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Abstract

This thesis describes the development of GESTPAN (GEneral Stationary
and Transient Propulsion ANalysis), a generalized system for the design, steady-
state and transient simulation of gas turbine systems. Some of the main achieve-
ments in the thesis are related to the development of new algorithms or integra-
tion of existing numerics tailored to simplify the structure and use of generalized
gas turbine simulation systems. In particular, a method for performing system
design utilizing the analysis equations, i.e. an inverse design method, has been
developed. Furthermore, attention is drawn to a number of advantages of us-
ing an implicit high order differential algebraic system solver for transient gas
turbine system analysis.

The simulation studies carried out with the GESTPAN system have focused
on the performance optimization of the Selective Bleed variable cycle engine.
In particular, a method for controlling the engine during mode transition was
developed. Work with the implementation of a hybridized optimization method
suitable for mission optimization of variable cycle engines is also described.
The method couples the cycle selection and the control optimization of the
engine variable geometry. Simulations performed with the method indicate that
previously published designs of the Selective Bleed Variable cycle engine can be
downsized considerably.

Early work carried out in the research project concentrated on developing
a method for optimizing the performance of variable geometry compressors in-
tegrated in gas turbine systems. Although the method was limited to subsonic
operation of compressors, it was successfully used to simulate the core driven
fan stage of the double bypass variable cycle engine.
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Nomenclature

A
ASFC
ATF
bpr
CDFS
Cyq
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EGV
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G

GE
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h

H

HPC

HPT

I

ICV

IGV

IPC

JSF

K

LPC

LPT

m

Cross sectional area

time Averaged Specific Fuel Consumption
Advanced Tactical Fighter
Bypass Ratio

Core Driven Fan Stage

Flow coefficient

Thrust coefficient

Exit Guide Vane

Thrust

Fuel air ratio

Fan Pressure Ratio

Torque

General Electric

GEneral Stationary and Transient Propulsion ANalysis
Stagnation enthalpy

Altitude

High Pressure Compressor

High Pressure Turbine

Moment of Inertia
Intercomponent Volume Method
Inlet Guide Vane

Intermediate Pressure Compressor
Joint Strike Fighter

Auxiliary parameter

Low Pressure Compressor

Low Pressure Turbine

Mass flow

Jet engine air mass flow

Jet engine fuel mass flow

Mach number

Rotational speed

Overall Pressure Ratio
Stagnation pressure

Static pressure

Pressure Loss Factor

Pratt and Whitney

Caloric heat value of fuel

Gas constant

Supersonic Cruise Aircraft Research program
Specific Fuel Consumption

Sea Level Static

Supersonic Transport program
Status Cycle Analysis of Test
Stagnation temperature

Static temperature

Turbine Inlet Temperature
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VCE Variable Cycle Engine

VABI Variable Area Bypass Injector
VATN Variable Area Turbine

v Intercomponent volume

Vo Flight velocity

V; Jet velocity

w Power

Wout Engine power output

Greek symbols

AT Deviation from ISA standard
I} Fuel schedule factor

Np Propulsive efficiency

Neh Thermal efficiency

Mo Overall efficiency

N Mechanical efficiency of shaft
n Isentropic efficiency

Noo Polytropic efficiency

vy Specific heat ratio

w Pressure ratio

T Temperature ratio

Myec Pressure recovery factor

o reaction rate parameter

w Pressure loss coefficient

X Mass flow parameter

Subscripts

1 Inlet to component

2 Exit from component
dp Design point

bb Backbone point

rp Reference point

a Ambient Conditions
00 Ambient Conditions
Superscript

~ Corrected entity

Wiring diagram nomenclature

pa Ambient Pressure
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Chapter 1

Engine system simulations

Traditional performance analysis of gas turbine systems has come to involve
three elementary tasks:

1. Design
2. Off-design analysis
3. Transient analysis

on which a variety of more complex studies can be based. Engine design can
be used for ”paper engine” studies or to predict the performance of derivatives
of existing engines (this is a mix of design and off-design analysis). Off-design
studies can be used for supplementing performance data for existing engines for
which only a limited amount of information is available or to assess the nature
and magnitude of effects of changes in engine component characteristics on
system performance. Furthermore, off-design models can be used for integration
into tools for engine diagnostics, engine degradation studies, analysis tools for
engine performance rig testing, analysis of data collected during flight, customer
decks (models provided to airframers and end users) etc. Transient studies can
be used to ensure safe and stable operation early in the design phase and to carry
out the design of the control system.

Engine performance modeling studies play a central role in almost all parts
of the engine life cycle, which is illustrated in Figure 1.1. Thus, a simulation tool
that is able to perform all three elementary tasks can be used for a multitude of
purposes, in particular to reduce turn around times of the engine development
process. Such a tool would also be ideally suited to act as a catalyst for a transfer
of engineering competence between the different processes in the engine life
cycle. A key factor for its success is the extent to which the system complexity
can be kept at a manageable level. Ultimately, the tool must begin to supplant
the specialised systems in order to remain economically viable.

This thesis describes the development of a new simulation system, GEST-
PAN (GEneral Stationary Transient Propulsion ANalysis), that allows the user
to perform the three elementary tasks stated above. The numerics and the al-
gorithms of the tool have been tailored to keep the complexity of its use and
maintenance at a minimum.
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Figure 1.1: Performance modeling during the engine life cycle (based on [1]).
The figures correspond to the three elementary tasks defined above.

1.1 Generalized performance simulation tools

Even if a simulation system is well documented and structured in a way that
makes it easy to modify, reprogramming of the system will almost always re-
quire more training and experience of the user than modifying input files or
interacting with some kind of user interface. It is therefore considered a design
requirement for a powerful engine system simulation tool that the user is pro-
vided the functionality of assembling arbitrary engine configurations through
input files or through a user interface. In this thesis, a system with this capabil-
ity and the ability to perform all three of the elementary tasks above is called a
generalized performance tool. Without the transient feature, such a system
is called a static generalized performance tool. The term semi-generalized
performance tool refers to a system for which new engine configurations can be
modeled with limited reprogramming. Codes only intended to model a specific
engine are called engine specific performance tools.

1.2 Generalized tools - a brief review

Numerous performance tools have been developed over the years, and simula-
tion results as well as descriptions of the implementations are available in public
literature. Here, an attempt is made to review only the most notable and pow-
erful semi-generalized and generalized performance tools. It should be pointed
out that a large amount of the work carried out in this field has been kept
confidential by engine companies.

At the beginning of the 1970s, research groups at NASA Lewis experienced
an increasing need for a generalized gas turbine simulation tool [2], mainly
because the cost for developing and validating a new program for every engine
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studied was rapidly increasing. It was also becoming computationally possible
to develop and use such a system. The first static semi-generalized code tested
on several engine cycles, GENENG/GENENG 2, was developed by Fishbach
and Koening [3, 4]. The GENENG 2 program provided the user the ability
to simulate nine different engine cycles. Sub-derivatives of these configurations
could be obtained by the use of logical flags, and up to six modes of operation
could be defined for an engine model. The latter feature made the system very
suitable for simulations of variable cycle engines.

The GENENG codes were developed further into a static generalized code,
NNEP (the Navy NASA Engine Program), by Fishbach and Caddy [5], allowing
the user to freely assemble virtually any engine configuration by means of input
files. A number of additional features have been added to the NNEP code over
the years, such as engine weight analysis, estimations of installation losses and
features for simulating chemical equilibrium compositions for calculating effects
of dissociation or exotic fuels. Another derivative of the GENENG codes, DYN-
GEN [6], was given transient capabilities, thus being a semi-generalized tool.
DYNGEN was generally considered difficult to modify and it was difficult to
scale the model equations to reflect real engines [2]. A hybrid computer version
of the code, HYDES [7], was developed to overcome these deficiencies. Another
fully digital transient code, DIGTEM, was made even simpler to modify by
improving the modularisation of the software design [2].

Work to obtain a fully generalized engine model has recently been initi-
ated at NASA Lewis Research Center. The National Cycle Program (NCP) is
currently being developed to provide the architectural framework for the Nu-
merical Propulsion System Simulation (NPSS) project [1, 8. The NCP program
will provide all the functionality available in traditional performance tools, thus
inheriting the features available in NNEP as well as the framework needed for
novel NPSS features, such as coupling of multidisciplinary tools at various levels
of detail. The NCP is coded in C++, providing an object-oriented platform for
coupling to other codes through the use of CORBA (Common Object Request
Broker Architecture). CORBA was designed to make it possible for applications
to communicate with each other, regardless of where they are located (local or
network), the language in which they were developed or the operating system
in which they are run. For example, an engine system analysis code written in
C++ for a PC environment could communicate with a CFD model developed
in Fortran 77 running on a multiprocessor workstation. The industry savings
through increased engineering productivity by the use of NCP is estimated at
$50 millon per year [9]. A visionary operation of the NCP system is shown in
Figure 1.2.

Another organisation with a strong tradition in performance modeling is
Cranfield University of Technology. In 1974, the work of MacMillan [10] resulted
in a static generalized performance tool called TURBOMATCH. Although it did
not provide all the features included in the NNEP code, such as the multimode
feature, the functionalities for assembling almost any kind of gas turbine system
were similar. A derivative of the TURBOMATCH code, TURBOTRANS [11],
was in fact a fully generalized code completed as early as 1982. Both codes will
be discussed further in this thesis.

Recently, some interesting work has been done in developing user-friendly
simulation tools with Graphical User Interfaces (GUI:s). A very thorough semi-
generalized system offering the user a multitude of features was developed by

3



I: =ﬁ j National

= = Flowpath
I 1 __analysis
PL o SRR High-fidelity

i analysis
i LT -

i

.u‘:}..'""-‘.! ¥

| M
Fan/nacelle J

—— ) Mixer

Axisymmetric engine '\ ﬁ
_ High-fidelity -
analysis  Three-dimensional
low-pressure

subsystem Three-dimensional

high-pressure
compressor

Figure 1.2: Visionary operation of NCP [9]

Kurzke [12]. Another GUI based fully generalized gas turbine tool more in-
teresting from a software design perspective originated from the work of Reed
and Abdollah [13, 14]. They developed an all Java based object-oriented sys-
tem providing the user with the unique advantages of the language: platform
independency and support for interactive web versions. Recent work on a more
advanced successor to the system, Onyx, is described in [15, 16]. The Onyx sys-
tem implements a number of interesting functionalities such the ability to plug
new engine component models into the framework and have them interoperate
without modification to the system.

Around the same time as NNEP and TURBOMATCH were being completed,
a static generalized simulation tool, tad45 [17], was developed at Volvo Aero
Corporation. This code was the starting point for the design of the GESTPAN
system.

1.3 Generalized tools - lessons learned

Since semi-generalized systems need reprogramming to be able to model new
configurations, these additions are usually retained in the code as they are
added and then made accessible to future users. Thus, the functionality of
semi-generalized codes approaches the functionality of generalized codes during
their life cycle. It may seem that the effort of developing a fully generalized
program would not be worthwhile, but one can actually make a very strong
argument for this effort. Even if a semi-generalized system supports a majority
of the engine configurations that have ever been in use or have been suggested
for use, a detailed engine model still tends to require reprogramming of the
system. For instance, some rare component interactions might be too important
to neglect for a particular engine. Also, detailed models of control systems tend
to have unique features. It is the belief of the author that the difficulty and
the frequent need to modify this class of codes is an underlying reason for the
fact that the semi-generalized performance systems have found their use mainly
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in preliminary studies of new engines or engine derivatives. For the level of
accuracy necessary for these kinds of studies, it is often sufficient to modify
input files of existing configurations.

On the other hand, generalized tools are likely to become even more complex
and difficult to modify when this is eventually needed. The work carried out
at the beginning of this project to introduce multimode operation [18, 19, 5]
into tad5 illustrates this. It soon became clear to the author that the number
of persons capable of carrying out this modification, without a major effort in-
volved, was very limited (one [the same person that originally coded most of
the system]). Another interesting observation indicating the difficulty of modi-
fying generalized codes can be made by studying the modifications described in
open reports of the NNEP simulation code. In a majority of the cases changes
were introduced in cooperation or solely by L.H. Fishbach (one of the original
developers of the system). A third example in this vein is that the use of the
TURBOTRANS code, developed at Cranfield University of Technology, was
discontinued after the retirement of Dr. J. R. Palmer.

The proper interpretation of these three examples is of course not that the
first generation of generalized codes was impossible to modify unless the origi-
nal programmer was available, but that the effort needed to perform the work
normally limited the number of capable/interested engineers to a small group
of specialists. This group had often been part of the initial development of the
system, and new players infrequently entered the scene. The author himself
spent approximately a year penetrating the ta4b code before he could modify
it freely. Even after this initial period, the modifications of the system neces-
sary to provide transient capabilities were considered very extensive and it was
decided that it would be more meaningful to integrate the old functionalities
of ta4b into an entirely new system. This would then allow the full use of a
number of novel features included in the Fortran 90 standard.

A final remark about the first generation of generalized gas turbine codes
is that those which were kept in use were done so for a remarkably long time.
TURBOMATCH, NNEP and ta45 were all used for more than 20 years, sur-
viving a great number of platforms and operating systems and, although the
number of engineers capable of modifying the codes was very limited indeed,
the number and variety of the users was most often not.

1.4 The next generation of generalized tools

It seems clear that the design of the first generalized software systems neglected
maintainability and the ease by which the system could be modified. This is of
course at least partially due to the facts that computing resources at that time
were very modest and that the generalized codes required absolutely state of
the art computers for execution. Today, transient simulations can be executed
faster than real time. The author has demonstrated transient simulations of
a nonlinear model of a mixed-stream turbofan engine using 14 states and six
coupled equations executing five times faster than real time. The simulation
was run on a Digital Alpha Workstation 433 au. Steady state simulations can
be carried out in fractions of a second. Thus, when developing a new general-
ized performance system, the programmer can now concern himself less about
performance and focus on obtaining a clear and modifiable structure of the code.
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Traditional performance tools formulate the design problem in such a way
that the equations are eliminated. The price for this simplification is that all
engine component models have two different algorithms, one for design and one
for off-design problems. Consequently, any change in modeling must be imple-
mented in both versions of the module equations to maintain a consistent set of
equations. One of the major achievements in this thesis is the development of a
new methodology for inverse design, that allows the use of the same algorithms
for design, off-design and transient simulations. The inverse design functional-
ity is obtained by simultaneously solving the design and off-design equations,
producing equation systems with roughly twice as many unknowns as those
used for off-design problems. Thus, the new design methodology makes full use
of the present computer resources to reduce the complexity of the generalized
performance tool.

Another aspect that allows for obtaining superior systems, compared with
the first generation of generalized codes, is that the programming languages have
evolved quite considerably over the last 20 years. Most notably the revolution of
software development based on the Object-Oriented Programming paradigm [20,
21], allows the software developers to produce systems much less complex to
maintain and modify.

GESTPAN was developed using a pseudo object-oriented approach. The
Fortran 90 module concept allows construction of static classes, which makes
“object-oriented like” encapsulation of data and routines possible [22]. The
beauty of multiple instantiation of objects and association of pertinent data is
unfortunately not possible in Fortran 90. For instance, if a Fortran 90 module
is used to contain code for a compressor and two compressor modules are used
for the engine model (e.g. fan and hpc), either the module itself or external
code has to keep track of which module is currently being executed. An object-
oriented language could have “manufactured” two instances of the compressor
class dynamically, and data specific to the fan and the hpc could be kept sep-
arated by the modules in a very intuitive and straightforward fashion. Such a
feature would make the implementation of the routines connecting the engine
components considerably less complex.

1.5 Gas turbine simulation in commercial codes

A number of commercial simulation tools are available for developing system
models, such as [23, 24, 25]. These systems usually offer the user a very powerful
GUT for model development and analysis. However, evaluations of the MatrixX
system [24] carried out in an early stage of this project showed that, although
the system had advanced well in the field of dynamic modeling and control
design, it was not very suitable for carrying out engine system design.

Chapter 4 explains why the methodology used for solving differential alge-
braic systems in the latest version of the SIMULINK system is not very efficient.
For the gas turbine test cases studied in Chapter 4, a loss of about an order of
magnitude in computational speed is to be expected. The superior performance
of the GESTPAN solution procedure is achieved by solving the differential and
algebraic equations simultaneously [26, 27].

Other shortcomings were experienced by Reed and Abdollah when they
worked with the AVS system [25, 28]. For example, the transfer of data be-
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tween the separate UNIX processes used to simulate different components in
the engine model was found to be very slow [28].

Although weaknesses can be found in any commercial tool for system sim-
ulations, one should note that these systems are continuously being improved,
e.g. the data transfer performance problem of the AVS system was solved in
later a version. Similarly, the option of rewriting SIMULINK to implement the
direct approach for solving differential algebraic systems is presently being dis-
cussed [29]. When making these observations, one should also keep in mind,
that as costs for developing new systems to the same level of sophistication as
the commercial systems increase, licence fees for the commercial systems tend
to increase as well. Furthermore, limited access to the source code can often be
a decisive obstacle in the development process, especially when non-standard
tasks are being performed.






Chapter 2

Generalized performance
tools - inverse design

The first section of this chapter briefly explains how design and off-design sim-
ulations are carried out in traditional performance tools. The material is in-
tentionally kept short and the interested reader is advised to study some of
the many detailed and excellent texts on this topic [30, 31, 32]. In the fol-
lowing sections, attention is drawn to a number of negative aspects with the
traditional approach and a new algorithm for inverse design of nonlinear gas
turbine systems is developed. The methodology is tested and demonstrated on
a conventional mixed-stream turbofan engine and two variable cycle engines.

2.1 Conventional design/off-design methodology

The traditional approach for the implementation of gas turbine simulation sys-
tems has been to use two different modes in the simulation code:

1. Design mode
2. Off-design mode

For the design mode, the governing equations are put in a form that allows the
user to specify parameters that can easily be estimated at the preliminary stage
of engine design. These parameters are usually obtained from estimates on tech-
nology levels or projected technology levels. Typical parameters are compressor
and turbine pressure ratios and efficiencies, pressure losses in burners and noz-
zles, Cy:s and C),:s of nozzles, rotational speeds, turbine inlet temperatures,
Mach numbers in the mixer etc. These parameters are then used to compute
other, more suitable parameters for off-design iteration, such as pressure loss co-
efficients, design power requirements, burner reaction rate parameters, turbine
areas, mixer areas, nozzle areas etc.

The governing equations relating the interaction between the engine compo-
nents are derived from a number of compatibility requirements [33]:

e Compatibility of work

e Compatibility of flow



e Compatibility of rotational speed

For a general engine configuration, these assumptions can be formulated as a
system of n nonlinear equations in n unknowns, i.e.:

f1($17$27"'7$n) =0
f2(-r17$27"'7$n) =0

fo(z1, 22, ,20) =0 (2.1)

where x1, 2, ..., T, are iteration variables and fi, fa, ..., f,, are corresponding
residuals to be iterated to zero. In this thesis, the system represented by equa-
tion (2.1) is referred to as the compatibility or off-design equations.

2.1.1 Traditional design mode methodology

The standard design mode technique used in traditional performance tools starts
with the inlet and proceeds in the flow direction through the engine, using data
from the already designed components as they become available. This usage
of upstream data makes it possible to automatically satisfy equation (2.1). For
instance, the compressor in a turbojet engine will be designed with a certain
power requirement, and the turbine placed on the same shaft will then auto-
matically be designed for this requirement. The mass flow can be treated in the
same “hyperbolic manner” (sequentially proceeding from upstream components
to downstream). All engine components will be sized, that is design areas will
be computed to accommodate the mass flow exiting the upstream component.
By proceeding in this manner, the compatibility equations (2.1) can be satisfied
automatically and no iteration will be required.

2.1.2 Traditional off-design mode methodology

In the off-design mode, a number of residuals are formed using the compatibility
equations (2.1), as well as some parameters computed during the design process.
The 1-D compressible continuity equation, i.e. equation 2.2, is frequently used
to form some of the residuals.

mVET y=1_,\ D
o AD =M (1+TM ) (2.2)

An equal number of suitable iteration variables is selected, and equation (2.1)
is then solved.

For a specified set of values on the selected iteration variables, all other ther-
modynamic variables can readily be obtained. Thus values for m,T, P, M, cq4,y
and R will be available and the cross-sectional area can be computed using
equation 2.2. This area will then be compared to the design area, one of the
parameters computed during the design process, and a residual can then be
formed. The solution is normally found by employing a Newton or quasi-Newton
algorithm. If the solver converges, continuously improved values for the itera-
tion variables are selected, proceeding towards the solution of the system. See
Appendix B for a general description on Newton and quasi-Newton methods.
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The size of the equation system (2.1) is dependent on how the algorithms of
the engine component models are arranged. For instance, to model a turbojet
engine, the tadb program iterates in the compressor pressure ratio and the engine
mass flow, i.e. 1,22 in equation (2.1), and two corresponding residuals (f, f2)
are formed by comparing computed turbine and nozzle “flow areas” with design
areas. The GESTPAN code, on the other hand, iterates in compressor and
turbine exit pressures together with rotational speed, balancing compressor and
turbine power, burner and turbine mass flow and matching nozzle areas with
design areas. This formulation is more suitable for modules to be used both in
a stationary and a transient environment.

2.2 The traditional methodology - Downsides

A consequence of the “twin-mode” approach is that the engine component im-
plementations have to incorporate separate algorithms for the design and the
off-design processes. This makes the system considerably more complex. Fur-
thermore, modifications in the physical modeling must affect both the design
and the off-design equations in a consistent manner. If the system will be used
for more refined engine modeling, e.g. detailed models of the control system,
secondary air systems, heat transfer effects and so on, the maintenance of two
sets of equations becomes increasingly complex and cumbersome.

Another important issue in the design of a generalized tool is to decide on a
strategy for keeping track of iteration variables and residuals. The method used
in ta45 was to associate iteration and error variables to the engine components in
a pre-determined way. Components normally located in the forward parts of jet
engines, such as inlets and compressors, would be designated iteration variables,
and components typically located in the rear end would be given residuals. A
rule based system would then guide the user to assemble engines with the same
number of variables and residuals. Although a seemingly elegant method, this
approach makes the system more difficult to modify.

The tad5 program used a preprocessing program called tad44 to analyse an
engine configuration file. One of the tasks was to compute the number of itera-
tion variables and error variables in the model specified by the user and to make
sure that the number of equations and residuals matched. If a user wanted to
add a new engine component model to the system, it would then be necessary
to also make changes to the ta44 code. This required a deeper understanding
of the implementation of the system.

