process algebra Petri Net 119

P Q

Figure 2: Two processes P and Q are executed in parallel.

Process Model

The resource allocation system involves a set of products that share a set of resources within
a manufacturing system. To ensure that only one product at a time is using a specific resource
it is necessary for each resource to be booked by a specific product. It is also important to
control that there are no blocking or deadlock states. A routing specification specifies a
products route through a resource system and may be described on two levels:

• a high level routing specification (HRS) that describes which processes an object are
to undergo, in which order these processes are to be executed, and which resource(s)
that may be used for each individual process.

• a booking and unbooking specification, which describes on a more detailed level how
the shared resources are to be booked and unbooked, based on the HRS, to obtain the
desired route through the resource system.

Process Operation (PO) In the resource allocation system the transition between two
places in the HRS is a process operation (PO). A PO involves two processes, a booking
process B and an unbooking process U . A booking and unbooking model is automatically
created given an HRS.

Example 14 – Robot cell An HRS to the left in Figure 3 specifies the three processes
involved for the StationaryWelding, in the robot cell example. The first PO requires three
resources: the robot R, the gripper G and the In-station I . The second resource requires the
robot R, the gripper G and the weld gun WG. To the right in Figure 3 is described on a
more detailed level how the resources involved are to be booked and unbooked. Note that
resources that are required in several operations are not unbooked.

�

Manufacturing System Model

A model of the manufacturing system, for the resource booking system, is created by syn-
chronizing all of the involved resource models.



120 IV. Generation of PPNs for Control Purposes

S1

PO1 (R&G&I)

PO2 (R&G&WG)

PO3 (R&G&(O1 + O2))

S1

bR&bG&bI

bWG&uI

(bO1 + bO2)&uWG

uR&uG&uWG&(uO1 + uO2)

Figure 3: A routing specification is given as an HRS to the left and a booking and unbooking
specification to the right. Note that resources that are required in more than one operation in
a row are not unbooked.

3 The STEP AP214 Model

In this section the product, process, and manufacturing resource (PPR) representation in
ISO 10303-214 (AP214) will be described. The objective is to describe where to find the
information needed to generate the MPPN-model. Before the PPR-model is described a
brief introduction to ISO 10303 (STEP) and the EXPRESS language will be given.

ISO 10303 STEP is an international standard that “provides a representation of product
information along with the necessary mechanisms and definitions to enable product data to
be exchanged” (TC184/SC4 1994). The term exchange should here be interpreted as the
exchange of data between computer systems in environments associated with the complete
life-cycle of a product, including manufacturing.

The standard consists of different parts, called application protocols, that define the
scope, context, and information requirements for a particular application, e.g. the automotive
industry (AP214), or electrical design and installation (AP212).

EXPRESS language The EXPRESS language is a formally specified and structured lan-
guage (Schenck and Wilson 1994) used to define the application interpreted models in STEP.
The EXPRESS is an earlier and more general alternative to UML. The basic constructs of
EXPRESS or EXPRESS-G (a graphical subset of EXPRESS) is the entity and the attribute.
An entity is similar to an object in object-oriented programming.

Graphically, in EXPRESS-G, an entity is represented as a box with a name written in
it. Attributes are represented by a line ending with a small circle, showing the direction of
the relationship. They are labelled with the name of the attribute as well as any cardinality
constraints. A dashed line represents an optional attribute, whereas a thick line represents a
supertype-subtype relationship, i.e. the same as inheritance in object-oriented programming.

Product Model

The most important product entities in AP214 is the item (i) and item version (iv). These
are the holders of product meta-data, such as identifiers, version data, classification data and
much more.



3. The STEP AP214 Model 121

Process Model

The process model in AP214, cf. Figure 4, has a central role in the generation of the MPPN-
model. It is the holder of all the necessary process information, such as plan identifier,
relationships between processes etc.

relationship

relation type

relating

related

STRING

STRING

description

name

name

version id

process operation

process

process

process

process

operation

operation

operation
occurrence

occurrence

definition

definition

plan

plan plan
version

id

id

id

process type

Figure 4: Representation of process data in AP214.

The process model consists of a structure to hold meta-data about a process plan. This
structure is identified by the process plan (pp) and process plan version (ppv) in Figure 4.
A process plan, consists of one or more processes represented by the process operation
occurrence (poo). The process operation occurrence represents the occurrence of a pro-
cess in a process plan. More specifically, it represents the occurrence of a definition of a
process, the process operation definition (pod). This mechanism enables the reuse of a def-
inition in several different places in a process plan as well as in several different process
plans and thus, different versions of a plan can reuse definitions that have not been changed
from a former version. For instance, alternative resource for the same operation would be
represented by the same definition but with different resources assigned to different pro-
cess operation occurrences all representing the same definition.

The structure of the process plan is represented on the process operation occurrence
level, i.e. the level where sequence, alternative, simultaneity, and substitution relationships
between processes are represented. This relationship is represented by the process operation
occurrence relationship (poor) where the attribute relation type holds the type of relation-
ship. The attribute relating points in the direction of the process operation occurrence prior
to the process operation occurrence pointed out by the attribute related.

Manufacturing System Model

Manufacturing resources can be represented in several different ways in AP214, depending
on the level of detail and the design life cycle stage.



122 IV. Generation of PPNs for Control Purposes

The single instance and physical instance are both instances of an abstract representation of
a manufacturing resource (item), but there is one significant difference. The single instance
represents an occurrence of a type of manufacturing resource whereas the physical instance
represents a physical resource on the shop floor. Thus the single instance is better used for
planning purposes before a physical resource exists and the physical instance is better used
when there already exists a physical resource.

4 Mapping of AP214 into MPPN

In this section a description of the relationship between AP214 and the MPPN product,
process and manufacturing system models is given. Examples are given in order to illustrate
the mapping of the static description of the product to be manufactured into a dynamic model
using the graphical notation of both descriptions. The actual algorithm is not shown mainly
due to lack of space. A simplified algorithm is given in (Falkman, Nielsen and Lennartson
2002).

Product

For the purpose of creating a product in the MPPN-model only a product identifier is needed.
The product identifier is represented by the item version.id in AP214. This identifier will be
assigned to the token in MPPN which implies a colored extension of the MPPN. The product
identifier is related to process information via the process plan.produced output.

Manufacturing system

The attributes of the manufacturing resources that are needed in order to generate a MPPN-
model are the single instance.id and physical instance.serial number.

Process

Process information needed in order to create an MPPN-model is process plan.id, process
operation occurrence.id, process operation definition.id, and information about relation-

ships between processes. Table IV.1 describes the use of AP214 process model information
when creating an MPPN-model.

AP214 Information MPPN-model

Plan (pp) identifier Routing specification identifier

Occurrence (poo) identifier Petri net place (pnp) identifier

Definition (pod) identifier Process operator (PO) identifier

Relationship (poor) type Net structure

Table IV.1: The use of AP214 information when creating a MPPN-model.



4. Mapping of AP214 into MPPN 123

The differences between product operation definition and product operation occurrence are
several but the most important one in this paper is that the product operation definition gives
a general description of what an operation involves, whereas the product operation occurence
describes on a more detailed level which resource to use in a specific operation. For instance,
a product operation definition may be executed by two different product operation occurences
in that that they use different resources. In the MPPN model a process that only differs in
which resource they require is regarded as the same process operation. This means that it is
natural to use the product operation definition identification when translating into MPPNs.

Alternative resources

In an earlier phase of this project alternative resources has already been implemented. In
the STEP standard alternative resource is represented by process operation occurences that
refers to the same process operation definition and also refers to each other with the pro-
cess operation occurence relationship attribute relation type equal to ’alternative’, cf Figure
4. In the MPPN the alternative resource is represented by a number of alternative resources
in the transition equation, cf 5.

’poo a’ ’poo b’

id

idid

ing ed

poo poo

poor

pod

rtype
’alternative’

odef odef

’pod1’

S

pod1(Ri + Rj)

(a) (b)

Figure 5: Alternative process given as a High Level Routing specification (b) and an in-
stantiated STEP AP214-model (a). This is alternative processes in the STEP standard with
process operation occurences refereing to the same process operation definition. Each pro-
cess operation occurence relates to one resource each R1 and R2

In figure 5(a) a small part of a populated STEP model is represented. There are two pro-
cess operation occurences, with respective id ’poo a’ and ’poo b’, which refers to each
other with the relation type attribute ’alternative’. Both of the process operation occurences
also refer to the same process operation definition pod1. This implies that the same op-
eration is being executed by both process operation occurences, however these two pro-
cess operation occurences are referring to different resources which is not shown in Figure
5(a). In Figure 5(b) an HRS is described showing the use of the + operator for representation
of the resource choice.

Alternative processes

Alternative, or split, differs from the earlier mentioned alternative resource in that it in STEP
are process operation occurences that refer to each other with the process operation oc-



124 IV. Generation of PPNs for Control Purposes

curence relationship with the attribute relation type equal to ’alternative’, cf Figure 4, but the
different process operation occurences do not refer to the same process operation definition.
This results in a split of the sequence in the MPPN in to two or more separate branches, cf
Figure 6.

’poo a’ ’poo b’

id id

idid

ing ed

poo poo

poor

pod pod

rtype
’alternative’

odef odef

’pod1’ ’pod2’

Si

pod1 pod2

(a) (b)

Figure 6: Alternative process given as a High Level Routing specification (b) and an instan-
tiated STEP AP214-model (a). Note that this is different from alternative resources which in
STEP is described by the fact that the involved processes are refereing to the same definition.

Parallel

Parallel processes are described in the MPPN in the same manner as in ordinary Petri Nets,
c.f. Figure 2. In step this is modelled as two or more process operation occurences that
refer to each other with the process operation occurence relationship with the attribute re-
lation type equal to ’parallel’, cf Figure 4.

’poo a’ ’poo b’

id id

idid

ing ed

poo poo

poor

pod pod

rtype
’parallel’

odef odef

’pod1’ ’pod2’

Si

pod1 pod2

(a) (b)

Figure 7: Parallel process given as a High Level Routing specification (b) and an instantiated
STEP AP214-model (a).

