

Modeling and verification of a stepper motor
supervisory controller

Master of Science Thesis

Olof Bergquist
Marcus Sjödin

Department of Signals and Systems
Division of Automatic Control, Automation and Mechatronics

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden, 2008
Report No. EX041/2008

Modeling and verification of a stepper motor
supervisory controller

Olof Bergquist & Marcus Sjödin

Master of Science Thesis
Department of Signals and Systems

Division of Automatic Control, Automation and Mechatronics

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg

2008

Master of Science Report No. EX041/2008
ISSN: XXXX-XXXX

Examiner: Associate professor Martin Fabian

Supervisor: Associate professor Martin Fabian
 Department of Signals and Systems
 Chalmers University of Technology
 412 96 Gothenburg
 Sweden

Performed at: Volvo Technology

Supervisor: Mats Andersson
 Volvo Technology
 Sven Hultins gatan 9
 412 58 Gothenburg
 Sweden

MODELING AND VERIFICATION OF

A STEPPER MOTOR SUPERVISORY CONTROLLER

Olof Bergquist & Marcus Sjödin

Copyright © 2008 Olof Bergquist & Marcus Sjödin, All Rights Reserved

Master of Science Report No. EX041/2008
ISSN XXXX-XXXX

Department of Signals and Systems
Division of Automatic Control, Automation and Mechatronics

CHALMERS UNIVERSITY OF TECHNOLOGY
412 96 Gothenburg
Sweden

The figures on first page is from the Simulink and the Stateflow environment

Chalmers Reproservice
Gothenburg, Sweden 2008

 i

ACKNOWLEDGEMENTS

This master thesis has been carried out at Volvo Technology (VTEC) in Gothenburg during
the winter of 2007 and the spring of 2008. The master thesis comprise 30 ECTS points.

Our time at Volvo Technology has been very interesting and has given us insight into how
system development takes place at a corporation like Volvo Technology and we hope that our
thesis project and methods may benefit this company.

We would like to give credit to those of you who have been involved and thank you for your
interest and patience. A special thanks to Mats Andersson for the opportunity and to Martin
Fabian for your wise words and inspiration.

We would also like to thank Carl Leidner and Björn Fridholm for all the help in the HIL lab.

Gothenburg, April 2008

Olof Bergquist & Marcus Sjödin
Chalmers University of Technology
Automation & Mechatronics

 ii

MODELING AND VERIFICATION OF A STEPPER MOTOR SUPERVISORY
CONTROLLER

Master of Science thesis
Olof Bergquist & Marcus Sjödin
Department of signals and systems, Chalmers University of Technology

ABSTRACT
This master thesis has been carried out at Volvo Technology (VTEC) in Gothenburg during
the winter of 2007 and the spring of 2008.

In cars with electronic climate control the air flaps are controlled by a couple of
intelligent step motors or flap actuator modules (FAM). The supervision of the FAM is very
complex, because every case of failure has to be handled accurately. This has been a problem
for VTEC when designing the software of the supervisor. One of the problems has been to
guarantee total accuracy.

The objective of this master thesis has been to find a design tool and then design a
model of the FAM. With this done, the task was to design a supervisory controller of the
FAM model. Formal verification has been used to guarantee accuracy of the supervisory
controller and of the FAM model. VTEC has a simulation system and use it among other
things for testing the software. Parts of the environment in the car are simulated in Simulink.
One of the objectives of this thesis has been to try to implement the FAM into the simulated
environment.

The FAM model and the supervisory controller have been designed in Mathworks
Stateflow, and Mathworks Design Verifier has been used for formal verification. Using
Stateflow for solving this type of modelling problem has been flexible Stateflow supports a
variety of different design patterns. Stateflow’s graphical debugger makes it easy to follow
the path of execution in the chart and to pin point where design errors originate. When it came
to Design Verifier and formal verification, the results varied. Design errors were found in
both the controller and the FAM model that would have been hard to find using only
validation and simulation. In that sense formal verification could be applied for verifying
models of this complexity and structure.

The final objective to implement the FAM in VTEC’s simulation system confirmed that
these types of models can run without any alteration in the simulation system and that several
instances of the FAM model can run in parallel in the simulation system. Also the FAM
model was compatible with the existing software and its control sequences for actual stepper
motors.

Key words: Finite state machine, Automata, Formal verification, Simulink, Stateflow, Design
Verifier

 iii

MODELLERING OCH VERIFIERING AV EN STEGMOTORSTYRNING

Examensarbete i civilingenjörsprogrammet Mekatronik
Olof Bergquist & Marcus Sjödin
Institutionen för signals and systems, Chalmers Tekniska Högskola

SAMMANFATTNING
Detta examensarbete har genomförts på Volvo Technology i Göteborg under vintern 2007 och
våren 2008.

I fordon med elektronisk klimatreglering (ECC) kontrolleras luftspjällen av ett antal
intelligenta stegmotorer (FAM). Logiken för att sekvensstyra stegmotorerna blir komplex
eftersom varje fall av fel måste behandlas individuellt och korrekt. Det har varit ett problem
för VTEC att designa mjukvaran till den här övervakaren. Ett problem har varit att garantera
att övervakaren är felfri.

Uppgiften med det här examensarbetet har varit att hitta ett verktyg för att sedan göra en
modell av en stegmotor (FAM). När detta var genomfört var uppgiften att designa en
övervakare för FAM-modellen. Formell verifiering har använts för att garantera att
övervakaren och FAM-modellen är felfri. VTEC har ett simuleringssystem (HIL) och
använder det bland annat för att testa programvara. En del av miljön i detta simuleringssystem
är simulerad i Simulink. En av uppgifterna har varit att försöka att implementera FAM-
modellen i den simulerade miljön.

FAM-modellen och övervakaren har konstruerats i Mathworks Stateflow och Design
Verifier har använts för formell verifiering. Att använda Stateflow för denna typ av
modelleringsproblem är flexibelt. Stateflow stödjer en rad olika design möjligheter.
Stateflows grafiska debugger gör det enkelt att följa exekveringsordningen i tillstånds-
maskinerna och att hitta exakt var felen härstammar. Vad det gäller Design Verifier och
formell verifiering så var resultaten varierade. Brister i designen, som skulle varit svåra att
hitta genom enbart simulering och validering, hittades i både övervakaren och FAM
modellen. I detta avseende kan formell verifiering vara användbart för att verifiera en modell
av denna komplexitet och struktur.

Den sista uppgiften, att implementera FAM-modellen i VTECs simuleringssytem,
bekräftade att denna typ av modell kan köra utan att göra några ändringar i
simuleringssystemet. Dessutom visade det sig, att flera instanser av FAM-modellen kan köra
parallellt i systemet. FAM-modellen var dessutom kompatibel med existerande programvara
och dess styrsekvenser för verkliga stegmotorer.

