
On the Impact of Hardware Faults - An Investigation of

the Relationship between Workload Inputs and Failure

Mode Distributions

Domenico Di Leo*, Fatemeh Ayatolahi**, Behrooz Sangchoolie**, Johan Karls-

son**, Roger Johansson**

*Dipartimento di Informatica e Sistemistica, Università degli Studi di Napoli Federico II,

Via Claudio 21, 80125, Naples, Italy

**Department of Computer Science & Engineering, Chalmers University of Technology,

SE-41296, Gothenburg, Sweden

domenico.dileo@unina.it,

{fatemeh.ayatolahi,behrooz.sangchoolie,johan,roger}@chalmers.se

Abstract. Technology scaling of integrated circuits is making transistors in-

creasingly sensitive to process variations, wear-out effects and ionizing parti-

cles. This may lead to an increasing rate of transient and intermittent errors in

future microprocessors. In order to assess the risk such errors pose to safety

critical systems, it is essential to investigate how temporary errors in the in-

struction set architecture (ISA) registers and main memory locations influence

the behaviour of executing programs. To this end, we investigate – by means of

extensive fault injection experiments – how such errors affect the execution of

four target programs. The paper makes three contributions. First, we investigate

how the failure modes of the target programs vary for different input sets. Se-

cond, we evaluate the error coverage of a software-implemented hardware fault

tolerant technique that relies on triple-time redundant execution, majority vot-

ing and forward recovery. Third, we propose an approach based on assembly

language metrics which can be used to correlate the dynamic fault-free behav-

iour of a program with its failure mode distribution obtained by fault injection.

Keywords: microprocessor faults, fault injection, dependability assessment,

software-implemented hardware fault tolerance, failure mode distributions.

1 Introduction

Technology and voltage scaling is making transistors increasingly susceptible to pro-

cess variations, wear-out effects, and ionizing particles [‎1]. This is expected to in-

crease the rate of transient, intermittent and permanent transistors faults in future inte-

grated circuits. Modern microprocessors are therefore being equipped with increas-

ingly sophisticated hardware mechanisms for fault tolerance, error masking and error

detection. However, since such mechanisms cannot provide perfect error coverage,

and due to the fact that the number of transistors per chip is steadily increasing, it is

mailto:domenico.dileo@unina.it
mailto:%7bfatemeh.ayatolahi,%20behrooz.sangchoolie,%20johan,%20roger%7d@chalmers.se

likely that future microprocessors will exhibit an increasing rate of incorrect program

executions caused by hardware related errors.

A cost-effective way of reducing the risk that such incorrect program executions

cause unacceptable or catastrophic system failures is to introduce a layer of software-

implemented error handling mechanisms. Numerous software techniques for detecting

and masking hardware errors have previously been proposed in the literature [‎2, ‎3].

The effectiveness of these techniques are often evaluated, or benchmarked, by means

of fault injection experiments that measure their ability to detect or mask single or

multiple bit errors (bit flips) in CPU registers and main memory [‎4]. Bit flipping is

used to emulate the effect of single event upset (SEU) errors caused by ionizing parti-

cles. The error coverage for software-implemented error handling techniques often

depends on the input processed by the target system. Thus, to assess the variability in

error coverage, it is essential to conduct fault injection experiments with different

inputs [‎5, ‎6].

This paper presents the results of extensive fault injection experiments with four

programs where single bit errors were injected in CPU registers and main memory of

the target systems. The aim of the study is to investigate how error coverage varies for

different inputs. We conducted experiments with programs protected by triple-time

redundant execution with forward recovery [‎7], and programs without software-

implemented hardware fault tolerance (SIHFT). In addition, we propose a technique

for identifying input sets that are likely to cause the measured error coverage to vary.

The remainder of the paper is organized as follows. We describe the target work-

loads in Section ‎2 and the TTR-FR mechanism in Section ‎3. The fault injection exper-

imental setup is described in Section ‎4. The analysis of the extensive fault injections

conducted on the workloads with/without TTR-FR mechanism is presented in Section

‎5. Based on the obtained results, we present the input selection approach in Section ‎6.