Example 15 – Robot cell In Figure 8 shows how the StationaryWleding process in the
Scania robot cell may be modelled with STEP. The same process is in Figure 9 described
using the High level part of the MPPN language. As can be seen in Figure 8 there are
four process operation occurences and only three process operation definitions. Two pro-
cess operation occurences are referring to each other with the relation type ’alternative’.



5. Conclusions and Future work 125

’alternative’

id

id

id

id id

idid

inginging ededed

poopoopoo poo

poorpoorpoor

podpod pod

rtypertypertype odefodef
odef

odef

’poo 1’ ’poo 2’ ’poo 3’ ’poo 4’

’pod1’ ’pod2’

’pod3’

’sequence’’sequence’

Figure 8: Instantiated example of the StationaryWelding process of the Scania robot
cell given as a simplified instantiated STEP AP214 model. Note that the each pro-
cess operation occurence relates to one or more resources but for clarity this is not shown in
this picture.

Transferring the STEP model in Figure 8 into the MPPN model in Figure 9results in an
MPPN with three operations executed in sequence. The three operations required a set of
resources each and as a consequence of the two process operation occurences referring to
the same process operation definitions exists alternative resources for pod3.

S1S1

pod1 (R&G&I)

pod2 (R&G&WG)

pod3 (R&G&(O1 + O2))

Figure 9: A routing specification given as an HRS and describing the StationaryWelding
process of the Scania Robot cell.

�

The presented ideas so far involve only part of all the information needed in order to
control a single cell or a whole plant. There is security information and much more but at
this point we have concentrated on translating flow control information.

5 Conclusions and Future work

The suggested method implies a reliable framework for the exchange of control related in-
formation, which involves resource, product and process information. In addition to this it
delivers the expected information fast, which is crucial when short lead times are required.

One of the main advantages of this method is that it involves, and uses, a well accepted
international standard, STEP AP214, for the exchange of product, process, and resource
related information.



126 References

In future work the entire method will be implemented and applied on a large industry
case.

References

Arnold, A. (1994). Finite Transition Systems: Semantics of Communicating Systems, In-
ternational Series in Computer Science, Prentice–Hall International, Englewood Cliffs,
NJ.

Cassandras, C. and Lafortune, S. (1999). Introduction to Discrete Event Systems, Kluwer
Academic Publishers.

Eversheim, W., Marczinski, G. and Cremer, R. (1991). Structured modelling of manufactur-
ing processes as nc-data preparation, In Annals of the CIRP, volume 40/1.

Falkman, P. and Lennartson, B. (2001). Combined process algebra and petri nets for speci-
fication of resource booking problems, 2001 IEEE American Control Conference, Ar-
lington, VA, USA.

Falkman, P., Nielsen, J. and Lennartson, B. (2002). A formal mapping of static informa-
tion models into dynamic models for process planning and control purposes, Proc. of
WODES 2002, Spain.

Hoare, C. (1985). Communicating Sequential Processes, International Series in Computer
Science, Prentice–Hall International, Englewood Cliffs, NJ.

Ramadge, P. and Wonham, W. (1987). Supervisory control of a class of discrete event pro-
cesses, SIAM J. Control Optim. 25(1): 206–230.

Scheller, A. (1990). Information modeling for distributed applications, Proc of second IEEE
Workshop on Future Trends of Distributed Computing Systems.

Schenck, D. and Wilson, P. (1994). Information Modeling: The EXPRESS Way, Oxford
University Press. ISBN: 0-19-508714-3.

Schenk, D. and Wilson, P. (1994). Information Modeling: The EXPRESS Way, ISBN 0-19-
508714-3, Oxford University Press.

TC184/SC4, I. (1994). Iso 10303-1: Industrial automation systems and integration - product
data representation - and exchange - part 1: Overview and fundamental principles, ISO
Standard.



paper v

relationship between step and ppn
models

Submitted to: IEEE Transactions on Automation Science and Engineering:

Automated Generation of STEP AP214
models from Discrete Event Systems

for Process Planning and Control

P. Falkman† and J. Nielsen∗ and
B. Lennartson† and A. von Euler-Chelpin‡

†Signals and Systems
Chalmers University of Technology

∗department of Precision Machinery Engineering
The University of Tokyo

‡Industriell Produktion, Kungliga tekniska högskolan

The aim of this paper is to show how the international standard STEP-AP214 can be used for
communication and storing of process specifications. Even though there are several software
tools available for the generation of both product- and resource information systems, there
is still a lack of tools related to the STEP standard for producing process information, e.g.
sequence of operations and system capabilities for resource allocation. Therefore such a tool
is suggested, which makes use of a high level language for discrete event systems (DESs)
based on process algebra and Petri nets. This language, called process algebra Petri net
(PPN), has been developed in accordance with the process relations defined in STEP-AP214.
It is specifically shown how process specifications created with the PPN tool can be mapped



128 V. Relationship between STEP and PPN models

to the STEP AP-214 format. The created DES specifications can be used for information
exchange, simulation, verification as well as automatic controller synthesis.

1 Introduction

In the light of rapidly changing market needs, demands on flexibility and ability to decrease
time to market, while still maintaining, or preferably increasing, product quality at a low cost,
is becoming increasingly important. One step towards decreasing time to market is the use of
a more efficient information exchange between product design and manufacturing systems
design. Making information about product design solutions instantly available to engineers
involved in manufacturing systems design would lead to a much shortened iteration cycle.
More specifically, this would entail a process planner starting the documentation of how
to manufacture a product already during the product design phase, based on preliminary
design solutions. The produced process plan can then be used as a base for simulating how
the introduction of a new product will affect an existing, or new, manufacturing system. The
outcome of that simulation will also influence the final design solution of the product, as well
as the manufacturing system. In more detail the process plan defines process information as
a set of product-, process- and resource characteristics, defining what to produce, and how
to produce it.

The present research, which is a more thorough and complete description of the ideas
presented in (Falkman, Nielsen and Lennartson 2003b), aims at making use of an interna-
tional standard, ISO10303-214, the application protocol 214 (AP214) of the STEP-standard
(STandard for Exchange of Product model data) (TC184/SC4 2001), for communication and
storing of process specifications. In the beginning STEP AP-214 was developed to represent
product information. In recent years, however, it has been extended to include both process-
and resource information as well. Even though there are a lot of software tools available for
the generation of both product- and resource information, e.g. PDM systems, CAD systems,
and robot simulation systems, there is still lack of tools for producing process information.
Therefore, such a tool is presented in this paper. This tool makes use of a language based on
process algebra and Petri nets, introduced in (Falkman and Lennartson 2001, Falkman and
Lennartson 2005a), for the generation of process-specifications with special emphasis on
sequence of operations and resource allocation. This high level language for discrete event
systems (DESs), called process algebra Petri net (PPN), has been developed in accordance
with the process relations defined in STEP-AP214. The aim of the present paper is to show
how process specifications created with the PPN tool can be mapped to the extended STEP
AP-214 format. The presented mapping defines the relationship between the information
structure and the DES specification.

Much research has already been conducted both on information modelling, e.g. (Schenk
and Wilson 1994), (Scheller 1990), and (Eversheim et al. 1991), and discrete event mod-
elling, e.g. (Cassandras and Lafortune 1999), (Hoare 1985). However, little has been in-
vestigated concerning the connection between information and DES models, i.e. how an
information structure could be mapped to a discrete event structure of a process plan. The
created DES models will be used for automatic controller synthesis.

Controller synthesis includes two levels of control descriptions; the resource allocation
system which takes care of the synchronization of common resources, and a detailed control
of the individual resources. In the resource allocation system a number of products utilize a



2. Discrete Event Modelling Language 129

number of shared resources which are to be booked and unbooked. In this paper, the PPN
language is utilized with the intention of simplifying the specification of desired routes. The
detailed control, also specified using the PPN language, involves the specific control of each
resource.

The approach is validated through a case study at Volvo Car Corporation, Torslanda,
Sweden. This is done by creating PPN-specifications based on the Volvo data and then
implementing the mapping method in order to automatically generate an ISO 10303-214
model. In the following two sections an introduction is given to both the PPN specification
language and the ISO10303-214 standard. In addition to this, a comparison is made between
the information and the discrete event models, with respect to the product, process, and
manufacturing resource representations in both PPN and ISO10303-214 (AP214).

2 Discrete Event Modelling Language

DESs are systems that, at any given moment in time, is in one state out of a set of states and
changes state according to the occurrence of one event out of a finite set of events. DESs can
be modelled using a number of different modelling languages e.g. Petri nets (Peterson 1981),
process algebra (Hoare 1985, Milner 1989), automata theory (Hopcroft and Ullman 1979,
Kozen 1997) etc. This paper uses a specification language called process algebra Petri net
(PPN), presented in detail in (Falkman and Lennartson 2005a), which combines Peri nets and
process algebra. It is a further development of the MPPN language introduced in (Falkman
and Lennartson 2001).

2.1 Process Algebra Petri Net

In the present paper only a short introduction to the PPN language is given. This language
combines the graphical features of Petri nets with the compact expressions of process algebra
in order to realize a powerful specification tool for DESs. The transition between two Petri
net places in a PPN is a process P . A process P = a1 → P1 describes that, first the event
a1 occurs, then it behaves like a process P1. A number of process operators are now defined.
These operators are used together with Petri nets in order to realize compact DES models.

Alternative The alternative operator + specifies that there is a choice between two pro-
cesses. Let two processes be defined as P = a1 → P1 and Q = b1 → Q1. Then an alternative
between these two processes is described as

P + Q = a1 → P1 | b1 → Q1 (1)

using Hoare’s (Hoare 1985) choice symbol |. This implies that either event a1 occurs fol-
lowed by process P1 or event b1 occurs followed by process Q1.

Arbitrary order Arbitrary order describes that all processes involved are to be executed,
but the order does not matter. We define an arbitrary order operator ⊕ for n processes as

⊕{P1, . . . , Pn} = perm(P1 → P2 → . . . → Pn) (2)

with perm denoting the sum of all different deterministic permutations of the sequence P1 →
P2 → . . . → Pn. For n = 3 this means that perm(P1....) = P1→(P2→P3 +P3→P2)+P2→



130 V. Relationship between STEP and PPN models

(P1→P3 +P3→P1)+P3→(P1→P2 +P2→P1). For arbitrary n a recursive function which
generates a deterministic process expression is given in (Falkman and Lennartson 2005a).