Nyckelord: Tillståndsmaskin, automat, formell verifiering, Simulink, Stateflow, Design
Verifier

 iv

CONTENTS

PART I – INTRODUCTION AND METHODOLOGY1

1 Introduction...2

1.1 Background ..2
1.2 Task..3
1.3 Delimitation..4
1.4 Outline..4

2 Method ...5
2.1 Theory ..5

2.1.1 The Finite State Machine ...5
2.1.2 Modeling ...7
2.1.3 Specification ..8
2.1.4 Verification..8
2.1.5 Validation ..8
2.1.6 Synthesis..9

2.2 Design tools..9
2.2.1 Supremica..9
2.2.2 UPPAAL ...10
2.2.3 Stateflow..10

2.3 Results of the design tool study...11

PART II - IMPLEMENTATION IN STATEFLOW12

3 Modeling ..13

3.1 Modeling EATON FAM...13
3.1.1 Communication..13
3.1.2 Move ...14
3.1.3 Stall ...14
3.1.4 Failure ...14
3.1.5 Calibration ...14

3.2 Modeling the controller...15
3.2.1 Master..16
3.2.2 RequestHandler..16
3.2.3 ErrorHandler..16

4 Validation...17
4.1 Interface..17
4.2 Validating the FAM..18
4.3 Validating the closed system...18

5 Verification ..19
5.1 Design Verifier ...19

5.1.1 Strategies in Stateflow..19
5.1.2 Strategies for Large Models ...20

5.2 About the test cases...20
5.3 Verifying the FAM model...20
5.4 Verifying the controller...23

5.4.1 Defining a sequence property ...24
6 An attempt for implementation in “Hardware-in-the-loop”.........................25

 v

PART III - SUMMING UP ..26

7 Results and analyses ..27

8 Conclussion and discussion ...28
8.1 Realization of the thesis ..28
8.2 Evaluation of the thesis result ...28

8.2.1 Designing in Stateflow...28
8.2.2 Formal verification – Mathworks’ Simulink Design Verifier............................28

8.3 Recommendation ..29
9 Bibliography ..30

APPENDICES

A Appendix A ..32

B Appendix B ..36

C Appendix C ..38

D Appendix D ..48

 vi

Common terms

VTEC Volvo Technology
FAM Flap actuator module. Stepper motor. (from the EATON corporation)
ECC Electronic Climate Control
CCM Climate control module
HIL Hardware-in-the-loop
FSM Finite state machines, finite state automaton (plural: automata)
DES Discrete event system
LIN The communication protocol between the FAM and the ECC
Stateflow Software integrated in MATLAB Simulink
Design Verifier Software integrated in MATLAB Simulink

 1

PART I

INTRODUCTION AND METHODOLOGY

1. Introduction

 2

1 INTRODUCTION

This chapter will introduce the background to why Volvo Technology decided to
initiate this master thesis project. On the basis of the background, the tasks of this
thesis are distinguished and will be presented. The delimitation and disposal of this
thesis will then finally be presented.

1.1 Background

Volvo Technology (VTEC) is the centre for innovation, research and development in the
Volvo Group. The mission of the company is to develop a lead in existing and future
technology areas of high importance to Volvo. This means that they focus on both hard and
soft projects within a system approach framework. Their customers include all Volvo Group
companies and Volvo Cars, but also some selected suppliers. VTEC participate in national
and international research programmes involving universities, research institutes and other
companies. VTEC is located both at Lundbystrand and at the Chalmers Science Park in
Göteborg, and at Volvo’s establishments in Lyon, France, as well as in Greensboro, USA.

‘Mechatronics and Software’ is a department under VTEC that provides Volvo with
specialists on embedded control systems. They provide knowledge and experience in
software, hardware and control engineering. Our master thesis is subordinated under this
department [11].

The Electronic Climate Control (ECC) is a fully automatic automobile climate
controller; it controls the fan, the heater flaps, the A/C, the recirculation and outside air flaps,
the air distribution, and the rear electric defroster. The driver selects a temperature and may
choose certain manual overrides. A central part of an ECC is the control algorithm, which is
implemented in the software. Since there are many inputs and outputs to and from the ECC
and the system to be controlled has some non-linear behavior, the control algorithm is quite a
challenge to design [9][10].

In one setup, an electrical supervisor in the ECC is communicating via a serial data bus
with a number of intelligent stepper motors or flap actuator modules (FAM) (Figure 1.1). The
air flaps in the climate system is controlled by these electrical stepper motors. The supervision
of the stepper motors is very complex, mostly because every case of failure has to be handled
accurately. This is to avoid deadlocks and forbidden states. VTEC supplies the software of the
supervisor to the ECC. There have been problems when designing the software of this
supervisor. One of the problems has been to guarantee total accuracy and that deadlock and
forbidden states are excluded.

Figure 1.1: The EATON Stepper motor (FAM).

1. Introduction

 3

Previous implementation of the supervisory controller has been constructed in Mathworks
Stateflow. The implementation has been difficult to maintain and verify for accuracy. The
code from Stateflow was generated with dSpace TargetLink. TargetLink is a software system
that generates production code (C code) straight from the MATLAB/Simulink/Stateflow
graphical development environment [3].

Interviews at VTEC have shown that the experience level of working with Stateflow
was rather low when the work to construct the supervisory controller began. Interviews at
VTEC have shown that the experience level of working with Stateflow was rather low when
the work to construct the supervisory controller began. When the development started, the full
specification and behaviour of the stepper motor was not known. This led to a somewhat
messy design that is difficult to maintain and verify. It was also experienced that the
generated code grew larger when making adjustments in the state machines, as the work had
been in process for some time. When the prior supervisor, produced by VTEC, was code
generated in TargetLink and tested on the hardware, it appeared as if the code was not
completely accurate. Therefore, it was necessary to make adjustments in the state machines in
Stateflow [3].

1.2 Task

The task of this thesis is to design a model of the FAM and to examine if formal methods and
software for formal synthesis and verification can be used to implement a supervisory
controller of the FAM model. This controller should be more robust and easier to maintain
and verify for accuracy.

VTEC has also shown interest in studying the possibility to implement the model of the
FAM in their simulation environment. It is most likely that this phase of the thesis will not be
completely finished.

The objectives of this thesis are dealt with according to the following work order.

o Find a design tool that manages state machines.
There are several requirements on this tool to handle different design methods.
There is also a demand that the tool handles some kind of formal verification.

o Design a model of the flap actuator modules (FAM).
This model should of course be a generalization of the real FAM. The essential
properties should however be fulfilled.
Note: VTEC has not designed a model of the FAM prior to this work.

o Design a supervisory controller of the FAM model.
This controller should be tested and verified on the FAM model, but the
possibility to implement it in reality should be considered.

o Use formal methods for validation and verification of the designed

supervisory controller.

o Make an attempt to implement the model of the FAM in VTEC’s simulation

environment.

1. Introduction

 4

1.3 Delimitation

There are several tools used to design supervisory controllers. This thesis will discuss and
examine which tool or tools that are most fit for the task. The model and supervisor will be
implemented in only one of these tools.

To implement the model of the FAM in VTEC’s simulation environment is very
complex and most likely some adjustments in the simulation design have to be made. An
attempt for implementation will be made but due to the time limit of this thesis, it is not
certain that this work will be finished. To implement the controller is even more complex and
includes code generation. This will not be realized in this thesis.

1.4 Outline

Part one – introduction and methodology

The next chapter in this first part of the thesis will describe the method that has been used
when working with this thesis. The theory behind state machines and different design tools
will be presented. The thought is to investigate which design tool is the best to solve the tasks
presented above.

Part two – implementation in Stateflow

The second part in this thesis is about the implementation in the chosen design tool. The first
chapter in this part treats the modeling of the FAM and modeling of the supervisory controller
to the FAM. The second and third chapters are about validating and verifying the models. The
last chapter in this part treats the attempt to implement our FAM model in VTEC’s simulation
environment: Hardware-in-the-loop.

Part three – summing up

The last part of this thesis handles the presentation and analysis of the results. Are the
objectives of this thesis reached? In the last chapter there will be a discussion about the results
of this thesis. There will also be some suggestions how to continue working with the kind of
task this thesis handles.

2. Method

 5

2 METHOD

The following chapter will describe the method that has been used when working
with this thesis. First of all, some theory about finite state machines and how to
design them will be presented. Second there will be information about some of the
design tools available on the market.