2 Target Workloads

In this section, we present the four workloads used in our set of experiments: secure

hash algorithm (SHA), cyclic redundancy check (CRC), quick sort (Qsort), and binary

string to integer convertor (BinInt). SHA is a cryptographic hash function which gen-

erates a 160-bit message digest. We use SHA-1 algorithm which is adopted in many

security protocols and applications such as SSL, SSH and IPsec. The CRC that we use

is a software implementation of CRC 32-bit polynomial which is mostly used to cal-

culate the end-to-end checksum. Qsort is a recursive implementation of the well-

known quick sort algorithm, which is also used as a target program for fault injection

experiments in [‎6, ‎8]. Finally, BinInt converts an ASCII binary string, 1s and 0s, into

its equivalent integer value.

Even though the implementation of our workloads can be found in the MiBench

suite [‎9], we only take CRC and BinInt from this suite. For the quick sort algorithm,

the MiBench implementation uses a built-in C function named qsort whose source

code is not available. This prevents us from performing detailed analysis. Further-

more, the MiBench implementation of SHA uses dynamic memory allocation which

is not necessary for an embedded system. Thus, we adopt another implementation of

SHA1. The structure of these synthetic workloads profoundly differs in terms of lines

of source code (LOC), number of functions, input types and executed assembly in-

structions. BinInt is the smallest workload with 7 LOC and is made of one function

with one loop, whereas SHA measures 125 LOC and has 5 functions.

2.1 Input Sets

Nine different inputs are selected for each workload. The combination of an input and

a workload is called an execution flow. Thus, for each workload, we have conducted

experiments for 9 execution flows. On the basis of the length of the inputs, we group

SHA and CRC execution flows into three categories of small, medium, and large

inputs, see Table 1. These categories are chosen to represent input lengths that are

common in real applications. For Qsort, the input vector consists of 6 integers. The

execution flows use the same 6 integers with different permutations. In this way, the

inputs cover a range of possibilities, including sorted, mostly sorted, partly sorted, and

unsorted, see Table 2. The input of BinInt is a random string of 1s and 0s. Since an

integer is a 32-bit data type, the length of the input string is limited to 32 characters.

Table 1. The input space for CRC (left table) and SHA (right table) execution flows

Category
Input length

(characters)
Execution flow Category

Input length

(characters)
Execution flow

Small

0 CRC-1

Small

0 SHA-1

1 CRC-2 1 SHA-2

2 CRC-3 2 SHA-3

Medium
10 CRC-4 & CRC-5

Medium
10 SHA-4 & SHA-5

46 CRC-6 & CRC-7 60 SHA-6 & SHA-7

Large 99 CRC-8 & CRC-9 Large 99 SHA-8 & SHA-9

Table 2. The input space for Qsort (left table) and BinInt (right table) execution flows

Category
of sorted

elements
Execution flow

Category
Input length

(characters)

Execution

flow

Sorted 6 Qsort-1 Small

0 BinInt-1

9
BinInt-2 &

BinInt-3

Mostly

sorted
4 Qsort-2 & Qsort-3

Medium

16
BinInt-4 &

BinInt-5

Partly

sorted

3 Qsort-4 & Qsort-5
24

BinInt-6 &

BinInt-7 2 Qsort-6 & Qsort-7

Unsorted 0 Qsort-8 & Qsort-9 Large 31
BinInt-8 &

BinInt-9

1 http://www.dil.univ-mrs.fr/~morin/DIL/tp-crypto/sha1-c

3 Software-Implemented Hardware Fault Tolerance (SIHFT)

In addition to the basic version of the workloads, we conducted experiments on the

triple time redundant execution with forward recovery (TTR-FR) [‎7]. In TTR-FR, the

target workload is executed three times and the result of each run is compared with

the other two runs using a software-implemented voter. If only one run of the program

generates a different output, the output of the other two runs will be selected (majority

voting). In case the workload is state-full, the state of the faulty run moves forward to

a fault-free point (forward recovery). If none of the outputs match, then error detec-

tion is signaled.