Synchronization The nonstandard synchronization operator & implies that the first and
last event of involved processes are to be synchronized, with no respect to common events.
Again, consider two processes P = a1 → P1 and Q = b1 → Q1. The synchronization between
P1 and P2 is denoted

P1&P2 (3)

This means that a1 in P occurs at the same time as b1 in Q. This synchronized event is denoted
a1&b1. If a process only involves a single event then this event will only be synchronized
with the first events from the other processes. The synchronization operator & is especially
useful when specifying resource allocation systems. For such systems it is desired to specify
that an operation requires a certain resource, i.e. book the resource so that noone else can use
it at the same time. Using the synchronization operator between an operation and a resource
specifies that the booking of a resource is synchronized with the first event of the operation
and the unbooking of the resource is synchronized with the last event of the operation. This is
in Fig. 1 exemplified with an operation O = c → d → e and a resource model R = R1→R
where R1 = b→u. The synchronized execution of O and R1 is specified using the PPN
langauge in Fig. 1a and with synchronized events in Fig. 1b.

O &R1

c &b

d

e &u

sta

sto

(a) (b)

Figure 1: The process P = O & R1 given in (a) as a PPN model and in (b) with synchronized
events.

Parallel processes A parallel execution offers the possibility for processes to execute in-
dependently of each other. The expression

P = {P1, . . . , Pn} (Pi in parallel) (4)



2. Discrete Event Modelling Language 131

denotes a process P which executes all processes Pi in parallel. If the alphabets of all
involved processes are disjunct their events will be executed independently, resulting in in-
terleaving, cf. (Hoare 1985). If, on the other hand, processes have common events these
events have to be synchronized. The operator is an extension of Hoares full synchronous
composition (FSC) (Hoare 1985), involving the explicit process synchronization operator &.

Start and stop operators Start and stop operators denote the starting and ending of the
execution of processes. The start operator declares that a process will start by performing its
first event. It is therefore used to specify when a process is allowed to start. In the same way
the stop operator tells that a process will finish by performing its last event. Consequently it
can be used to control when a process is permitted to finish.

In Fig. 2 the sequence P ↑
1 ⊕P ↓

2 is illustrated. This expression says that either P1 = a → b
starts its execution before P2 = c → d finishes by executing its last event or vice versa. In
this case the continuation of process P1 is not specified.

(a) (b) (c)

p1p1p1

p2p2

p2

a

a

d

d

P ↑
1

P ↑
1

P ↓
2

P ↓
2P ↑

1 ⊕P ↓
2

Figure 2: The process P = P ↑
1 ⊕ P ↓

2 given in (a) and (b) as PPN models and in (c) as a PN
where P1 = a → b and P2 = c → d.

Restrictions Restrictions when an operation can begin and/or end its execution are de-
scribed by logical expressions introduced inside square brackets, [], following the process to
be restricted. The logical expressions specify a specific state (e.g. an initial state) or a set of
states. Common logic operators, ∧ (and), ∨ (or), and P (inverse) are allowed inside these
expressions.

In the present paper two basic atomic restrictions are used. The first is [P ], which de-
scribes that process P has to be in its initial state. The second is [P ↓], which specifies that
P is in its final state. Also note that [P ] refers to all states except the initial one, and [P ↓]
implies all states except the final one.

The expression

P1[P
↓
2 ∨ P ↓

3 ] (5)

specifies that a process P1 is not allowed to start before process P2 or process P3 have finished
their executions. In other words, P2 or P3 must be in its final state before P1 can begin.

2.2 Process Operation Model

The focus of this paper is on specification of resource allocation systems. Such systems,
within a manufacturing system, typically involve a set of products that share a set of re-



132 V. Relationship between STEP and PPN models

sources. To ensure that only one product at a time is using a specific resource it is necessary
for each resource to be booked by a specific product. It is also important to control that there
are no blocking or deadlock states (Coffman, Elphick and Shoshani 1971). In this paper
a so-called high level routing specification (HRS) will be used to specify a products route
through a resource system. This HRS describes which operations a product is to undergo, in
which order these operation are to be executed, and which resource(s) that may be used for
each individual operation.

The PPN language is a general language for modelling DES, but will in the present
paper be used for modelling high level routing specifications of resource allocation systems.
A high level routing specification, modelled as a PPN, can also formally be converted into
an automata representation, which is described in detail in (Falkman and Lennartson 2005b).
The booking and unbooking specification, given as a number of automata, may then be used
for verification and simulation as well as formal controller synthesis, e.g. (Ramadge and
Wonham 1989), (Åkesson et al. 2003).

The high level routing specification involves two parts; relations of operations (ROP),
see Example 16, and safety specifications. The ROP describes the possible operation se-
quences, taking into account necessary resources and predecessor demands. The predecessor
demands define which operations that have to be executed before others can follow. Safety
specifications are described on the same high level as the ROP, i.e. as sequences of opera-
tions. However, these safety specifications are created through a specification synthesis. The
specification synthesis is performed on two different types of models; execution of operation
(EOP) and interlocking specifications (IL), see Example 16. The execution of operation is
a detailed description of each operation and the interlocking specifications involve restric-
tions on specific events in an EOP-specification. The specification synthesis converts the
interlocking specifications and the EOP specifications into safety specifications describing
operation sequences, necessary in order to guarantee the interlocking specifications. A more
detailed description of the different parts included in the high level routing specification can
be found in (Richardsson 2005), and detailed information about the specification synthesis
is given in (Andersson et al. 2005).

Example 16 – High level routing specification using PPN. An ROP specification is in
Fig. 3(a) given as a PPN. The ROP involves six operations and describes two parallel paths.
The first operation, O1, requires resource R1. Operations O2 and O3 are to be executed in
arbitrary order. These two operations require R2 and R3 respectively. Operations O4 and
O5 are to be executed in parallel and require R4 and R5 respectively. Operation O6 can use
either R6 or R7, but cannot start its execution until operation O3 has finished its execution. A
resource consists of a number of sub-resources, also called components (Richardsson 2005).
Resource R1 in this example includes two components R1a and R1b. Both these components
can be in states off and on. In Fig. 3(b) an EOP specification of operation O1 is presented.
This operation describes a sequence of three events turnoffR1a , turnoffR1b

, and finish.
The event turnoffR1a executes when both R1a and R1b are in their on state. The next event
turnoffR1b

executes when R1a has changed state to off , while the operation is finished
as soon as R1b has changed state to off . Fig. 3(c) describes an interlocking for the event
turnoffR1a, which specifies that another resource R2 has to be in state on before turnoffR1a

can execute.
�



2. Discrete Event Modelling Language 133

S

O1&R1

⊕{O2&R2, O3&R3}

{O4&R4, O5&R5}

O6[O
↓
3]&(R6 +R7)

O1

turn offR1a [onR1a , onR1b
]

turn offR1b
[offR1a , onR1b

]

finish[offR1a , offR1b
]

turn offR1a

init[onR2a ]

turn offR1a

(a) (b) (c)

Figure 3: (a) An ROP given as a PPN, (b) an EOP describing operation O1, and (c)
an interlocking for event turn offR1a .

2.3 Resource and Product Model

A model of a manufacturing system, considered as a resource allocation system, is created by
synchronizing all of the involved resource models. The different resources may be modelled
as two state models with two events, the booking and the unbooking events. In order to
achieve a deterministic resource allocation model, however, a specific booked place for each
product is included as in Example 17.

Example 17 – Resource and routing specifications A resource is modelled as a recursive
process, see Fig. 4(c). Assume that Ri

� = bi
�→ui

�, where bi
� represents the booking of resource

R� by product i and event ui
� represents the corresponding unbooking event. A corresponding

PN for R� where R1
� = a1

� → b1
� and R2

� = a2
� → b2

� is given in Fig. 4(d).

S1

O1&R1
�

S2

O2&R2
�

(a) (b)

b1
�

u1
�

q0

q1

q2

bn
�

un
�

R� R�R1
�

R2
�

(c)

Figure 4: (a) Two routing specifications given as HRSs, (b) a resource model given
as a PPN model and (c) the same resource with explicit booked places, q0 and q1,
for each routing specification.

Specification S1 in Fig. 4(a) is a HRS description that includes one operation O1 and



134 V. Relationship between STEP and PPN models

specifies that resource R� is required. The utilization of resource R� is therefore controlled
by the resource model which models the mutual exclusion between S1 and S2. For instance,
if the booking event b1

� is synchronized with the first event of S1, then the token in the
resource model moves from place q0 to q1. S2 is now unable to perform the synchronized
process O2&R2

� and book R� since b2
� can not be executed because the token in the resource

model needs to be in q0. Hence, S2 has to wait to book R� until S1 has unbooked R�.
�

The static information for a product, e.g. product id, may be assigned to the token in the
PPN model. Note that this may involve colored Petri nets (Murata 1989), but this extension
will not be emphasized in the present paper.

3 Standard for Information Exchange

The objective of ISO 10303 standard also called STEP is to provide the framework for the
unambiguous representation and exchange of computer interpretable product data throughout
the lifecycle of a product (Herzog and Torne 2001). The STEP standard is divided into
a number of application protocols. Application protocols standardize the use of STEP to
support a particular manufacturing function reliably and consistently (Trapp 1993).

3.1 The STEP AP214 Model

In this section the product, process, and manufacturing resource (PPR) representation in ISO
10303-214 (AP214) will be described. However, this will not be a complete description,
rather the objective is to provide a description of where information needed to generate the
PPN-specification will/can be found.

ISO 10303 STEP is an international standard that “provides a representation of product
information along with the necessary mechanisms and definitions to enable product data to
be exchanged” (TC184/SC4 1994). The term exchange should be interpreted as the exchange
of data between computer systems in environments associated with the complete life-cycle of
a product, including manufacturing. As an introduction to the STEP standard the following
concepts will be explained:

• application protocol(AP),

• application reference model (ARM),

• application interpreted model (AIM),

• integrated resource (IR), and

• the exchange/sharing mechanisms.

AP: Application protocols, define the scope, context, and information requirements for
a particular application, e.g. the automotive industry (AP214), or the electrical design and
installation (AP212). An application protocol is divided into two different representations of
the information requirements: the application reference model (ARM) and the application



3. Standard for Information Exchange 135

interpreted model (AIM). In depth information on application protocols and STEP in general
are available in (Warthen 1990, Kemmerer 1999, Owen 1993).