In some component models, this pre-determined methodology for handling
the iteration variables would actually give rise to “three-mode” implementa-
tions. If two compressors were placed on the same shaft, they could not both
be given an iteration variable since the pressure ratio iteration of the first com-
ponent would determine a rotational speed, and this rotational speed would
then set the pressure ratio over the next compressor. Thus, the off-design inter-
nal algorithm in the compressor implementation had to be separated into two
different cases with either pressure ratio or rotational speed as input.

The next section describes an algorithm that allows routines external to the
component models to keep track of iteration and error variables. This feature
can be programmed into the system once and for all, and the user would have
to make no extra provision for managing error and iteration variables when

11



new engine components are added. The subsequent section describes an inverse
design methodology which markedly reduces the complexity of the component
implementations. The method solves the design equations and the compatibility
equations simultaneously, still allowing the user to specify typical gas turbine
design parameters.

2.3 An overview of the structure of GESTPAN

2.3.1 User interfaces

The overall structure of GESTPAN is presented in Figure 2.1. Depending on
the task to be performed, GESTPAN offers the user two versions of the pro-
gram with different interfaces. The Graphical User Interface (GUI [top left in
Figure 2.1]) version of GESTPAN is intended to be used by engineers interested
mainly in a particular engine using an already developed model. The GUI,
which is implemented in JAVA 2 [34], communicates with the rest of the simu-
lation system via a socket protocoll [35]. All the other parts of the GESTPAN
program are coded in ANSI Fortran 90, except for a few routines responsible
for the Fortran part of the socket communication. These routines were imple-
mented using the Microsoft Foundation Classes available in the Digital Visual
Fortran development environment [35]. Thus, when the GUI version of the pro-
gram is run, two separate processes are executed simultaneously, i.e. the JAVA
GUI process and the Fortran simulation process. Inter-process communication
is carried out solely through the socket, as indicated in Figure 2.1.

The User Interface (UI [top right in Figure 2.1]) version of GESTPAN of-
fers the user an interactive command line based environment for developing and
analysing engine models. The UI is implemented entirely in ANSI Fortran 90.
This version of GESTPAN has been compiled and run on Digital Alpha work-
stations, Silicon Graphics workstations and PC:s (NT 4 operating system). Al-
though not as straightforward to work with as the GUI, the UI offers a much
wider range of functionalities. Except for off-design and transient simulation
capabilities, the Ul also allows the user to carry out design (on three differ-
ent levels of detail), control schedule optimization, cycle optimization, mission
optimization and trajectory optimization. These features will be described in
subsequent chapters.

2.3.2 Machine Interface and Engine Procedures

The Machine Interface is a Fortran 90 module [22] not directly accessible to
the user. It contains a number of routines responsible for administrating com-
putations, e.g. reading input files, preparing and invoking calls to numerical
routines, calling routines in the connector module (described below) etc. These
routines can be called from both the GUI and the UI. The Engine Procedures
module is also used as an administrative layer between the user interfaces and
the more elementary building blocks of GESTPAN. However, the Engine Pro-
cedures module is used only in the UI version of GESTPAN.
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Figure 2.1: The overall structure of GESTPAN

2.3.3 Numerical Routines

The numerical routines integrated in GESTPAN offer functionalities for solving
systems of nonlinear equations, Ordinary Differential Equations (ODE) as well
as Ordinary Differential Algebraic Equations (ODAE). The quasi-Newton algo-
rithm used to solve systems of nonlinear equations is described in this chapter
and in Appendix B. The selection and characteristics of the routines imple-
mented in GESTPAN for the solution of ODE and ODAE problems are de-
scribed in Chapter 4. A number of routines for optimization have also been
implemented in the GESTPAN system. These are described more closely in
Chapter 5.

2.3.4 Connector Module

The connector module contains the most elementary level of administrative
routines implemented in GESTPAN. Some examples of such functionalities are:

¢ Routines for determining the number of residuals and iteration variables
of an engine model (see paragraph directly below).

e Routines for assembling information arrays of engine models through in-
quiry calls to the functional modules (see section 2.3.6 below).

e Routines for rebuilding engine model information arrays after mode switches
in variable cycle engines (see section 6.4)

New engine configurations are assembled by means of input files. All con-
nections between module inputs and outputs must be listed in the input files.
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Functionalities available in the UI allow the configuration files to be built in-
teractively, and many module connections can be made automatically by the
system.

2.3.5 Detection of iteration variables and residuals

If a module input is neither connected nor given a value (fixed or defined through
table interpolation), the connector module processing the input file will detect
this undefined input and automatically make this variable an iteration variable.
Another situation that will generate an iteration variable is that in which two
module inputs are connected to each other. Likewise, if the connector module
fails to sort the execution order of the modules in such a way that all inputs
are available when executing a particular module, iteration variables will be
introduced (there are of course cases when no such order exists). Residuals
are generated when two module outputs are connected to each other or when
residuals are defined within the modules.

This methodology implies that the iteration and error variables are defined
by the connections of the model and possibly also by module internal residuals.
Thus, when the user adds new modules to the system, no extra provision needs
to be made for keeping track of error and iteration variables.

2.3.6 Functional modules

The approach for implementing the governing equations of the performance
model has been to use one Fortran 90 module for each engine component. To
reduce the development time and system complexity, all engine components were
developed using a template file. Modules developed using this file are referred
to as functional modules (see bottom of Figure 2.1).

One of the key design criteria for developing GESTPAN was to make the
addition of new functional modules very simple. The use of a template file al-
lowed a standardized calling interface between the module connector and the
functional modules to be used. This made the addition of new modules par-
ticularly simple. To add a new functional module to the system, the user has
to:

e Add a use statement in the connector module referencing the new module.

e Add a standardized calling interface in the connector module referencing
the new module.

o Increase the integer parameter defining the number of modules in the
connector module by one.

A graphical description of a subset of the variables present in the standard-
ized interface is shown in Figure 2.2. The module interface contains a num-
ber of additional variables enabling transfer of variable names, module internal
residuals, logical control flags, an error tolerance for module internal iterations,
variables used for transient simulations, etc. The input and output signals, see
Figure 2.2, are used to connect the modules when engine models are assem-
bled. The real and integer parameters are used to specify the design of the
components. During transient and off-design simulations, the real and integer
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Figure 2.2: A subset of variables used in the standardized functional module
interface.

parameters are fixed, but some of the real parameters are used as iteration
variables during design.

2.4 Inverse design

2.4.1 Basic idea

The basic idea for carrying out inverse design is to use the off-design algorithm of
the engine component equations for the design process. This means that some of
the parameters used to define the design point in traditional gas turbine design
codes may not be available as input to the model. However, these parameters
can be computed as component outputs and be specified by forming module
external residuals. For instance, although the fuel flow is used as an input to
the burner module in the off-design formulation, the burner exit temperature
is still available as an output from the module. Thus, it can be compared with
an output specification given in an input file to form a design residual. To keep
the number of iteration variables and residuals equal, the same number of real
design parameters must be introduced as iteration variables. In the example
above, the fuel flow would then be used as an iteration variable.

2.4.2 Requirements and approach

The principal requirements for the implementation of the design method were:

1. The design should be specified using typical design parameters readily
obtainable at the design stage.

2. Three levels of design fidelity will be included: preliminary design, detailed
preliminary design and fine-tuned design.

3. The user should only have to supply values for the parameters specifying
the design.
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To fulfill the requirements above, two different algorithms for system design
were implemented:

e Direct design

e Robust design

Direct Design

The direct design method implements the basic idea for inverse design in a
straightforward fashion. The iteration methodology is the same as that used
for solving off-design systems, with the off-design equations completed with
the design equations. The number of design equations are usually about the
same or up to two times the number of the off-design equations, depending on
whether features for “specifying off-design iteration variables” and “optimizing
the design formulation” are used (see sections below). Keep in mind that tradi-
tional gas turbine design tools normally carry out design without any equations
whatsoever.

To succeed, the algorithm generally requires starting estimates for the design
and off-design iteration variables that are fairly close to the solution. It has been
found to be quite difficult to obtain such estimates, requiring expert knowledge
on the models included in GESTPAN. Even with these skills, the work is tedious
and error prone. The direct design method would probably be very useful
for design problems described by linear systems, with component maps not
restricted to certain variable ranges.

The highest level of design fidelity is used for the direct method. This means
that all real and integer design parameters must be specified by the user to be
able to run the procedure. To model a mixed-stream turbofan, about 100 real
parameters and 15 integer parameters would have to be set.

Robust design

The robust design method is used to automatically find good starting estimates
for the simultaneous design and off-design equations. Thus, the method can be
perceived as a preprocessing algorithm to the direct design method described
above.

The basic idea in the robust design algorithm is to do one sweep through the
engine, during which the off-design and design iteration variables are adjusted
to minimize the residuals in the equation system. For the first modules in the
execution order there is not a great deal of constraining information available,
because most of the off-design residuals are formed by comparing two outputs
from different modules. For instance, if a compressor module is being executed,
no power balance error can be introduced since the turbine has not yet been
executed. On the other hand, when the turbine is executed, the power balance is
set, as are other off-design residuals. The normal situation is thus that modules
executed early in the sweep will give rise to under-determined systems and
modules executed late in the sweep will give rise to over-determined systems.
This situation is addressed using an optimizer minimizing the residual. This can
be done in both cases, for which the first leads to finding one out of infinitely
many sets of iteration variables satisfying the equations and the latter to finding
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a set that satisfies the equations as far as possible. The Nelder and Mead
Simplex method [36] is used for the module optimizations.

A very favorable special case of the design problem can be obtained when
many of the design residuals are specified for modules executed early in the
execution order. Then, systems with an equal number of iteration variables and
residuals, i.e. square systems, can be obtained. Similarly, this can make the
typically over-determined modules occurring late in the execution order square
as well. Thus, the design problem is then subdivided into small systems that
can be solved in order, making the design process very fast indeed.

Figure 2.3 illustrates the robust design algorithm. The labels in the boxes
correspond to individual routines in the connector module or the engine proce-
dures module (see Figure 2.1). Short descriptions of the individual routines are
given below:
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Figure 2.3: The algorithm for robust design process

Set sub-system execution: informs the module connector that a sub-system
will be executed. During standard off-design simulations, one routine in the con-
nector module, the connector_comp routine, is used to execute all the modules
in the model in a specific order. The set_sub_system_execution routine prepares
the connector_comp routine to execute a sub-system of the entire model. For
the robust design method, this always means executing a single module.

Get module information for preliminary design: diagnostic routine de-
termining what off-design and design errors to use. This is one of the more so-
phisticated routines of the robust design method. For instance, if an off-design
iteration variable is connected to several inputs, this variable is used only as an
iteration variable the first time it is encountered by the get_module_information
routine. The reverse situation occurs when external off-design errors are diag-
nosed. Then, errors are introduced only if the other end of the connection has
already been computed.

Set inde mission: informs the module connector to initiate design during the
next evaluation call.
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Evaluate module: inputs and design iteration variables are initiated. If in-
puts have been computed as outputs from previous modules, these values are
used; otherwise, default values are applied. Initial values for design iteration
variables are set using inputs and other design variables.

The module may also “self-adjust”, i.e. one or more of the design point spec-
ification variables are changed temporarily. Such a feature can be useful if the
module has a limited range of definition for some tables or if the equations are
very nonlinear. Since the cycle design process (dashed upper box in Figure 2.3)
is carried out by doing one sweep through the engine, it might not be possible
to evaluate some modules with the user-specified real design parameters and
the computed inputs. To deal with this problem, a self-adjusting functionality
can be added in the module, i.e. the module changes one or more of its real
design parameters originally specified by the user to a new set computed from
the inputs. This temporary deviation from the user-defined design point allows
the cycle design method to find one set of iteration variables close enough to a
working design in order for the final design method (dashed lower box in Fig-
ure 2.3) to obtain convergence in the new point. A later step is then to find
a way back to the original user specification of the design point by employ-
ing an embedding method. None of the three test cases below employed the
self-adjustment feature.

Execute module: the module is executed.

Sub-system optimization: the sub-system is executed repeatedly through
an optimizer, minimizing the root mean square of the errors. If the system is
square an attempt to solve the problem directly is made.

quasi-Newton solutions: The equation system is solved using a quasi-Newton
method with a Broyden update (see Appendix B). Embedding simply refers to
solving the equations, progressing repeatedly from the real design parameters
computed by the self-adjustment procedure towards the real parameters speci-
fied by the user.

2.4.3 Application tailored numerics

The price for the reduction in module complexity achieved by using the inverse
design methodology is paid by having to make a considerable effort in order
to develop suitable numerical methods for solving the problem. In particular,
it was necessary to introduce a number of application specific solutions in the
original routines [37] to make the robustness of the methodology satisfactory.
Since engine modules are constantly being modified and added by users of the
system, while the design methodology can be integrated in the system once and
for all, this shift in system complexity is highly desirable.

Sub-system optimization

Whenever a different number of iteration and residual variables (both greater
than zero) has been detected, a multidimensional nonlinear optimizer attempts
to bring the root mean square of the module errors as close to zero as possi-
ble. The method used for the sub-system optimization is the Nelder and Mead
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downhill simplex method [36]. The algorithm relies upon carrying out a se-
quence of transformations of a geometric object, a so called simplex, consisting
of n+1 points (vertices) in n dimensions. By comparing the function values at
the n+1 vertices and replacing the highest value by another point, a decreasing
sequence of function values is created. The method is described in greater detail
in Chapter 5.

The method is not particularly efficient with respect to the number of nec-
essary function evaluations needed to obtain an optimal solution. Still, for
small and medium sized problems, the performance of the method is usually
acceptable. Since the largest sub-systems being solved in the three test cases,
which represent standard and more advanced gas turbine systems, have four
independent variables, speed is not a problem. Another aspect of much greater
importance is that the simplex method does not have to estimate derivatives of
the goal function and is thus fairly insensitive to non-smooth modules. It is not
uncommon that users define modules based on tables resulting in discontinuous
functions or discontinuous function derivatives. It is also quite possible that the
discontinuities are part of the physics of the problem. One example would be
the opening and closing of a compressor bleed valve at a particular rotational
speed. Such discontinuities often causes great difficulties for gradient methods.

Another advantage of the simplex method is its reluctance to wander off to
very exotic solutions when the system is under-determined. The solver will find
a point close to the initial estimate which minimizes (zeroes) the root mean
square of the available off-design and design equations.

Furthermore, module diagnostic information can be taken into account by
the optimizing algorithm in a very straightforward manner. A great number of
error calls report problems with inherent module execution in GESTPAN. For
example, a pressure ratio much larger than the design point pressure ratio is
detected as an anomaly by the compressor module, which invokes a call to the
error handling module. The simplex method solver detects that an error call
has occurred during the module execution, and a function value higher than
the highest of the present simplex vertices is ascribed to the point. This effec-
tively limits the search to suitable combinations of input parameters. Similar
penalty schemes can of course also be introduced in gradient-based optimization
algorithms [38], but greater care must be taken to introduce the penalty in a
continuous fashion.

Solution of the simultaneous design and off-design equations

In [37], Vetterling et al. writes:

There are no good, general methods for solving systems of more
than one nonlinear equation. Furthermore, it is not hard to see why
(very likely) there never will be any good, general methods.

They also state that:

...root finding becomes virtually impossible without insight! You
will almost always have to use additional information, specific to
your particular problem, to answer such basic questions as, “Do I
expect a unique solution?” and “Approximately where?”
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The first question is certainly not trivial to answer for gas turbine systems. It
is not very hard to come up with parameter combinations for which no design
solution exists. Standard examples are when the equal static pressure balance of
the gas stream exiting the bypass channel and the low pressure turbine of a two
spool mixed-stream turbofan can not be found or when the power extraction
obtainable from the turbines is insufficient for driving the compressors. The
latter situation occurs for instance when fan pressure ratios are increased on
unmixed high bypass ratio engines. Multiple solutions for one set of inputs are
possible, for instance for the compressor module. For a specific rotational speed
and pressure ratio, two output mass flows are possible. One of these mass flows
normally corresponds to an unstable operating point (rotating stall or surge).

No attempt is made to assist the user in finding a set of parameters which
ensures the existence and uniqueness of the solution. This is a deliberate choice
based on the philosophy that the sole task of the design process is to try always
to find the solution when it exists. Finding design parameter combinations that
produce feasible or optimal solutions can be done by numerical optimization.
Such a technique is described in Chapter 7.

The entire cycle design step of the robust design methodology tries to answer
the second question. By matching the component designs to the previously
computed ones (using the sub-system optimization or the quasi-Newton solution
procedures), the design and off-design errors can usually be reduced to modest
levels. The final design step can then be started at a point relatively close
to the solution (assuming it exists), which increases the chance of obtaining a
converged solution. Equally important for the final design step is that it can
be started at a point where all modules can be executed within their operating
range.

The final design step commences by forming the Jacobian of the full system
(design and off-design equations). The resulting linear system is then solved
and a new iteration vector is obtained (see Appendix B for a description of
Newton and quasi-Newton solvers). Updating the iteration variables with the
solution of the linear system is often referred to as making a full Newton step.
Two very relevant measures for making the solution procedure more robust are
taken at this stage. The first measure is to make sure that the residual
actually decreased as the full Newton step was taken. The second measure is
to check whether module errors were reported. If the residual increased
or a module error occurred when evaluating the full Newton step, the direction
of the step is retained but a fraction of the full step is tried instead (backtrack).
The backtracking process is repeated until an error-free decrease in the residual
is obtained.

The backtracking algorithm (part of the Insrch routine in [37]) was modified
slightly, since the original routine had no provisions for error checks. A simple
inquiry statement was added after every module execution call to force a back-
track upon error detection. If an error-free step results in an increase in the
residual, the end point of the step is used to make an improved estimate of a
new step length (by fitting a second or third degree interpolating polynomial
to the available data). Thus, the algorithm also had to be modified to make
sure that all the old function values on which the step fraction was computed
corresponded to error-free execution. Another modification to the original algo-
rithms (the fdjac routine in [37]), which can be of great value when problems
with discontinuities or rapid changes are modeled, was to replace the forward
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differencing scheme with a central differencing scheme.

2.4.4 Design point specification

The performance characteristics of the engine components are determined by
their design parameters. All functional modules have a vector that stores their
type. Four categories exist:

1. Design parameters used to specify preliminary design

2. Design parameters used to specify detailed preliminary design
3. Design iteration parameters

4. Parameters used to fine-tune a design

This information is made available to the connector module by module inquiry
calls, and the connector module can thus determine which design parameters
must be read from input files during preliminary design. Table 2.1 gives the
design variables used for specifying preliminary and detailed preliminary design
(variables for the lit afterburner case are not included). On the preliminary

Preliminary Design (| Detailed Preliminary Design
Compressor: | T Nrp | v | 0
Burner: Ndp
Turbine: Ndp m* 1 P2 3
Nozzle: Caa Cuo Aratio
Afterburner: Caa [ Aratio

Table 2.1: Design specification variables

design level, only the most essential parameters are used to define the design
point. Such parameters are typically bypass ratios, compressor efficiencies and
pressure ratios, turbine inlet temperature, turbine efficiencies and rotational
speeds. For the detailed preliminary design cooling flow distributions, values for
Cy:s and Cl:s, compressor map shape parameters etc. are specified. Since some
of these are not available as real design parameters, the design implementation
also allows module outputs, as well as some inputs, to be set to fixed values.

Module outputs are set by forming design residuals. To keep the design sys-
tem square, the default settings of the functional modules then have to specify a
greater number of design iteration variables, than design residuals. The present
selection of design iteration variables is given in Table 2.2.

Except for the iteration variables which are strongly coupled to the mod-
ule internal design residuals (see section below) or module pressure losses, the
iteration variables presently selected specify the sizing of the components and
the fuel flow. This selection could easily be changed by modifying the vector
storing the type of the real design parameter. For instance, all the pressure loss
parameters can be changed from type 3 to type 4 and be given zero default val-
ues. To keep the design system square, the corresponding design point pressure
loss set by fixing module outputs would then have to be dropped. In the future,

21



these default overrides will probably be done from input files instead of making
changes directly in the source code.

The type 4 parameters are given default values during the preliminary de-
sign and the detailed preliminary design. A converged design obtained through
the preliminary or detailed preliminary design process can be fine-tuned by
re-specifying these parameters using the direct design method described above.

Module internal design residuals

Some design specifications are made more in terms of equations than in absolute
values. For instance, at the point of convergence, the turbine design power
(parameter used in the efficiency correlation [see Appendix A]) must equal the
power computed from the off-design equations. Similarly, the value of the design
point Reynolds number parameter, also defined in Appendix A, must equal
the value computed from the off-design equations. To determine the value of
these parameters during the design process, they are made iteration variables
and module internal residuals are introduced to equate them. Several design
parameters that have to be computed in the design point can be treated in this
fashion. Table 2.2 summarizes the internal errors and the iteration variables
used during the design process. Detailed definitions of the variables stated in
the table are given in Appendix A.

Design iteration variable Design equation
Compressor Corrected mass flow Q’;”—:;’r
Duct Pressure loss coefficient (w)
Nozzle Nozzle area
Pressure loss coefficient (w)
| Burner Design fuel flow
Pressure loss coefficient (w)
0—0dp
O'dp W
‘ Turbine Ahgp W
Kdp —
Turbine area
| Afterburner Nozzle area
Pressure loss coefficient (w)

Table 2.2: Module design iteration variables and internal errors

2.4.5 Specifying off-design iteration variables

Some of the variables used for off-design iteration are frequently part of the de-
sign point specification in traditional gas turbine models. To take advantage of
this, routines were developed to allow the iteration variables to be “turned off”
and kept constant during the design process. Of course, if an off-design iteration
variable is specified, one of the residuals must be excluded from the system as
well. For instance, if the bypass ratio of the splitter module is specified, a suit-
able measure for maintaining the equality of unknowns and iteration variables
would be to remove the specification of one of the unifier Mach numbers.
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2.4.6 Optimizing the design formulation

It is very simple to invert the equations corresponding to the o4p, Ahgp, Kap
iteration parameters. This has been done in order to reduce the number of
equations. Thus, instead of iterating in the turbine design power drop, the
value of the power drop computed during the execution is fed directly into the
design iteration vector, thereby eliminating the equation as well as the iteration
variable. This was done for all the internal design errors in the test cases below.

2.5 Inverse design - Test cases

To demonstrate the operation of the design method, three test cases have been
assembled. These are a conventional mixed-stream turbofan engine and two
variable cycle engines: the Selective Bleed variable cycle engine and the Double
Bypass variable cycle engine. Both variable cycle engines will be described
more closely in Chapter 3. In all three cases, the design and off-design equation
systems can be arranged in such a way that square sub-systems are solved.
To demonstrate the functionality of the sub-system optimization feature, an
additional simulation case was assembled for the Selective Bleed engine.