The non-fault tolerance version of the workloads consists of three major code

blocks; startup, main function, and core function. In the TTR-FR implementation we

add the voter to the main function to perform the majority voting. The core function,

which is called three times from the main function, performs the foremost functionali-

ty of each workload. As an example, in Qsort, the sorting procedure is done in the

Qsort’s‎core‎function, whereas in CRC, the core function is responsible for the check-

sum calculations.

4 Experimental Setup and Fault Model

The workloads are executed on a Freescale MPC565 microcontroller, which uses the

PowerPC architecture. Faults are injected into the microcontroller via a Nexus debug

interface using Goofi-2 [‎10], a tool developed in our research group. This environ-

ment allows us to inject faults, bit flips, into instruction set architecture (ISA) regis-

ters and main memory of the microcontroller. Ideally, the fault model to adopt for this

evaluation should exhibit real faults, i.e., it should account for multiple and single bit

flips. However, there is no commonly agreed model for multiple bit flips. Thus, we

adopt the single bit flip model as it has been done in other studies [‎11, ‎2, ‎3, ‎10].

The faults are injected in the main memory (stack, data, etc.) and all CPU registers

used by the execution flows. The registers include general purpose registers, program

counter register, link register, integer exception register, and condition register. As the

machine code of our workloads is stored in a Flash memory, it cannot be subjected to

fault injection. We define fault in terms of time-location pair, where the location is a

randomly selected bit in the memory word or CPU register, while the time corre-

sponds to the execution of a given machine instruction (i.e., a point in the execution

flow). Indeed, we make use of a pre-injection analysis [‎8] which is included in Goofi-

2. In this way, the fault injection takes place on a register or memory location, just

before it is read by the executing instruction. A fault injection experiment consists of

injecting one fault and observing its impact on a workload. A fault injection campaign

is a series of fault injection experiments with a given execution flow.

5 Experimental Results

In this section, we present the outcomes of fault injection campaigns conducted on the

4 workloads. We carried out 9 campaigns per workload which resulted in a total of 36

campaigns for the basic version and 36 campaigns for the TTR-FR version. The cam-

paigns consist of 25000 experiments except for CRC campaigns that are subjected to

12000 experiments. The error classification scheme of each experiment is:

 No Impact (NI), errors that do not affect the output of the execution flow.

 Detected by Hardware (DHW), errors that are detected by the hardware exceptions.

 Time Out (TO), errors that cause violation of the timeout2.

 Value Failure (VF), erroneous output with no indication of failure (silent data cor-

ruption).

 Detected by Software (DSW), errors that are detected by the software detection

mechanisms.

 Corrected by Software (CSW), errors that are corrected by the software correction

mechanisms.

When presenting the results, we also refer to the coverage (COV) as the probability

that a fault does not cause value failures, which is calculated in equation (1):

 COV = 1 - #VF/N (1)

Here N is the total number of experiments, and #VF is the total number of experi-

ments that resulted in value failure. In addition to the experiments classified as detect-

ed by hardware, the coverage includes no impact and timeout experiments. No impact

experiments can be the result of internal robustness of the workload; therefore they

contribute to the overall coverage of the system. Experiments that are resulted in

timeout are detected by Goofi-2. In a real application, watchdog timers are used to

detect these types of errors.

5.1 Results for Workloads without Software-Implemented Hardware Fault

Tolerance

Table 3 presents failure distributions for all the workloads. Each row shows the per-

centage of experiments that fall in different error classifications. Due to the large

number of experiments (25000 for SHA, BinInt, Qsort and 12000 for CRC), the 95%

confidence interval for the measures in this section varies from ±0.08% to ±0.89%.

For SHA and CRC, the percentage of experiments classified as value failures

grows as the length of the inputs is increased. If we consider that the value failure is

distributed as a normal variable with a mean value equals to the quotient between the

number of value failure experiments and the total number of experiments, we can

conduct one way analysis of variance (ANOVA). ANOVA is performed by testing the

hypothesis H0 which‎states‎“there is no linear correlation between the length of the

2 Timeout value is approximately 10 times larger than the execution time of the workload.

input and the percentage of value failure”. The results of ANOVA in Table 4 allow

us to reject H0 with a confidence of 95%. The reason behind this correlation is that

when the length of the input increases, the number of reads from registers and

memory locations are increased as well. Therefore, there are more possibilities to

inject faults that result in value failure. Obviously, as the value failure increases line-

arly with the length, the coverage is linearly decreased (Table 3).