ARM & AIM: The ARM is used to capture the information requirements using application-
based terminology i.e. terminology that is understood by the domain experts of that particular
application. For instance, in AP214 terms like wheel space and overall axle distance would
be used, because they are widely used in the automotive industry.

AIM uses neutral resource constructs specified by the IRs to define the same require-
ments, i.e. the neutral resource constructs are interpreted to meet the requirements defined
in the ARM. In addition, the AIM provides a mechanism for inter-operability between dif-
ferent application protocols to, e.g. describe mechatronic products by using both AP214 and
AP212. In this paper the ARM model of AP214 is used.

AP214 is an application protocol developed to consider the automotive industry require-
ments on information exchange. However, (Johansson 2001b) has shown that the generic
structure of AP214 can be used to represent any type of mechanical product, including a
manufacturing resource.

EXPRESS The EXPRESS language (Schenk and Wilson 1994) is a formally specified and
structured language used to define the ARM models in STEP. The EXPRESS language is an
earlier and more general alternative to the Unified Modelling Language (UML). Usually, the
ARM is also defined in EXPRESS and often presented in EXPRESS-G, a graphical subset
of the EXPRESS Language.

The basic constructs of EXPRESS (and EXPRESS-G) is the entity and the attribute.
An entity is similar to a class in object-oriented programming, i.e. it is a representation of
something of interest in the real world. The attribute is a kind of property, and as such it
represents a particular aspect of an entity.

Graphically, in EXPRESS-G, an entity is represented as a box with a name in it, cf.
Fig. 5. The name is the identifier of the item it represents in the real world. Attributes are rep-

relating

description

process_plan_

relationship,

(ppr)

process_plan,

(pp)

process_plan_

version, (ppv)

related

relation_type plan_id name

description

STRING

version_id

description

STRING

Figure 5: Example of entities repre-
sented in the EXPRESS language.

process plan

plan id: STRING
name: STRING
description: STRING

process plan version

version id: STRING
description: STRING

relating

related
description: STRING
realation type: STRING

process plan relationship

Figure 6: The same model as in 5
given as a UML model.

resented by a line ending with a small circle, showing the direction of the relationship. They
are labelled with the name of the attribute as well as any cardinality constraints. A dashed
line represents an optional attribute whereas a thick line represents a supertype-subtype rela-
tionship, i.e. the same as inheritance in object-oriented programming e.g. Unified Modelling



136 V. Relationship between STEP and PPN models

Language (UML) (Booch et al. 1999), cf. Fig. 6. A supertype, i.e. the parent of an inheri-
tance relationship, can be abstract (ABS) meaning that the entity can not be populated with
data.

The model in Fig. 5 is a conceptual model and will be used to present the AP214 stan-
dard. Another type of model will also be used to exemplify the use of AP214, the instantiated
model, which is a model populated with data from the real world, cf. example in Fig. 7. The
triangle in the lower right corner of the entities in Fig. 7 indicates that it is an instantiated
model. In some instances a filled triangle will occur, indicating that all mandatory attributes
are instantiated, for example the process plan relationship entity in Fig. 7. A transparent
triangle on the other hand indicates that some, or all, of the mandatory attributes have been
left out.

relating
id

relation_type

process_plan,

(pp)

process_plan,

(pp)

process_plan

_relationship,

(ppr)
'plan_2'id'plan_1'

related

'alternative'

Figure 7: Instantiated models of the model in Fig. 5. Two process plans relating to
each other by an alternative relationship which means that ”plan 2” is an alternative
process plan to ”plan 1”.

Parts included in AP214 Fig. 8 shows the different parts of the design and production
project that STEP AP214 includes (Johansson 2001a). As can be seen in this figure three
different main areas are described: product, process, and resource (manufacturing system).
Control code and Behavior models are not included in the standard and are therefore not
marked in gray.

• geometry

• kinematics

• structure

• configuration

• administration

• properties

• documents

• geometry

• kinematics

• structure

• configuration

• administration

• properties

• documents

Product Process Resource

• structure

• configuration

• administration

• properties

• documents

• control code

• behavior model

Figure 8: Graph describing three different parts in STEP AP214. These parts are
product, process and resource. All the information marked in gray are included in
the standard. Not included is therefore control code and behavior models in the
process part.



3. Standard for Information Exchange 137

In order to create the behavior model and the control code which is not described in
STEP, using the information given by STEP standard, a mapping i necessary. The mapping
maps information from a discrete event model into the product, process and resource part
of the STEP standard in Fig. 8. The PPN-specification, which models the DES, can then be
used in order to create control code and behavior models.

3.2 Process Operation Model

The process model in AP214, cf. Fig. 9, plays a central role when representing a PPN-
specification. It is the holder of all the necessary process information, such as the process
plan identifier, relationships between processes, sequences etc. The process model consists
of a structure to hold meta-data about a process plan. This structure is identified by the
process plan (pp) in Fig. 9.

STRING

relating

name

related

id
id

description

process_plan,

(pp)

process_operation

_occurrence, (poo)

process_operation_

occurrence_

relationship, (poor)

process_operation

_definition, (pod)

plan

operation_definition

STRING

version

id
name

process_type

description

Figure 9: Representation of process data in AP214. A process operation occurence
(poo) has a process operation definition (pod), a process plan (pp), and a pro-
cess operation occurrence relationship (poor).

A process plan consists of one or more processes represented by the process operation
occurrence (poo). The process operation occurrence represents the occurrence of a process
in a process plan. More specifically, it represents the occurrence of a definition of a process,
the process operation definition (pod). This mechanism enables the reuse of a definition
in several different places in a process plan, as well as in several different process plans.
This makes it possible for different versions of the same plan to reuse definitions that have
not been changed from the former version. For instance, alternative resource for the same
operation would be represented by the same definition, but with different resources assigned
to different process operation occurrences, all representing the same definition.

The relationship between two process operation occurences is represented by the pro-
cess operation occurrence relationship (poor) where the attribute relation type holds the
type of relationship. The attribute relating points in the direction of the process operation
occurrence prior to the process operation occurrence pointed out by the attribute related.
Thus Fig. 10 shows two processes with the relation type equal to ”sequence”. This implies
that process with id=”O1” executes first followed by a second process with id=”O2”.

The process information needed in order to represent a PPN-specification is process
plan.id cf. Fig. 9, process operation occurrence.id, process operation definition.name, and



138 V. Relationship between STEP and PPN models

relating related

id

plan

operation_definition

relation_type

process_plan,

(pp)

process_operation

_occurrence, (poo)

process_operatio

n_occurrence,

(poo)

process_operation

_occurrence_

relationship, (poor)

process_operation

_definition, (pod)

process_operation

_definition, (pod)

plan

"sequence"

id

operation_definition

name

name

'O1'

'get workpiece'

'O2'

'weld workpiece'

Figure 10: Populated process model representing the sequence between two pro-
cesses.

the information about the relationships between processes.

3.3 Resource and Product Model

Resource Model The manufacturing resources can be represented in several different ways
in AP214, depending on the level of detail and the design life cycle stage. Two different
representations have been identified as important with respect to a PPN-specification, cf.
Fig. 11, the single instance (si) and the physical instance (pi).

operation

id

serial_number

process_operation

_occurrence, (poo)

process_operation_

resource_assigment,

(pora)

resource_

definition_

select, (rds)

single_

instance, (si)

physical_

instance, (pi)

STRING

(ABS)

item_instance, (ii)

resource_definition

Figure 11: Representation of resource data in AP214.

The single instance and the physical instance are both instances of an abstract represen-
tation of a manufacturing resource (item), but there is a significant difference between them.
The single instance represents one occurrence of a certain type of manufacturing resource,
whereas the physical instance represents a physical resource on the shop floor. Thus the
single instance is better suited for planning purposes before a physical resource exists, while
the physical instance is better used when there already exists a physical resource. A select
type is used to model that there is a selection between the two different types of instances.
The resource definition relation refer to the resource definition select which in turn refers
to the two different instances. The term (ABS) is used to indicate that item instance is an



3. Standard for Information Exchange 139

abstract supertype to single instance. This means that it cannot exist in itself, only by virtue
of its subtypes. However, the abstract supertype is useful since it enables attributes to be
collected at a higher level within the data model and then inherited.

The attributes of the manufacturing resources that are needed in order to generate a PPN-
specification are the single instance.id and the physical instance.serial number, cf. Fig. 11.

Product Model The most important product entities in AP214 are the item (i) and item
version (iv). These are the holders of product meta-data, such as identifiers, version data,
classification data and much more, cf Fig. 12.

id
name

description

associated_item (INV)associated_version S[1:?]

description

id

produced_output S[1:?]

process_plan,

(pp)

item, (i)STRING
item_version,

(iv)

Figure 12: Entities where meta-data about a product and a resource (item) is repre-
sented in AP214. In this figure two new relation types are used. Enumeration rela-
tion S[1:?] describes that a process plan may refer to one or many item versions.
Inverse relation (INV) describes that an item may refer to one or many item versions
which is the inverse direction of the relation as it is written.

For the purpose of creating a product in the PPN-specification, however, only the prod-
uct identifier is needed. The product identifier is represented by the item.id. The product
identifier is related to process information via the process plan.produced output as shown
in Fig. 12. As can be seen an enumeration relation S[1:?] is used in the relation pro-
duced output, which describes that a process plan may have one or many item versions.
An item version may only have one item. However, an item may refer to one or many
item versions which is modelled by the inverse relation (INV) together with the enumer-
ation relation S[1:?]. The inverse relation is used in order to obtain a complete relation
between two entities, meaning that the relation consists of both the normal direction and also
the inverse direction.

3.4 Operation and Interlocking Model

The detailed information required when creating EOP and interlocking specifications, cf.
Fig. 3, can be found in Fig. 13. The main attribute is condition assignment, which con-
nects the process operation occurrence with resource information, ie. physical instance,
via state assignment. The condition assignment defines a state condition that has to be ful-
filled before a process operation occurrence can be executed. A condition assignment can
refer to a number of state assignments, describing that there could be more than one resource



140 V. Relationship between STEP and PPN models

state that has to be fulfilled. The condition assignment has an attribute ”name”, which can
be either ”interlocking” or ”required resource state”. The ”required resource state” describes
that the condition is for an EOP specification while naturally ”interlock” specifies that it
belongs to an interlocking specification.