2.1 Theory

2.1.1 The Finite State Machine

A finite state machine (FSM) is a model of behavior composed of a finite number of states,
transitions between those states, and actions. [1]

The FSM is a system that at any time unit occupies a unique state of being, out of a
finite set of such states. Man made, non physical systems containing information handling
parts, such as manufacturing systems and communication protocols, are profitably modeled as
discrete events systems (DES).[1]

transition

event

state

State name

Figure 2.1: Example of a finite state machine with two states.

Initially, one state in the state machine is active. The state machine will shift its active state
when an event occurs and that event is connected to a transition, leading to another (possibly
the same) state. The event is said to be guarding the transition. In the figure above this would
correspond to if the state Running is active and the event stop occurs, then the state Stopped
will be active. In the example above, only one state is active at the same time.

Instead of an event guarding a transition there could be a Boolean expression with
variables. There is also a possibility to define different actions (Figure 2.1) when entering or
exiting a state, or while remaining in a state. Exit actions for a state are executed when the
state is active and a transition out of the state is taken. Entry actions are executed for a state
when the state is entered (becomes active). During action are executed for a state when it is
active and an event occurs and no valid transition to another state is available. This action can
trigger some procedure or even another event. These systems are called extended finite
automata (EFA)[1][2][4][16].

2. Method

 6

2.1.1.1 Mealy and Moore machines

There are generally three types of FSM: Mealy, Moore and classic. Classic statecharts
includes both Mealy and Moore semantics. The Moore FSM uses only entry actions, i.e. the
output depends only on the state. The advantage of the Moore model is a simplification of the
behavior which in turn leads to better code generation. The Mealy FSM uses only input
actions, i.e. the output depends on the input and the state. The use of a Mealy FSM often leads
to a reduction of the number of states. Often a mixed, classic model is used which in many
cases is the easiest solution, compared to using either Mealy or Moore [2].

2.1.1.2 Parallel states

In many systems it is not exclusively one state that is active at the same time. Imagine two
machines (e.g. robots) working together in a cell. Each machine could be either running or
stopped. Figure 2.2 below illustrates these two machines where machine1 and machine2 has a
parallel execution order. The semantic of the system is an AND-operation between machine1
and machine2. The dotted lines indicate that the two states are parallel [4].

Figure 2.2: Example of two parallel FSM

2.1.1.3 Deadlock

It is important to avoid deadlock when designing the state machines. Deadlock refers to a
specific condition when two or more processes are each waiting in a circular chain for another
to release a resource. This is a state where the system is locked no matter which event occurs.
Deadlock is common when several processes, i.e. several FSM, share a mutually exclusive
resource, e.g. software. Deadlock may occur if there is dependence between two state
machines, e.g. an event in one state machine triggers a transition in the other. This is why it is
important to have the execution order in mind when designing machines with parallel states
[14].

2.1.1.4 Superstate

In Figure 2.3 there are three states. Since event β takes the system to state B from either A or
C, it is tempting to cluster the latter into a new superstate D, depicted in Figure 2.4. The two β
arrows are replaced by one. The semantic of D is then the exclusive-or of A and C, i.e. to be
in state D one must be either in A or in C, but not in both. D is an abstraction of A and C with
the common property that β leads from them to B. One purpose of doing so is to economize
the number of arrows, thus making the FSM much easier to survey [12].

2. Method

 7

Figure 2.3: FSM with three states[12]

Figure 2.4: FSM with a superstate D[12]

A superstate can itself consist of several other superstates. In this way it is possible to
construct a system with hierarchy. In a superstate with several other parallel superstates it is
possible with more than one active state at the same time [4].

2.1.1.5 Default transition

Default transitions are primarily used to specify which exclusive (OR) state is to be entered
when there is ambiguity among two or more neighboring exclusive (OR) states. They are
required when such ambiguity exists. Default transitions have a destination but no source
object. For example, default transitions specify which substate of a superstate with exclusive
(OR) decomposition the system enters by default, in the absence of any other information
such as a history junction (see Figure 2.5). Default transitions are also used to specify that a
junction should be entered by default [4].

Figure 2.5: Example of default transition and history junction

2.1.1.6 History Junction

A history junction is used to represent historical decision points in the state machines. The
decision points are based on historical data relative to state activity. Placing a history junction
in a superstate indicates that historical state activity information is used to determine the next
state to become active. The history junction applies only to the level of the hierarchy in which
it appears. Not every design tool support history junctions [4].

History junctions override default transition paths in superstates with exclusive (OR)
decomposition. In parallel states, a default transition must be present to indicate which of its
states is active when the parallel state becomes active [4].

2.1.2 Modeling

A model is an abstraction that tries to capture the characteristics of an object that are
important to the user. The real object has an infinite number of attributes, of which the model
can only ever capture a finite number. It is therefore crucial that the model captures exactly
the relevant characteristics of the real system. It is equally as important that the model

2. Method

 8

captures only those aspects that are relevant. Otherwise the model may get too complicated.
This implicates that it does not necessarily mean that there exists a single unique model of a
given system [16].

When the task is to make a model of a system it might be a good idea to first locate the
superstates and the relationship between each and every one of them. This way there will be
states grouped together with independencies towards other states in the FSM. After this has
been done the aim is to make refinements inside the superstates, i.e. zooming in and adding
states, transitions and events, thus working in a top-down manner. This way of working is
illustrated in Figure 2.6 [4].

Figure 2.6: Working in a top-down manner with superstates

2.1.3 Specification

A specification describes the desired behavior of the process (system) or model of the process.
Typically the process is to be controlled, thus a specification expresses a restriction of the
behavior of the process. The necessary characteristic of the formal specification is that it must
express the entire desired and allowed behavior of the closed-loop system [1].

2.1.4 Verification

Verification typically means ascertaining whether a given system fulfills some desired
property. This thesis will deal with formal verification, where mathematical models of the
system components are manipulated to achieve an exhaustive and automatic ascertaining of
the given properties. Manual verification, such as many types of testing, suffers from the fact
that only presence of errors can be verified. Formal verification can guarantee also absence of
errors [1].

In all cases of model-based development and design, the results hold only if the models
captures the characteristics of the real system. It is the models that are verified, not reality. If
the verification models are incorrect, then no guarantees can be given about the real system
[1][2].

2.1.5 Validation

Validation is the process of checking if something satisfies a certain criterion. The question is
if the system behaves as the user really requires. In the case of verification, the equivalent
question is if the system conform the specifications. Often validation and verification makes
up the overall testing of whether a system is correct [2][16].

2. Method

 9

2.1.6 Synthesis

Automatic generation of a controller through some form of algorithm is what we refer to as
synthesis. The controller is generated from the process model and the specification. The
algorithms to synthesize a controller exist, are well known and easy to implement.
Furthermore, the synthesis algorithms have been mathematically proven to always return a
correct result. Still there are not many design tools implementing synthesis. However, it is
usual to design a controller manually and then verify correctness by formal verification. The
adjustments made in the controller, due to results of the verification are a kind of manual
synthesis [3][16].

2.2 Design tools

The choice of design tool is first and foremost dictated by availability, but also by the
capability of formal verification and design flexibility. A main goal of this thesis work is to
investigate and apply a method of verification to ascertain certain properties and control
sequences. Therefore it is crucial that the chosen tool has the possibility to perform formal
mathematical verification for design correctness and robustness. It is also important that the
tool has the modeling potential of designing a model as tight to the specification as possible.
For example, basic mathematical functions and variables need to be readily accessible and so
on. Seeing that the target is embedded systems, the chosen tool should also be able to generate
code, in this case C code, or work with a standalone code generator. This demand is not in
main focus, but will be taken into account.