2.5.1 Case 1 - The mixed-stream turbofan

Figure 2.4 gives the wiring diagram for the mixed stream turbofan. The design
point specification is given in Table 2.3. As seen from the wiring diagram, only

Module Type Design variable Value
INLET input altitude 0m
INLET input flight Mach number 0
COMPRESSOR 1 specified input rotational speed 150 r/s
COMPRESSOR 1 output mass flow 100 kg/s
COMPRESSOR 1 real design parameter Trp 5.0
COMPRESSOR 1 real design parameter Nrp 0.88
SPLITTER 1 specified input bypass ratio 0.5
DUCT output % 0.95
COMPRESSOR 2 specified input rotational speed 300 r/s
COMPRESSOR 2 real design parameter Trp 3.0
COMPRESSOR 2 real design parameter Nrp 0.88
SPLITTER 2 input bypass ratio 0.1
COMPRESSOR 3 real design parameter Trp 3.0
COMPRESSOR 3 real design parameter Nrp 0.88
SPLITTER 3 input bypass ratio 0.1
BURNER output Ndp 0.99
BURNER output burner exit temperature 1800 K
BURNER output z—f 0.95
TURBINE 1 real design parameter = 2.00
TURBINE 1 real design parameter Ndp 0.90
TURBINE 2 real design parameter L 2.50
TURBINE 2 real design parameter Ndp 0.90
UNIFIER output Myypass 0.30
AFTERBURNER output i—f 0.95

Table 2.3: Turbofan design point specification

the bypass ratio of SPLITTER 1 is used as an iteration variable. The bypass
ratio for SPLITTER 2 and SPLITTER 3 are used to specify the amount of air
used for cooling. For completeness of the design point specification both the
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cooling bypass ratios as well as the Mach number and altitude for the inlet are
given in Table 2.3. The full design problem is represented by a system with
17x17 iteration variables and residuals. The square sub-systems are given in
Table 2.4. Finally, the converged values of the design and off-design iteration

Module

Type

Variable

COMPRESSOR 1 (2x2)

off-design iteration variable

corrected mass flow

off-design iteration variable

exit pressure

internal design error

pressure ratio specification

external design error

mass flow specification

DUCT 1 (Ix1)

design iteration variable

pressure loss coefficient

external design error

pressure ratio specification

COMPRESSOR 2 (2x2)

off-design iteration variable

corrected mass flow

off-design iteration variable

exit pressure

internal design error

pressure ratio specification

off-design error

mass flow balance (with SPLITTER 1)

COMPRESSOR 3 (2x2)

off-design iteration variable

corrected mass flow

off-design iteration variable

exit pressure

internal design error

pressure ratio specification

off-design error

mass flow balance (with SPLITTER 2)

BURNER (2X2)

design iteration variable

pressure loss coefficient

design iteration variable

fuel flow

external design error

pressure ratio specification

external design error

exit temperature specification

TURBINE 1 (2x2)

off-design iteration variable

exit pressure

design iteration variable

area

off-design error

torque balance (with ADD module)

off-design error

mass flow balance (with ADD module)

TURBINE 2 (2x2)

off-design iteration variable

exit pressure

design iteration variable

area

off-design error

torque balance (with ADD module)

off-design error

mass flow balance (with ADD module)

UNIFIER (2x2)

design iteration variable

bypass area

design iteration variable

core area

off-design internal error

static pressure match

external design error

core Mach number specification

AFTERBURNER (2x2)

design iteration variable

pressure loss coefficient

design iteration variable

area

off-design internal error

flow and design area match (equation 2.2)

external design error

pressure ratio specification

Table 2.4: Turbofan design sub-systems

variables are given in Table 2.5.

2.5.2 Case 2 - The Selective Bleed Variable Cycle Engine

Square sub-systems

A wiring diagram of the Selective Bleed variable cycle engine is shown in Fig-
ure 2.5. The engine is designed with both nozzles partially open. The design
point specification is given in Table 2.6. The full design problem is represented

by a system with 20x20 iteration variables and residuals.

The square sub-

systems are given in Table 2.7. Finally, the converged values of the design and
off-design iteration variables are given in Table 2.8.

Sub-system optimization case

To illustrate the sub-system optimization functionality, the specification of the
burner exit temperature was instead moved to the low pressure turbine exit,
which was set to 1300 K. This means that the burner sub-system becomes a
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Module Variable Value

COMPRESSOR 1 (2x2) corrected mass flow 100.0000 kg/s
exit pressure 506625.0 Pa

DUCT 1 (1x1) pressure loss coefficient 50514.86

COMPRESSOR 2 (2x2) corrected mass flow 19.79527
exit pressure 1519875.0 Pa

COMPRESSOR 3 (2x2) corrected mass flow 7.09780
exit pressure 4559625.0 Pa

BURNER (2x2) pressure loss coefficient 279224.6

fuel flow

1.76897 kg/s

TURBINE 1 (2x2)

exit pressure

1193258.8 Pa

area

0.0163278 m

TURBINE 2 (2x2)

exit pressure

520102.6 Pa

0.0561587 m?
0.1837859 m>

area
core area

UNIFIER (2x2)

bypass area 0.0540059 m
AFTERBURNER (2x2) pressure loss coefficient | 1301.8974
area 0.1686279 m

Table 2.5: Converged iteration variables for the turbofan

2X1 system. The fuel flow giving a low pressure turbine exhaust temperature of
1300 K can not be determined when executing the burner module. Instead, the
fuel flow is initialized using the input mass flow and a default setting of the fuel
air ratio of 0.02. This gives a burner exit temperature of 1459 K after the cycle
design procedure (the converged value satisfying the turbine exit requirement
of 1300 K is found for a burner exit temperature of 1786 K). The pressure loss
residual is minimized to zero by using the two iteration variables.

The turbine now represents an over-determined system, a 2X3 system. The
optimizer manages only to reduce the module residual from 0.23 to 0.19, and
the Simplex optimizer exits after 40 executions of the turbine module. Still,
after completion of the cycle design step, only three of the 20 residuals differ
from zero, and these with less than 30% of the error scales. The subsequent
final design step is completed successfully, with a low pressure turbine exhaust
temperature of 1300 K.

2.5.3 Case 3 - The Double Bypass Variable Cycle Engine

The Double Bypass variable cycle engine, see Figure 2.6, is a low bypass ratio,
two-spool turbofan engine. The fan is split into a front and a rear block. The
forward block is driven by a variable area low pressure turbine. The rear fan
block, the core-driven fan stage (CDFS), is fixed to the high pressure shaft
together with the high pressure compressor and is driven by the high pressure
turbine. The engine type is described more closely in the variable cycle engine
chapter. Descriptions of the advanced features of the Double Bypass VCE have
been presented by several authors [39], [40], [41], [42] and [43].

The design point specification is given in Table 2.9. The full design problem
is represented by a system with 19x19 iteration variables and residuals. Once
again, the use of a design specification typical for traditional gas turbine systems
tools leads to a design problem formulation that can be broken down into square
sub-systems. The sub-systems are given in Table 2.10. Finally, the converged
values for the design and off-design iteration variables are given in Table 2.11.
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Module Type Design variable Value
INLET input altitude 0 m
INLET input flight Mach number 0
COMPRESSOR 1 specified input rotational speed 150 r/s
COMPRESSOR 1 output mass flow 100 kg/s
COMPRESSOR 1 real design parameter Trp 3.0
COMPRESSOR 1 real design parameter Nrp 0.88
SPLITTER 1 specified input bypass ratio 0.3
DUCT 1 output R 0.98
NOZZLE 1 output i—f 0.98
COMPRESSOR 2 real design parameter Trp 2.4
COMPRESSOR 2 real design parameter Nrp 0.88
SPLITTER 2 input bypass ratio 0.3
DUCT 2 output % 0.98
NOZZLE 2 output i—f 0.98
COMPRESSOR 3 specified input rotational speed 300 r/s
COMPRESSOR 3 real design parameter Trp 3.6
COMPRESSOR 3 real design parameter Nrp 0.88
BURNER output Ndp 0.99
BURNER output burner exit temperature 1800 K
BURNER output % 0.95
TURBINE 1 real design parameter " 2.00
TURBINE 1 real design parameter ndp 0.90
TURBINE 2 real design parameter T 2.50
TURBINE 2 real design parameter ndp 0.90
AFTERBURNER output % 0.95

Table 2.6: Selective Bleed engine design point specification
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Figure 2.4: The wiring diagram of the mixed-stream turbofan
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Figure 2.5: The wiring diagram of the Selective Bleed engine

28



Module

Type

Variable

COMPRESSOR 1 (2x2)

off-design iteration variable

corrected mass flow

off-design iteration variable

exit pressure

internal design error

pressure ratio specification

external design error

mass flow specification

DUCT 1 (1x1)

design iteration variable

pressure loss coeflicient

external design error

pressure ratio specification

NOZZLE 1 (2x2)

design iteration variable

pressure loss coeflicient

design iteration variable

area

off-design internal error

flow and design area match (equation 2.2)

external design error

pressure ratio specification

COMPRESSOR 2 (2x2)

off-design iteration variable

corrected mass flow

off-design iteration variable

exit pressure

internal design error

pressure ratio specification

off-design error

mass flow balance (with SPLITTER 1)

DUCT 2 (1x1)

design iteration variable

pressure loss coefficient

external design error

pressure ratio specification

NOZZLE 2 (2x2)

design iteration variable

pressure loss coefficient

design iteration variable

area

off-design internal error

flow and design area match (equation 2.2)

external design error

pressure ratio specification

COMPRESSOR 3 (2x2)

off-design iteration variable

corrected mass flow

off-design iteration variable

exit pressure

internal design error

pressure ratio specification

off-design error

mass flow balance (with SPLITTER 2)

BURNER (2x2)

design iteration variable

pressure loss coefficient

design iteration variable

fuel flow

external design error

pressure ratio specification

external design error

exit temperature specification

TURBINE 1 (2x2)

off-design iteration variable

exit pressure

design iteration variable

area

off-design error

torque balance (with ADD module)

off-design error

mass flow balance (with ADD module)

TURBINE 2 (2x2)

off-design iteration variable

exit pressure

design iteration variable

area

off-design error

torque balance (with ADD module)

off-design error

mass flow balance (with ADD module)

AFTERBURNER (2x2)

design iteration variable

pressure loss coefficient

design iteration variable

area

off-design internal error

flow and design area match (equation 2.2)

external design error

pressure ratio specification

Table 2.7: Selective Bleed engine design sub-systems

Module Variable Value
COMPRESSOR 1 (2x2) corrected mass flow 100.0000 kg/s
exit pressure 303975.0 Pa
DUCT 1 (1x1) pressure loss coefficient 8499.117
NOZZLE 1 (2x2) pressure loss coefficient 8162.552
area 0.040371 m?
COMPRESSOR 2 (2x2) corrected mass flow 30.52207
exit pressure 729540.0 Pa
DUCT 2 (1x1) pressure loss coefficient 62884.84
NOZZLE 2 (2x2) pressure loss coefficient 60394.60
area 0.014888 m
COMPRESSOR 3 (2x2) corrected mass flow 11.220908
exit pressure 2626344.0 Pa
BURNER (2X2) pressure loss coefficient 124875.2
fuel flow 1.87823 kg/s
TURBINE 1 (2x2) exit pressure 1374004.6 Pa
area 0.0268491 m
TURBINE 2 (2x2) exit pressure 934616.27 Pa
area 0.0249544 m”?
AFTERBURNER (2x2) pressure loss coefficient 8910.3520
area 0.0648283 m
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Figure 2.6: The wiring diagram of the Double Bypass variable cycle engine
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Module Type Design variable Value
INLET input altitude 0 m
INLET input flight Mach number 0
COMPRESSOR 1 specified input rotational speed 150 r/s
COMPRESSOR 1 output mass flow 100 kg/s
COMPRESSOR 1 real design parameter Trp 5.0
COMPRESSOR 1 real design parameter Nrp 0.88
SPLITTER 1 specified input bypass ratio 0.3
COMPRESSOR 2 real design parameter Trp 1.37
COMPRESSOR 2 real design parameter Nrp 0.88
SPLITTER 2 input bypass ratio 0.3
UNIFIER 1 output Mgas stream 3 0.70
DUCT output i—f 0.98
COMPRESSOR 3 specified input rotational speed 300 r/s
COMPRESSOR 3 real design parameter Trp 4.0
COMPRESSOR 3 real design parameter Nrp 0.88
BURNER output Ndp 0.99
BURNER output burner exit temperature 1800 K
BURNER output Z—f 0.95
TURBINE 1 real design parameter " 2.00
TURBINE 1 real design parameter Ndp 0.90
TURBINE 2 real design parameter " 2.50
TURBINE 2 real design parameter Ndp 0.90
UNIFIER 2 output Mgas stream 1 0.30
AFTERBURNER output 2 0.95

Pl

Table 2.9: Double Bypass engine design point specification
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Module

Type

Variable

COMPRESSOR 1 (2x2)

off-design iteration variable

corrected mass flow

off-design iteration variable

exit pressure

internal design error

pressure ratio specification

external design error

mass flow specification

COMPRESSOR 2 (2x2)

off-design iteration variable

corrected mass flow

off-design iteration variable

exit pressure

internal design error

pressure ratio specification

off-design error

mass flow balance (with SPLITTER 1)

UNIFIER, 1 (2x2)

design iteration variable

bypass area

design iteration variable

core area

off-design internal error

static pressure match

external design error

gas stream 3 Mach number specification

DUCT (1x1)

design iteration variable

pressure loss coefficient

external design error

pressure ratio specification

COMPRESSOR 3 (2x2)

off-design iteration variable

corrected mass flow

off-design iteration variable

exit pressure

internal design error

pressure ratio specification

off-design error

mass flow balance (with SPLITTER 2)

BURNER (2X2)

design iteration variable

pressure loss coefficient

design iteration variable

fuel flow

external design error

pressure ratio specification

external design error

exit temperature specification

TURBINE 1 (2x2)

off-design iteration variable

exit pressure

design iteration variable

area

off-design error

torque balance (with ADD module)

off-design error

mass flow balance (with ADD module)

TURBINE 2 (2x2)

off-design iteration variable

exit pressure

design iteration variable

area

off-design error

torque balance (with ADD module)

off-design error

mass flow balance (with ADD module)

UNIFIER 2 (2X2)

design iteration variable

bypass area

design iteration variable

core area

off-design internal error

static pressure match

external design error

gas stream 1 Mach number specification

AFTERBURNER (2x2)

design iteration variable

pressure loss coefficient

design iteration variable

area

off-design internal error

flow and design area match (equation 2.2)

external design error

pressure ratio specification

Table 2.10: Double Bypass engine design sub-systems

Module Variable Value
COMPRESSOR 1 (2x2) corrected mass flow 100.0000 kg/s
exit pressure 506625.0 Pa
COMPRESSOR 2 (2x2) corrected mass flow 11.67954
exit pressure 694076.2 Pa
UNIFIER 2 (2x2) core area 0.127477 m?
bypass area 0.016290 m
DUCT 1 (1x1) pressure loss coefficient 17369.72
COMPRESSOR 3 (2x2) corrected mass flow 11.679546
exit pressure 2776305.0 Pa
BURNER (2x2) pressure loss coefficient 137943.7

fuel flow 1.86261 kg/s
TURBINE 1 (2x2) exit pressure 1174171.0 Pa
area 0.0250641 m”
TURBINE 2 (2x2) exit pressure 492281.96 Pa
area 0.0519061 m
UNIFIER 2 (2x2) core area 0.2370055 m>
bypass area 0.0765053 m

AFTERBURNER (2x2) pressure loss coefficient 1185.3818

area

0.1769239 m>
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Chapter 3

Variable cycle engines

The first section in this chapter described the underlying mechamism for the po-
tential performance benefits of Variable Cycle Engines (VCE:s). Subsequently,
two variable cycle engine concepts: the selective bleed engine and the double
bypass engine, are described. Further studies of both these cycles are described
later in this thesis.

3.1 Variable cycle engine characteristics

Jet engine performance is primarily expressed in two numbers:
e SFC (Specific Fuel Consumption)
e F (Thrust)

To achieve high propulsive efficiencies and thereby reduce the SFC, exhaust jet
velocities should not exceed flight velocities more than necessary for the required
thrust levels. This can be shown by relating the SFC to a set of efficiencies
applicable to jet engines.

As a first step, the propulsive efficiency, 7,, is introduced as the ratio of the
aircraft power, F'Vp, to the power out of the engine, W, i.e.

_ I _ JAD L [(mo +myp) Vi — moVo] Vo
o= - > =2 2 2 (3.1)
Wour  (motmoVi® _ male® = (ing +my) Vi — moVo

by assuming a single exhaust and exit and ambient pressure to be equal. If the
fuel flow is neglected in equation 3.1, then the relation can be simplified to

2
1+ ¢
Secondly, the thermal efficiency is defined as the ratio of the power out of the
(mo+my)V;? _ moVo?
2 2

Mp (3.2)

engine, , to the rate of energy supplied by the fuel, msQy,

i.e.

(mo+my)V;? _ moW?®

= 2 2 3.3
Nth m0; (3.3)
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Finally, the overall efficiency of the power plant is formed as the ratio of the
aircraft power, F'Vp, to the rate of energy supplied by the fuel, m;Qy, i.e.

FV,

o = 3.4
"o = Qs (34)

Also note, from the definition of 7,, n:, and n,, that
o = TpTth (3.5)

Since the SFC is
Vo (1+ ¢

src="4 = Yo o _ 1+ ) (3.6)

F Qo Qsmpmn 2Q fnen

It is clear from equation 3.6 that the SFC will benefit from a reduction of V;.
Low exhaust jet velocities are attained by selecting a large value for the design
bypass ratio. The resulting low specific thrust, (%), is then compensated for
by increasing the design mass flow. Increasing the flight Mach number strongly
reduces the specific thrust of these high bypass ratio cycles, and heavy use of
afterburning is then needed to provide the required thrust.

If the mission is dominated by supersonic operation, high specific thrust
designs are needed and the optimal value of the design bypass ratio is then
reduced, approaching the turbojet cycle. These cycles show poor performance
operating in subsonic cruise flight.

Selecting optimal cycle parameters for a mixed mission for which substan-
tial amounts of fuel are consumed during both supersonic and subsonic flight
normally implies great compromises in engine performance. A cycle purely de-
signed for one part of the mission would most likely perform poorly elsewhere in
the flight envelope. Variable cycle engines show great potential for for achieving
superior mixed mission performance in comparison with conventional turbofan
and turbojet engines. To some extent, the VCE combines the benefits of the
turbojet and turbofan cycles by switching its mode of operation depending on
flight conditions.

3.2 Development of the double bypass engine

The history of the double bypass variable cycle engine started with the Super-
sonic Transport program (SST) initiated in the USA in the mid 1960s. This
program was intended to define an engine for civil passenger service able to
cruise supersonically. General Electric and Pratt & Whitney were contracted by
NASA to find suitable engines for these vehicles. The program was terminated
in 1971. During this period, GE worked on two different engines, the GE4/J5
and the GE4/J6. Both had substantial noise problems, although the redesign,
the GE4/J6, was fitted with an annular plug nozzle with a jet noise suppressor,
which alleviated the noise problem somewhat. Basically, the GE4/J6 was an
upscaled version of the GE4/J5. The larger air flow provided the necessary
thrust for take-off, dry power climb, acceleration and supercruise. On the other
hand, the engine was heavier than the GE4/J5, which was already a very bulky
design.
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In 1972 NASA initiated the Supersonic Cruise Aircraft Research (SCAR)
program. A number of variable cycle engines were tested in this program. The
most promising technologies that emerged in this program were incorporated
into the GE21 (based on the double bypass variable cycle engine concept). The
following sections are intended to describe some of the development phases and
the principles of the double bypass variable cycle engine.

3.2.1 The single bypass variable cycle engine

A predecessor to the double bypass variable cycle engine was the single bypass
VCE. This engine is basically a low bypass ratio, two-spool turbofan engine with
a variable area mixing device (VABI = variable area bypass injector) mounted
in the end of the bypass channel. Figure 3.1 shows the schematic layout of the
engine.

VATN (VArizble Area Turbine Nozzle) VABI (VArialble Bypess rjecor)

Figure 3.1: The single bypass variable cycle engine

The VABI enables a balancing of the exhaust system static pressures over
a range of operating conditions. As a result, the bypass ratio of the engine
can be modulated. This variable bypass ratio capacity can be further increased
by using a variable area turbine nozzle (VATN). Increasing the VABI area and
decreasing the turbine nozzle area offer the potential to modulate the bypass
ratio quite substantially.

3.2.2 The double bypass variable cycle engine

The double bypass variable cycle engine was designed as a follow on to the single
bypass engine. Figure 3.2 shows the schematic layout of the engine. The double
bypass variable cycle engine is a low bypass ratio, two spool turbofan engine.
The fan is split into a front and a rear block. The forward block is driven by
a variable area low pressure turbine. The rear fan block, the core-driven fan
stage (CDFS), is fixed to the high pressure shaft together with the high pressure
compressor and is driven by the high pressure turbine.

Other advanced features of the double bypass VCE are the forward variable
area bypass injector (forward VABI) and the rear variable area bypass injector
(rear VABI). As shown in Figure 3.2, the DBE is designed with two bypass
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forward VABI (VAriable Bypass Injector) rear VABI (VAriable Bypass Injector

VATN (VAriable Area Turbine Nozzle)

Figure 3.2: The double bypass variable cycle engine

streams. An outer bypass stream is positioned directly behind the fan and an
inner bypass stream immediately behind the CDFS.

The VCE operates in two different modes, double or single bypass, depending
on the flight conditions, see Figure 3.3. Descriptions of the advanced features of
the double bypass VCE have been presented by several authors [39], [40], [41],
[42] and [43].

[ SINGLE BYPASS MODE |

Low Pressure
Selector Valve  Core Bypass Duct  Combustor Turbine

Fan Core Bypass HPC High Pressure  Rear VABI
Stage Turbine
[DOUBLE BYPASS MODE|

Figure 3.3: The Double Bypass Variable Cycle Engine

Single bypass mode is used during acceleration and supersonic cruise (oper-
ation with unlit afterburner) by closing the selector valve (Figure 3.3). All the
air is then forced through the CDFS, achieving the specific thrust required for
these flight conditions.