Physical_instance,

(si)

State

State_ assignment

described_state

assigned_to

Process_

operation_

occurrence, (poo)

Process_

operation_

occurrence_

relationship, (poor)

relatingrelated

Process_

operation_

resource_

assignment, (pora)

operation
resource_definition

described_condition [1,?]Condition_

assignment

name

relation_type

assigned_to

assigned_to

STRING

name

Figure 13: Representation of conditions for process operation ocurrence described in STEP.

The entity state assignment refers to state, which holds the actual state information.
State assignment also refers to physical instance so that the state can be associated with a
specific resource. Note that because application protocol AP214 is used for representing
processes, process relations, and resources, but is unable to represent resource states, it is
necessary to also use AP239. In particular this includes the entities State, State assignment,
and Condition assignment (von Euler-Chelpin et al. 2004). It is thus necessary to combine
two application protocols in order to represent EOP and interlocking (IL) specifications.

4 Generation of Discrete Event Models for Control Synthesis
and Verification

One of the main advantages of the suggested method of mapping information to and from an
information exchange standard is that creation of product specifications for controller syn-
thesis, verification and simulation can be performed with every manufacturer and industry,
no matter what development systems they use as long as the information can be transferred
according to the STEP standard. However, one should keep in mind that this mapping only
involves part of all necessary information needed to control a cell or a plant. A large part
of the necessary control code for the robot cell in the example presented in Section 5 also
involves security information, fault handling etc. At this point however the focus is on flow
control information, such as resource data, and involved operations together with the opera-
tion sequence. A natural extension of this method is therefore to also include security issues
as well as fault handling etc. Table V.1 shows abbreviations for important entity names in
STEP AP214 used in the mapping.



4. Generation of Discrete Event Models for Control Synthesis and Verification 141

Entity names abbreviation

process plan pp

process plan version ppv

process operation occurence poo

process operation definition pod

process operation occurence relationship poor

process operation resource assigment pora

condition assignment ca

state assignment sa

Table V.1: Abbreviation table for important entity names in STEP AP214.

Mapping of AP214 into PPN In this section a definition of the relationship between
AP214 and the PPN product, process and manufacturing system models is given. Exam-
ples are given in order to illustrate the mapping of the static description of the product to
be manufactured into a DES model using the graphical notation of both descriptions. The
different constructs are described separately. Table V.2 describes the relationship between
the relation types defined in STEP and the operators defined in the PPN language.

Relation type in STEP Operators in PPN

Sequence Sequence →
Substitution Alternative +

Exclusiveness Arbitrary order ⊕
Simultaneity Parallel

Table V.2: Relationship between the relation types defined in STEP and the opera-
tors defined in the PPN language.

A larger example in Section 5 is also given, describing the mapping of a welding process
at Volvo Car Corporation, Torslanda, Sweden.

4.1 Process Operations

The necessary process information required in order to create a PPN-specification is the
pp.id, poo.id, pod.id, and the information about relationships between processes. Table V.3
describes the use of AP214 process model information in order to create a PPN-specification.
The differences between pod and poo are several, but the most important one in this paper is
that pod gives a general description of what an operation involves, whereas the poo describes



142 V. Relationship between STEP and PPN models

AP214 Information → PPN-specification

pp identifier → PPN identifier

pod identifier → operation identifier

poor type → Net structure and process algebra operators

Table V.3: The use of AP214 information in creating a PPN-specification.

on a more detailed level which resources to use in a specific operation. For instance, a pod
may be used to define two different poos in that they utilize different resources. Another
difference is that several poos may be decomposed into more detailed poos and all those
poos relate to the same pod. In the PPN a process that only differs in which resource it
requires is regarded as the same operation. This means that it is natural to use the prod-
uct operation definition identification in the translation into an HRS transition in PPN.

Multiple resource processes A multiple resource process describes that a process involves
more than one resource which is naturally very common. In the STEP standard multiple
resources is modelled as more than one pora referring to one poo. Each pora refers either
to pi or an si which was described in Section 3.3. In Fig. 14(a) an example of multiple
resources is shown. There are two pora that refers to a single poo. This implies that this

operation

resource_definition

poopora pora

podpi pi

operation

resource_definition

odef
id

"poo"

serial_number id serial_number

"R1" "O1" "R2"

S

O1&R1&R2

(a) (b)

Figure 14: HRS describing multiple resources, in (a) as a STEP/Express model and
in (b) as an a PPN.

poo requires two resources in order to be able to execute the specific process. Each pora
refer to a single resource entity, pi.serial number R1 and pi.serial number R2 respectively.
In the PPN-specification this is represented by a single operation O1 with the two multiple
resources R1 and R2 separated by the & operator, cf. Fig. 14(b).

Alternative resource processes Alternative resources, in order to perform the same pro-
cess operation, are described by two or more poos that refer to the same pod and also refer to



4. Generation of Discrete Event Models for Control Synthesis and Verification 143

each other with the poor.relation type ’substitution’, cf Fig. 15(a). This means that the pod
describes the main process to be performed and there are more than one poo that are able to
perform this process. In PPN alternative resources are represented by a plus sign between
the possible alternative resources in the transition equation, cf 15(b).

operation

resource_definitio

n

poopora pora

pod

pi pi

operation

resource_definitio

n

odef
rtype

"substitution"

serial_number
id

serial_number

"R1" "O1" "R2"

poo

pooring

odef

ed

S

O1&(R1 +R2)

(a) (b)

Figure 15: HRS describing alternative resources, in (a) as a STEP/Express model
and in (b) as an a PPN.

Alternative processes (Substitution) Alternative processes are in STEP modelled as two
poos that refers to each other with the poor.relation type equal to ’Substitution’. The two
poos do not refer to the same pod. This is described in more detail in (Falkman et al. 2003b).

Arbitrary order (Exclusiveness) Exclusiveness, or arbitrary order as it is denoted in PPN,
is in STEP described by two or more poos that refers to each other with the attribute rela-
tion type of poor equal to ’exclusiveness’. In Fig. 16 the same arbitrary ordered processes
are represented in PPN using the ⊕ operator. The exclusiveness in STEP describes that there
are more than one process that are to be performed and these processes may be conducted
in arbitrary order. This in turn means practically that the order in which the processes are
executed does not influence the product in the sense of quality, appearance etc.

Parallel (Simultaneity) Parallel processes can in the PPN language be described by either
using Petri net semantics or by using the algebra operator , cf. Fig. 3. In STEP this is mod-
elled as two or more poos referring to each other with the poor.relation type ’simultaneity’.
Parallel processes are conducted at the same time and can be exemplified by two parts that
are refined separately in parallel with no concern to each other. After both have finished there
individual refinement they are joined in some way to finish the product with identity ppv.

Decomposition Decomposition of an operation specify a detailed sequence of events. Each
of these events specify a change in state for a resource. Detailed operation descriptions are
in the PPN language given as (EOP specifications), cf. Fig. 3. A decomposed operation in
STEP involves information about what the specific resources are meant to do during the pro-
cess, e.g. open, move to position, weld a spot. The decomposition relation is specified by a
poo referring to another poo by the poor with relation type equal to ’decomposition’, cf Fig.



144 V. Relationship between STEP and PPN models

operation

resource_definition

poopora pora

podpi pi

operation

resource_definition

odef

rtype

"exclusiveness"id id id

"R1" "O1" "R2"

poo

pooing
odef

pod

id

"O2"

ed

Si

⊕{O1&R1, O2&R2}

(a) (b)

Figure 16: HRS describing arbitrary ordered processes, in (a) as a STEP/Express
model and in (b) as an a PPN.

17(a). The example given in Section 16 is in Fig. 17 using the STEP standard. This is a very
simplified decomposed control sequence just to demonstrate the principle. In Section 4.3 a
complete EOP specification with resource states is presented.

id

odef

pod pod

poo poo

poor

id

ed

odef

ing

pod

poo

poor

id

ed

odef

ing

pod

poo

poor

id

ed

odef

rtype

"decomposition"

rtype

"sequence"

rtype

"sequence"

"O1" "init"
"turn off

(R1a)"

"turn off

(R1b)"

ing

S

O1

O1

finish

turn offR1a

turn offR1b

Figure 17: In (a) a STEP/Express model is given describing the decomposition of
operation O1, no resources are included. In (b) a corresponding PPN is shown,
specifying the decomposition of operation O1.

4.2 Resources and Products

The attribute of a manufacturing resource that is needed in order to generate a PPN-specific-
ation is either the si.id or the pi.serial number, cf. Fig. 11 and Fig. 15.

For the purpose of creating a product in the PPN-specification only the product identifier



4. Generation of Discrete Event Models for Control Synthesis and Verification 145

is needed. The product identifier is represented by the iv.id in AP214. The product identifier
is related to process information via the pp.produced output as shown in Fig. 12.

4.3 Operation and interlocking

Operation description As described in Example 16, resource states are used in order to
specify the execution of an EOP specification. In STEP this means that a condition assign-
ment refers to a process operation occurrence with the attribute name equal to ”required re-
source state”, see Fig. 13. The condition assignment refers to one or more state assignment
via described condition. Resource states are described in STEP by state with the attribute
name. The state assignment refers to both state and physical instance, which connects a re-
source state to a specific resource. In Fig. 18 one transition of the EOP specification in Fig. 3
is presented. A poo refers to a pod with id equal to ”turn off”. Two condition assignments
with name equal to ”required resource state” are referring to this poo. The two required
states are described by the entities state and the related resources are described by physi-
cal instance.

sa

poo

described_state state

state

name

name

'on'

'on'

odef

'turn off'

pi

sa

assigned_to

pora resource_definition

resource_definition pi

described_conditionassigned_to

operation

ca

serial_number

'R1b'

described_state

operation pora serial_number

'R1a'

name

'required resource state'

pod id

Figure 18: Operation described by populated STEP model.