Table 3. Failure distribution of all the execution flows (values are in percentage)

Execu-

tion flow

NI VF DHW TO COV Execu-

tion flow

NI VF DHW TO COV

CRC-1 42.7 6.1 48.2 3.0 93.9 SHA-1 18.9 38.8 41.0 1.4 61.2

CRC-2 32.9 17.9 46.7 2.4 82.1 SHA-2 17.8 40.1 41.0 1.1 59.9

CRC-3 28.3 24.3 45.8 1.6 75.7 SHA-3 17.6 40.8 40.6 1.0 59.2

CRC-4 20.8 34.3 44.0 0.8 65.7 SHA-4 16.8 42.1 39.7 1.4 57.9

CRC-5 20.3 35.5 43.6 0.6 64.5 SHA-5 15.9 43.1 39.4 1.6 56.9

CRC-6 17.1 39.6 43.0 0.3 60.4 SHA-6 11.5 47.1 39.5 1.9 52.9

CRC-7 16.6 39.8 43.4 0.2 60.2 SHA-7 11.4 47.7 39.3 1.6 52.3

CRC-8 15.7 41.2 42.7 0.4 58.8 SHA-8 10.7 48.8 38.8 1.7 51.2

CRC-9 16.0 41.9 41.8 0.3 58.1 SHA-9 10.7 49.1 38.4 1.8 50.9

Qsort-1 37.1 12.7 46.8 3.5 87.3 BinInt-1 44.1 3.5 49.9 2.5 96.5

Qsort-2 32.8 17.1 46.9 3.2 82.9 BinInt-2 34.9 20.6 41.5 3.0 79.4

Qsort-3 31.3 17.7 47.7 3.3 82.3 BinInt-3 34.7 20.6 41.6 3.1 79.4

Qsort-4 31.7 18.1 46.8 3.9 81.9 BinInt-4 34.5 20.5 42.0 2.9 79.5

Qsort-5 26.5 23.0 47.2 3.3 77.0 BinInt-5 35.3 21.2 40.5 3.0 78.8

Qsort-6 29.0 20.7 46.0 4.3 79.3 BinInt-6 35.1 21.0 40.8 3.1 79.0

Qsort-7 29.3 20.9 46.3 3.5 79.1 BitInt-7 34.8 21.5 40.5 3.2 78.5

Qsort-8 27.2 22.1 46.6 4.2 77.9 BitInt-8 36.7 20.4 40.0 3.0 79.6

Qsort-9 25.4 24.2 46.5 4.0 75.8 BinInt-9 35.5 20.9 40.5 3.1 79.1

Table 4. Null Hypothesis test results for the workloads

Null

Hypothesis(H0)

Input

Characteristic
Workload

p-value

(α=0.05)
Result

Linear Regression

Equation

No linear corre-

lation between

VF and input

characteristic

Length in

characters

CRC 0.029 Reject VF = 23.20 + 0.22length

SHA <0.001 Reject VF = 40.64 + 0.09length

BinInt 0.069 Accept --

Sorted elements Qsort 0.053 Accept --

No linear corre-

lation between

DHW and input

characteristic

Length in

characters

CRC 0.01 Reject DHW = 45.84 - 0.04length

SHA 0.034 Reject DHW = 40.46-0.019length

BinInt 0.02 Reject DHW = 45.75 - 0.02length

Sorted elements Qsort 0.12 Accept --

No linear corre-

lation between

TO and input

characteristic

Length in

characters

CRC 0.046 Reject TO = 1.67 - 0.017length

SHA 0.37 Accept --

BinInt 0.1 Accept --

Sorted elements Qsort 0.18 Accept --

Qsort and BinInt exhibit a non-linear variation of the value failure with, respective-

ly, the number of sorted elements and the input length (Table 4). For Qsort, this can

be explained by considering that in addition to the number of sorted elements, the

position‎of‎these‎elements‎impacts‎Qsort’s‎behaviour.‎This‎causes‎different‎number‎of‎

element comparisons and recursive calls to the core function. This effect is particular-

ly evident for Qsort-4 and Qsort-5. Even though both have 50% of the input elements

sorted, there is a difference of 4.85 percentage points between their value failures.