When considering the demands above, we found three software design tools of interest
that we decided to look further into. They are described in the following text.

2.2.1 Supremica

Supremica is a tool that helps engineers to develop robust control systems and is developed at
Chalmers University. Thus, the authors have been in contact with the software during courses
at said university.

Supremica allows the user to model a plant, i.e. the uncontrolled physical system, and to
create a specification that expresses the allowed sequences and events of the plant. A
synthesis of the two models can then be done. This will result in a supervisory controller that
restricts the uncontrolled system such that the closed-loop system fulfills the specifications.
This is the main purpose of Supremica [16]. Supremica includes formal verification
algorithms to verify controllability and non-blocking properties.

Supremica is also free of charge for education and research and since it is developed
mainly at Chalmers, expertise and support on the software is easily available. The
documentation is very insufficient and supplementary development takes place abroad.

However, implemented mathematical operators and supported syntaxes are very limited
and the documentation covering this area is more or less nonexistent. The use of variable
types is also currently limited.

According to Supremica developers, there is a possibility to generate some sort of C
code called NQC, Not Quite C. Information regarding this function is not yet available and
the function itself is not yet public, but NQC is said to include some of the most basic C
commands.

2. Method

 10

2.2.2 UPPAAL

UPPAAL is an integrated tool environment for modeling, simulation and verification of
real-time systems, developed jointly by Basic Research in Computer Science at Aalborg
University in Denmark and the Department of Information Technology at Uppsala University
in Sweden. The UPPAAL software is free for non-commercial use. Typical application areas
include real-time controllers and communication protocols in particular, those where timing
aspects are critical [13].

UPPAAL consists of three main parts: a description language, a simulator and a model-
checker. The description language is a non-deterministic guarded command language with
simple data types (e.g. bounded integers, arrays, etc.). It serves as a modeling or design
language to describe system behavior as networks of automata extended with clock and data
variables. The simulator is a validation tool, which enables examination of possible dynamic
executions of a system during early design (or modeling) stages. Thus it provides a mean of
fault detection prior to verification by the model-checker, which covers the exhaustive
dynamic behavior of the system [13].

A downside with UPPAAL is that larger models become hard to overview and that the
support for mathematical functions is limited. There is no documentation on UPPAAL’s
webpage about any possibility to generate C-code [13].

2.2.3 Stateflow

Stateflow extends Simulink with a design environment for developing state machines and
flow charts. Stateflow provides the language elements required to describe complex logic in a
natural, readable, and understandable form. It is tightly integrated with MATLAB and
Simulink, providing an environment for designing embedded systems that contain control,
supervisory, and mode logic.

Stateflow provides language elements, hierarchy, parallelism, and deterministic
execution semantics for describing complex logic. It is also possible to define different
actions when entering or exiting a state, or while remaining in a state. Exit actions for a state
are executed when the state is active and a transition out of the state is taken. Entry actions are
executed for a state when the state is entered (becomes active). During actions are executed
for a state when no valid transition to another state is available.

Stateflow makes it possible to specify functions graphically using flow diagrams.
Embedded MATLAB functions are possible as well as functions in tabular form (truth tables).

The simulation of Stateflow charts logs data to enhance understanding of the system and
assist debugging. The debugger itself can be used for setting graphical breakpoints, stepping
through charts, and browsing data variables [4].

There are two C code generators available for Stateflow, Target Link and Stateflow
Coder. Target Link is developed by dSPACE and Stateflow coder is developed by
Mathworks.

2.2.3.1 Design Verifier

Stateflow does not provide the possibility of performing formal verification using
mathematical algorithms. However, Stateflow is compatible with the Design Verifier software
(also from Mathworks), which generates tests for Stateflow models that satisfy model
coverage and user-defined objectives. It also proves model properties and generates examples
of violations [5].

Design Verifier does not support every feature in Stateflow. Hence, it is recommended
to have this in mind when using Stateflow for modeling purposes. It does not support
recursion, calls to MATLAB functions or access to MATLAB workspace variables. Also, it
does not support calls to certain C math function supported in Stateflow [5].

2. Method

 11

2.3 Results of the design tool study

Of the three design tools that we looked into in the previous chapter, UPPAAL showed to be
the least suitable software and our supervisor at Chalmers did not recommend it for our tasks.

Initial modeling attempts were made in both Supremica and Stateflow to decide which
software covers most of our modeling and verification demands. In an early stage it was clear
that Supremica did not possess the design flexibility necessary for our implementation. It
lacked Stateflow’s support for parallelism, mathematical functions and logic as well as history
junctions. Also, there is no documentation about the syntax supported in Supremica. The
possibility to follow the execution step-by-step and track all data calculations in the graphical
debuggers was also a strong reason for choosing Stateflow as the final design tool. Stateflow
and Simulink Design Verifier offer a complete suite for flexible modeling and formal
verification.

Another strong argument for choosing Stateflow was that VTEC have already been
using Simulink and Stateflow in prior work. If our work was to be integrated in VTEC’s
software, it would be easier to use Mathworks’ products.

2. Method

 12

PART II

IMPLEMENTATION IN STATEFLOW

3. Modeling

 13

3 MODELING

The first topic in this chapter will describe how the EATON FAM model was
implemented in Stateflow. Secondly, there will be an explanation of how the
controller was implemented. The controller has been designed with the purpose to
send and receive messages to and from the FAM. Note that both the controller and
FAM model use Mealy and Moore semantics, i.e. both are of type classic state
machines. The modeling task is too complex to be solved in a manageable way if
limited to only Mealy or Moore (2.1.1.1).

3.1 Modeling EATON FAM

As suggested in Chapter 2.1, the first step when modeling the FAM, is to pinpoint the
superstates in the system. One of the most important things is to ask which superstates should
be parallel (AND) and which should be exclusive (OR).

Figure 3.1: Superstates of the EATON FAM. (dotted line indicates parallelism)

In the FAM there are five distinguished blocks. All of these blocks are working in a parallel
execution order. These five blocks can be represented with five superstates in the model. In
every moment when running the model, at least one state has to be active in each superstate.
The superstates are: communication, move, stall, failure and calibration. These superstates
have to be parallel because a change in these states respective is allowed at every time step. In
the following, each superstate will be further explained. Some functions and truth tables in the
superstates are removed to simplify the figures.

3.1.1 Communication

The communication superstate is where the FAM sends or receives messages to or from the
controller. In reality the FAM is continuously listening to the bus for a request or response
header (C.2). In the model, these headers are represented by two specific input events instead.

Figure 3.2: Principle of the communication superstate

3. Modeling

 14

3.1.2 Move

The move superstate is the state where the move of the shaft is simulated. The shaft is moving
when some conditions (Appendix C) in the state machine are fulfilled. The stop transition is
triggered from either the stall superstate or the failure superstate.

Figure 3.3: Principle of the move superstate

3.1.3 Stall

The stall superstate handles the stall of the shaft. In the model it is hard to simulate a stall
during a movement. This is because a stall depends on several factors. It obviously depends
on the distance to the end stop. It also depends on acceleration and speed of the shaft. Stall is
simulated with the help of the stallSimulator depicted below. The FAM is stopped, with the
stop event in the state stallMode (Figure 3.4).

Figure 3.4: Principle of stall superstate

3.1.4 Failure

The failure superstate contains two states: failureMode and noFailure. When there is failure
the FAM is stopped with the stop event. If the Failure Register is equal to anything other than
8, the notCalib flag is set (C.2.2.4). Failure is cleared with the stop_failure event.