Interlocking description A special kind of condition is the interlocking, described in Ex-
ample 16. This condition restricts when an event in the EOP specification is allowed to
execute, cf. Fig. 3. The interlocking model in STEP is very similar to the operation de-
scription just described in the previous section. The difference is that the attribute name for
condition assignment is ”interlock”. There can be multiple as well as alternative interlock
conditions, which is shown in the example in Section 5. In Fig. 19 the interlocking specifi-
cation in Fig.3(c) is presented as a STEP model. A condition assignment with name equal
to ”interlock” refers to a poo, which refers to a pod with id equal to ”turn off”. The state
describes the specific state ”on” and physical instance specifies the related resource, in this
case ”R2”.



146 V. Relationship between STEP and PPN models

poo statesa
described_condition

described_statename

ca

'Interlock' 'on'

assigned_to
name

poraoperation pi

assigned_to

resource_definition

pod

id 'turn off'

odef

name 'R2a

'

Figure 19: Interlocking described by populated STEP model.

5 Example: A robot cell in the Volvo factory

The following example describes how a resource allocation system may easily be modelled
by use of the PPN language. It is also demonstrated how the PPN specifications may be
represented in the STEP standard. The PPN specification consists of three different parts, as
described in Example 16. These are; a relation of operation (ROP) specification, execution of
operation (EOP) specifications, and interlocking (IL) specifications. The resource allocation
system is a robot cell at Volvo Car Corporation, Torslanda, Sweden and is illustrated in
Figure 20. This robot cell consists of four robots R1-R4, two Fixtures F1-F2, two turntables
T1-T2, and a conveyor C1.

Conveyor 1

Fixture 1

Fixture 2

Robot 1

Robot 2

Robot 3

Robot 4

Turntable 1

Turntable 2

Figure 20: A welding cell at Volvo Car Corporation, Torslanda, Sweden.

The task of the example cell in Figure 20 is to weld a plate to the side of the floor of
the car, underneath the doors. This operation is to be executed on both car models produced
in the cell. The models are, Volvo V70, and S80. During a work cycle Robot 4 picks a part
from the rack on Turntable 2 and then places it in Fixture 2. Simultaneously Robot 2 starts



5. Example: A robot cell in the Volvo factory 147

to weld previously loaded, but not completely welded, parts of the body. Robot 4 changes
tool from gripper to weld gun, Fixture 2 positions the plate on the body, and both Robot 2
and Robot 4 weld the new part to the body.

Relations of operations specification First we have to create the ROP specification, de-
scribing the general sequence of operations. This is done in a way that guarantees as much
flexibility as possible in the cell, but at the same time fulfilling given restrictions such as
predecessors. When creating a specification using the PPN language a choice has to be
made regarding the use of Petri net constructs versus algebra expressions. For some systems
it might be advantageous to use Petri net constructs to a large extent, while other systems
might benefit more from making greater use of algebra expressions. In order to realize an
easy-to-read and concise specification, this decision is up to each individual specifier.

In Fig. 21 part of the ROP for Volvo V70 is presented. It involves eight operations
divided into three parallel paths using the Petri net construct for parallel execution. The first
operation in each parallel path does not have any predecessors and it is therefore reasonable
to assume that these can execute in parallel. The parallel execution of operations O2 and
O3 is, however, modelled using the algebra expression. This is done since both operation O2

and operation O3 are required to be completed before operation O4 is allowed to be executed.
Operation O4 is followed by the execution of either operation O5A or O5B , which in its turn is
followed by the execution of operation O7. There is a restriction on operation O7 specifying
that this operation is not allowed to execute before operation O6 has finished its execution.
Operation O6 is followed by operation O17. The reservation of necessary resources for each
operation is specified by synchronizing the execution of every operation with corresponding
resource model, cf Example. 17.

O1&C1O6&F2 {O2&T2, O3&R4}

O4&R4

O5A&R4 + O5B &R4

O7[O
↓
6]&R4

O17 [O↓
16 ∧ O↓

20]&F2

Figure 21: Specification of the relation of operations (ROP) given as an PPN model.

The ROP specification in Fig. 21 is modelled as a STEP/Express model in Fig. 22. Note
that the resources in the PPN model are not included in the STEP/Express model. The



148 V. Relationship between STEP and PPN models

"simultaneity

"
ing

id

id"simultaneity"

poo_O1 poo_O2 poo_O3 poo_O6poo_O4 poo_O5A poo_O7

poor poor

ing ed ing

ing

ed ing

poor

poor
id "sequence"

ed

ed

poor

id id

"simultaneity

"
"sequence"

poor

ing

id

id

"sequence"

ed

poo_O5B

ed

poo_O17

poor

poor
"sequence"

ing

id

"substitution"

ing ed

ed

poor

ing ed

id

"sequence"

poor
ing ed

id"sequence"

Figure 22: The ROP specification in Fig. 21 given as an instantiated STEP/Express model,
no resources included in the figure nor are operations O16 and O20.

parallel execution of operations O1, O2, O3, and O6 is specified using the relation type equal
to ”simultaneity”. The fact that operation O4 has to wait until both operations O2 and O3

have finished is specified in Fig. 22 using the relation type equal to ”sequence” between
both O2 and O4 as well as between O3 and O4. Operation O7 follows both operation O6 and
either of O5A or O5B.

Execution of operation specification Each individual operation is given as a PPN speci-
fication. The operations are described by changes of the involved resource states.

The EOP specification for operation O17 is presented in Fig. 24. This operation moves
the fixture to its home position. The EOP specification for this operation specifies a sequence
of three events that the operation executes. The resource fixture F2 involves five different
components, Y18, Y16, Y14, SG3, and SG6, whos states constitute state conditions for each
event. This means that in order for each event to occur, in the EOP specification in Fig. 23,
these components have to be in certain states. The first event openY14 executes when Y18 is
in state work pos, Y16 is in state locked, Y14 is in state closed, SG3 is in state on, and SG6
is in state on. Component Y14 is the clamp on the fixture and event openY14 specifies the
opening of the clamp, which in turn means that Y14 is to change state to open, cf. Fig. 23.
The second event unlockY16 is performed when the clamp has changed state. The finishing
of the operation is specified by the last event finish, which occurs when Y16 has changed
state to unlocked.

openY14 [Y 18wpos ∧ Y 16locked ∧ Y 14closed ∧ SG3on ∧ SG6on]

unlockY16 [Y 18wpos ∧ Y 16locked ∧ Y 14open ∧ SG3on ∧ SG6on]

finish[Y 18wpos ∧ Y 16unlocked ∧ Y 14open ∧ SG3on ∧ SG6on]

Figure 23: EOP specification of operation OP17 given as a PPN.



5. Example: A robot cell in the Volvo factory 149

The EOP specification described in Fig. 23 as a PPN is in Fig. 24 described as a STEP/
Express model. The five components are described by the physical instances with the at-
tribute id equal to the components identity. Every pi refers to a pora, which in turn refers to a
poo, as described in Section 3.3. A condition assignment refers to the state state assignments,
which refers both to the specific resource as well as its state.

pooring edid

rtype

poo poo

poor

ing

rtype

sa
sa

sa
sa

state

described_state

sa
sa

sa
sa

state

described_state

ed

poo

poor

ing

rtype

sa
sa

sa
sa

state

described_state

name

name

name

name

name

'work pos.'

'unlocked'

'close'

'on'

'on'

name

name

name

name

name

'work pos.'

'unlocked'

'open'

'on'

'on'

name

name

name

name

name

'work pos.'

'locked'
'open'

'on'

'on'

'sequence' 'sequence'sequence

si
si

si
si

sa
sa

sa
sa

'open'

id

'unlock'

id

'finish'

poora
poora

poora
poora

pora

resource_definition

pi

ca

described_condition

operation
assigned_to

si
si

si
si

sa
sa

sa
sa

poora
poora

poora
poora

pora

resource_definition

pi

described_condition

operation

ca

assigned_to

si
si

si
si

sa
sa

sa
sa

poora
poora

poora
poora

pora

resource_definition

pi

operation

ca

assigned_to

id

id

id

id

id

'Y18'

'Y14'

'Y16'

'SG3'
'SG6'

name
name

name

'required

resource

state'

required

resource

state

'required

resource

state'

pod pod pod

odef odefodef

assigned_to

sasa

assigned_to

sa

assigned_to
described_condition

Figure 24: EOP specification of operation OP17 given as an instantiated STEP/Express
model.

Interlocking specification As can be seen in Fig.23 the only component that changes state
between the initial state and the first action is the clamp Y14. Fig. 25 shows the interlock
when Y14 goes from closed to open, which is modelled with the event openY14 in the EOP
specification, cf. Fig 23. Fig. 25 describes two alternative requirements, and one of these has
to be fulfilled before Y14 is allowed to change state to open. The first requirement specifies
that Y18 is in its home state. The second alternative requirement specifies that if Y18 is in its
work position state then O16 cannot be ongoing, i.e. O16 is in its initial or final state. This is
in Fig. 25 modelled as a restriction on the event init, where all the necessary state conditions
have to be fulfilled before it is possible for openY14 to be executed.

The interlock specification in Fig. 25 is specified using a STEP/Express model in Fig. 26.
In this figure three alternative restrictions for event openY14 are described using three condi-



150 V. Relationship between STEP and PPN models

init[Y 18home ∨ Y 18wpos ∧ O↑
16 ∨ Y 18wpos ∧ O↓

16)]

openY14

Figure 25: Interlock specification for openY14 given as a PPN.

poo

name

ca sa state

state

described_condition

name

name

id

'open_Y14'

sa

'Interlock'

described_condition

described_state

described_state

assigned_to

name
ca'Interlock' home

'work pos.'

sa state

name

described_statedescribed_condition

'O16_first'

name

casastate

described_condition

name

described_state

'work pos.'

sastate

name

described_state described_condition

'O16_last'
assigned_to

'Interlock'

pododef

Figure 26: Interlock specification for openY14 described as a STEP/Express model.

tion assignment entities. The attribute name is in each of these condition assignments equal
to ”interlock” and they all refer to the same poo. The required states specified by each con-
dition assignment are described by the state via the state assignment. Note that the resource
entities pora and pi are left out of Fig. 26 in order to increase clarity.

6 Conclusions

This paper has shown how the well accepted international standard STEP-AP214 can be
used for communication and storing of resource allocation system specifications. A tool for
creating such specifications has also been briefly presented, based on a mapping between
the STEP information model and the resource allocation system specification. This map-
ping implies a reliable framework for the exchange of control related information involving
resource, product and process information.