Although there is no linear correlation for Qsort, it is notable that the average value

failures of the first five execution flows, which have more sorted elements, is 4.22

percentage points lower than the next four execution flows. BinInt, however, is a

small program with an input space between 0 to 32 characters; these inputs for such a

small application do not cause a significant variation in the failure distribution.

Results in Table 4 show that the proportion of failures detected by the hardware

exceptions is almost constant for a given workload (the coefficient is 0.019 for SHA,

0.04 for CRC, and 0.02 for BinInt). Analogously, the proportion of experiments clas-

sified as timeout is almost constant for all the workloads.

It is worth noting that the startup code may vary in different systems. We therefore

show the trend of value failures with/without the startup block in Fig. 1. We can see

that the trends in the two diagrams are similar which is due to the fact that the startup

code consists of significantly fewer lines of code compared to the other blocks.

Fig. 1. The percentage of value failures for different execution flows of each workload

5.2 Results for Workloads Equipped with TTR-FR

Table 5a presents the average results for the 9 execution flows of each workload. The

percentage of value failures for SHA, CRC and BinInt is less than 2%, while for Qsort

there is a higher percentage of value failures, about 5%.

The proportion of value failure varies for different code blocks. With respect to the

core function, the main contributor to the lack of coverage is faults in the program

counter register. These faults change the control flow in such a way that the voter is

incorrectly executed or not executed at all. For instance, for the core function of SHA,

around 96% of the value failures were caused by faults in the program counter regis-

ter. Faults injected into the other code blocks, including the voter, are more likely to

generate value failures since they are not protected by the TTR-FR. For Qsort, the

relative size of the core function is smaller compared to the other programs. This re-

sulted in only around 57% of the injections in this function, while in the other work-

loads more than 96% of faults were injected in the core function. This can explain the

higher percentage of value failures in Qsort compared to the other workloads.

In order to evaluate the robustness of the voter, we conducted exhaustive fault in-

jections (i.e., we inject all possible faults) in the voter of each workload, see Table 5b.

It is notable that even though TTR-FR mechanism decreases the percentage of value

failure, the voter is one of the main contributors to the occurrence of value failure.

The average percentage of errors detected by the hardware exceptions does not

vary significantly between the versions extended with TTR-FR and those without this

mechanism for SHA, CRC, and BinInt, while it differs about 5% for Qsort.

Table 5. Average failure distributions for workloads with TTR-FR (values are in percentage).

6 Input Selection

As we demonstrate in this paper, the likelihood for a program to exhibit a value fail-

ure due to bit flips in CPU registers or memory words depends on the input to the

program. Thus, when we assess the error sensitivity of an executable program by fault

injection, it is desirable to perform experiments with several inputs.

In this section, we describe a method for selecting inputs such that they are likely

to result in widely different outcome distributions. The selection process consists of

three steps. First, the fault-free execution flows for a large set of inputs are profiled

using assembly code metrics. We then use cluster analysis to form clusters of similar

execution flows. Finally, we select one representative execution flow from each clus-

ter and subject the workload to fault injection. We validate the method by showing

that inputs in the same clusters indeed generate similar outcome distributions, while

inputs in different clusters are likely to generate different outcome distributions.

6.1 Profiling

We adopt a set of 47 assembly metrics corresponding to different access types (read,

write) to registers and memory sections along with various categories of assembly

instructions. Specifically, we group the PowerPC instruction set into 6 categories as

shown in Table 6. For each group, we define the percentage of execution as the num-

ber of times that the instructions of that category are executed out of the total number

of executed instructions. These 6 metrics are a proper representative of the metric set

a) All code blocks b) Voter code block

Workload NI VF CSW DSW DHW TO COV Workload VF

CRC 20.78 1.65 33.43 0.19 43.22 0.73 98.35 CRC 12.32

SHA 14.92 0.76 43.36 0.15 39.00 1.78 99.24 SHA 16.60

Qsort 28.74 5.42 20.37 0.77 41.89 2.79 94.58 Qsort 17.05

BinInt 34.69 1.45 20.21 0.09 40.60 2.96 98.55 BinInt 12.32

for our workloads. Therefore, these metrics are used as a signature for the fault-free

run of each execution flow to be used in the clustering algorithm.