Figure 3.5: Principle of the failure superstate

3.1.5 Calibration

The calibration superstate also contains two states: calibrated or notCalibrated.

Figure 3.6: Principle of calibration superstate

3. Modeling

 15

3.2 Modeling the controller

The principle of the design of the controller is very different from the FAM model. It is built
based upon hierarchy and history junctions. The design of the controller is depicted in Figure
3.7 and Figure 3.8 below. The two figures are in fact the same controller, but illustrate the
principle from two different perspectives. The different blocks represent superstates with
different sizes, e.g the requestHandler block includes both the moveHandler and the
errorHandler block (Figure 3.7).

The design of this state machine controls one FAM but it is possible to use several
instances of this controller in order to control several FAMs. These instances share the same
bus. That is why there is a need for a scheduler which controls when each controller is
allowed to operate. After a given time interval the scheduler (not illustrated, see Appendix D)
sends an event to the controller. This event could mean that the controller should send a
request header followed by a request message to the bus. Another event means that the
controller should send a response header and then be ready to receive the response message
from the FAM. Since these events from the scheduler are generated automatically at a certain
time, it is necessary to save historical state activity information by using history junctions
(2.1.1.6). To control certain events in the FAM the controller has to send a sequence of
different run modes (e.g. see calibration routine D.3.2.1). This is the purpose of the history
junctions.

Figure 3.7: Superstates of the Controller. (dotted line indicates parallelism)

Figure 3.8: Superstates of the Controller. (dotted line indicates parallelism)

The principle of the controller will be explained on the basis of Figure 3.8. This figure has
been altered to explain the structure of the controller. The design and representation in this
figure is not supported in Stateflow.

3. Modeling

 16

3.2.1 Master

The entire controller is included in a single superstate at the top of the state-hierarchy; the
master state. The master contains two substates: communicationHandler and requestHandler.
The main feature of the controller is to send and receive information from the FAM. This is
managed in the communicationHandler. The states in the communicationHandler follow a
specific sequence described in D.2. When the controller has received information from the
FAM this information has to be interpreted, and that is when the transition is triggered from
the communicationHandler to the requestHandler.

Again, at a specific time or timeout, the communicationHandler state is reentered. The
information from the FAM has been processed and new control information is to be sent to
the FAM. This specific time (timeout) is controlled by the scheduler outside of the controller.

3.2.2 RequestHandler

The requestHandler state processes the information sent from the FAM. The requestHandler
contains two substates: moveHandler and errorHandler. When entering the requestHandler
superstate for the first time it enters the substate moveHandler, because of its default
transition. However, next time the requestHandler state is entered, the history junction
(illustrated in Figure 3.7), determines which substate is to be active.

In the moveHandler state, targetPos, swap and runMode is set. There is a transition from
the moveHandler to the errorHandler. It is triggered if failure, stall or the need of calibration
is present in the FAM. (D.3.1)

3.2.3 ErrorHandler

Stall, failure and calibration are processed in the errorHandler state. There are two substates:
failureHandler and calibAndStall. The default transition is assigned to the calibAndStall state.
However, a failure is to be prioritized, thus immediately firing the transition from the default
state to the failureHandler state if a failure is present.

The failureHandler substate handles the different procedures to reset the different
failures. The procedures are further explained in D.3.2.3 When the failures have been reset
then the failureHandler substate is exited.

The calibAndStall substate handles stall and calibration of the FAM. This state is also
composed of two substates: calibHandler and stallHandler. These two states have a parallel
execution order. The reason is because the calibration procedure uses stall detection.

4. Validation

 17

4 VALIDATION

This chapter describes how the FAM and the closed system are validated with our
MATLAB GUIDE interface. The closed system is our two models, FAM and
controller, connected. The controller is controlling the FAM as in the physical
system.

4.1 Interface

In order to test sequences and to validate that the FAM and the closed system behave as
intended, we constructed a MATLAB GUIDE interface (Figure 4.1). When this application is
configured to validate the FAM, it lets the user function as a controller and set all the run
modes that are specified in the FAM specification, for detailed information see C.2.1.

You can also invoke stall or failure and set calibration status as well as manually specify
the end positions and set the swap flag (C.2.1.1).

When the interface is configured to act upon the closed system, the user can only set a
CCM value and invoke errors such as stall, failure, and lost calibration. The run modes are
now restricted and set by the controller model itself. One aim of the interface in this mode is
to validate correct control sequences when an error is set by the user. Another aim is to check
that the FAM reaches its target position correctly.

Figure 4.1: The interface of the FAM, which is used to validate the model

4. Validation

 18

4.2 Validating the FAM

The purpose of validating the FAM is to make sure that the specification is implemented
correctly in Stateflow. Properties specifically tested were stall detection, swap flag
functionality, run modes and also combinations of the previously mentioned features.

4.3 Validating the closed system

As previously stated, the purpose of this validation process is to validate correct control
sequence as a result of one or more invoked errors. With the specification as a background,
different combinations of errors are set and the behavior of the controller is correlated with
the sequences stated in the specification of the controller.

5. Verification

 19

5 VERIFICATION

This chapter describes the method and results of formal verification using Design
Verifier with Simulink and Stateflow. The FAM and the controller model are verified
separately. Attempts were made to verify the closed loop system of the FAM and
controller model but the overall complexity of this system made it difficult to use
Design Verifier efficiently.

5.1 Design Verifier

One option in Design Verifier is to prove properties. Here, the term property refers to a
logical expression of signal values in a model. For example, one can specify that a signal in a
model should attain a particular value or range of values during simulation. The Simulink
Design Verifier software can then prove whether such properties are valid. The software
performs a formal analysis of the model to prove or disprove the specified properties. If the
software disproves a property, it provides a counterexample that demonstrates a property
violation.

The Simulink Design Verifier software provides two blocks that allow you to specify
properties in Simulink models. The Proof Objective block is used to define the values of a
signal that the Simulink Design Verifier software will prove. The Proof Assumption block is
used to constrain the values of a signal during a proof [5].

5.1.1 Strategies in Stateflow

For complex models, it is often necessary to verify the Stateflow state space directly; for
example, to check if two states can be active at the same time. This can be done by assigning
a Stateflow outport to an ‘in’-function. An ‘in’-function gives a true answer if the current state
is active. Here, state SF_out (Figure 5.1) is parallel and passes state space information to the
Simulink workspace and to Design Verifier, e.g. if state s1 is active out1 becomes true
.

Figure 5.1: Passing state information to the Simulink workspace.

Another way to achieve this is to use the implemented Design Verifier functions directly in
Stateflow. The following syntax invokes these functions in a Stateflow chart:

dv.prove(expr, "{values}")

dv.assume(expr, "{values}")

Design Verifier lacks the ability to directly verify a sequence of events or state entries. This is
one downside of Design Verifier, particularly in our case. However, using Simulink and
Stateflow blocks and charts, one can construct logic to indirectly verify sequences. This can
become somewhat time consuming, and increases the overall complexity of the model.
Another problem with Design Verifier occurs when verifying a model with counters. The
search process proceeds in a breadth-first manner. All configurations that can be reached in a

5. Verification

 20

single time step are investigated before any of the configurations that can be reached in two
time steps. Likewise, all configurations that can be reached in two time steps are investigated
before any configuration that requires three or more time steps, etc. Thus a counter will
expand the search depth with the size of the counter. Therefore, if the design includes large
counters, it could be a good idea to choose a small counter value when running Design
Verifier analysis [5].

5.1.2 Strategies for Large Models

Proving large and complex models can be very time consuming. This calls for some sort of
strategy when setting up the test cases and configuring Design Verifier.