Double bypass mode operation, achieved by opening the selector valve, is
used at take-off and subsonic cruise. The control system is set to maximize flow
by loading the low pressure turbine (closing the stator vanes of the variable area
turbine) and opening the forward and rear VABI:s. Due to the mismatch in spool
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speeds, the core cannot swallow all the flow and the excess flow is dumped into
the bypass stream. Double bypass mode is used for subsonic cruise and take-off.

3.3 Installation effects - spillage/afterbody drag

For conventional turbofan engines, the decreasing mass flow at part power causes
a substantial inlet and afterbody drag [40]. The variable cycle features of the
double bypass VCE allows the engine to match the inlet air supply by maintain-
ing a high air flow at part power, whereas the conventional cycle has to accept
a certain air spillage. The full performance potential of the double bypass VCE
can thus only be estimated if inlet/engine air flow matching is considered.

3.4 Outlook for the double bypass VCE

In 1983 GE and P&W were each awarded a Demonstration/Validation phase
program by the US Air Force for the future power plant of the ATF (Advanced
Tactical Fighter). The GE engine was a double bypass variable cycle engine
concept, the XF120/YF120 engine, selected on the basis of the double bypass
VCE’s ability to meat the diverse mission requirements of the ATF.

In 1991, the US Air Force selected the P&W engine concept to power its F22
air superiority fighters. A crucial factor in this decision was the assessment of
a higher technological risk involved in the double bypass variable cycle engine.
This decision was made despite the substantially better flight test performance
of the double bypass VCE. See [44] for an excellent discussion of the F119/F120
program development phases. Recent GE variable cycle efforts have focused on
the the IHPTET program. The XTE76 Joint Technology Demonstrator Engine
(JTDE), implements the double bypass engine cycle [45].

3.5 The selective bleed engine

The Selective Bleed VCE concept has been developed with a Short Take-Off
Vertical Landing (STOVL) aircraft in mind. The engine operates in two dif-
ferent modes depending on flight conditions: the subsonic and the supersonic
mode. The two operating modes of the Selective Bleed Variable Cycle Engine
are illustrated in Figure 3.4. During subsonic operation, air is bled at the back
of the low pressure compressor powering a continuously vectorable convergent
nozzle. The nozzle is vertically positioned for take-off and horizontally posi-
tioned for subsonic cruise. The intermediate compressor operates with closed
stator vanes. During supersonic operation, the front nozzle is closed and the
air is discharged through a convergent-divergent nozzle. The intermediate com-
pressor is high flowed by opening its stator vanes. This gives the rear nozzle the
specific thrust suitable for dry supersonic cruise at Mach 1.6.

A number of studies assessing the performance of the Selective Bleed engine
have been carried out at Cranfield University [47, 48, 46, 49]. These studies
have focused on selecting a suitable engine design point for the specified aircraft
mission and optimizing the steady state control system of the engine. Work in
this thesis addresses the key issue of safe and efficient handling of the transient
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LP Valve (open)
\ HP Valve (closed) SUB.ﬁSSEC

LP Valve (closed)

HP Valve (open) SUPERSONIC
MODE

Figure 3.4: The operating modes of the selective bleed engine [46]

engine performance during the switch from subsonic to supersonic mode. Fur-
thermore, a mission optimization study described in Chapter 7 indicate that the
design suggested in [48] can be downsized considerably.
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Chapter 4

Transient simulations

The first section in this chapter describes how transient capabilities were in-
troduced in GESTPAN. The following sections describes work associated with
selecting a suitable solver for generalized gas turbine systems. In particular,
attention is drawn to the advantages of using Ordinary Differential Algebraic
Equation (ODAE) problem formulations, the use of high order implicit methods
and interpolation methods tailored for these solvers. All numerical tests have
been conducted with solvers freely available for down-loading from the NETLIB
archive [50].

4.1 'Transient capabilities in GESTPAN

To simulate transient engine behavior, dynamic components are introduced into
the engine model. Rotor components are used to model shaft inertia and to
integrate rotational speed changes as a function of torque imbalances. Volume
components are used between the static engine components to simulate storage
of thermal energy and gas mass (this modeling technique is frequently referred
to as the Inter-Component Volume method [51]). This approach is perfectly
viable, since the typical time scales for the internal dynamics of the components
are much shorter than the time scales for the phenomena relevant for the gas
turbine operation. The governing equations for the dynamic modules are given
in Appendix A.

Refined dynamic modeling features could be included in the GESTPAN
system in the same way as the volume and rotor modules have been intro-
duced. Such refinements could include compressor stage models with volumes
integrated between the stages, allowing gas turbine post stall behavior to be
simulated [52, 53, 54]. Another effect, important also for stable gas turbine
performance, is heat transfer. Detailed heat transfer models may be used both
for improving the accuracy of engine performance models and for improving
predictions of stability margins [55, 56].

4.2 Gas turbine transient modeling

The engine manufacturer has to be able to predict engine transient behavior
early in the design program, see Figure 1.1, in order to ensure that adequate
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response rates can be attained without compromising engine safety. Rapid
thrust response is important both for maneuverability and safety. For civil
aircraft the dominating engine response design requirement is to be able to cope
with an aborted landing. For fighter aircraft, designed to operate in a number
of flight situations and to experience great variations in throttle settings, the
engine response rate is a key performance parameter.

4.2.1 Problem formulation

Dynamic gas turbine modeling has been in use for almost five decades [57]
and digital dynamic engine simulation tools for more than 20 years [51, 6].
Early on it was concluded that jet engines constitute stiff systems and that
the speed of integration can profit greatly from the implementation of implicit
solvers [2]. Although several authors have reported the successful use of low
order (first/second) implicit ODE (Ordinary Differential Equations) solvers [58,
53, 59], very little attention has been paid to the direct use of differential alge-
braic system solvers and quantifying the improvements of higher order integra-
tion techniques.

A critical matter concerning the modeling of a gas turbine system is to decide
whether an ODE or an ODAE (ODE with coupled algebraic equations) model
is going to be applied. This choice will have quite a substantial impact not
only on the required computation time but also on the complexity and effort
necessary for assembling the model and getting it running.

The performance of high order ordinary differential equation solvers is strongly
dependent on the smoothness of the engine model. Most performance codes use
component map data from which the required variables are interpolated. The
selection of a poor interpolation method can have a devastating effect on the
solver. Here, an attempt is made to measure the extent of which the smoothness
of the interpolating function influences the performance of high order solvers
on a typical gas turbine transient. By introducing first, third and fifth order
splines [60] to approximate all map data in the performance model the smooth-
ness can be increased in a step wise manner, and consequently the effect of the
interpolation method on the solver performance can be studied.

In order to be able to test the solvers without the influence of interpola-
tion schemes a special set of analytic nonlinear test equations were developed.
These are given in the appendix to Paper 3. The main guide-line for deriving
these engine models, was to obtain a nonlinear gas turbine system model with
as realistic dynamic performance as possible, at a minimum of complexity. E.g.
using constant specific heat ratios v = y,=1.333 for engine components with a
fuel air ratio # 0 and v = 7,=1.400 otherwise, was considered acceptable since
it was anticipated to have little effect on how the solvers would perform. Ef-
fects of mechanical losses were also neglected. Although metal air heat transfer
effects are very important for transient modeling in general no such effects were
included here, since these phenomena do not add very much to the burden for
the solvers. This is because the characteristic time scales for the thermal iner-
tia are much larger than those for the rotor and especially mass and thermal
gas dynamics. Thus the eigenvalues relating to the thermal inertia have small
negative real parts causing little trouble for ODE/ODAE solvers.

40



4.3 Gas turbine dynamics and ODAE:s

If an attempt to model an arbitrary gas turbine system is made the most proba-
ble system that will emerge from this effort is a semi-explicit ordinary differential
algebraic system, i.e.:

0= g(t,z,2) (4.1)

This means that unless special care is taken during the modeling process some
algebraic equations (algebraic loops) will arise coupled to the differential equa-
tion system. Note that local equations completely contained within a component
do not constitute algebraic equations. In the rest of this chapter the z vari-
ables in Eq. 4.1 will be referred to as differential variables and the z variables
as algebraic variables.

The semi-explicit ODAE represented by Eq. 4.1 is very general indeed.
Shampine et al. [27] shows that a system of equations can be represented in
a SIMULINK block diagram if and only if the system can be written as an
ODAE in the form represented by Eq. 4.1.

4.3.1 Methods for solving the ODAE problem

Basically three main strategies for solving Eq. 4.1 exist:

1. The “direct approach”
2. The “ODE approach” = “the indirect approach”

3. Transforming the ODAE model to an ODE model by algebraic manipula-
tions.

The direct approach is studied in this work by the use of the DASSL solver [61].
This code uses a kth order Backward Differentiation Formula (BDF), where k
varies from one to five, to approximate the derivatives of a more general expres-
sion than Eq. 4.1. The DASSL code then solves the resulting equation system
directly, i.e. it solves for the differential and algebraic variables simultaneously.

The ODE approach, or the indirect approach, is based on solving the alge-
braic equations in Eq. 4.1 for every function evaluation required by the ODE
solver. Here, the algebraic equations are solved with a globally convergent Broy-
den method [37]. Three different ODE solvers have been tested. One implicit
method (also a BDF method) [62], and two explicit methods; a variable order
Adams Bashforth method [62] and the forward Euler method.

4.3.2 Transforming the ODAE to ODE

Using the Inter-Component Volume Method for transient gas turbine modeling
sometimes allows the algebraic equations of Eq. 4.1 to be eliminated through
manipulations of the component formulas. This has been done in the “Engine 3”
test case studied here (see burner, nozzle and mixer component sections in the
appendix of Paper 3).
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4.3.3 System advantages with ODAE formulations

When working with a general gas turbine simulation tool the use of such alge-
braic manipulations as those described above are unfortunate from the system
complexity perspective. In order to make a specific engine model free from al-
gebraic equations, component physics has to be duplicated in more than one
algorithm making the simulation system more complex without any direct ben-
efits. It is highly desirable to be able to use the most straightforward and robust
way of formulating the component physics for all engine models, including both
transient and steady state formulations.

4.4 Engine models

The nonlinear analytic engine component models have been used to generate
three turbofan models:

1. Turbofan - rotor dynamics - ODAE
2. Turbofan - rotor/volume dynamics - ODAE
3. Turbofan - rotor/volume dynamics - ODE

The wiring diagrams in Fig. 4.1 and Fig. 4.2 as well as in Fig. 4.3 illustrate
how the engine components are interconnected. The differential and algebraic
variables used during the integration, as well as their initial value for the test
transient, are given in Table 4.1. The index numbering and the referencing to
algebraic variables given in Table 4.1 are clear from the wiring diagrams and
the abbreviations given in the table text.

4.5 Solver comparisons - Methodology

4.5.1 Test transients and accuracy requirements

The engine test transient selected for the measurement of the solver performance
is an engine acceleration trajectory from 67% to 95% of engine maximum rota-
tional speed.

4.5.2 FError control

To establish a converged solution integration was carried out for a decreasing
series of tolerances. The three codes having a proper error control (not the
forward Euler implementation) were tested in this way and produced the same
solutions for the for all three engines. Note that the converged solution of
Engine 2 and Engine 3 will be the same but Engine 1 will differ due to the
absence of volumes.

A meaningful solver performance measurement has to be carried out at a
specific error tolerance. For gas turbine engines a solution which is more accu-
rate than the maximum attainable accuracy of a tuned system model would be
wasteful. Another relevant aspect is that the way errors are transported along
the solution trajectory depend on the dynamic system itself. A numerical error
made at one point might be attenuated along the trajectory. With all this in
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Engine 1,2,3
T1 ng r1 = 124.29
) ng gz = 223.79
Engine 2,3
z3 Ty, = 411.62
Ty myy, = 0.4124
Ts Tyo = 727.07
g mys = 1.3426
Z7 Tys = 13734
s mys = 0.6743
T9 Tvy = 1061.7
Z10 my4 = 0.3099
T11 Tys = 911.78
T12 mys = 0.4401
Z13 Tve = 767.61
T14 myg = 0.5270
Engine 1 Engine 2
21 | Poppc = 2.43E5 | bprs; = 0.4122
zo | bprsy = 0.4122 | mg pr = 11.712
z3 PZ’HPC = 140E6 m2,V2 = 26601
24 | Poppr = 4.72E5 | moys = 28.922
z5 PQ’LPT = 2.30E5 mave = 40.634

Table 4.1: Differential and algebraic variables used during integration with their
initial conditions (V=Volume, R=Rotor, M=Mixer)

mind a global test was formed based on all the points along the integration
compared to the converged solution, i.e. it was required of a solution to pass
the following test:

where nps is the number of points on the trajectory. All cases were sampled at
100 Hz, i.e. 500 test points were used. The error was checked on the fuel sched-
uled by the feedback controller, i.e. the fuel component. y..n, Was obtained
using the DASSL code with a pure relative error control using a tolerance of
10710,

The transient was started from the initial conditions given in Table 4.1 and
a required rotational speed was set to n,=180.0. The fuel scheduling trajectory
relevant for Engine 2 and Engine 3 is displayed in Fig. 4.4.

4.6 Solver comparisons - Results
The number of function evaluations, i.e. engine evaluations, given in Table 4.2

below are the minimum number necessary for the solution to pass the error test
defined by Eq. 4.2. A number of observations can be made based on Table 4.2.
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Figure 4.4: Fuel scheduled by the control unit

Engine | F. Eul. | LSODE | DASSL | Adams
1 11240 3362 761 3898
2 625143 | 11879 1585 | 2393325
3 62502 1313 1147 286078

Table 4.2: Performance of the solvers

Elimination of algebraic equations: In Engine 3 the formulas of the mixer,
the burner and the nozzle were rearranged in order to eliminate the algebraic
equations present in Engine 2. This operation resulted in an increase in com-
putational speed with about an order of magnitude, for all solvers except for
the DASSL code. The reason for this is that the Forward Euler, the LSODE
and the Adams Bashforth implementations use an “ODE approach” to solve the
differential algebraic problem, i.e. the solution of a nonlinear equation system
has to be performed for every function evaluation required by the ODE-solver.
The error tolerance for the equation solver was set to a fraction 1073 of the
local error requirement of the ODE-solver. This seemed, after some trade-off
studies, to be close to the optimal choice. A larger value increased the number
of function evaluations, since the inaccurately solved equation system would
disturb the ODE-solver.

The DASSL code, on the other hand solves the problem by the “direct
approach” treating the differential and algebraic variables simultaneously. Note
also that the number of function evaluations required by DASSL is reduced
only with about 30% as the the system is transformed from the ODAE system
represented by Engine 2 to the ODE system represented by Engine 3.
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Engine 1 - non-stiff case: In the Engine 1 case all the volumes have been
eliminated. Since these are the main source of stiffness (large negative real parts
of the eigenvalues on the system Jacobian) the explicit solvers perform fairly
well.

Engine 2 and 3: Judging from the performance measurements of the variable
order Adams method and the forward Euler method the use of explicit meth-
ods for inter-component volume models seems completely out of the question.
However, there is one less appealing remedy to this problem. By increasing the
size of the volume giving rise to the pole with the largest negative real part
the stiffness of the model can be reduced. Of course, such a trick could also
introduce some unwanted physical effects [51].

A comment about the Forward Euler method: The reason for the fact
that the forward Euler method is actually faster than the Adams method for
Engine 2 and Engine 3 is that this implementation has no automatic stability
control. The engine transients were recalculated repeatedly for the Euler method
in order to obtain the largest possible step size without making the solution
unstable. As a matter of fact the order used by the Adams method throughout
the entire integration was one (this is the forward Euler method) and since
the Adams code monitors the stability automatically it is reasonable for the
method to be slower. However, in the Engine case 1, the problem is no longer
stiff and the stability requirements will no longer limit the selection of order
for the Adams method. Up to order 6 was then observed for the Adams code
during integration.

4.7 “Real” performance code effects

The major difference between a real performance code and the nonlinear test
equations, is that the performance code will most likely use a number of em-
pirical maps for estimating the component performance. When interpolation
methods are used on these maps discontinuities in higher derivatives will be
introduced in the table break points. More refined codes will then use smaller
step sizes around these points to get an accurate solution. This can reduce the
performance of high order solvers quite drastically, as is shown below.

By the use of higher order approximating spline routines this problem can
be alleviated, and in some cases measurement noise can be filtered away at
the same time. The methodology for obtaining the spline approximations are
described in great detail by Dierckx [60].

The GESTPAN simulation system also has a number of standard component
performance models based on measurement data or more accurate models. A
system with components corresponding to Engine 3 was set up (the same wiring
diagram). In this case the model used 26 empirical tables. Three sets of spline
coefficient approximations were defined for every table: linear, cubic and quintic
approximating splines. The performance model was tuned to give roughly the
same off-design performance as the analytical model and the code was started
from close to the same initial conditions.

Since it is part of the conclusions of this thesis that the direct approach
implemented in the DASSL solver is the most suitable approach for generalized
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gas turbine simulation systems, it was selected for this study. Table 4.3 gives
the results for the runs.

Smoothness DASSL

Linear interpolation 10504
Linear spline approximations 9902
Cubic spline approximations 2387
Quintic spline approximations 2323

Table 4.3: Effect of map data smoothness on solver performance

It is seen that a poor interpolation method can increase the number of func-
tion evaluations between four and five times.

The DASSL solver can be set up to limit the order of the BDF method.
This was done reducing the variable order BDF-method to the backward Eu-
ler method. This increased the number of necessary function evaluations to
17256 in the linear interpolation case and 15246 in the quintic spline case. This
demonstrates that the benefits of high order derivative smoothness is small for
low order BDF methods. Likewise, the benefits of high order BDF methods ap-
plied to models with poor smoothness is limited. In fact, if linear interpolation
was used the optimal BDF for this problem was of order two.

4.8 Using Matlab and SIMULINK

Until recently, the methods for solving ODAE equations in SIMULINK were
very crude indeed. As Shampine observes [27]: “These versions had a limited
capability for solving models with algebraic loops, so users had to resort to ad
hoc changes to models in order to solve DAE:s beyond the capabilities of the
language”. However, Shampine et al. [27] have now introduced improved meth-
ods for the solution of ODAE:s both in Matlab and SIMULINK [23], including a
method using the direct approach for the Matlab environment. The SIMULINK
environment still uses the “indirect approach”.

Although the LSODE and DASSL solvers show comparable performance for
the Engine 3 case, the DASSL code is about 4.4 times more efficient than LSODE
in the Engine 1 case and 7.5 times in the Engine 2 case. This indicates that the
indirect approach used by SIMULINK for dealing with ODAE:s corresponds to
a considerable loss in performance compared to the direct method.

4.9 Chapter summary

The direct approach for solving the ODAE system arising from the acceleration
test transient, has been shown to work very efficiently. The DASSL solver, which
implements this approach, was about 4.4 times more efficient in the Engine 1
case and 7.5 times in the Engine 2 case, compared to the most efficient solver
using the indirect method. Furthermore, the DASSL code solved the full inter-
component volume model represented by Engine 2, using less than half the
number of function evaluations required by the Adams method to solve the rotor
dynamic model represented by Engine 1. This indicates that the justifiable use

49



of models with only rotor dynamics is limited to cases when a minimum of
complexity is required.

It has been demonstrated that high order BDF techniques can give increased
performance with as much as a factor of 6.6 compared to the BDF method
of order one, i.e. the backward Euler method, if suitable methods for data
interpolation are used.

As has been concluded by other authors, [51, 6], the performance penalties
associated with using explicit methods for simulation of stiff gas turbine systems
(Engine 2 and Engine 3) can be excessive. A reduction in speed with about a
factor of 1500 is obtained for Engine 2.

The application of the direct method allows the complexity of the simulation
system to be kept at a minimum, by using the same engine component formu-
lations for all engine models maintained by the system, including both steady
state and transient formulations.

50



Chapter 5

Optimization techniques

This chapter gives some background information on the optimization methods
selected to solve the various optimization tasks described in this thesis. The first
section discusses the relative benefits of classical and evolutionary algorithms.
The following sections go on to describe the three optimization methods selected
for implementation in GESTPAN. The description of the algorithms is inten-
tionally kept short, and the interested reader is advised to study the referenced
material.

5.1 Classical versus evolutionary algorithms

Basically two classes of optimization methodologies have been used for gas tur-
bine optimization:

¢ Classical methods/hill-climbing methods
e Genetic Algorithms (GA:s)

The use of GA:s has its stronghold in “hard and small” problems, i.e. hard
in the sense that the objective function may be discontinuous and multi-modal
(many local optima), and small in the sense that a great number of function
evaluations can be afforded within an acceptable time frame. Another way of
expressing the usefulness of GA:s is to say that they work well on a broader
class of problems but are generally much less efficient than classical algorithms.

Classical methods or hill-climbing methods use local information of the so-
lution space to improve on a current solution. This makes them particularly
suitable for problems with a few or, ideally, one local optimum. Another prop-
erty of the problem indicating the suitability of classical algorithms is that the
local behavior of the goal function is “nice”, i.e. the function is smooth enough
to allow the determination of gradients. Most traditional performance simula-
tion tools do not, by default, fulfill the latter criteria. Frequently, polynomial
interpolation is used to represent the empirical tables on which the models are
based. The very powerful SQP algorithm, described below, will generally fail
on such goal functions (the method requires C? continuity). To overcome this
difficulty, all internal and external tables in GESTPAN have been represented
using approximating splines [60].
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If proper interpolation algorithms are used to represent empirical data, the
strengths of the classical and the evolutionary algorithms can be combined (hy-
brid algorithms) to obtain very powerful and robust optimization methods.

5.2 Genetic Algorithms

The Genetic Algorithm implementation used for this thesis is based on a real
encoding, in contrast to the traditional binary encodings. In the early days of
genetic algorithms, the binary coded algorithms dominated the scene, owing
especially to the pioneering work by Holland [63] and De Jong [64]. In 1990,
however, Goldberg [65] made the following observation about real coded GA:s:

The use of real-coded or floating point genes has a long, if contro-
versial, history in artificial genetic and evolutionary search schemes,
and their use as of late seem to be on the rise. This rising usage has
been somewhat surprising to researchers familiar with fundamental
genetic algorithm theory ([66], [63]), because simple analyses seems
to suggest that enhanced schema processing is obtained by using
alphabets of low cardinality, a seemingly direct contradiction of em-
pirical findings that real codings have worked well in a number of
practical problems.