Table 6. Assembly metrics corresponding to different instruction categories

Categories Instructions Metrics

LOAD (LD) lbz, li, lwi, lmw, lswi,… PLD (percentage of load instructions)

STORE (ST) stb,‎stub,‎sth,‎sthx,‎stw,… PST (percentage of store instructions)

ARITHMETIC(AI) add, subf, divw, mulhw,… PAI (percentage of arithmetic instructions)

BRANCH (BR) b, bl, bc, bclr,… PBR (percentage of branch instructions)

LOGICAL (LG) and, or, cmp, rlwimi,…‎ PLG (percentage of logical instructions)

PROCESSOR(PR) mcrf, mftb, sc, rfi,… PPR (percentage of processor instructions)

6.2 Clustering

Cluster analysis divides the input set (the execution flow, in our case) into homoge-

nous groups based on the signature of execution flows. We adopted the hierarchical

clustering [‎12] due to the fact that unlike other clustering techniques (e.g., K-means),

it does not require a preliminary knowledge of the number of clusters. Thus, we can

validate a posteriori if the execution flows are clustered as expected. The hierarchical

clustering adopted in this work evaluates the distance between two clusters according

to the centroid method [‎12]. A similar approach is used in [‎13].

6.3 Input Selection Results

The clustering technique is applied to normalized values (mean equal to 0 and a vari-

ance equal to 1) of the assembly metrics. In the case of non-normalized data, higher

weights will be given to variables with higher variances. To prevent this effect, due to

the significant variations in the metric values, e.g., the variance of “percentage‎of‎load‎

instructions”‎is orders of magnitude larger than the variance of “percentage‎of‎proces-

sor‎instructions”, we use the normalized values.

Fig. 2 depicts dendrogram representations of the results of the clustering technique

for the non-TTR-FR implementation of SHA, CRC, and Qsort workloads (BinInt has

already shown a roughly constant variation in its failure distribution, thus, we exclude

it from the clustering analysis). Each dendrogram is read from left to right.

At the first stage of the algorithm, the execution flows of each workload are either

grouped in 2-dimension clusters (e.g., SHA-4 and SHA-5) or left isolated (e.g., SHA-

1). These groups can be easily linked to characteristics of the inputs in the case of

SHA and CRC. Indeed, inputs with the same length (e.g., CRC-9 and CRC-8) or ap-

proximately the same length (e.g., CRC-2, CRC-3) belong to the same cluster. How-

ever in Qsort, this observation is not verified, since vectors with the same number of

sorted elements are placed in different clusters (e.g., Qsort-8 and Qsort-9). At the next

stage, different clusters are joined using vertical lines. The positions of these lines

indicate the distance at which clusters are joined. In the case of our workloads, the

algorithm‎ groups‎ the‎ former‎ clusters‎ together‎ by‎merging‎ the‎ inputs‎with‎ “smaller‎

size”‎(e.g.,‎SHA-1, SHA-2, SHA-3 with SHA-4, SHA-5)‎and‎inputs‎with‎“larger‎size”‎

(e.g., CRC-6, CRC-7 with CRC-8, CRC-9).

In order to validate the results of our approach, we need to show that execution

flows‎with‎a‎“similar” failure distribution belong to the same cluster. The same clus-

tering algorithm can be used for identifying the execution flows that are similar in

terms of failure distribution. This time, the error categories (VF, NI, DHW, TO) are

used instead of the assembly metrics, see Fig. 3. Comparing Fig. 2 and Fig. 3, for

CRC and SHA, we can observe that the first clusters from the left are grouped exactly

in the same way. For these workloads, after the profiling, we can arbitrarily select one

execution flow from each cluster for a fault injection campaign and consider its fail-

ure distribution as a representative of the other member of that cluster. In this way, the

variation in failure mode distribution of a workload can be discovered by performing

fault injection campaigns on fewer number of execution flows.