The presented tool uses a language called process algebra Petri nets (PPN), introduced
in (Falkman and Lennartson 2005a), for generating process-specifications, e.g. the specifi-
cations of resource allocation systems. The PPN language has been developed in accordance
with the process relations defined in STEP-AP214. It has been shown how this tool can be
used to specify complex systems in a compact, but yet highly readable manner.

A resource allocation system involves three parts, high level routing specifications, re-
source models, and a supervisor. The high level routing specification involves three speci-
fications (Richardsson 2005), relations of operations (ROP), execution of operation (EOP),
and interlocks (IL). The present research, which is a more thorough and complete descrip-



References 151

tion of the ideas that were presented in (Falkman et al. 2003b), has illustrated how the PPN
language as well as the STEP standard can be used for high level specification but also for
detailed operation specifications, such as execution of operations (EOP) and interlocking
(IL) specifications (Richardsson 2005).

The method has been partly implemented and the result has been validated using case
studies at both Scania Oskarshamn, Sweden (Falkman et al. 2003b) and Volvo Torslanda,
Sweden. In future work the entire method will be implemented and applied to large industry
cases.

References

Åkesson, K., Fabian, M., Flordal, H. and Vahidi, A. (2003). Supremica - a tool for verifi-
cation and synthesis of discrete event supervisors, 11th Mediterranean Conference on
Control and Automation, Rhodos, Greece.

Andersson, K., Richarsson, J., Lennartsson, B. and Fabian, M. (2005). Hierarchical control
applying information reuse and supervisor synthesis, To be submitted to Transactions
on Automation Science and Engineering .

Booch, G., Rumbaugh, J. and Jacobson, I. (1999). The Unified Modeling Language User
Guide, Addison-Wesley object technology series, , ISSN 99-2816663-3, Addison-
Wesley, Harlow.

Cassandras, C. and Lafortune, S. (1999). Introduction to Discrete Event Systems, Kluwer
Academic Publishers.

Coffman, E., Elphick, M. and Shoshani, A. (1971). System deadlocks, Computing Surveys
3(2): 67–78.

Eversheim, W., Marczinski, G. and Cremer, R. (1991). Structured modelling of manufactur-
ing processes as nc-data preparation, In Annals of the CIRP, volume 40/1.

Falkman, P. and Lennartson, B. (2001). Combined process algebra and petri nets for speci-
fication of resource booking problems, 2001 IEEE American Control Conference, Ar-
lington, VA, USA.

Falkman, P. and Lennartson, B. (2005a). A high level specification language based on pro-
cess algebra and petri nets, To be submitted to Transactions on Automation Science and
Engineering .

Falkman, P. and Lennartson, B. (2005b). Using a high level language for verification and
control synthesis of discrete event systems, Submitted to Transaction on Control System
Technology .

Falkman, P., Nielsen, J. and Lennartson, B. (2003). Automatic generation of object models
for process planning and control purposes using an international standard for informa-
tion exchange, Journal on Systemics, Cybernetics and Informatics 1(5).



152 References

Herzog, E. and Torne, A. (2001). Information modelling for system specification representa-
tion and data exchange, Proc. of 8th Annual IEEE International Conference and Work-
shop on Engineering of Computer Based Systems., Washington, DC, USA, pp. 136–
143.

Hoare, C. (1985). Communicating Sequential Processes, International Series in Computer
Science, Prentice–Hall International, Englewood Cliffs, NJ.

Hopcroft, J. and Ullman, J. (1979). Introduction to Automata Theory, Languages and Com-
putation, Addison-Wesley Series in Computer Science, Addison-Wesley.

Johansson, M. (2001a). Personal comunication at presentation of doctorial thesis, -
http://dictionary.reference.com/search?r=2&q=dissertation, Royal Institute of Technol-
ogy, Department of Production Engineering.

Johansson, M. (2001b). Information Management for Manufacturing System Development,
PhD thesis, Kungliga Tekniska Högskolan. ISSN: 1650-1888.

Kemmerer, S. (1999). Step - the grand experience, NIST special publication, 939. edited by
Sharon J. Kemmerer.

Kozen, D. (1997). Automata and Computability, ISBN 0-387-94907-0, Springer-verlag New
York, inc.

Milner, R. (1989). Communication and Concurrency, International Series in Computer Sci-
ence, Prentice–Hall International, Englewood Cliffs, NJ.

Murata, T. (1989). Petri nets: properties, analysis and applications, Proc IEEE 77(4): 541–
580.

Owen, J. (1993). STEP - A introduction., ISBN 1-874728-04-6, Information Geometers, 1st
edition, Winchester.

Peterson, J. (1981). Petri Net Theory and the Modeling of Systems, Prentice-Hall, Inc.

Ramadge, P. and Wonham, W. (1989). The control of discrete event systems, Proc. IEEE
77(1): 81–98.

Richardsson, J. (2005). Development and Verification of Control Systems for Flexible Au-
tomation, Licentiate thesis, Control and Automation Laboratory, Chalmers University
of Technology, Göteborg, Sweden. Technical report 015.

Scheller, A. (1990). Information modeling for distributed applications, Proc of second IEEE
Workshop on Future Trends of Distributed Computing Systems.

Schenk, D. and Wilson, P. (1994). Information Modeling: The EXPRESS Way, ISBN 0-19-
508714-3, Oxford University Press.

TC184/SC4, I. (1994). Iso 10303-1: Industrial automation systems and integration - product
data representation - and exchange - part 1: Overview and fundamental principles, ISO
Standard.



References 153

TC184/SC4, I. (2001). Iso 10303-214: Industrial automation systems and integration - prod-
uct data representation - and exchange - part 214: Core data for automotive mechanical
design processes, ISO Standard.

Trapp, G. (1993). The emerging STEP standard for product-model data exchange, Volume:
26, issue 2, Computer.

von Euler-Chelpin, A., Holmstrm, P. and Richardsson, J. (2004). A neutral representation of
process and resource information of an assembly cell supporting control code develop-
ment, process planning and resource life cycle management, 2nd International Seminar
on Digital Enterprise Technology, Seattle, USA.

Warthen, B. (1990). Application protocols - step access, Product Data Int’l,Warthen Comm.,
1(2): 5–7.





references





157

bibliography

Aceta, L., Larsen, K. and Ingólfsdóttir, A. (2004). An introduction to milners ccs.

Adlemo, A., Andreasson, S., Fabian, M., Gullander, P., Hellgren, A., Lennartson, B., Liljen-
vall, T. and Pernebo, L. (1997). Models for specification and control of flexible man-
ufacturing systems, Technical report, Control and Automation Laboratory, Chalmers
University of Technology, Göteborg, Sweden. Technical report nr CTH/RT/R-97/003.

Åkesson, K. (2002). Methods and tools in supervisory control theory, Phd thesis, Control
and Automation Laboratory, Chalmers University of Technology, Göteborg, Sweden.
Technical report 431.

Åkesson, K., Fabian, M., Flordal, H. and Vahidi, A. (2003). Supremica - a tool for verifi-
cation and synthesis of discrete event supervisors, 11th Mediterranean Conference on
Control and Automation, Rhodos, Greece.

Åkesson, K., Flordal, H. and Fabian, M. (2002a). Exploiting modularity for synthesis and
verification of supervisors, Proc. of 15’th IFAC World Congress on Automatic Control,
Barcelona, Spain.

Åkesson, K., Flordal, H. and Fabian, M. (2002b). Exploiting modularity for synthesis and
verification of supervisors, Proc. of the IFAC World Congress on Automatic Control.,
Barcelona, Spain.

Alenljung, T. and Lennartson, B. (2005). Simplified modeling of manufacturing systems -
an introduction to sensor activation graphs, Proc. of IEEE International Conference on
Automation Science and Engineering, Edmonton, Canada, pp. 261– 266.

Andersson, K., Richarsson, J., Lennartsson, B. and Fabian, M. (2005). Hierarchical control
applying information reuse and supervisor synthesis, To be submitted to Transactions
on Automation Science and Engineering .

Arnold, A. (1994). Finite Transition Systems: Semantics of Communicating Systems, In-
ternational Series in Computer Science, Prentice–Hall International, Englewood Cliffs,
NJ.

Basten, T. (1998). In Terms of Nets:System Design with Petri Nets and Process Algebra, PhD
thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.

Bergstra, J. A. and Klop, J. W. (1984). Process algebra for synchronous communication,
Information and Control 60(1-3): 109–137.

Bergstra, J. A. and Klop, J. W. (1985). Algebra of communicating processes with abstrac-
tion., Theor. Comput. Sci. 37: 77–121.

Bergstra, J. and Klop, J. (1982). Strong normalization and perpetual reductions in the lambda
calculus, Elektronische Informationsverabeitung und Kybernetik 18: 403417.



158

Best, E., Devillers, R. and Koutny, M. (1998). Petri nets, process algebras and concurent
programming languages, Proc of ICM’98, Berlin, Germany.

Best, E., Devillers, R. and Koutny, M. (2001). Petri net algebra, EATCS monographs on
theoretical computer science, Springer, Berlin.

Best, E., Devillers, R. and Koutny, M. (2002). The box algebra = petri nets + process ex-
pressions, Information and Computation (178): 44–100.

Bloom, B., Cheng, A. and Dsouza, A. (1997). Using a protean language to enchance expres-
siveness in specification, IEEE Transactions on Software Engineering 23(4): 224–234.

Bolognesi, T. and Brinksma, E. (1987). Introduction to the iso specification language lotos,
Computer Networks and ISDN Systems 14(1): 25–59.

Booch, G., Rumbaugh, J. and Jacobson, I. (1999). The Unified Modeling Language User
Guide, Addison-Wesley object technology series, , ISSN 99-2816663-3, Addison-
Wesley, Harlow.

Brinksma, E. (1995). Performance and formal design: a process algebraic perspective,
Proc. of Sixth International Workshop on Petri Nets and Performance Models, IEEE,
Durham, NC USA, pp. 124 – 125.

Cassandras, C. and Lafortune, S. (1999). Introduction to Discrete Event Systems, Kluwer
Academic Publishers.

Coffman, E., Elphick, M. and Shoshani, A. (1971). System deadlocks, Computing Surveys
3(2): 67–78.