More recent work by Houck et al. [67] and Michalewicz [68] confirm this trend.
Extensive performance measurements indicate that real coded GA:s used for
function optimization often give an order of magnitude in speed up as compared
with binary coded GA:s [68]. Some recently published work on gas turbine op-
timization by Nadon et al. [69] used a Matlab implementation of a real coded
GA [67]. The GA used for the simulations carried out in this thesis uses a modi-
fied Fortran 90 implementation of this code. The data structure was completely
rewritten, since the original design was found to be unsuitable for this particular
task. Also, a simple algorithm for handling failed design attempts, by a penalty
method was integrated in the algorithm.

5.2.1 A Description of the algorithm

The basic algorithm for any evolution-based system [68] is given in Figure 5.1.
For the particular GA implementation used here, normalized geometric ranking
was used for the selection method. The alter step in Figure 5.1 is subdivided
into one mutation and one crossover part. The mutation part uses uniform
and non-uniform mutation and the recombination part uses simple and arith-
metic crossover [68]. The detailed settings of the optimization parameters are
described in Chapter 7.

5.3 The Nelder and Mead downhill simplex method

The downbhill simplex method was introduced by Nelder and Mead [36]. The
method relies upon carrying out a sequence of transformations of a geometric
object, a so called simplex. The simplex consists of n+1 points (vertices) in n
dimensions. By comparing the function values at the n+1 vertices and replacing
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begin
initialize population P(t)
evaluate P(t)
while (not termination-condition) do
begin
t<-t+1
select P(t) from P(t-1)
alter P(t)
evaluate P(t)

end
end

Figure 5.1: Generic structure of a genetic algorithm [68]

the highest value by another point, a decreasing sequence of function values is
created.

5.3.1 A description of the algorithm

Let Py, P, ...., P, be the n+1 points in the n-dimensional space at the vertices
of the simplex. Denote the function value at P; with y; and introduce:

yn = max(y;) (5.1)
Y1 = min(y;) (5.2)
Let P be the centroid of the points with i # h and let [P; P;,] denote the distance

from P; to P;. At each stage in the process, P} is replaced by a new point. Three
elementary operations are used to generate the downhill sequence:

o Reflection
o Contraction

e Expansion

The reflection of Py, is denoted as P*, and its coordinate values are obtained
through the following relationship:

P*=(1+a)P-aP, (5.3)

Let, for instance, n = 3 and let the simplex be a regular tetrahedron; a = 1 then
corresponds to a mirroring of Py through the plane formed by the other three
base points (an a = 0 will get you exactly to the centroid). If the resulting
y* lies between y; and y;, then P, is replaced with P* and the procedure is
restarted. If y* is less than y;, an expansion procedure is carried out. If y* is
greater than yy, a contraction procedure is carried out.

If y* is less than y;, we expand P* to P** by the relation:

P* =yP*—(1-7)P (5.4)
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The expansion coefficient, v, is set greater than unity. It is defined as the ratio of
the distance [P**P] to [P*P] (i.e. distances from the centroid to the expansion
points). If the resulting y** is less than y;, then P, is replaced with y; and
the procedure is restarted. If, on the other hand, y** is greater than y; the
expansion process has failed and P* must suffice as a replacement for Pj.

If reflection point P* yields a y* such that y* > y; for all i not equal to hyy,,
then the new P, will either be the old P, or P*, depending on which has the
lower value. The contraction point, P**, is thus defined as:

P*=pP,—-(1-p)P (5.5)

The contraction coefficient, 3, lies between 0 and 1 and is the ratio of the
distance [P** P] to [P, P] (i.e. distances from the point to the centroid and from
the point to the contraction point). Here we might encounter the worst case
scenario for which the contraction point has a higher value than both points
y* and yp. For such complete failure, the P;:s are replaced by % and the
process is restarted.

The form used to test for convergence is to compare the ”standard error” of

. _a)2
the y:s in the form 4/ E(y% with a preset value. The success of the criterion
depends on the simplex not becoming too small in relation to the curvature of
the surface until the final minimum is reached.

5.4 Sequential Quadratic Programming - SQP

Sequential quadratic programming is a recently developed method for optimiza-
tion, and it is generally a more direct and efficient method than the penalty
function methods used (which have enjoyed a widespread use for constrained
problems). Simply stated, the technique applies Newton’s method to find the
stationary points of the Lagrangian function by solving a sequence of quadratic
optimization problems. Here, the NAG implementation was utilized, which is
essentially identical to the SOL/NPSOL routines coded by [70].

5.4.1 A description of the algorithm

For a nonlinear optimization problem with only equality constraints, i.e. for a
problem of the type:

minimize f(z)

subject to h;(x) = 0, i=1,2,.....,m
m
The Lagrangian to the system is given by L = f(x) + > Aghi(x). The fourth
k=1
Kuhn-Tucker requirement states [71]:
VL=0 (5.6)

Together with the constraints, this represents n+m equations in n+m unknowns.
If the Newton method is applied in solving this system of nonlinear equations,
one obtains:
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where AT = (Vhy, ..., Vhy,). If V2L is introduced as indicated above, we get:

L LS -1

If we introduce:

AX]' :Xj+1 —X]'
AXj = Ajr1 =Xy

The above relations can be combined to yield:

R R e
A 10 L AN [T
This equation can be solved to find the change in the design vector, AX;, and
the new values of the Lagrange multipliers, A;j;+1. The iterative process can be
continued until convergence is achieved. Also, the above equation can be seen
to be equivalent to solving a quadratic problem with linear constraints. Very
efficient methods have been developed to deal with these problems, see [72].
The extension to dealing with inequality constraints is also described in [72].
Further information on how to solve the system of nonlinear equations arising
from the formulation above can be found in [72], [38] and [73].

55



96



Chapter 6
Trajectory optimization

This chapter combines some of the optimization methods described in Chapter 5
with the transient modeling technique outlined in Chapter 4. More specifically,
a methodology for obtaining optimal control schedules of the Selective Bleed
Variable cycle engine (SBVCE) during the mode switch transient was devel-
oped. The work is a continuation of previous studies of the performance of the
engine [49, 47]. The chapter also describes the implementation of a multimode
functionality suitable for variable cycle engine simulation. This functionality
eliminates the need for a matching procedure, which is necessary when two or
more engine designs are used to describe the operating modes of the variable
cycle engine [47].

6.1 Selection of the Design Point

A detailed study of the design point optimization and cycle selection of the
Selective Bleed VCE (see section 3.5 for a description of the basic operation of
the engine) was done by Nascimento and Pilidis [47]. In that study, two separate
engine models representing the subsonic and the supersonic modes were used
in combination with a matching procedure that ensured that the two cycles
corresponded to the same engine design.

Since the transient operation of the mode switch must use both nozzles ac-
tively, the separate engine approach was not suitable for this work. Instead,
the engine design was carried out in the intermediate mode and a feature for
dynamic connections to switch between the intermediate mode and two single
nozzle modes was developed, see section 6.4 below. The design point, see Ta-
ble 6.1, was selected in such a way that it would match as closely as possible
the mission optimized design obtained by Nascimento and Pilidis [47].

6.2 Engine variable geometry and controls

The engine model has six variable geometry control signals: variable geometry
in all three compressors as well as in the three nozzles. In addition, the fuel
flow must be controlled in a suitable manner, giving a total of seven degrees of
freedom for the control optimization. The variable geometry compressor model
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| Design parameter | Value | Design parameter | Value |

h 0.0 m THPC 3.60
M 0.0 NHPC 0.88
TLPC 3.0 Meore 170 kg/s
NLPC 0.88 TIT 1500.0 K

bpry 0.62 NHPT 0.90
TIpPC 2.40 NLPT 0.90
nipc 0.88 Tnozzles 0.98

bprs 0.24

Table 6.1: Design point of the Selective Bleed VCE

is identical to the one used in [46] to optimize the steady state control of the
Selective Bleed VCE.

6.3 Selection of the transition point

The selection of the transition point could be made in a straightforward way.
The specific fuel consumption (SFC) of the engine was minimized for a number
of flight cases in the subsonic and in the supersonic modes. Subsequently, a
suitable point for transition could be selected among these optimal cruise points,
defining both the initial and the end point of the trajectory as well as the flight
case at which the transition will occur.

To ensure safe and stable operation in the optimal cruise points, a number
of constraints had to be imposed on the control optimization. These constraints
are given in Table 6.2. The same definition of surge margin as the one used for
optimizing the steady state controls of the Selective Bleed VCE, see [46], was
used here:

mw— T
U= choke (61)
Tsurge — Tchoke

By this definition, surge would occur for ¥ = 1.0. Thrust requirements for the
entire flight mission of the STOVL aircraft have been given in Nascimento and
Pilidis [47].

¥rpc < 0.8
Urpc < 0.8
Unpc < 0.8
TIT < 1650.0 K
Net Thrust | > 134.0kN
Mass flow | < | Design mass flow

Table 6.2: Constraints

The selection of the transition point is of crucial importance to the successful
control of the transient. For instance, if the rotational speeds of the subsonic
mode cruise point and the supersonic mode cruise point differ considerably,
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inertia of the rotors will make it very difficult to perform the transient within a
reasonable time. Also, if the steady state cruise points selected are too close to
the limits of safe and stable operation, the margin is likely to be insufficient for
carrying out a successful mode transition. For this reason, a more conservative
selection of constraints was made for the steady state cruise optimization, than
for the mode switch transient.

The original design point optimization of the supersonic mode of the Se-
lective Bleed Variable cycle engine was carried out for a flight Mach number
of 1.2 and an altitude of 6000m [47]. This altitude was selected for the mode
transition for comparative reasons. Several optimizations of the control set-
tings were carried out to determine a suitable transition Mach number. The
optimal cruise SFC curves for the two modes are shown in Fig. 6.1. Although

Minimum SFC - subsonic and supersonic modes
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Figure 6.1: Minimum SFC for the two modes

Fig. 6.1 indicates that the most optimal point for transition is around M=1.12,
the (h=6000m, M=1.2) flight case was the final selection of transition point
since this flight case was the supersonic mode design optimization point and
also part of the STOVL aircraft mission specification.

The optimization problem was solved using Sequential Quadratic Program-
ming, see section 5.4. The NAG implementation of the algorithm, based on the
work of Gill et al. (1986), was found to work very efficiently.

The variable geometry and fuel flow schedules for the two modes were se-
lected by optimizing the cruise SFC for this flight condition. The optimal control
settings are given in Table 6.3.

59



Subsonic mode | Supersonic mode
LPC restagger —2.03696° 4.44104°
IPC restagger 12.2441° —9.66672°
HPC restagger —0.772156° —0.531882°
Front nozzle 0.331422 (m?) 0.000000 (m?)
Mid nozzle 0.000000 (m?) 0.116615 (m?)
Exhaust nozzle | 0.456220 (m?) 0.741889 (m?)
Fuel flow 4.105108 (kg/s) | 3.927331 (kg/s)

Table 6.3: Cruise optimized control settings for the transition point
(M=1.2, h=6000m).

6.3.1 Control optimization of all flight cases in mission

Variable geometry optimization calculations were performed for all points in
the original mission. It was noted that the highest turbine inlet temperature
required for any of the flight cases was 1577 K. This indicates that the original
engine cycle has been somewhat oversized.

6.4 The GESTPAN multimode functionality

The GESTPAN multimode feature is based on defining new modes of operation
from one “super mode”. In the super mode, all flow paths are defined simultane-
ously. Derivative modes of this super mode are then obtained by specifying the
deletion of appropriate connections in the model. If all input connections of a
module have been specified for deletion, the algorithm will automatically delete
the entire module. There is no corresponding feature for adding new modules,
which explains why all modes of operation must be defined from a super mode.

6.4.1 Implementation of the feature

After the super mode has been designed, mode switches to the sub-modes are de-
fined as off-design points. Internally, all the connections of a GESTPAN engine
model are represented by a connection array. Another array stores information
about which engine components are part of the model. The process of perform-
ing a mode switch starts by a check of whether any of the engine components
have had all their input connections deleted. If so, the component is deleted
from the component array. Subsequently, all the elements in the connection
array corresponding to the deleted connections are removed. The same kind of
operation must be performed on the arrays storing the design point definition
as well as model inputs. If connections are added to the system, these must be
added to the appropriate arrays.

All the mode switch operations described above correspond to modification
of the data that is normally created during the processing of the engine model
input files. When this process has been completed, the routines normally run to
establish derivative arrays of from the input data files have to be re-run. This
re-running of the new configuration may, for instance, lead to a system with a
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different number of iteration variables and residuals, than present in the super
mode.

6.4.2 Definition of modes of the SBVCE

The multimode functionality made it very convenient to specify the subsonic
and supersonic modes of the Selective Bleed engine with Table 6.1 defining the
super mode. The subsonic mode was obtained by deleting all connections to the
DUCT 1 and NOZZLE 1 modules, see Fig. 6.2 (note that the steady state model
used for finding optimal cruise points has no rotor or volume components). The
supersonic mode was obtained by deleting all connections to the DUCT 2 and
NOZZLE 2 modules. To make the definition of the two sub modes complete a
connection specifying constant and zero bypass ratio of the two splitter modules
(SPLITTER 1 and SPLITTER 2) had to be given as well.

Another approach toward modelling the two engine modes would have been
to use the super mode model directly, with very small areas to simulate closed
nozzles. However, schedule optimizations using such a model were found to
be virtually impossible to perform, owing to the restricted mass flow operating
range of such nozzle designs. Small variations in the iteration variables used
by the quasi-Newton solver, see Appendix B and Chapter 2, could result in an
attempt to balance an engine with a negative flow through the engine nozzles.

6.5 Optimization of the mode transition

To model the transition trajectory, an inter-component volume, see section 4.1,
model was assembled. The wiring diagram of the engine model is illustrated
in Fig. 6.2. Numerically, the engine was represented by a differential algebraic
equation system with 14 states and six equations. The procedure used to solve
the equations was outlined in detail in Chapter 4.

The start and end points of the trajectory were approximated as intermediate
mode points with nozzle areas 0.0001 times the areas given in Table 6.3. The
optimal control schedules obtained for the subsonic and supersonic mode cruise
points, were not, corrected for this very small deviation in initial and end points.

6.5.1 Optimality criteria during mode transition

To ensure safe operation of the engine during the mode transition, all three com-
pressors must operate well away from the surge line. Furthermore, the engine
thrust should not drop below the aircraft thrust requirement. A small increase
in thrust during the transient is probably in agreement with most aircraft system
requirements. The surge margin requirement was relaxed for the transient mode
switch and was limited to 0.95. Also, the turbine inlet temperature was allowed
to reach 1700 K during the transient. Shaft inertias were set to Ir,p = 30 kgm?
and Igp = 20 kgm?, and volume sizes were all set to 0.0001 m3. The selection
of the rotor inertias and volume sizes is motivated below.

6.5.2 Linear interpolation of the schedules

The first attempt to control the engine during transition was made by a simple
linear interpolation of the optimal schedules determined for the subsonic and
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supersonic mode cruise points. The engine was scheduled to switch within
0.5 seconds. The resulting surge margins, thrust and turbine inlet temperature
trajectories are shown in Fig. 6.3. A drop in thrust can be observed during the
first fraction of the transient, but the compressors operate well away from surge.
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Figure 6.3: Constraint variables - linear scheduling of controls

6.5.3 Component modeling assumptions

The component off-design behavior is based on the models described in Ap-
pendix A. These correlations do not include any methods for estimating the
moment of inertia of the shafts or the inter-component volume sizes. However,
the dependency of the trajectory on the values selected for the shaft inertias
and the volume sizes was observed to be very limited.

Dependency on shaft inertia

Since the high pressure shaft only changed its rotational speed from 153.7 rps
to 158.1 rps and the low pressure shaft from 207.4 rps to 205.0 rps, the effect
of uncertainty in estimating shaft inertias on the trajectory was very limited.
The shaft torques for two simulations with different values on shaft inertia are
shown in Fig 6.4. The proximity of the turbine and compressor torques also
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Figure 6.4: Effect of doubling shaft inertias

demonstrates that the intermediate points are relatively close to equilibrium
points.

Dependency on inter-component volume sizes

Since the dynamics of the volumes is much faster than the time required for
the mode switch, the effect of uncertainties in estimating volume sizes is also
limited. Two simulations with volume sizes of 0.0001m? and 0.5m? are shown if
Fig 6.5. Note that the implicit solver technique makes possible the use of very
small volume sizes without any notable change in computational time.

6.5.4 Optimization of the trajectory

Since the linear interpolation of the control schedules produced an initial drop
and a fairly large variation in thrust, some further development of the control
methodology was undertaken. The initial 0.5 s during which the control schedul-
ing occurs was discretized into three time intervals: (0,0.167), (0.167.0.333) and
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(0.333,0.5). At t=(0.167,0.333), the values of the nozzle area schedules, the
burner fuel flow and the IPC variable geometry parameter were allowed to vary
by 20% around the schedules produced by the linear interpolation. The control
settings at all the intermediate points could then be obtained using interpolating
cubic splines (Dierckx, 1993).

The resulting control optimization problem thus had eight degrees of free-
dom. The constraints on the compressor surge margins, the turbine inlet tem-
perature and the thrust trajectories form five nonlinear constraints. The goal
function was formed by minimizing the maximum thrust during the mode
switch. This selection of goal function would minimize the total thrust vari-
ation.

6.5.5 Final control settings

The surge margins, turbine inlet temperature and thrust trajectories resulting
from the optimization are shown in Fig. 6.6, and the corresponding control
parameters are shown in Fig 6.7. Both the fan surge constraint and the turbine
inlet constraint are active, i.e. the maximum allowed value is obtained at some
point along the trajectory. The optimization eliminated the initial drop in thrust
and the total variation in thrust was reduced from 7.4% to 2.9%.

6.5.6 Further improvements

This methodology can be further refined by introducing a greater number of
discretization points of the control variables and by using the fan, the HPC and
the afterburner area variable geometry parameters as optimization variables.
Too many discretization points might result in control schedules requiring vari-
ations in control signals to occur faster than the response times of the control
system. Furthermore, such refined controls might be misleading if the accuracy
of transient model is not sufficient. Great variations in the schedules can also
cause convergence problems for the differential algebraic solver, e.g. some com-
bination of control variables evaluated during optimization may cause some of
the nonlinear component models to operate outside their region of definition.
However, the present results are sufficient for demonstrating the usefulness of
the method and showing that the transient can be controlled both safely and
efficiently.

6.5.7 Conclusions

It has been shown that the mode switch of the Selective Bleed VCE can be
carried out safely without violating surge and thrust constraints and that the
time for the mode switch is of the same order as the actuator times of a typical
hydraulic system. The modeling uncertainties introduced by the estimation of
the inter-component volume sizes and the shaft inertias were also very limited
on the trajectory selected for the mode switch. Furthermore, it was observed
that the thrust requirements set by the aircraft mission can be fulfilled at a
considerably lower turbine inlet temperature than has been reported by previous
authors. This indicates that, by an optimal use of the control system, the present
design can be downsized. This matter is addressed in the next chapter.

66



Surge parameter — W s

1 14210 Net thrust (N)
4 T T - - .
0.8 Fan surge parameter |
/ gep 1.38,
0.8 B
0.7 HPC surge parameter | 13 |
£
0.6 @
2134 |
0.5 =
g
0.4 1.32| 1
0.3 \ IPC surge parameter
1.3 N
0.2p 1
0.1 128 ‘ ‘ ‘ ‘ ‘
0 0.25 05 075 1 1.25 15 0 0.25 05 _ 075 1 125 15
Time (s) Time (s)

Turbine inlet temperature (K)

1700
1680
1660
—~1640
<
}— 1620
= 1600
1580

1560

15400 0.25 0.5 0.75 1 125 15

Time (s)

Figure 6.6: Constraint variables - optimized scheduling of controls

67



IPC variable geometry parameter — o

15 T T T

10 1
5 ]
Optimized control
o] / w
0 ]
-5, ]
Linear schedule

0 0.25 0.5 X 0.75 1 1.25 1.5
Time (s)

Nozzle 2 variable area parameter —y

A
4

3.5
3t

2.5; Linear schedule

___— Optimized control

0 0.25 05 075 1 125 15
Time (s)

Nozzle 1 variable area parameter —y
1.5 T T T T T
1251\ Optimized control i
1r ]
>0.75¢ q
Linear schedule
05 e ]
0.25¢ ]
0
0 0.25 05 075 1 1.25 15
Time ()
Burner fuel flow (kg/s)
45 . : : . .
~——— Optimized control
Af
3.5- \
% 3 Linear control
s
250
2
o
= 2
©
D15
qt
05+
% 0.25 05 _ 075 1 125 15
Time (s)

Figure 6.7: Control schedules

68



Chapter 7
Mission Optimization

This chapter describes some recent work on mission optimization of the Selective
Bleed variable cycle engine. The coupled problem of selecting an optimal cycle
design point and controlling the variable area schedules of the engine is studied.
The simulations indicate that the engine cycle originally proposed in [47, 48, 46)
can be downsized considerably and still fulfill the mission requirements.

7.1 The mission optimization problem

The mathematical formulation of the problem is:

minimize f(x)
subject to:

h’l(x) :07 7/:1,2,,]7
g9;i(x) <0, i=1,2,...m

where f is the goal function defining the function to be minimized and h; and
g; are equality and side constraints respectively. The vector x = x1,%2,..., %5
contains the independent variables which form the search space.

7.1.1 Goal function definition

A crucial step for the formulation of any optimization problem is how to define
the goal function. For a jet engine a great number of parameters could be argued
to be relevant for inclusion in the goal function, such as the weight and cost of
the engine, life of the engine components and specific fuel consumption. Weight
factors could then be set to balance the influence of the different parameters.
Here, the most obvious and simple choice was made, a time weighted SFC
average, SFC, according to

3t - SFC
SFC==L (7.1)
>t
i=1

where t; represents the time spent operating in a specific flight leg of the mission.
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7.1.2 Constraint definitions

Constraints are introduced to ensure that the engine operates with an adequate
surge margin, and that temperature limits such as the turbine inlet temperature
or the high pressure compressor exit temperature are maintained. Additionally,
the thrust requirements in the different flight legs of the mission are represented
as constraints.

7.2 A hybrid method for mission optimization

Selecting methods for optimization of nonlinear problems is generally a very
interesting matter. As stated in [74]:

It’s unrealistic to expect to find one general nonlinear program-
ming code that’s going to work for every kind of nonlinear model.
Instead, you should try to select a code that fits the problem you are
solving. If your problem doesn’t fit in any category except ’general’,
or if you insist on a globally optimal solution (except when there
is no chance of encountering multiple local optima), you should be
prepared to have to use a method that boils down to exhaustive
search, i.e., you have an intractable problem

Exhaustive search is never a very attractive solution procedure, especially in a
multidimensional search space. This section discusses some of the characteristic
properties of the gas turbine system and how this influences the choice of suitable
optimization methods.