Fig. 2. SHA, CRC and Qsort clusters on assembly metrics

Fig. 3. SHA, CRC and Qsort clusters on the failure distributions

We quantify the reduction, R, of fault injection campaigns in equation (2).

 R = (1 – C/I)*100 (2)

Here C indicates the number of clusters at the first stage, and I is the total number of

execution flows. For CRC and SHA, the reduction is 45%, which means that we can

save about 45% of time. Hence, for these workloads we can profile their execution

flows and on the basis of the obtained clusters decide whether to conduct a fault injec-

tion campaign or not. It is notable that input selection requires very limited human

interactions and it is mostly accomplished by a fault-free run of the execution flow

performed by Goofi-2, a signature extractor tool, and a data analysis tool. In our ex-

perimental environment, profiling costs up to 5 hours, while a fault injection cam-

paign costs up to 2 days. This is a significant benefit of the proposed approach.

For Qsort there is no mapping between the clusters in the assembly space and the

ones for the failure distribution. This might mean that for some applications like

Qsort, where the failure distribution is dependent on more than just the length of in-

put, other suitable assembly metrics are required. We exclude that this result is tied to

the choice of the clustering method since we also obtain identical results with other

methods such as average and ward [‎12].

7 Related Work

Numerous works [‎14, ‎15, ‎16, ‎11] have assessed the effectiveness of hardware detec-

tion mechanisms in the presence of different fault models (such as pin level injection,

stuck at byte, and bit flipping) while executing different workloads. In addition, an

emerging research trend focuses on the implementation of software-implemented

hardware fault tolerance mechanisms for detecting/correcting errors. Different im-

plementation of software mechanisms at source level [‎2, ‎7] as well as at the assembly

levels [‎3, ‎4, ‎17] has been assessed. These studies targeted a large variety of workloads

and fault tolerance mechanisms without investigating their behavior to different in-

puts. In dependability benchmarking workloads are executed with realistic stimuli,

i.e., inputs that come from the domain. In this area, the study [‎18] investigates the

dependability of an automotive engine control system targeted with transient faults.

The system under study is totally different from ours and no input selection approach

is proposed. To the best of our knowledge, there is a little literature aiming to investi-

gate the effects of transient faults on workload variations. In [‎5], matrix multiplication

and selection sort are fed with three and two inputs, respectively. The fault model

includes zero-a-byte, set-a-byte and two-bit compensation that differs from ours. Au-

thors in [‎6] also estimated the error coverage for quicksort and shellsort, both execut-

ed with 24 different inputs. In addition, we study assembly level metrics with respect

to the failure distribution (Section ‎6). While in performance benchmarking some

study [‎19] explore the correlation between metrics and performance factors (e.g.,

power consumption), in the dependability field there is a no investigation on this area.

8 Conclusions and Future Work

We investigated the relationship between inputs of a set of workloads and the failure

mode distribution. The experiments, carried out on an embedded system, demonstrate

that for CRC and SHA, the length of input is linearly correlated to the percentage of

value failure. Even though Qsort and BinInt do not show such a relationship, it is still

notable that the input affects the failure distribution. Results illustrate that the per-

centage of faults detected by the hardware exceptions is workload dependent, i.e., it is

not affected by the input. Additionally, a simple software-implemented hardware fault

tolerant mechanism, TTR-FR, can successfully increase the coverage, on the average,

to more than 97%, regardless of the input. As similar inputs (e.g., same length inputs)

result in a similar failure distribution, we devised an approach to reduce the number of

fault injections. Although the approach seems promising for workloads with a linear

relation between the input property (e.g., length) and the failure distribution, addition-

al metrics might be required for other workloads. Looking forward, we would like to

improve the confidence in our findings by extending the study with other workloads,

fault tolerance mechanisms, fault models and different compiler optimizations.

Acknowledgements. This work has partly been supported by VINNOVA-FFI BeSafe

project and the FP7 European Project CRITICAL-STEP IAPP no. 230672.