First, use the bounded property proving method. This means searching for property
violations to a predefined limit of time steps. If no violations are found within the time span,
increase the bounded limit. There is a limit for when the bounded search can be more complex
than the unbounded. A recommendation is that if no property violations are found within 50
steps, switch to unbounded property proving. We have found this method of property proving
most efficient when proving our models. Often a property violation found quickly in a small
bounded limit can take a great deal of time when running the unbounded property proving.
However, unbounded property proving is necessary when exhaustively proving the absence of
violations [5].

5.2 About the test cases

Generally, it is always better to verify the closed loop system. Parts of the system can be
accurate when tested separately, but when the parts are connected different behavior could
occur. Hopefully, the closed loop system’s behavior is captured by validating the closed loop
system and verifying the FAM and controller separately.

The following test cases exemplify different scenarios that can be verified using Design
Verifier. Some of these examples show how Design Verifier can be used to verify that the
output variables have correct values. One other important thing to verify is whether some
internal states are active at the same time. The reason is that some states are not allowed to be
active at the same time. There are of course a lot of other examples of test cases not
mentioned below.

The runModes mentioned in the tables below can be found in Table C.2. The states used
together with the ‘in’-function are internal states in either the FAM-model or the controller.

5.3 Verifying the FAM model

Can the FAM be in stall-mode and still be running?

Test case 1:

Assertion: runMode={0,1,2,4,6}

Property: (in(stallHandler.stallMode) &&

in(moveHandler.running))==0

(The state stallHandler.stallMode is active when the FAM-model has stalled.
The state moveHandler.running is active when the FAM-model is running.)

Results: The property was proven false. This is correct behavior since
runMode==FAILURE_RUN is permitted when FAM is in stall mode.

5. Verification

 21

Test case 2:

Assertion: runMode={0,1,2,6}

(runMode==5 means FAILURE RUN and is excluded)
Property: (in(stallHandler.stallMode) &&

in(moveHandler.running))==0

(The state stallHandler.stallMode is active when the FAM-model has stalled.
The state moveHandler.running is active when the FAM-model is running.)

Results: The property was proven true. The FAM will not be able to move when in
stallMode and FAILURE_RUN is disabled. This proves that when the
FAM is in stall, FAILURE_RUN is the only command that is allowed to move
the actuator.

Conclusion:

These two cases prove that the FAM can move in stall mode, but only with the
FAILURE_RUN command.

Can the FAM be in failure-mode and still be running?

Test case 1:

Assertion: runMode={0,1,2,4,6}, failureReg={0,1,2,3,4,5,6,7}

Property: (in(failureHandler.failure) &&

in(moveHandler.running))==0

(The state failureHandler.failure is active when failure is present. The state
moveHandler.running is active when the FAM-model is running)

Results: The property was proven false. This is correct behavior since run mode
FAILURE_RUN is permitted when FAM is in failure.

Test case 2:

Assertion: runMode={0,1,2,6}

(runMode==5 means FAILURE_RUN and is excluded)
Property: in(failureHandler.failure) &&

in(moveHandler.running))==0

(The state failureHandler.failure is active when a failure is present. The state
moveHandler.running is active when the FAM-model is running)

Results: The property was proven true. The FAM will not be able to move when in
failure and FAILURE_RUN is disabled

Conclusion:

These two cases prove that the FAM can move in failure mode, but only with
the FAILURE_RUN command.

5. Verification

 22

Can the FAM be in notCalib-mode while a communication failure is set?
The FAM should not set the notCalib-flag due to a communication failure

Test case:

Assertion: runMode={0,1,2,4,6}, failureReg={0,1,2,3,4,5,6,7}

Property: in(failureHandler.failure) &&

in(calibHandler.notCalib) && failure!=3
(The state failureHandler.failure is active if a failure is present. The state
calibHandler.notCalib is active if the FAM requires calibration. Failure==3
means a communication failure.)

Results: The property was proven false. This property is broken by the following
sequence of events according to Design Verifier: A failure, other than the
communication failure, occurs. This sets the FAM in notCalib-mode. Now, the
FAM receives STOP_FAILURE and exits the failure mode. FAM is still in
notCalib until the calibration sequence is done. If a communication error would
occur before calibration is completed, the above property is broken. Note that
this is actually correct behavior for this sequence and not a modeling error.

Can the FAM’s actual position register to be outside the interval [0 4095]?

Test case:

Assertion: targetPos=[0 4095], runMode={0,1,2,4,6}, swap={0,1}

Property: actualPos=[0 4095]

Results: The property proven false. Design Verifier finds actualPos = 4096.
Simulation of the generated test harness shows actualPos outside range at
time step = 20. After 20 time steps in the graphical debugger an error in our
implemented modulus function calculates actualPos to 4096. The error is
corrected and the property is proven true.

5. Verification

 23

5.4 Verifying the controller

Can the master send NORMAL_RUN if there is a failure in the FAM?

Test case:

Assertion: CCM=[0 1000], failureReg_bit0=[0 1],

input_actualPos=[0 1000], input_notCalib=[0 1],

input_stall=[0 1].

Property: runMode==NORMAL_RUN && getFailure()>0

Results: The property was first proven false. It appeared that if some bit of the failure
register was set, there was still a possibility for the controller to send
runMode==NORMAL_RUN. The failure bit was acknowledged in the
controller but there was not enough time to change the runMode to
STOP_FAILURE. The reason was that the controller could not execute enough
states to change the run mode before there was a scheduled timeout (3.2). This
timeout decides when the controller should send request messages to the FAM.
Next time the controller returned to process information from the FAM, the run
mode STOP_FAILURE was however set properly. The solution was to
increase the number of states that are allowed to execute before there is a
timeout from 5 states to 10 states. The results of this property proving were
then satisfying.
Note: Increasing the timeout to 10 states is not critical considering the real-time
scheduling constraints

Is it possible for the Master to handle Stall and failure at the same time?

Test case:

Assertion: CCM=[0 1000], input_stall=[0 1],

failureReg_bit7=[0 7]

Property: The idea was to examine if the controller could handle that stall and failure

were set at the exact same moment, i.e. examine when stall==1 &&
failureReg_bit7==1.

Results: The property was proven satisfied. If stall was set at the same time as failure,
failure was prioritized. When the failure was cleared, the stall procedure was
commenced as expected.

5. Verification

 24

Are the output variables from the controller within the boundaries?

Test case:

Assertion: CCM=[0 1000], input_stall=[0 1],

input_notCalib=[0 1], failureReg_bit7=[0 7]

Property: output_targetPos=[0 4095], output_runMode=[0 7],

output_swap=[0 1]

Results: The property was proven false. Two important discoveries were made. The first
discovery was that the target position could be set in an interval between 0 and
4096. The reason for this was a miscalculation in the modulus function. This
was corrected. The second discovery was that many variables in the Stateflow
chart were of the type double, thus allowing floating-point values in the design.
This was also corrected.

Is it possible for the output variable target position to be outside the boundaries set by the

end positions?

Test case:

Assertion: CCM=[0 1000], input_stall=[0 1],
input_notCalib=[0 1], failureReg_bit7=[0 7]

.
Property: The property tested was if

targetPos<endPos1 || targetPos>endPos2.

Results: The property was proven false. This property is of course supposed to give a
falsified answer. However, important is that the only case when this property is
allowed is when the calibration procedure is executed and the objective is to
achieve stall near one of the end positions. In that case, the target position is set
to 50 steps past the end position.