7.2.1 Properties of the gas turbine solution space

One characteristic difficulty associated with gas turbine design optimization is
that the nonlinear equations governing the design process frequently have no
solution. To illustrate this, the variation in SFC with fan pressure ratio and
turbine inlet temperature for the turbofan cycle described in Chapter 2, has
been plotted in Figure 7.1. For a particular fan pressure ratio only a limited
range on the turbine inlet temperature will allow successful mixing of the flow
in the unifier (see governing equations in Appendix A.7). Combinations of TIT
and FPR for which no solution exist are indicated in the figure as having zero
SFC. Thus, an optimization method used to explore the gas turbine design space
must have the ability to deal with failed solutions.

7.2.2 Classical methods and smooth functions

One reason for the increasing use of GA:s (see section 5.2), in the engineering
community relates to their ability to optimize multi-modal functions (functions
with many local optima). Equally important is probably the inability of the
more powerful classical methods to deal with “noisy” functions [5]. A tradi-
tional gas turbine simulation code uses tabulated data to assess the system
performance (see Appendix A). Unless special care is taken to represent these
tables properly, discontinuities in the derivatives of the interpolating functions
might be introduced in the table knots.
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Solution space for turbofan engine

Figure 7.1: Solution space for turbofan engine

If a powerful classical optimizer, such as the SQP method (see section 5.4),
is applied to an existing performance tool, one should expect failure rather than
success. Unless it is considered worthwhile to go through the entire code and,
wherever necessary, replace existing interpolation methods with methods giving
the code C? continuity (continuity in the second derivatives [required by the
SQP method]), it is probably better to attempt to use a method that does
not rely on numerical estimation of derivatives. Such methods are called zero
order methods. A classical zero order method is the Nelder and Mead Simplex
method [36]. Genetic algorithms are also zero order methods.

7.2.3 The method

To combine the advantages of genetic algorithms and classical optimization tech-
niques, a hybrid method for gas turbine optimization is suggested. The method
uses an SQP implementation, see [76], to control the engine in the mission
legs, and a real coded GA for the cycle selection. The method is illustrated in
Figure 7.2.

As shown in Figure 7.2, the first step in the evaluation of an engine individual
is to attempt to design the engine for the cycle parameters suggested by the GA.
If the design process fails a logical “failure-flag” is set true and the control is
subsequently returned to the GA optimizer. After every completed generation
the failed engine designs of the population are ascribed a fitness value equal to
a fraction of the fitness for the worst successful design. Since the GA optimizer
seeks to find the global maximum of the goal function, the SFC value is inverted
before control is returned to the GA.

If the design process is successful, an attempt to complete the mission is
made. All the flight legs of the mission are executed in sequence. Since the
engine components of the engine system have limited regions of operation, it is
usually necessary to make the change from the design point to the user specified
mission legs in several steps. Thus, optimal controls are found for a number of
intermediate points, in order to reach the final mission leg.
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Control optimization
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Control optimization
h=h(mission leg n)
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Control optimization
h=h(mission leg 1)
M=M (mission leg 1)

Figure 7.2: Schematic of the hybrid mission optimization methodology

Alt.(km) | Mach No. | Thrust | Time | Flight leg no.
Take-off 0.0 0.00 140 1 min 4
Subsonic cruise 9.0 0.78 14 25 min 2
Loiter 9.0 0.65 13 60 min 3
Supersonic cruise 9.0 1.50 100 10 min 1
Subsonic cruise 9.0 0.78 14 38 min 2
Vertical landing 0.0 0.00 140 1 min 4

Table 7.1: STOVL aircraft mission [48].

7.3 Mission specification

The operation of the Selective Bleed VCE has been described in Section 3.5 and
in Chapter 6. The original mission for which the power plant was optimized is
given in Table 7.1. The flight leg numbers are used to group mission legs with
the same specification together.
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7.4 Formulation of the optimization problem

The number of parameters involved in cycle optimization studies are generally
rather limited [30]. For the Selective Bleed VCE, six parameters have been
included in the optimization process. These are given in Table 7.2. Experiments
with larger populations and larger variable domains served to isolate variable
ranges for which successful mission completion was possible. Additional input
data necessary to define the design point were taken from Table 2.6, where the
given efficiencies were used as polytropic efficiencies.

Parameter Range

Fan pressure ratio 2.0-6.0

Forward bypass ratio 0.1-1.0

IPC pressure ratio 2.0-4.0

Rear bypass ratio 0.1-0.6

HPC pressure ratio 2.0-6.0
Turbine inlet temperature | 1500.0-1800.0 K

Table 7.2: Cycle optimization variables for the Selective Bleed VCE

In order to optimize the engine performance in the four flight legs a number
of controls were introduced. The exhaust nozzle area, the fan and IPC variable
geometry parameters, the fuel flow and one of the forward and the rear nozzle
areas (depending on which mission leg that was being executed), were simulta-
neously controlled, to optimize mission leg SFC and to satisfy the constraints.
The HPC variable geometry control was found to vary very little when it was
part of the control optimization process, and was therefore not used as a cycle
optimization variable.

The thrust requirements of the mission flight legs are given in Table 7.1. To
ensure safe and stable operation of the engine, a number of additional constraints
had to be introduced, see Table 7.3. The ¢,,; = 1.0 parameter guarantees that

Constraint Variables
¢rel,FAN =1.0

Oret,ipc = 1.0
0.4 < Thrust split < 0.6 (Aight leg 4)
Turbine inlet temperature < 1800 K

Table 7.3: Constraints for the mission

the fan and the IPC operate in a stable region (see Appendix A). The thrust
split constraint is required in the take-off and landing legs, in order to maintain
aircraft stability [75].

7.4.1 Mission leg evaluation

The initial values for the optimal control settings were obtained as output from
the design process. These are given in Table 7.4.
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Variable Initial value
QFAN 0.0
arpc 0.0
Fuel flow (kg/s) Design point fuel flow
Afrontnozzte (M?) Design point area
Arear,nozzle (m2) Design point area
Aewhaust,nozzle (m2) Design point area
Mode of operation | Intermediate operation

Table 7.4: Initial settings on the control parameters

Since both the subsonic and the supersonic modes of the Selective Bleed
engine operate with one of the nozzles closed, a mode switch has to be performed
during the evaluation of the mission legs. The switch is carried out immediately
before the final step in the leg.

For the problem studied here, steps in the altitude variable of 500-1000 m
were found suitable. Mach numbers were changed in the same fashion, with
step sizes ranging from 0.0 to 0.2. Furthermore, for every new step the closing
nozzle area was reduced to 80% of the previous value. Thus, as the mode switch
was performed and the nozzle was closed completely, only a modest change in
the iteration variables was necessary to obtain a balanced engine. To limit the
change in the control variables between the steps, a maximum variation of 80%
to 120% of the value obtained in the previous step was allowed. For the number
of steps used here (8-18), the maximum possible variation was quite large. For
this reason, these bounds on the control variables were rarely found to be active
when the user specified mission leg was reached.

7.4.2 GA and SQP settings

The only non-standard setting for the SQP implementation used here (E04UCF
routine in [76]), was to reduce the precision requirement on the optimality toler-
ance to 1.0E-5. This tolerance is more than sufficient, considering the accuracy
of preliminary design models. The settings of the GA are found in Table 7.5.

Parameter Value
Population size 100
q (normalized ranking parameter) 0.02
b (shape parameter for non-uniform mutation) 2
Arithmetic crossover frequency 10
Simple crossover frequency 10
Uniform mutation frequency 5
Non-uniform mutation frequency 5

Table 7.5: Settings on the control parameters of the GA (see [67, 68] for a
definition).

The failure factor was set to 0.75, i.e. all failed designs were given a fitness
value equal to 75% of the worst successful design in the population. The initial
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100 engine individuals were selected from 500 engines, randomly distributed in
the allowed design space (see Table 7.2).

7.5 Simulation results

Since this study focused on reducing the mass flow of the original Selective Bleed
engine design given in [48], a series of optimization studies were carried out to
determine a suitable design point mass flow that allowed the thrust requirements
of the engine to be met. The rate of successful mission completion for the initial
population decreased from 85% at 300 kg/s to 15% at 240 kg/s. At 200 kg/s
only three out of the initial 500 mission evaluations were successful. The cycle
parameters of the design with the lowest SFC of these three engines, are given
in Table 7.6. The effect of the supersonic cruise constraint (flight leg no. 1) on
the cycle parameters is evident. The relatively low compressor pressure ratios,
in particular over the HPC, and the low turbine inlet design temperature give
a large margin for energy input at the supercruise condition.

Parameter Value

Fan pressure ratio 4.4302
Forward bypass ratio 0.8651
IPC pressure ratio 2.2479
Rear bypass ratio 0.1969
HPC pressure ratio 2.2120

Turbine inlet temperature 1524.0 (K)
SFC 21.34 (mg/Ns)

Table 7.6: Best successful design of the initial population for a design mass flow
of = 200 kg/s

Since the best engine in the initial population of the 240 kg/s case had an
SFC= 15.30 mg/Ns and in the 300 kg/s population the corresponding value
was SFC= 14.81 mg/Ns, the 240 kg/s population seemed to offer the most
promising compromise between fuel consumption and size. This population was
run for additionally ten generations. The resulting optimal cycle point is given
in Table 7.7.

Parameter Value

Fan pressure ratio 3.8764
Forward bypass ratio 0.5423
IPC pressure ratio 3.8930
Rear bypass ratio 0.1579
HPC pressure ratio 5.5184

Turbine inlet temperature 1517.65 (K)
SFC 14.497 (mg/Ns)

Table 7.7: Best cycle point after 10 generations
The operation of the engine in the four flight legs are summarized in Ta-
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ble 7.8. As seen from the table, the thrust requirement of flight leg no. 1 pushes
Flight leg no. 1 2 3 4
OFAN -0.4102994 -7.8295991 -8.0380587 -3.2515431
arpc -10.0000000 18.1336900 23.6526579 5.5060196
Fuel flow (kg/s) 2.4169096 0.4274185 0.3562629 1.4240298
Afront,nozzte (M?) — 0.325485 0.336297 0.208032
Arear,nozzle (mZ) 0.031777 — — -
Aczhaust,nozzie (M?) 0.186451 0.175372 0.173630 0.113489
Mode of operation Supersonic Subsonic Subsonic Subsonic
TIT (K) 1798.2556766 | 1237.4286671 | 1190.3994594 | 1483.3560793
SFC (mg/Ns) 24.1690969 14.3759732 13.1559524 10.1716531

Table 7.8: Optimal control settings in the flight legs

the engine close to the temperature limit. Also note how the cruise and loiter
points favor high flowing the forward nozzle to obtain better propulsive efficien-
cies, whereas in the supersonic point the specific thrust is maximized by high
flowing the core.

7.6 Discussion

For the original Selective Bleed engine design point, proposed in [48], the total
mass flow was set to 370 kg/s. The aim of the mission optimization studies
carried out in this chapter have been to show that the design point mass flow of
this engine can be reduced considerably, still fulfilling the mission requirements.
This mass flow reduction has been achieved by integrating the control of the
engine variable geometry into the cycle selection process. It was found possi-
ble to satisfy the mission thrust requirements for a design point mass flow of
200 kg/s, but this was achieved at a relatively high SFC value. A design mass
flow of 240 kg/s seems to be a more suitable compromise between engine size
and performance.
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Chapter 8

Summary of papers

The work reported in Paper 3 and Paper 4 was described in Chapter 4 and
Chapter 6, respectively. This chapter summarizes work carried out early in the
project reported in Paper 1 and Paper 2.

8.1 Refining component modeling - Paper 1

Several physical phenomena occurring in gas turbines must be addressed on a
system basis in order to be modeled. For instance, the estimations of engine
life, performance and stability of operation all require a system approach. To
successfully address questions such as these, the zero-dimensional component-
map-based models traditionally in use for system analysis will generally not
be sufficient. 2D, 3D or even 3D transient models integrating highly tuned
heat transfer simulation capabilities may be necessary. However, simulation
of a complex system such as a gas turbine engine using full 3-D viscous mod-
els will require massive computational resources. While the physics governing
these phenomena may be captured by modeling the system on the highest pos-
sible level of complexity, two problems will prevent this from being a feasible
approach:

e The amount of detailed input data, such as boundary and initial conditions
needed to obtain converged and validated solutions will be enormous.

e The computational time and cost will be excessive.

Thus, the conclusion is that the analyst must tailor the level of approximation
to the simulation task, capturing the appropriate physics for each component
and integrating it into the system/subsystem simulation. For instance, assess-
ing the effects of adding a fan stage to engine performance may be solved by
using a three-dimensional simulation of the fan stage and letting the rest of the
engine be modeled at a zero-dimensional level to minimize simulation set-up
and computation time.

The following sections will deal with component refinement models developed
in this project, and to future work on these. Starting with a discussion on the
experience gained porting a streamfunction code to ta44/ta45 will help to define
and make apparent the limitations of these techniques. The following sections
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will then describe how these methods were applied to the double bypass VCE
and indicate how component models should be tailored to serve the needs of
preliminary performance estimation of advanced engine concepts.

8.1.1 Streamline codes for variable geometry simulation
Variable compressor geometry in jet engines

Using variable stator vanes is an efficient way to maintain high performance
of axial compressors when operating away from the design point. Achieving
satisfactory operation often necessitates the combined use of scheduled variable
stator vane resetting and interstage bleed. These measures are taken not only
to improve internal compressor performance but also to ensure a satisfactory
integrated operation, i.e. preventing the compressor from running into surge
during start-up.

Extensive rig testing is normally done to find optimal stator vane schedules
and bleed levels on new compressor designs. Several papers have been devoted
to developing efficient testing algorithms based on multidimensional optimiza-
tion procedures, such as [77], [78]. The aim has been to minimize the number
of test runs in order to find stator vane and bleed settings with satisfactory
performance.

The following sections outline a method developed for using the through-
flow equations (see [79], [80]) in order to optimize off-design stator vane settings
for achieving maximum isentropic efficiency. The method is applied to the
optimization of a seven-stage axial compressor from a jet engine perspective.
For more extensive treatment concerning this work, see [80].

The through-flow equations have been used extensively in the past for mul-
tistage axial compressor design optimizations [81], [82]. The optimization task
has in those cases been restricted to a separate compressor component, and the
compressor has not been integrated into a jet engine. Egorov [83] also consid-
ered the design optimization problem from an engine integration viewpoint. In
that particular case, it was shown that consideration of the integrated perfor-
mance of the compressor unit was more important than assuring the highest
efficiency of the component. Egorov did not address the question of stator vane
optimization.

Selection of backbones - optimization points

The optimization method developed finds the stator vane settings that give the
maximum isentropic efficiency for a certain combination of corrected mass flow

m _ mvo
corr — 5
and corrected rotational speed
N
Ncorr = ﬁ

For every corrected rotational speed line, there is one point with maximum
isentropic efficiency. If these points are connected to form a curve, the so called
backbone of the compressor map is formed. Thus, the optimization procedure is
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able to find the stator vane settings for a certain specified backbone. The level of
the isentropic efficiency and the pressure ratio distribution along this backbone
are not known initially but are rather a result of the optimization. The curve
specifying the backbone can be chosen arbitrarily (within the limits set by the
flow field). In the case studied in [80], five parabolas, all running through the
compressor design point, were selected. These are shown in Fig. 8.1.

Selected backbones

50.0
40.0 |
30.0 B
g
e
20.0 -
&——=o Backboneno 1
——=a Backbone no 2
&——= Backbone no 3
10.0 - s~——= Backbone no 4 b
v——~ Backbone no 5
OO L L L
4000.0 6000.0 8000.0 10000.0 12000.0

N

corr

Figure 8.1: Selected backbones

For every corrected rotational speed, the level of the isentropic efficiency
achieved by the optimization procedure will depend on the corresponding cor-
rected mass flow that is selected. If the compressor is operated in isolation and
not integrated into a jet engine, a straightforward choice of backbone would
be the one with the optimal corrected mass flow (yielding the highest level of
isentropic efficiency) for every rotational speed. In this case, that curve was
found to lie between "backbone no 2” and ”"backbone no 3”7, i.e. a backbone
selected in this region will produce a compressor map with the highest efficiency
maximum.

The optimal choice in a real engine case is governed by the matching to the
turbine system. If the turbine stators and the exhaust nozzle operate choked,
the position of the running line in the compressor map will depend solely on
this system. Thus, the optimal choice will be the compressor map for which
the running line lies in the region of highest isentropic efficiency (still offering
acceptable stall margins). For the engine studied in [80], "backbone 1”7 offers
the best engine integration. The peak efficiency of this map is lower than that
generated by ”backbone no 2” and ”"backbone no 3”. Thus, a scheduling pro-
ducing high efficiencies along the backbone is useless if the engine operating
points fall into regions of low efficiencies. While the change in peak efficiency
between the five backbones was not great, the change in engine SFC, depending
on the compressor integration, going from the best to the worst option, was as
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large as 3.5%. The crucial factor for engine SFC is thus where the running line
is located in the compressor map (the closer to the peak efficiency region, the
better).

Evaluation of the streamfunction method

The streamfunction method used for this work offered a compromise between
short running times and detail of prediction suitable for optimization calcu-
lations and integration into performance tools. However, the streamfunction
through-flow method is very sensitive to high relative Mach numbers. This is
due to its inherent assumption of a non-unique relation between the stream-
function and the density. The method therefore fails whenever there is a region
with a local relative Mach number greater than unity. In many jet engines, the
axial inlet Mach number and rotational speed are low enough for the entire high
pressure compressor to operate subsonically in large regions of the compressor
map, as long as good interstage matching is maintained.

8.1.2 Refinements needed for the double bypass VCE

To fully exploit the performance benefits of the double bypass variable cycle
engine, variable geometry of the stator vane in the CDFS must be introduced.
When the engine shifts from double to single bypass mode, the whole flow must
go through the IPC. To accommodate this flow, the compressor has to have
variable stator vanes.

Design of a one-stage IPC

Since the compressor components of tad44/ta45 did not contain any features
for predicting of variable geometry effects, and because this was found to be of
crucial importance to the operation of the VCE [18], new compressor tables were
evaluated using two streamline codes [81], [84]. The design code [81] was used
to design a one stage compressor with a design pressure ratio of 1.35. IGV and
EGYV schedules were then established to attain maximum isentropic efficiencies
in the open and closed modes. A multidimensional optimization procedure was
used to find optimal stator vane settings [80]. The closed CDFS mode was
applied when the VCE operated in double bypass mode, and the opened CDFS
mode was used during operation in single bypass mode.

8.1.3 1D models tailored for GESTPAN

Existing turbine and compressor performance models use general trends and
empirical databases to predict how a design with a certain performance would
behave going off-design. Attempts are currently being made in this project to
include 1D design/off-design tools with loss modeling into the code. One goal
is to be able to carry out preliminary 1D design in the optimization runs and
to use these designs to improve estimations of losses in off-design. In addition,
the ability to obtain useful weight estimations of a certain engine will more
likely be successful if some of the engine geometry and the number of stages in
compressor and turbines are known.
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8.1.4 Time marching through-flow codes for GESTPAN

The main setback in the streamline and streamfunction models are their inability
to handle choked flows and to accurately predict shock losses. These problems
can probably be solved using a time marching Euler solver. To develop such a
code and tune it against measurement data is a tedious task beyond the scope
of this work, although work on these issues is being carried out at Chalmers
University of Technology and at Volvo Aero Corporation [85].

8.2 The double bypass VCE - Paper 2

A comparative study of two jet engine concepts was carried out and reported
in the second paper of this thesis. A conventional jet engine and the double
bypass VCE (described in the introduction) were compared performing a flight
mission, see section 4.2.

Previous studies on the optimization of variable cycle engines [86], [41] re-
ported in the literature have been limited to finding optimal off-design schedul-
ing of variable geometry components for a specific engine design point. This
study also addressed the issue of selecting the optimal design point as a func-
tion of the flight mission being performed.

The double bypass VCE achieved lower time weighted SFC values, SFC,
throughout the whole spectrum of missions. This can be seen in Fig. 8.2.

Time averaged SFC
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33.0 -

31.0 -

29.0 I I I I I
70.0 75.0 80.0 85.0 90.0 95.0 100.0

Subsonic cruise time fraction

Figure 8.2: Mission optimized ASFC

The improvement ranged from a 3.5% decrease in SFC for the high subsonic
cruise fraction missions to a 2.1% improvement in the low subsonic cruise frac-
tion end. The influence of the mission on the selection of optimal design param-
eters is illustrated in Fig. 8.3. For subsonic cruise time fractions less than about
75%, the optimal design bypass ratio dropped off quickly, indicating a turbojet
cycle as an alternative to both engine types studied here.
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Figure 8.3: Optimal design parameters

8.2.1 Variation in turbine inlet temperature

For the missions with more supersonic intercept time, a drastic drop in turbine
inlet temperature was noted in the subsonic cruise mode, see Fig. 8.4, for both
engines, although especially for the double bypass VCE. This will have a bene-
ficial impact on turbine life. By increasing the turbine inlet temperature of the
VCE, the improvement in SFC may as an alternative have been increased for
these missions.

TIT in subsonic cruise mode
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Figure 8.4: TIT variation (subsonic cruise mode)
Fig. 8.4 also reveals the high dry thrust capacity of the double bypass VCE.
For supercruise operation (supersonic operation with unlit afterburner) with

subsonic cruise time fractions less than 75 %, over 300 K extra turbine inlet
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temperature would be available for thrust generation in comparison with the
conventional engine.

See [18] for a more detailed description of the simulations carried out in the
comparative study of the double bypass VCE and the conventional engine.
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Chapter 9

Conclusions

The research effort contained in this thesis focuses on the development a gen-
eralized gas turbine simulation tool, capable of design, off-design and transient
simulation. The main findings of this work are:

The inverse design method allows the same engine component equations
to be used for design, off-design and transient engine simulation.

High order BDF methods for the direct solution of ODAE systems have
shown to be very efficient for gas turbine transient simulation.

The importance of suitable interpolation schemes for data representation
in gas turbine system simulation tools has been demonstrated for a number
of applications.

Simulations have been performed which indicate that the mode transition
of the Selective Bleed variable cycle engine can be performed efficiently
within the stable operating regions of the engine.

A hybrid optimization methodology has been developed for gas turbine
cycle selection.