References
1. Borkar, S.; "Designing reliable systems from unreliable components: the challenges of

transistor variability and degradation," IEEE Micro, vol. 25, no. 6, pp. 10-16, 2005.

2. Rebaudengo, M.; Sonza Reorda, M.; Violante, M.; "A new approach to software-

implemented fault tolerance," Journal of Electronic Testing: Theory and Applications, vol.

20, no.4, pp. 433-437, 2004.

3. Reis, G.A.; et. al.; "SWIFT: Software implemented fault tolerance," Int. Symp. on Code

generation and optimization (CGO'05), pp. 243-254, 2005.

4. Skarin, D.; Karlsson, J.; "Software implemented detection and recovery of soft errors in a

brake-by-wire System," 7th European Dependable Computing Conf. (EDDC-07), pp. 145-

154, 2008.

5. Segall, Z.; et al.; "FIAT-fault injection based automated testing environment," 18th Int.

Symp. on Fault-Tolerant Computing (FTCS-18), pp. 102-107, 1988.

6. Folkesson, P.; Karlsson, J.; "Considering workload input variations in error coverage esti-

mation," 3rd European Dependable Computing Conf. (EDDC-03), pp. 171-190, 1999.

7. Alexandersson, R.; Karlsson, J.; "Fault injection-based assessment of aspect-oriented im-

plementation of fault tolerance," 41st Int. Dependable Systems & Networks Conf. (DSN),

pp. 303-314, 2011.

8. Barbosa, R.; Vinter, J.; Folkesson, P.; Karlsson, J.; "Assembly-level pre-injection analysis

for improving fault injection efficiency," 5th European Dependable Computing Conf.

(EDDC’05), pp. 246-262, 2005.

9. Mibench Version 1, [Online] http://www.eecs.umich.edu/mibench/

10. Skarin, D.; Barbosa, R.; Karlsson, J.; "GOOFI-2: A tool for experimental dependability as-

sessment," 40th Int. Dependable Systems & Networks Conf. (DSN), pp. 557-562, 2010.

11. Carreira, J.; Madeira, H.; Silva, J.G.; "Xception: A technique for the experimental evalua-

tion of dependability in modern computer system," IEEE Trans. Soft. Eng., vol. 24, no. 2,

pp. 125-136, 1998.

12. Jain, A.; Murty, M.; Flynn, P.; "Data clustering: a review," ACM Computing Surveys

(CSUR), vol. 31, no. 3, pp. 264-323, 1999.

13. Natella, R.; Cotroneo, D.; Duraes, J.; Madeira, H.;‎“On‎fault‎representativeness‎of‎software‎

fault‎injection”,‎IEEE Trans Soft Eng, in press (PrePrint), 2011.

14. Kanawati, G.A.; Kanawati, N.A.; Abraham, J.A.; "FERRARI: a tool for the validation of

system dependability properties," 22nd Int. Symp. on Fault-Tolerant Computing (FTCS-

22), pp. 336-344 1992.

15. Madeira,H.; Rela, M.; Moreira, F.; Silva J.G; "RIFLE: A general purpose pin-level fault

injector" 1st European Dependable Computing Conf. (EDDC-01), pp. 199-216, 1994.

16. Arlat, J.; et al..; "Comparison of physical and software-implemented fault injection tech-

niques," IEEE Trans. on Computers, vol. 52, no. 9, pp. 1115-1133, 2003.

17. Martinez-Alvarez, A.; et. al; "Compiler-Directed soft error mitigation for embedded sys-

tems," IEEE Trans. on Dependable and Secure Computing, vol.9, no.2, pp. 159-172, 2012.

18. Ruiz, J.C.; Gil, P.; Yeste, P.; de Andrés, D.; Dependability benchmarking for computer

systems. John Wiley & Sons, Inc., 2008, ch. "Dependability Benchmarking of automotive

control system."

19. Eeckhout, L.; Sampson, J.; Calder, B.; "Exploiting program microarchitecture independent

characteristics and phase behavior for reduced benchmark suite simulation," IEEE Int.

Workload Characterization Symp., pp. 2-12, 2005.

http://www.springerlink.com/content/0923-8174/
http://www.eecs.umich.edu/mibench/