5.4.1 Defining a sequence property

As previously mentioned, Design Verifier does not have properties for directly verifying a
given sequence. A solution to this problem is constructed using a verification subsystem,
basically with a Simulink “detect change” block and a very simple state machine. When this
subsystem is triggered, it starts to listen to its inport for a specific sequence. If the sequence
after the trigger pulse deviates from the desired sequence, the subsystem violates its property
block and Design Verifier presents a counter-example. Originally, this sequence logic was
created to verify correctness of the runMode variable from the controller, i.e. to verify
correct sequence of run modes as a result of an error or stall. It can however be used to verify
an arbitrary signal sequence.

.

6. An attempt for implementation in “Hardware-in-the-loop”

 25

6 AN ATTEMPT FOR IMPLEMENTATION IN “HARDWARE-
IN-THE-LOOP”

Hardware-in-the-loop (HIL) simulation is a technique that is used in the development and
testing of complex real-time embedded systems. Software, hardware and a simulated
environment are tested in a real-time environment. HIL-simulation provides an efficient
platform by adding the complexity of the plant under control to the test platform. The
complexity of the plant under control is included in test and development by adding a
mathematical representation of all related dynamic systems. These mathematical
representations are referred to as the “plant simulation” [15].

VTEC has an HIL-simulation system and uses it among other things for testing of the
software. Some of the environment in the car is simulated in Simulink. The idea is to
implement the model of the FAM into this simulated environment. This could be helpful in
the future when making tests on the HIL-system.

The first problem is to clarify if the FAM model works at all in the HIL-system. The
Stateflow FAM model is hence copied into the simulated Simulink environment. Constants
are connected to the inputs of the FAM. All the outputs variables except the actualPos are
terminated. The system is uploaded into the HIL system. It is possible to survey the actualPos
variable in the running system to determine if the FAM model is running. The results are
positive and the FAM model is working in the HIL-system. The next thing is to make several
instances of the FAM model and see if they are working separately. There was some
uncertainty whether the variables in the FAM model are local if the compilation can be run
without errors. The result was satisfactory and the variables were found to be local in each
FAM model.

The following step is to connect the LIN signals, runMode, swap, targetPos, in the
system to the FAM model. After some problems with for example an unconnected cable, we
managed to connect the LIN signals to the FAM model and the FAM model worked
satisfactory with the HIL system. The output signal actualPos from the model was easy to
follow in the control program Control Desktop.

6. An attempt for implementation in “Hardware-in-the-loop”

 26

PART III

SUMMING UP

7. Results and analyses

 27

7 RESULTS AND ANALYSES
This chapter is intended as feedback to the tasks of this thesis work and includes
condensed information of our results.

o Find a design tool that manages state machines and design a model of the FAM.

Firstly, using Stateflow for solving this type of modeling problem has been ideal. Even
though Supremica may have some advantages concerning verification, it would have been
difficult to fully implement the specified behavior for the FAM and the controller.

In an attempt to use Stateflow efficiently from the start, different design patterns were
studied to ensure a suitable basic structure for the FAM model. The parallel type structure
showed itself ideal for modeling the FAM. Extending or modifying behavior late in the
modeling process did not cause any problems.

Ultimately, the objective of the model is to aid the validation and verification of the
controller and for that, the FAM model fills its purpose.

o Design a supervisory controller of the FAM model.

A different approach was taken in terms of basic structure for the controller model; an
exclusive, non-parallel design pattern was used. By minimizing the number of parallel states
and using the hierarchy concept, the sequential behavior of the model was easy to analyze.
The history junctions available in Stateflow also proved to be quite useful in this non-parallel
method of modeling.

o Use formal methods for validation and verification of the designed supervisory

controller.

The closed loop system, where the controller is actually controlling the FAM model ran
basically as expected. Through the constructed MATLAB GUIDE interface different test
scenarios were run to validate a correct sequence of the controller. Certain unwanted behavior
was found, and corrected. Stateflow’s graphical debugger made it easy to follow the path of
execution in the chart and to pin point where the design errors originated.

When it came to Design Verifier and formal verification, the result varied. Design errors
that would have been hard to find using only validation and simulation, were found in both
the controller and the FAM model. In that sense, formal verification could be applied for
verifying models of this complexity and structure. However, the closed loop system grew too
complex for Design Verifier and poor results were achieved when performing unbounded
exhaustive searches.

o Make an attempt to implement the model of the FAM in the HIL test sytem.

The final work included code generation and implementation of the FAM model in the
Hardware-In-Loop (HIL) lab. The aim here was to implement five FAM models to aid
validation of the existing CCM controller software. This confirmed two things; firstly that
these type of models can run without alteration in the HIL and secondly that several instances
of the FAM model can run parallel in the HIL environment. Also, our FAM models were
directly compatible with the existing CCM software and its control sequences for the actual
stepper motors.

8. Conclussion and discussion

 28

8 CONCLUSSION AND DISCUSSION

This chapter comments on the results of this thesis. There will be some remarks on
how it is working with the design tools Stateflow and Design Verifier. In the end of
this chapter we will give some recommendation for further work with these design
tools.

8.1 Realization of the thesis

The realization of the thesis has been carried out almost accordingly to the time plan. The first
three weeks were used to attain knowledge about the actuators and how the bus protocol is
used. Gathering this information included reading the specifications of the FAM and the bus
protocol. Not all behavior of the FAM is captured in the specifications and some interviews
with employees at VTEC were carried out. This information resulted in the appendices of this
thesis.

We have continuously written on the report for this thesis during the work with the
different tasks. If this had not been the case the time to finish the different tasks would have
been shortened. Two weeks were used for research and for evaluating which design tool that
was most suitable for our tasks. The modeling in Stateflow took four weeks and the formal
verification also took four weeks to complete. One week was used to implement the FAM
model in the HIL lab. The remaining weeks have basically been used for working on the
report.

8.2 Evaluation of the thesis result

8.2.1 Designing in Stateflow

The design of the FAM and the Controller models has lead to a rather thorough assessment of
Stateflow and its capabilities. Working in Simulink and Stateflow has been quite satisfactory.
It is intuitive and easy to understand, especially if you have worked with similar software for
modeling DES. Stateflow is flexible and supports a wide spectrum of integrated functions and
extensive semantics. In practice, this means that one can almost always tailor the model to a
tight fit with the specification and a modeling problem can be solved in many different ways.

The documentation of Simulink and Stateflow are quite exhaustive. The offline help
documentation in MATLAB is sufficient when working in Stateflow. There is also a lot of
information and examples on the web. We recommend starting with the Stateflow help if the
tool is new to the user.

The possibility to graphically debug the design in Stateflow is very appealing. It is easy
to observe where a failure occurs in a decision point and consequently easy to know where to
correct the design. The only negative aspect of this is that the debugger zooms deeply in to the
design and this is quite annoying.

8.2.2 Formal verification – Mathworks’ Simulink Design Verifier

The task to formally verify the system in Design Verifier showed to be the most challenging.
One reason is that everything you want to verify must be formulated as a question. For
example: If one input signal has a specific value, is it possible to get a forbidden value on the
output signal? Each of these questions has to be tested separately. The formal verification tool

8. Conclussion and discussion

 29

Design Verifier is quite time consuming. A test could take several hours, and was often set to
run overnight.

Sometimes when the test had been running for several hours, the test stopped with the
short message: “An error during analysis: Analysis produced error”. There is no possibility
for debugging to find where the problem originates. Sometimes the message is “out of
memory” instead. The computer capacity should be enough, since the tests were run on an
Intel Core 2 Duo T7250 2 GHz with 2 GB memory. When these errors arise the only thing to
do is to strip the model until the error disappears.