The coupled problem of cycle selection and stationary control optimiza-
tion has been studied for a mixed mission for the Selective Bleed variable
cycle engine. The selected design point indicate that the engine can be
downsized considerably, compared with previously published studies, and
still fulfill the mission requirements.

A comparative study of the Double Bypass VCE and a conventional two-
spool low bypass turbofan, indicate that the Double Bypass engine per-
formance is superior to the conventional engine for the complete range of
jet engine missions studied.

The Double Bypass engine fulfilled the specified thrust requirements with
turbine inlet temperatures up to 300K less than needed by the conventional
engine cycle.

85



86



Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]
[10]

[11]

R. H. Ashleman, T. Lavelle, and F. Parsons. The national cycle program:
A flexible system modeling architecture for aircraft engine simulation.
ATAA Paper 98-3114, 1998.

C. J. Daniele, M. S. Krosel, R. S. John, and E. J. Westerkamp. Dig-
ital computer program for generating dynamic turbofan engine models
(digtem). Technical Report TM-83446, NASA Lewis Research Center,
September 1983.

R. W. Koenig and L. H. Fishbach. Geneng - a program for calculat-
ing design and off-design performance for turbojet and turbofan engines.
Technical Report TN D-6552, NASA Lewis, Febr. 1972.

L. H. Fishbach and R. W. Koenig. Geneng ii - a program for calculating
design and off-design performance of two- and three-spool turbofans with
as many as threee nozzles. engines. Technical Report TN D-6553, NASA
Lewis, Febr. 1972.

L. H. Fishbach and M. J. Caddy. Nnep - the navy nasa engine program.
Technical Report TM-X-71857, NASA Lewis, Febr. 1975.

J. F. Sellers and C. J. Daniele. Dyngen - a program for calculating steady-
state and transient performance of turbojet and turbofan engines. Tech-
nical Report TN-D-7901, NASA Lewis, April 1975.

J. R. Szuch. Hydes: A generalized hybrid computer program for study-
ing turbojet or turbofan engine dynamics. Technical Report TM-X-3014,
NASA Lewis Research Center, April 1974.

A. L. Evans, G. Follen, and C. Naiman. Numerical propulsion system
simulation’s national cycle program. AIAA Paper 98-3113, 1998.

http://www.grc.nasa.gov/WWW /RT1998/2000/2900naiman.html.

W. L. MacMillan. Development of a Modular Type Computer Program for
the Calcuation of Gas Turbine Design Performance. PhD thesis, Cranfield
Institute of Technology, 1974.

J. R. Palmer and Y. Cheng-Zhong. Turbotrans - a programming language
for the performance simulation of arbitrary gas turbine engines with arbi-
trary control systems. ASME 82-GT-200. American Society of Mechanical
Engineers, April 1982.

87



[12] J. Kurzke. Manual gasturb 8.0 for windows - a program to calculate design
and off-design performance of gas turbines. Technical report, 1998.

[13] J. A. Reed and A. A. Abdollah. A java-enabled interactive graphical gas
turbine propulsion system simulator. ATAA Paper 97-2333, 1997.

[14] J. A. Reed and A. A. Abdollah. A java simulator for teaching gas turbine
operation. AIAA Paper 97-0850, 1997.

[15] J. A. Reed and A. A. Abdollah. Computational simulation of gas turbines:
Part i - foundations of component-based models. June 1999.

[16] J. A. Reed and A. A. Abdollah. Computational simulation of gas turbines:
Part ii - extensible domain framework. June 1999.

[17] P. L. Hansen, R. Johansson, I. Johansson, and L. Mossberg. Steady state
performance of gas turbine engines. Technical report, Internal Volvo Aero
Report, 1979.

[18] U. T. J. Gronstedt and U. Hall. Mission dependent optimization of ad-
vanced fighter engines. In 13th International Symposium on Air Breathing
Engines, Chattanooga, USA., 1997.

[19] U. T. J. Gronstedt. Control optimization of the transient performance of
the selective bleed variable cycle engine during mode transition. In ASME
TURBO EXPO 2000, Munich, Germany, 2000.

[20] J. Rumbaugh, Blaha M., and W. Premerlani. Object-Oriented Modeling
and Design. Prentice-Hall, 1991.

[21] 1. Johansson. Object-Oriented Software Engineering. Addison-Wesley,
1997.

[22] M Metcalf and J. Reid. Fortran 90 Ezplained, chapter 5. Oxford University
Press, 1993.

[23] THE MATHWORKS, INC., 24 Prime Way, Natick MA. Matlab 5.3 and
Simulink 2.5.

[24] Integrated Systems, INC., http://www.isi.com. MatrizX Product Family.

[25] Advanced Visual Systems Inc., Waltham, MA, May 1992. AVS Developer’s
Guide.

[26] U. T. J Gronstedt. Advanced solvers for general high performance tran-
sient gas turbine simulation tools. In 14th International Symposium on
Air Breathing Engines, Florence, Italy, 1999.

[27] L. F. Shampine, M. W. Reichelt, and J. A. Kierzenka. Solving index 1
daes in matlab and simulink. STAM Review, 41:538-552, 1999.

[28] J. A. Reed. Internal communication, 2000.

[29] L. F. Shampine. Internal communication, 1999.

88



[30] H. A. Cohen, G. F. C. Rogers, and H. I. H. Saravanamuttoo. Gas Turbine
Theory. Longman Scientific and Technical, 1996.

[31] J. D. Mattingly. Elements of gas turbine propulsion, chapter 5, page 241.
McGraw-Hill, Inc., 1996.

[32] J. L. Kerrebrock. Aircraft Engines and Gas Turbines, chapter 2, page p.
21. The MIT Press, 1977.

[33] H.I. H. Saravanamuttoo. Steady and transient performance prediction of
gas turbine engines. pages 1.1-1.18. AGARD-LS-183, 1992.

[34] P. Naughton and H. Schildt. Java 2 : The Complete Reference. Osborne
McGraw-Hill, 1999.

[35] Digital visual fortran reference manual 6.0, 1998.

[36] J. A. Nelder and Mead. A simplex method for function minimization.
Comp. Jour., 7:308-313, 1965.

[37] W. H. Press, S. A. Teukolsky, and W. T. Vetterling. Numerical recipes in
FORTRAN: the art of scientific computing. Cambridge University Press,
1992.

[38] S. Rau. Engineering optimization - theory and practice. Belmont, Athena
Scientific, 1996.

[39] R. H Brown. Integration of a variable cycle engine concept in a supersonic
cruise aircraft. AIAA Paper 78-1049, July 1978.

[40] R. D. Allan. General electric company variable cycle engine technology
demonstrator programs. AIAA Paper 79-1311, 1979.

[41] M. W. French and G. L. Allen. Nasa vce test bed engine aerodynamic
performance characteristics and test results. In ATAA/SAE/ASME Joint
Propulsion Conference, Colorado Springs, Colorado, July 1981.

[42] L. H. Fishbach. Nasa research in supersonic propulsion: A decade of
progress. Technical Report TM 82862, NASA Lewis, 1982.

[43] M. E. Brazier and R. Paulsson. Variable cycle engine concept. In AIAA,
Eleventh International Symposium on Air Breathing Engines, Tokyo, Sept.
1993.

[44] M. J. Hirschberg. The advanced tactical fighter engine development pro-
gram. In 18th International Symposium on Air Breathing Engines, Chat-
tanooga, USA., 1997.

[45] S. Adibhatla, G. J. Collier, and X. Zhao. hs control design for a jet
engine. AIAA Paper 98-3753, 1998.

[46] L. Oggero and P. Pilidis. A novel optimisation method for variable cy-
cle engines. ASME Paper 98-GT-142. American Society of Mechanical
Engineers, 1998.

89



[47] M.A.R. Nascimento. The Selective Bleed Variable Cycle Engine. PhD
thesis, Cranfield Institute of Technology, 1992.

[48] M.A.R. Nascimento and P. Pilidis. The selective bleed variable cycle en-
gine. ASME Paper 91-GT-388. American Society of Mechanical Engineers,
1991.

[49] I. Ulizar and P. Pilidis. Transition control and performance of the selective
bleed variable cycle turbofan. ASME Paper 95-GT-286. American Society
of Mechanical Engineers, 1995.

[50] http://www.netlib.org/.

[51] A. J. Fawke and H. I. H Saravanamuttoo. Digital computer simulation
of the dynamic response of a twin-spool turbofan with mixed exhausts.
Aeronautical Journal, 1973.

[62] E. M. Greitzer. Surge and rotating stall in axial flow compressors - part
i: Theoretical compression system model. ASME Journal of Engineering
for Power, 98:190-198, April 1976.

[53] D. Garrard, M. Jr. Davis, A. Hale, J. Chalk, and S. Savelle. Analysis of
gas turbine engine operability with the aerodynamic turbine engine code.
In ISABE97-7034, pages 223-232. ATAA, September 1997.

[54] M. W. Jr. Davis and W. F. O’Brien. Stage-by-stage poststall compression
system modeling technique. AIAA Journal of Propulsion and Power, 7,
November 1991.

[55] P. Pilidis and H. R. L. MacCalum. The prediction of surge margins during
gas turbine transients. ASME Paper 85-GT-208. American Society of
Mechanical Engineers, 1985.

[56] R. A. Crawford and A. E. Burwell. Quantitative evaluation of transient
heat transfer on axial flow compressor stability. ATAA Paper 85-GT-1352,
1985.

[57] H. Gold and S. Rosenzweig. A method for estimating speed response of
gas turbine engines. Technical report, NACA-RM-E51K21, 1952.

[58] M. T. Schobeiri, M. Attia, and C. Lippke. Getran: A generic, modularly
structured computer code for simulation of dynamic behavior of aero- and

power generation gas turbine engines. Journal of Engineneering for Gas
Turbines and Power, 116:483-494, July 1994.

[59] M. A. Chappel and P. W. McLaughlin. Approach to modeling continuous
turbine engine operation from startup to shutdown. Journal of Propulsion
and Power, 9, May 1993.

[60] P. Dierckx. Curve and Surface Fitting with Splines. Oxford Science Pub-
lications, 1993.

[61] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of
Initail- Value Problems in Differential-Algebraic Equations. Elsevier Sci-
ence Publishing Co., Inc., 1989.

90



[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]
[73]

[74]

[75]

[76]

[77]

[78]

A. C. Hindmarsch. Lsode and Isodi, two new initial value ordinary differ-
ential equation solvers. ACM Signum Newsletter, 15:10-11, 1980.

J. Holland. Adaption in natural and artificial systems. The University of
Michigan Press, Ann Arbor, 1975.

K. A. De Jong. An analysis of the behaviour of a class of genetic adaptive
systems. PhD thesis, University of Michigan, 1976.

D. Goldberg. Real-coded genetic algorithms, virtual alphabets and block-
ing. Technical Report Technical Report no 90001, University of Illinois at
Urbana-Campaign, September 1990.

D. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison Wesley, 1989.

C. R. Houck, J. A. Joines, and M. G. Kay. Genetic algorith for function
optimization: A matlab implementation. North Carolina State University,
Releigh, NC, 1994.

Z. Michalewicz. Genetic Algorithms + Data Structures = FEvolution Pro-
grams. Springer, 1994.

L. J. J. P. Nadon, S. C. Kramer Cramer, and P. I. King. Multidisciplinary
optimization in conceptual design of mixed-stream turbofan engines. Jour-
nal of Propulsion and Power, 1999.

P.E. Gill, W. Murray, M. A. Saunders, and M.H. Wright. Users guide
for LSSOL. Department of Operations Research, Stanford University, sol
86-1 edition, 1986.

I. Gustavsson. Tillimpad optimaringslira. Institutionen for Dataveten-
skap, CTH, 1994.

R. Fletcher. Practical Methods of Optimization. Wiley, 1987.

D. P. Bertsekas. Nonlinear programming. Belmont, Athena Scientific,
1995.

Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer, 1994.

R. L. Bucknell. Stovl engine/airframe integration. Journal of Propulsion,
5(1):122-125, 1989.

The Numerical Algorithms Group Limited, Wilkinson House, Jordan Hill
Road, OXFORD, UK. The NAG Fortran Library Manual, Mark 15.

J. E. Garberoglio, J. O. Song, and W. L. Boudreaux. Optimization of
compressor vane and bleed settings. In 27th International Gas Turbine
Conference and Exhibit, London, April 1982.

P. T. Kerney. Vane optimization for maximum efficiency using design of
experiments. In 29th Joint Propulsion, Conference and Exhibit, Monterey,
CA, June 1993.

91



[79] C. H. Wu. A general theory of three-dimensional flow in subsonic and
supersonic turbomachines of axial-, radial-, and mixed flow type. Technical
Report TIN 2604, NACA, 1952.

[80] U. T. J. Gronstedt, T. Johansson, and U. Hall. The optimization of a
seven stage compressor. In International Symposium on Fluid Machinery
and Fluid Engineering, 1996.

[81] R. M. Hearsey. Numerical optimization of axial compressor design. In
Gas Turbine and Aeroengine Congress and Exposition, Toronto, Canada,
June 1989.

[82] A. Massardo and A. Satta. The use of optimization technique and through
flow analysis for the design of axial flow compressor stages. In Conference
on Fluid Machinery, Budapest, Hungary, 1987.

[83] I. N. Egorov. Optimization of a multistage axial compressor in a gas
turbine engine system. In International Gas Turbine and Aeroengine
Congress and Exposition, Budapest, Hungary, 1987.

[84] C. et al. Hirsch. Q3dflo - computer program for turbomachinery flows.
Technical report, Numeca vers. 10011, June 1991.

[85] S. Baralon. On Multistage Analysis of Transonic Compressors: From Ax-
isymmetric Throughflow time-Marching to Unsteady Three-Dimensional
Methods. PhD thesis, Chalmers University of Technology, 2000.

[86] H. Brown. Multi-variable cycle optimization by gradient methods. AIAA
Paper 80-0052, 1980.

[87] W. H. Robbins and J. F. Dugan. Prediction of off-design performance of
multistage compressors. In Aerodynamic Design of Azial-Flow Compres-
sors, pages 297-310. NASA SP-36, 1965.

[88] A.B. McKenzie. Azial Flow Fans and Compressors. Ashgate Publishing
Limited, 1997.

[89] U. T. J. Gronstedt. Gestpan compressor module. Technical report, Volvo
Aero Corporation, Dec. 1999.

[90] W. G. Cornell. Experimental quiet engine program - summary report.
Technical Report NASA CR-2519, NASA Lewis, March 1975.

[91] P. R. Holloway, G. L. Knight, C. C. Koch, and S.J. Shaffer. Energy
efficient engine high pressure compressor detail design report. Technical
Report NASA CR-165558, NASA Lewis, May 1982.

[92] Sirinoglou A. Implementation of variable geometry for gas turbine per-
formance. Master’s thesis, Cranfield Institute of Technology, September
1992.

[93] D. E. Muir, H. I. H Saravanamuttoo, and D. J. Marshall. Health mon-
itoring of variable geometry gas turbines for the canadian navy. ASME
Journal of Engineering for Gas Turbines and Power, 111:244-250, April
1989.

92



[94] J. D. Mattingly. FElements of gas turbine propulsion, chapter 10, pages
832-833. McGraw-Hill, Inc., 1996.

[95] A. Stodola. Steam and Gas Turbines. Peter Smith, New York, 6th edition
edition, 1945.

[96] W. H. Robbins and J. F. Dugan. Prediction of off-design performance of
multistage compressors. In Aerodynamic Design of Axial-Flow Compres-
sors, page 485. NASA SP-36, 1965.

[97] A.H. Shapiro. The Dynamics and Thermodynamics of Compressible Fluid
Flow. The Ronald Press Company, 1953.

[98] G. C. Oates. Aerothermodynamics of Aircraft Engine Components. ATAA
Eductaction Series, 1984.

[99] C. G. Broyden. A class of methods for solving nonlinear simultaneous
equations. Comp. Jour., 12, 1969.

[100] C. G. Broyden. A new method for solving nonlinear simultaneous equa-
tions. Comp. Jour., 12, 1969.

93



94



Component models - Appendix A



A.1 Inlet

The inlet component equations are used to calculate the ambient conditions and
ram pressure recovery.

A.1.1 Ambient conditions
The ambient conditions are calculated using a simple ISA model according to:
Flight altitude less than 11000.0 m
T, =288.15—6.5-10°H (A1)
P, = 101325.0- (1.0 — 2.2557 - 10~ °H)?>-2561 (A.2)
Flight altitude between 11000.0 m and 25000.0

T, = 216.65 (A.3)
P, = 22632.0- 671'5769-10_4-(1{711000'0) (A4)

A deviation from the ISA standard, AT;,,, can be specified directly as an input
to the module, which modifies the ambient temperature according to:

T, =T, + ATisa (A5)

A.1.2 Ram pressure recovery
If ploss is set equal to 1.0, ram pressure recovery is computed according to

military specification 5008B, i.e.:

Flight Mach numbers less than 1.0 No viscous losses are estimated, i.e.
the pressure recovery factor, Ilyec, is set to 1.0 in this regime.

Flight Mach numbers greater than 1.0 and less than 5.0
Myec = 1.0 — 0.075- (M — 1_0)1.35 (A6)

If ploss is set to any other value than 1.0, this value is used directly for Ilyec
instead of the value that the military specification suggests. The ambient con-
ditions and the pressure recovery factor are combined to calculate outlet stag-
nation properties, 7o and P», from the inlet module according to:

=T, (1+ VT_I - M?) (A7)

o

— 1 —1
Py = P, - Tyec - (1 + 1= -M2> ’ (A.8)

Index a was used to denote ambient conditions.
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A.2 Splitter

A.2.1 Governing equations

The splitter component is used to split the flow into two streams. The inlet ther-
modynamic properties are preserved, and the flow is divided into two streams

using the bypass ratio, bpr, according to:

my
= A.
e bpr+1 (A.9)
mg = M1 — M2 (A].O)
where, bpr = m2 (A.11)
my
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A.3 Compressor

The compressor component modeling technique uses a set of empirical tables to
generate compressor maps. In the report on which the procedure is based, NASA
SP-36 [87], experimental data on eight multistage compressors were collected
and correlated in table form. The method allows performance maps of new
multistage-compressor designs to be obtained easily from a knowledge of the
design conditions alone. The success of this method is strongly dependent on
the extent to which the design methodology applied to the new compressor is a
heritage from the previous designs (on which the correlations are based).

A.3.1 Description of the original method

Two concepts must be introduced to describe the methodology: the reference
point and the compressor backbone. The reference point is defined as the point
with the highest efficiency in the entire compressor map, and the compressor
backbone is defined as the line interconnecting the maximum efficiency points
at all rotational speeds.

The dependency of the reference point pressure ratio on the backbone char-
acteristics is collected in three sets of tables. By knowing the reference-point
pressure ratio and a given rotational speed, the backbone mass flow, the back-
bone isentropic efficiency and the backbone pressure ratio is acquired by simple
table look-ups. The tables store:

T = 1 (v, ) (A.12)
Trp
b
— = vV, T, A3
s fa(v, mrp) (A.13)
UL N (A.14)
nrp

here v n m mivTi 7 n

W. = y = , =

Tirp P JT;

where f1, fa, f3 represent the data in the three tables. Suffixes rp and bb rep-
resent the reference and backbone conditions, respectively.

The procedure for determining the variation of pressure ratio, mass flow and
efficiency along constant speed lines is based on the formulation of the flow
parameter, ¢, according to:

miv 01 T

¢ = 5 . —_

1 T

Pl T1 T2 P2

=2 (A.15)

here 6 = — -~ = - ;=22
WRere 0L = J01325.0 Y T 28815 ) T, " P

which is scaled with the backbone value to get the relative value ¢, = Fer-
Variation in efficiency and relative temperature rise as a function of the relative
flow parameter, ¢,.;, are given in two tables, i.e. the tables store:

(T, -T)

(T2 _ Tl)bb - f4(¢7"el) (A16)
= fs(ra) (A17)
Mob



The empirical observation on which this methodology is based is that by group-
ing the variables according to A.15,A.16 and A.16, the relative numbers become
fairly independent of rotational speed. Thus the two tables giving the off back-
bone behavior, together with the three tables giving the backbone data, make
the map determining procedure complete.

A.3.2 Shortcomings of the original method
A closer inspection of the original method revealed several weaknesses:

e The original correlation presented data only up to 110% of the reference
point rotational speed.

e The method used to determine the off-backbone behavior agrees poorly
with empirical data.

e The original compressor data were based on compressors designed during
the period 1950-1965.

A consequence of the first point is that compressor choking effects are not in-
cluded in the original NASA SP-36 model. McKenzie [88] notes that the use of a
compressor backbone line for prediction of compressor performance is probably
a useful strategy but that the off-backbone method described in the original
report was not very successful. Evaluations of this part of the method carried
out in [89] also point in the same direction.

A.3.3 Modification of the original method
Two major steps were undertaken to improve on the original method:

1. The high speed range of the original method was extrapolated using in-
house Volvo Aero Compressor data,

2. A new two-parameter model for off-backbone compressor prediction has
been developed

This approach retains the good parts of the original method and attempts to
improve on the weaknesses of it.

A.3.4 New correlation

Since the re-correlated version of the NASA SP-36 model was developed using
in-house Volvo Aero data, the tables can not be given in this report. Only the
approach by which the re-correlation was done can be described. A similar mod-
ification of the original data may be performed using compressor data available
in the public literature, such as [90, 91].

The re-correlations of f;, fo and f3 were made by adding a constant but
different increment to the different v lines (see Figure 225 a,b and c in [87]) by
minimizing the largest deviation from the v line (its spline interpolation) and
the available compressor data. For rotational speed ranges higher than 110%
of the reference point rotational speed range, the shape of the 110% curve was
preserved. The resulting extrapolated model seemed to agree well with available
compressor data. For the lower rotational speed range of the efficiency table,
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i.e. f3, some minor modifications to the shape of the original curves were also
made. After these modifications the agreement between data and the model
was quite good along the backbone, with discrepancies not greater than 3%.

To obtain a new correlation for the off-backbone compressor behavior, the
flow function ¢ defined in the original NASA report as well as above was sim-
plified slightly to the new expression:

miv01
¢ = —2

™

where the dimensionless quantities were defined above. The new model is based
on the empirical observation that if WL;,;, ratios and TT; ratios are computed

for different v values and % values, the spread between several compressors
seems to be fairly modest. Although the spread is not very large between several
compressors attempts to fit general functions to the data, such as approximating
splines, least square splines or functions fits (3:rd and 4:th degree polynomials)
were not successful. Fairly accurate fits could easily be obtained. Unfortunately,
the maps generated in this way frequently deviated from typical compressor
maps, such as maps with curved choke lines. For this reason a single compressor
map with typical behavior was chosen to obtain the new tables for the - and
7 ratios.