Cormen, T., Leiserson, C., Rivest, R. and Stein, C. (2001). Introduction to Algorithms,
Second Edition, 2nd edn, The MIT Press.

Crow, J., Vito, B. D., Lutz, R., Roberts, L., Feather, M. and Kelly, J. (2005). Formal methods
specification and analysis guidebook for the verification of software and computer sys-
tems., URL http://eis.jpl.nasa.gov/quality/Formal Methods/. Volume II: A practitioners
companion.

David, R. and Alla, H. (1992). Petri Nets and Grafcet, Prentice Hall International (UK) Ltd,
Hertfordshire HP2 4RG.

Degano, P., DeNicola, R. and Montanari, U. (1987). Ccs is an (augmented) contact-free c/e
system, in E. M. Venturini Zilli (ed.), Mathematical Models for the semantics of Paral-
lelism, Vol. Lecture Notes in Computer Science, Springer-Verlag, New York, pp. 144–
165.

Dictionary of Algorithms and Data Structures, process algebra (2004).
URL: http://www.nist.gov/dads/HTML/processalgbr.html

Eversheim, W., Marczinski, G. and Cremer, R. (1991). Structured modelling of manufactur-
ing processes as nc-data preparation, In Annals of the CIRP, volume 40/1.

Fabian, M. and Lennartson, B. (1994). Petri nets and control synthesis; an object oriented
approach., Proc of the 2nd IFAC/IFIP/IFORS Workshop on Intelligent Manufacturing
Systems, IMS ’94, Vienna, Austria.



159

Falkman, P. and Lennartson, B. (2001). Combined process algebra and petri nets for speci-
fication of resource booking problems, 2001 IEEE American Control Conference, Ar-
lington, VA, USA.

Falkman, P. and Lennartson, B. (2005a). A high level specification language based on pro-
cess algebra and petri nets, To be submitted to Transactions on Automation Science and
Engineering .

Falkman, P. and Lennartson, B. (2005b). Using a high level language for verification and
control synthesis of discrete event systems, Submitted to Transaction on Control System
Technology .

Falkman, P., Lennartson, B. and Tittus, M. (2001). Modeling and specification of discrete
event systems using combined process algebra, Proc. of 2001 IEEE/ASME Advanced
Intelligent Mecatronics, COMO, Italy.

Falkman, P., Lennartson, B. and Tittus, M. (2005). Specification of a batch plant using
process algebra and petri nets, To be submitted to Transactions on Control Engineering
Practice .

Falkman, P., Nielsen, J. and Lennartson, B. (2002). A formal mapping of static informa-
tion models into dynamic models for process planning and control purposes, Proc. of
WODES 2002, Spain.

Falkman, P., Nielsen, J. and Lennartson, B. (2003a). Automatic generation of object models
for process planning and control purposes using an international standard for informa-
tion exchange, Proc. of SCI 2003, Orlando, Florida, USA.

Falkman, P., Nielsen, J. and Lennartson, B. (2003b). Automatic generation of object models
for process planning and control purposes using an international standard for informa-
tion exchange, Journal on Systemics, Cybernetics and Informatics 1(5).

Falkman, P., Nielsen, J. and Lennartson, B. (2004). A method for automated generation of
discrete event systems from step ap214 for process planning and control, Submitted to
Journal of Manufacturing Systems .

Harel, D., Pnueli, A., Schmidt, J. and Sherman, R. (1987). On the formal semantics of
statecharts., Proc. of Symposium on Logic in Computer Science., pp. 55–64.

Hellgren, A. (2000). Modelling and Implementation Aspects of Supervisory Control, Licen-
tiate thesis, Control and Automation Laboratory, Chalmers University of Technology,
Göteborg, Sweden. Technical report 350.

Hermanns, H., Herzog, U., Mertsiotakis, V. and Rettelbach, M. (1997). Exploiting stochas-
tic process algebra achievements for generalized stochastic petri nets, Proc. of Inter-
national Workshop on Petri Nets and Performence Models, IEEE, Los Alamitos, CA,
USA, Saint Malo, Fr, pp. 183–192.

Herzog, E. and Torne, A. (2001). Information modelling for system specification representa-
tion and data exchange, Proc. of 8th Annual IEEE International Conference and Work-
shop on Engineering of Computer Based Systems., Washington, DC, USA, pp. 136–
143.

Heymann, M. and Meyer, G. (1991). An algebra of discrete event processes, Technical
report, Ames Research Center, National Aeronautics and Space Administration.



160

Hoare, C. (1985). Communicating Sequential Processes, International Series in Computer
Science, Prentice–Hall International, Englewood Cliffs, NJ.

Hopcroft, J., Motwani, R. and Ullman, J. (2001). Introduction to Automata Theory, Lan-
guages and Computation, 2nd ed. edn, Addison-Wesley Series in Computer Science,
Addison-Wesley.

Hopcroft, J. and Ullman, J. (1979). Introduction to Automata Theory, Languages and Com-
putation, Addison-Wesley Series in Computer Science, Addison-Wesley.

ISO 10303-1: Industrial Automation Systems and Integration - Product Data Representation
and Exchange - Part 1: Overview and Fundamental Principles (1994). ISO standard.

Jmaiel, M. (2000). A unified algebraic framework for specifying communication protocols,
Proc. of Third international Conference on Formal Engineering Methods, York UK,
pp. 57–65.

Johansson, M. (2001a). Personal comunication at presentation of doctorial thesis, -
http://dictionary.reference.com/search?r=2&q=dissertation, Royal Institute of Technol-
ogy, Department of Production Engineering.

Johansson, M. (2001b). Information Management for Manufacturing System Development,
PhD thesis, Kungliga Tekniska Högskolan. ISSN: 1650-1888.

Kemmerer, S. (1999). Step - the grand experience, NIST special publication, 939. edited by
Sharon J. Kemmerer.

Kozen, D. (1997). Automata and Computability, ISBN 0-387-94907-0, Springer-verlag New
York, inc.

Lennartson, B., Fabian, M., Tittus, M. and Hellgren, A. (1998). Modeling primitives for
supervisory control, Proc of WODES ’98, Cagliari, Italy.

Mayr, R. (1997). Combining petri nets and pa-processes, Theoretical Aspects of Com-
puter Software (TACS’97), volume 1281 of Lecture Notes in Computer Science, Sendai,
Japan.

Milner, R. (1980). A Calculus of Communicating Systems, Vol. Lecture Notes in Computer
Science, Springer-Verlag Berlin Heidelberg New York.

Milner, R. (1989). Communication and Concurrency, International Series in Computer Sci-
ence, Prentice–Hall International, Englewood Cliffs, NJ.

Minsky, M. L. (1989). Computation: Finite and Infinite Machines, Prentice-Hall, Hemel
Hempstead.

Murata, T. (1989). Petri nets: properties, analysis and applications, Proc IEEE 77(4): 541–
580.

Olderog, E.-R. (1987). Petri nets and algebraic calculi of processes, Advances in Petri Nets,
266 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany pp. 196–
223.

Olderog, E.-R. (1991). Nets, Terms and Formulas, Cambridge University Press, Trumpington
Street, Cambridge CB2 1RP, Great Britain.



161

Owen, J. (1993). STEP - A introduction., ISBN 1-874728-04-6, Information Geometers, 1st
edition, Winchester.

Pena, M. and Cortadella, J. (1996). Combining process algebras and petri nets for the spec-
ification and systethis of asynchronious circuits, Proc of International Symposium on
Advanced Research in Asynchronous Circuits and Systems, Fucushima, Japan.

Peterson, J. (1981). Petri Net Theory and the Modeling of Systems, Prentice-Hall, Inc.

Plotkin, G. D. (1991). A Structural Approach to Operational Semantics, Computer Schience
Department Aarhus University, DAIMI FN-19, Ny Munkegade, Building 540, DK-
8000 Aarhus C, Denmark.

Ramadge, P. and Wonham, W. (1987). Supervisory control of a class of discrete event pro-
cesses, SIAM J. Control Optim. 25(1): 206–230.

Ramadge, P. and Wonham, W. (1989). The control of discrete event systems, Proc. IEEE
77(1): 81–98.

Reisig, W. (1985). Petri Nets, An Introduction, Springer Verlag.

Rescher, N. and Urquhart, A. (1971). Temporal logic, Springer-Verlag, New York .

Richardsson, J. (2005). Development and Verification of Control Systems for Flexible Au-
tomation, Licentiate thesis, Control and Automation Laboratory, Chalmers University
of Technology, Göteborg, Sweden. Technical report 015.

Rondogiannis, P. and Cheng, M. (1994). Petri-net-based analysis of process algebra pro-
grams, Elsevier Science Publisher B.P., Science of Computer Programming pp. 55–89.

Scheller, A. (1990). Information modeling for distributed applications, Proc of second IEEE
Workshop on Future Trends of Distributed Computing Systems.

Schenck, D. and Wilson, P. (1994). Information Modeling: The EXPRESS Way, Oxford
University Press. ISBN: 0-19-508714-3.

Schenk, D. and Wilson, P. (1994). Information Modeling: The EXPRESS Way, ISBN 0-19-
508714-3, Oxford University Press.

Stirling, C. (1996). Logics for Concurrency: Structure versus automata, Springer Verlag,
chapter Modal and temporal logics for processes., pp. pp 149–237.

TC184/SC4, I. (1994). Iso 10303-1: Industrial automation systems and integration - product
data representation - and exchange - part 1: Overview and fundamental principles, ISO
Standard.

TC184/SC4, I. (2001). Iso 10303-214: Industrial automation systems and integration - prod-
uct data representation - and exchange - part 214: Core data for automotive mechanical
design processes, ISO Standard.

Trapp, G. (1993). The emerging STEP standard for product-model data exchange, Volume:
26, issue 2, Computer.

Vahidi, A., Lennartson, B. and Fabian, M. (2005). Efficient supervisory synthesis of large
systems, Control Engineering Practice. Accepted.



162

von Euler-Chelpin, A., Holmstrm, P. and Richardsson, J. (2004). A neutral representation of
process and resource information of an assembly cell supporting control code develop-
ment, process planning and resource life cycle management, 2nd International Seminar
on Digital Enterprise Technology, Seattle, USA.

Warthen, B. (1990). Application protocols - step access, Product Data Int’l,Warthen Comm.,
1(2): 5–7.