A.3.5 Variable geometry model

A model suggested by Sirinoglou [92] was implemented to simulate the effect
of compressor variable geometry. This method is based on a paper by Muir et
al. [93]. The compressor variable geometry affects corrected mass flow, pressure
ratio and efficiency according to:

Trp = Trp - g1() (A.18)
n=n-gz(a) (A.19)
§=3-g5(0) (A.20)

10> a < 40

where « is the variable geometry angle. The g1, g2 and g3 functions are shown
in Figure A.1.

A.3.6 Additional relations

The outlet stagnation temperature, T3, is calculated using:

T, =Ty (1 + % (w"?“) — 1.0)) (A.21)

where 7 is taken at the arithmetic mean temperature. The power is subsequently
determined from:

ha — by
N
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Variable geometry effect on pressure ratio Variable geometry effect on efficiency
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Variable geometry effect on mass flow
1.6 T T T T

Figure A.1: Compressor variable geometry model [92]

The power is related to the torque, G, according to

w
= A2
2mn (4.23)

To allow locating the engine design point to a point not on the backbone curve,
the ) parameter is introduced according to:

=" (A.24)

To move the engine design point along the backbone line, the already defined v
parameter is used.

101



A.4 Burner

The burner component computes stagnation temperature rise from a specified
input fuel flow. A table is used to assess the variation of burner efficiency with
thermodynamic conditions. A reaction rate parameter, o, is defined as:

300.0
P11.75 e 71

mq

g

(A.25)

The ratio between the o value and the design o value, i.e. ﬁ, is then used to
P
determine the burner efficiency, 7., from the relationship:

Ne = Ndp * A=) (A.26)

Jdp

where f; represents a table for which it holds that f;(1.0) = 1.0. Such a
correlation is described in [94]. An ideal temperature increase is obtained from
another table based on the assumption of complete combustion:

Atigeal = f2(t1, faz2) (A.27)

where ¢ is the inflow temperature and fa, the outlet fuel air ratio. The tableis a
spline fit of fuel data obtained for a hypothetical liquid hydrocarbon containing
16.0% hydrogen and 84.0% carbon. The fuel air ratio is obtained from the
following relation:

fay = 5’%’@ (A.28)

where (3 is a fuel schedule factor and my g4, is the fuel flow in the design point.
The burner exit temperature can then be computed according to:

Ts=T + Atideal *Ne (A29)

The pressure loss is computed using;:

P=P - (1.0 —w- (ml‘/T_l>2> (A.30)

P

where the pressure loss coefficient, w, is determined from the burner pressure
drop specified in the design point.
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A.5 Duct

The duct component equations are used to calculate pressure losses in the bypass
duct as well as other ducts. All thermodynamic properties are preserved through
the duct except for the stagnation pressure ratio. The pressure drop is computed

according to:
2
P =P (1 —w- ("“T‘/T_l) ) (A.31)
1

where w is a pressure loss coefficient determined during the design process.
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A.6 Turbine component
A.6.1 Turbine mass flow

The pressure ratio is given by:
P
mT==
b2

where both p; and ps are input to the module. The turbine inlet mass flow is a
function of the turbine pressure ratio according to:

ok

1 2
X(m)1- (), <

VBT _
mlplAi b= X(m) s> T (A.32)
it
| where, X(m) =yt 2o

where 7* is the choking pressure ratio. The choking pressure ratio is an input to
the module which depends on the number of stages in the turbine. 7* is set to
2.15, 2.31, 3.05 and 3.50 for one, two, three and four stage turbines, respectively.

Equation A.32 is an extension of the “Stodola Ellipse”, see [95]. Stodolas
original formula was:

2 2
RV 1
mivT =const-4/1 — i =const-4/1— [ — (A.33)
P P T

Note that the function actually is an ellipse in % and "“T‘{TT. The Stodola
formula has the drawback that the single constant can not be adopted to satisfy
a zero mass flow at 7 = 1 as well as a continuous derivative and the choking
mass flow at 7 = 7*. This can be achieved by introducing a linear term and a
free constant into the Stodola expression according to:

T e fert 2 (4.34)

Applying the requirements given above to (A.34) yields (A.32). It can eas-

ily be verified that the function gives reasonable physical behavior in the “end

points”. Evaluating (A.32) in m = 1.0 yields mlTTl = 0. For m = #*, the

mavT1 — (ml\/Tl *
Py Py

corrected mass flow takes the choking value, ) , which means

that the mass flow curve is continuous in the intersection between choked and
unchoked conditions. Furthermore, the derivative of the function shows a phys-
ical behavior as well:

(o) G




In the endpoints we get:

1) o

a(2E)
dm

which is reasonable. In a real turbine, the derivative of the mass flow in 7 =1
would of course be less than +oo but still fairly large.

(m=1.0) = 400

A.6.2 Turbine efficiency

Off-design turbine efficiency is computed using the expression suggested in [96]:

2
n

Mo ="Map | 1 — 7\?7 -1 (A.36)
().,

A simple Reynolds number correction is subsequently applied to 1y according
to:

1—
p=1--_1 (A.37)
Kap
where: P

Efficiency corrections resulting from Equation A.37 that are larger than 1% are
very rare.

A.6.3 Cooling scheme

Figure A.2 illustrates the cooling flow arrangement used in the turbine module.
The enthalpy before the rotor, h; ., is computed using:

_ himy + he (mc,s + mc,lbr)

hl T
m1 + Me,s + Me,ibr

)

where hc, mc s, mc,r and me g5 are the the enthalpy of the cooling flow, the part
of the cooling flow cooling the stator, the part cooling the rotor and the part of
the leakage cooling flow entering before the rotor, respectively. An iteration is
carried out to find the enthalpy drop over the turbine, Ah. For a given Ah, the
efficiency is obtained using equation A.36. For this efficiency, the turbine rotor
exit temperature, ¢ ,, is obtained according to

1
t2,r - tl,r = tl,r'r} (]— — Tt ) (A39)

w7

where 7 is the arithmetic mean of the +y:s obtained at the two temperatures ¢; ,
and t1 ,. Ah is then:

Ah=hy, —hyp (A.40)
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Stator Rotor
ml:> = "X :> ;
mclbr /\ mlar
)
=

mc

Figure A.2: Cooling flow arrangement

where h; , is obtained from a gas table using 5 , as input. The iteration process
is terminated when

t r_t T,previous
abs( L hnprevious y o (A.41)

2,r,previous o
The turbine power, Wy, is obtained from:
W = Ah (ml + Me s + mc,lbr)

and the turbine torque, Gy, from:

T 2n

Gy

The exhaust temperature, ¢, is found from the outlet enthalpy, hs, given by:

— h2,r (ml + Me,s + mc,lbr) + hc (mc,lar + mc,r)

h
2 mi + me

(A.42)

where m. 14, is the leakage cooling flow entering after the rotor. The input spec-
ification of the cooling flow distribution is done by using three non-dimensional
numbers, 1,1, and 3, defined as:

= Mes A4
Y1 p— (A.43)
by = T (A.44)
me
s = M lbr (A.45)
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A.7 Unifier

The unifier component equations are used to model the mixing of two flow
streams, which is illustrated in Figure A.3.

m3.3,p3 >
S S m2p2t2

mltl,pl >

Figure A.3: Mixing of two flow streams

A.7.1 Governing equations

The Mach numbers of the flows are related to the mass flow and the thermody-
namic properties of the gas through the 1-D compressible continuity equation,
ie.

miy R1T1 —
Cd,lAIPI

mav BT Y2 —
MV _ s (1
Ca2A2 P VM ( + 2

mav RT3 _
Ca3A3P3

v — 1 N T 2(v1—D)
WM1 (1 + 5 M1> = X3 (Ml,’yl) (A46)

1

v2+1
T 2(v3-1)
M22> = Xo(M2,72) (A.47)

3 —1 9 _2(1‘;%3——11)
VYMs {1+ 2 M; = X3(M3,73) (A.48)

The Cy values are used to correct for boundary layer blockage of the flow. Cy
values are either given as input data to the module or obtained from tabulated
data. To find the Mach number after mixing, the following function is introduced
(see [97]):
F= PA +~P,AM? (A.49)
Pressure force  Flow force

A momentum balance yields:
E=F+F; (A.50)
Introducing A.49 into A.50 yields:
Py,s Az + YPo,s AsM3 = Prs Ay +YPs ALMY + Py s As + v Ps s As M3

—
PQ,SAQ (]. + ’)/MZZ) = Pl,sAl (]. + ’)/Mlz) + P3’3A3 (]. + ’)/Mg) (A51)
The static pressure is related to the total pressure according to the following
relationship:
5
P v—1 =T
= =(1+-"——M A 52
P, ( T2 ) (452
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Introducing A.46, A.47 and A.48 into A.51 yields:
mav/ RyTs (]. + ’72M22) "”YTl .
CipXe 1425102

p 0 0
mivVRiT: 1 +vM2) 77 may/RsTs (143 M2) 7T
CiiXy 14 25E02 CisXs 1+ 25102

(A.53)

T> can be computed in a straightforward manner since the enthalpy of the mixed
stream is a mass weighted average of its two constituents, and the enthalpy can
be translated into the corresponding temperature. Cy 5 is estimated from:

Cyo = : : (A.54)

After computing the Mach numbers, M; and M3, by the use of Equation
A .46, A.47 and the inflow properties, T> and Cg,» can be inserted into Equa-
tion A.53 to determine M.
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A.8 Volume

The volume component is used to simulate storage of energy and mass in tran-
sient engine models according to:

my, =my —ma (A.55)

mi Ty —mi Ty (A 56)

Ty =

v my

where mj, and Ty, are the time derivatives of the integrated temperature, Ty,

and the integrated mass, my, respectively. The output pressure of the module
is computed using the ideal gas law and the states, my and Ty, according to:

. vaTV

= (A.57)

where V is the volume of the component.
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A.9 Rotor

The rotor component is used to integrate rotor speeds in transient modeling.
The rotor acceleration, 7, is calculated according to:

2wl

(A.58)

where )" G, is the sum of the turbine torques and ) G. is the sum of the
compressor torques. Gy is used to model additional frictional torque and I is
the moment of inertia of the shaft.
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A.10 Afterburner and nozzle components

This section is used to describe the equations governing the performance of the
afterburner and the nozzle modules.

When estimating the engine performance, the reheat effects are modeled
without changing the engine operating point. Thus, for a given inlet condition,
a calculation is first made of the cold performance. The afterburner fuel flow
required to “fill” the lit exhaust area for the given inlet conditions is then
determined. Increases in exhaust area by a factor 1.5-2.0 in the throat area for
the lit condition are not uncommon [98].

A.10.1 Governing equations

Four indices are defined for the computational process
e Station 1 = The inlet
e Station 2 = Downstream of the flame holders before heating
e Station 3 = Downstream of the flame holders after heating

e Station 4 = Nozzle exit (nozzle throat for a convergent-divergent nozzle)

Computing cold performance:

The inlet mass flow, my, is determined by requiring that the continuity equation
in the nozzle exhaust be satisfied. The inlet mass flow is always computed
by using the equations that hold for an unlit afterburner. The pressure, P,
downstream of the flame holders is determined according to:

Py = (1.0 —w- (ml‘/t_l>2) Pi=z-P (A.59)

P

~ >
~~

Unlit it holds that Py = P>, my = my and Ty = T1. The 1D continuity equation
states (m = £+):

Poo
mlvRT4
V" — (M. = A.
Ca1APy X(Ma,v4) = x(7,74) (A.60)
where x is equal to:
=1 ar2 _#Jr—ln — 2'7(777“';1—1)
VM (1+ 32 M?) =, M<10
(y=1)m 7
X(M,v) = (A.61)
i Y1
VT T a2 a
=77

for which the right formula of A.78 was used to obtain the second form of the
two cases above. For a guessed value of x, equation A.60 can be evaluated
using the equation for y, which yields a value of m;. m; can then be used to
improve the guessed value of x, and the iteration process can then proceed until
convergence is achieved.
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Modeling of the afterburning process:

A reaction rate parameter, 6, is defined as:

T
P11-4 . ¢T0000 - Afh - L
my

0 =

(A.62)

where Ayp, is the cross sectional area at the flame holder and L is the afterburner
length. The ratio between the 6 value and the design € value, i.e. o , is then

used to determine the afterburner efficiency, 7., from the relat1onsh1p

ne =iy fo(p o) (A.63)
dp
where fy represents a table for which it holds that f3(1.0) = 1.0. The fuel flow
is defined indirectly by the exhaust area of the afterburner nozzle, i.e. the tem-
perature increase needed to “fill” the lit nozzle exhaust area is computed using
the 1D compressible continuity equation. This method leads to an iteration in
the fuel air ratio.

The first step in the process of finding the required fuel air ratio is to deter-
mine a hypothetical pre-burn temperature, Ty. This temperature is defined as
the initial temperature required to end up with the inlet temperature ¢; after
burning fuel corresponding to the inlet fuel air ratio fa;.

An afterburner fuel air ratio, fas, is then guessed and the ideal temperature
increase, AT;q, is computed according to:

Ty = T1 + 1. (AT;q(To, faz) — (t1 — to)) (A.64)

Note that the burner efficiency affects only the temperature increase that actu-
ally occurred in the afterburner.

In the case of a lit afterburner the stagnation pressure Ps, will be different
from P,. The Mach number at station 3 will be computed using the equations
of momentum and continuity. The 1D continuity equation states:

maV Ty
A2P2Cd 2

ms\/ R3Ts3 (
msvisls _ e (14
A3P3Cy 3 = Vs

To find the Mach number after heating the following function is introduced for
the force:

-1 _%
= V1M, <1+722 M22> = Xa(M2,72) (A.65)

~ 35D
M3 = X3(M3,73) (A.66)

F= PA ++yP,AM? (A.67)
~— —_———
Pressure force  Flow force

A momentum balance yields:

F;=F, (A.68)
Introducing A.67 into A.68 yields (A3 = As):
Ps3 + Pz Mj = Py + yPM; (A.69)
—
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Ps3 (1 + 7M132) = Ps2 (1 + 7M22) (A70)

1+yM?2 1+yM3
L) (M) (A7)
(e (25t
Introducing A.65 and A.66 into A.71 yields:
mav/RTs _ moy/RaTh
Ca3Ys Cq2Ys

(A.72)

where Y was defined as:
_ X (M) T yMyf14 e )
n (1 +~yM?2) - (1 + vM?) ’

Equation A.72 gives Y3, which can be used to find M3. By defining Z according
to

14+ yM32
P Gk 2)L (A.74)
(1+ 35 )
equation A.71 can then be rewritten as:
P3Z3 = Py 7, (A.75)
which gives P3. The assumed fas can then finally be checked using:
msy/ RTg
9% — (M = A.76
CusAuit Ps x(Ms,vs) = x(m,73) ( )
where mz = my + M fuel,afterburner-
Thrust computations (convergent nozzle):
The main equation for computing thrust is:
F= mV; +4+A(Ps—Px) (A.TT)
~~ —_—

Flow thrust Pressure thrust

If Ps = P, : (P, = static pressure at nozzle exit) the nozzle flow is said to
be fully expanded, in which case we have:

T
F = Fpy = mV; = mM+/YRT, = mM\[YyR=2Ty = mM, [yYR——————T,
full J aé Y TO 0 Y (1 + ’YT_IM2) 0
<~
Fran  _ M./y
m+/ RT{ -1
\/ 0 \/1 + 'YTM2
but we also have for the nozzle pressure ratio 7 = 1% = [unlit afterburner] =
}% that (the expansion process is idealized as isentropic):
1.\ 2
— v y=1
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which allows for replacing the Mach number in the former relation:

Fyy, [ 2 1
m+/ RTg Y- 1 WVT

where T = Tpozzte- 1t should be noted that for convergent nozzles this level of
thrust is only achievable for @ = Tnozz1e < Teritical-

If Ps > P : the nozzle runs choked, M =1 and it holds that A (ps — poo) #
0. We then have:

29R
Y T,
v+1

mV; =m (A.80)

This can be seen from one of the intermediate stages of the derivation of (A.79)
carried out above, if M=1 is used simultaneously. For the pressure thrust, we
get:

3

A (ps - poo) (ps - Poo) = [Ideal gas law] =

mRTy . ym RT(I_ )_pm_ﬁ—‘; 3
M\/'yRTssps Poo M./y ps ) ps_:T"o o

1+ )T

T
o =[M=1]=
M\/—,/H7 Lar2 m
yHLy5=T 141y 75T
mvETo 1_% =m 2R Tol 1_% (A.81)
\/— ’Y+1 T vy+1 " T

(A.80) and (A.81) can be combined and introduced into A.77 to yield:

mm \/72?(” 1——)) (A.82)

O
where 7, = 11777

The thrust coefficient for the nozzle, Cy, is defined:

F
Cy = Cyom— A.83
* Franl ( )

where the empirical factor, Cy, is introduced to make some corrections for
the 1D isentropic idealizations made here. Note that the theoretical limit of
Cy = 1.0 only applies for 7 < 7. To approach the full thrust level for 7 > 7. a
convergent divergent nozzle would have to be used. The final expression for C,
is:

F v—1 ( 1 7rc>
Cy=Cho— =0Cy 1+—-(1—-— Ag4
®" Frun U+ 1)1 - =) 7( n) (A.84)

T v
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Thrust computations (convergent-divergent nozzle):

A convergent-divergent nozzle is said to be perfectly expanded when the static
pressure in the nozzle exit equals the ambient pressure. The exit Mach number
for this case can be computed using:

1072\ THED

1 (14235202 ™"

Aratz'o = < 2 _1_> (A85)
M\ 1+7%

and the pressure ratio from:

Tperfect = (]- + LMz)'VTl (A86)

2

For nozzle pressure ratios greater than mpe, fect, the exit Mach number can still
be computed from Equation A.85, since further expansion of the gas will occur
outside the nozzle. For this case, the flow thrust can be computed from:

Ts
F = Fpy = mV; = mM+/vRT, = mM 'VRTTO = (A.87)
0

mM, [YR To

1
(=]

The pressure thrust is obtained from:

A(Py = Poc) = ~- (s — Poo) = [Ideal gas law] = (A.88)
pVj
mRT, m/RT, Poo Poo _
AR, S(ps_poo)iMﬁ (1— ps>= o :%] =
myv/RTy L+ 11 py2) 7
MAy/1+ 5 M2 T

The final expression for C, is obtained by combining Equations A.89, A.88, A.79
and A.83:

m—(1+ 251 M?) 50T

M.y + =
C’v: v,0 5 \/_ 1 Ll (A89)
a1+ M2 1 .,17;1

For pressure ratios less than mperfect, simple expressions for the thrust coef-
ficient, C,, can not be obtained due to the presence of compression chocks.
However, the area ratio can then be controlled by varying the exhaust area,
thereby maintaining high values for C,. For this case, C, = C, o is used.
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Solving the compatibility
equations - Appendix B

To solve the nonlinear system of equations represented by equation 2.1, GEST-
PAN applies a quasi-Newton method (secant method). The quasi-Newton method
is related to the classical Newton method, which is given by the well known se-
quence {z*} such that:

ot = g% 4 gk (B.1)
J(z®)d* = —F () (B.2)

where J(z®) is the Jacobian (the n-dimensional derivative) of the system.

To proceed from a starting estimate, x°, the Newton method requires the
Jacobian to be known (or at least an approximation obtained from finite differ-
encing). An initial approximation of the Jacobian requires that n+1 function
evaluations are performed. One function evaluation is necessary to obtain the
error vector at the present point z*. By knowing F(z*) and then perturbing one
component of the design vector z*, n elements in the Jacobian (a column) can
be found by finite differencing. Thus, determining the whole Jacobian requires
n+1 function evaluations and thus n+1 function evaluations are necessary for
every iteration step in the Newton method. The quasi-Newton method tries to
reduce the computational cost associated with this process by improving (up-
dating) an old estimate of the Jacobian in every iteration step without actually
carrying out the full finite differencing procedure.

There is actually a whole class of quasi-Newton methods differing in how the
update of the Jacobian is formed. To be precise, it is the inverted Jacobian that
is updated in the method used by GESTPAN, as proposed by Broyden in [99]
and [100].

The common feature of all quasi-Newton methods is the secant requirement.
This is derived by a Taylor expansion of the function F about an arbitrary
reference point, say Xj.

F(X) = F(Xo) + J(X0)(X — Xo) (B.3)

where J(Xj) is the Jacobian of F in Xo. If we select two points, X; and
Xit1, we can form

F(Xiy1) = F(Xo) + A(Xo)(Xiy1 — Xo) (B.4)
F(X;) = F(Xo) + A(X0)(X; — Xo) (B.5)

where A is an approximation of the Jacobian. The secant requirement is
formed by subtracting B.4 from B.5, yielding:

Xit1 — Xi = H(X;) (F(Xin1) — F(X3)) (B.6)
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where H(Xo) = A(Xo) L, i.e. H(Xy) is formed by inverting the approxi-
mated Jacobian. It can immediately be seen that equation B.6 represents a
system of n equations in n? unknowns. Thus,for for n > 1, the choice of H(X,)
is not unique. All secant methods have equation B.6 in common but differ in
how the remaining requirements for determining H (X) are formulated.

In the quasi-Newton method used by GESTPAN, the Jacobian is only com-
puted for the first step in the iteration (unless it becomes singular, see [37]). Hy,
is then formed directly, by inverting the Jacobian, and is subsequently updated
by the following formula:

(Hyy; — tipi) pit H;
piTH;y;
Yy =F(Xi) - F(X3) , i =2 +ti-pi , pi=HF(X;)

Hiyw=H; — (B.7)

Broyden derived equation [B.7] by arguing that new information on how A;,
and thereby also H;, changes during an iteration step with the secant method,
is gained only in that very direction. A reasonable requirement for A; was then
to assume that changes in F predicted by A; in other directions than the step
direction, p;, should be no different from changes predicted by A4;,1, i.e.:

Aiv16i = Aig;
¢"pi=0

where ¢; obviously defines the direction orthogonal to the step direction p;.

The most important and striking feature of this method is that, although the
iteration matrix H; changes from step to step, no evaluations of f(x) are required
beyond those that would have been necessary if H; remained constant. Another
feature of this method is that, as x; approaches the solution, the assumptions
made in deriving it become more valid. Hence, if A; tends to approach the
Jacobian matrix, the rate of convergence is expected to improve, ultimately
becoming superlinear.
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