We used Design Verifier version 1.1 for formal verification but since March 2008,
Design Verifier 1.2 has been released. This new version has additional support for Stateflow
Embedded MATLAB functions and support for Stateflow Truth Table blocks. The test
generation has a new strategy that is optimized for large models and it has also improved data
values for detecting errors [5]. This release has not been available for testing for the authors,
and maybe some of the mentioned problems have been fixed.

8.3 Recommendation

When using Stateflow in its full extent it is a very powerful tool and we believe that it could
be effective when designing systems comparable to ours. A brief look at VTEC’s prior work
on the FAM controller in Stateflow shows that Stateflow has not been used as intended. Their
controller was designed only with graphical functions. The design is much more difficult to
understand and to maintain if changes are to be made.

From the demonstration we had on the department on VTEC, we realize that there is a
big interest in Design Verifier. Some of the engineers believe that it could help them in their
work when designing in Simulink. It is very helpful in an early stage, when designing
Simulink models, to verify correctness. However, Design Verifier does not have a lot of
support for continuous blocks in Simulink. There is also no support for S-functions [5].
Design Verifier does however have good support for event driven systems, i.e. Stateflow.
Thus, we recommend that Volvo Technology should get a trial license for Design Verifier if
the aim is to evaluate an event driven system, specifically Stateflow designs.

We believe that, if working properly in Stateflow and using Design Verifier in an early
stage of the design work, time could be saved later on. It is time consuming to test software in
the HIL lab since it takes time to build the whole system after changes have been made.

9. Bibliography

 30

9 Bibliography

9.1 Literature

[1] Fabian, M. (2005). Discrete Event Systems, Lecture Notes (ESS200),

 Chalmers University of Technology. ISSN 1403-266X

[2] Shlaer, S., Mellor, S. (1992). Object Lifecycles – Modeling the World in States. New
 Jersey: Prentice-Hall inc. ISBN 0-13-629940-7

9.2 Personal Communication

[3] Andersson, Mats Volvo Technology

 Fabian, Martin Chalmers university of technology
 Fridholm Björn Volvo Technology
 Köllerström, Erik Volvo Technology

9.3 Documentation

[4] Mathworks Stateflow 7.0 documentation.

 Directly through Simulink/Stateflow or:
 <http://www.mathworks.com/access/helpdesk/help/toolbox/stateflow/>(2008-04-15)

[5] Mathworks Design Verifier 1.1 documentation.
 Directly through Simulink/Design Verifier or:
 <http://www.mathworks.com/access/helpdesk/help/toolbox/sldv/>(2008-04-15)

9.4 Volvo documentation

[6] Santander, E., Zeraffa, P. (2003). EATON SAM, Actuator and Sensor Division :

 BLDC Actuator specification.

[7] Wense, H. (2000). Motorola GmbH: LIN specification package – Revision 1.2.

[8] Volvo Car Corporation (2004). Specification of bus protocol for LIN actuators.

 Document id. 31806511

[9] Mårdberg, B. (2000). Volvo Technology AB.
 Control Design Document for the ECC-S80 project.

 Document id. 06200-875.

[10] Mårdberg, B. (xxxx). Volvo Technology AB.
 An Algorithm for Automobile Climate Control.

 SAE971790

9. Bibliography

 31

9.5 Internet sources

[11] Volvo Technology AB. About.

 <http://www.volvo.com/group/global/en-
 gb/volvo+group/our+companies/volvotechnologycorporation/> (2008-04-15)

[12] Harel, D. (1987). The Weizmann Institute of Science,Department of Applied
 Mathematics: Statecharts: A visual formalism for complex systems.
 <http://www.wisdom.weizmann.ac.il/~dharel/SCANNED.PAPERS/Statecharts.pdf >
 (2008-04-15)

[13] UPPAAL. About.
 <http://www.it.uu.se/research/group/darts/papers/texts/UPPAAL-pamphlet.pdf>
 (2008-04-15)

[14] Computer science: Deadlock and synchronization (2008). I: Encyclopaedia

 Britannica Online.

 <http://search.eb.com> (2008-04-15)

[15] Gomez, M. (2001). Embedded System Design: Hardware-in-the-Loop Simulation.

 <http://www.embedded.com/15201692>(2008-04-15)

[16] Åkesson, K., Fabian, M., Flordal, H. (2007). Supremica in a Nutshell – Draft.

 <http://www.supremica.org/media/SupremicaNutshell.pdf>(2008-04-15)

Appendix A

32

A APPENDIX A

SPECIFICATION OF THE COMMUNICATION PROTOCOL

A.1 General

The communication between a Slave Node (SN) and the Master Task follows a protocol,
according to the LIN Specification Package, Revision 1.2. This is an extract of that package
and includes relevant information when constructing a model of the SN and the master task.
[7]

 The VCC transmission rate is set to 9600 bit/s ± 2%. The bus consists of a single
channel that carries bits. The Physical layer is a single line, wired-AND with pull-up resistors
in every node, being supplied from the vehicle power net (VBAT). [7]

The bus can have two logical values: ‘dominant’ and ‘recessive’. The dominant value
corresponds to the ground voltage and to the bit value 0. The recessive value corresponds to
the battery voltage and the bit value 1.[7]

A.2 Message Transfer

Message transfer is manifested and controlled by one MESSAGE FRAME format (see Figure
A.1). A MESSAGE FRAME carries synchronization and identifier information from the
master task to the slave tasks. The master task is responsible for the schedule of the messages:
It sends the HEADER of the MESSAGE FRAME. Considering the information in the
HEADER, either the master node or one SN sends a RESPONSE- or a REQUEST FIELD. A
“request message” refers to a MESSAGE FRAME with a REQUEST FIELD, and a “response
message” refers to a MESSAGE FRAME with a RESPONSE FIELD. [7]

Figure A.1: A MESSAGE FRAME, [7]

The SN is constantly listening for information sent from the Master Task on the LIN bus.
Each SN has two types of identifiers. The REQUEST ID is followed by a command of 2 data
bytes telling the specific SN what to do. The other type is a RESPONSE ID and means that
the SN shall send its position, status and failure flags. It’s important to notice that all
communication is initiated by the Master Task and that the SNs shall act on or respond to
dedicated messages on the LIN as soon as possible. [7]

Appendix A

33

A.2.1 MESSAGE FRAME

A.2.1.1 BYTE fields

The BYTE FIELD format (Figure A.2) has a lenght of ten BIT TIMES. The START BIT
marks the begin of the BYTE FIELD and is dominant. It is followed by eight DATA BITS
with the LSB first. The STOP BIT marks the end of the BYTE FIELD and is recessive. [7]

Figure A.2: BYTE FIELD, [7]

A.2.1.2 Header fields

The Header contains three fields: SYNCH BREAK, SYNCH FIELD and IDENT FIELD.

SYNCH BREAK

Every message header is initiated with a SYNCH BREAK to clearly identify the beginning of
a new message; this part is the dominant bus value with a minimum duration of TSYNBRK. Next
part of the SYNCH BREAK is a recessive synchronization delimiter with a minimum
duration of at least TSYNDEL. This enables the slave to recognize the start bit of the following
SYNCH FIELD. [7]

Maximum time for TSYNBRK and TSYNDEL are not stated, but must fit into the message
header time budget of THEADER_MAX. Minimum time for TSYNBRK and TSYNDEL is 13 Tbit
respectively 1 Tbit.[7]

Figure A.3: SYNCH BREAK

SYNCH FIELD

The synch field gives information for the slave clock synchronization. The field itself is the
pattern of 0x55, which gives five falling edges within 8 bit time distance. The field is initiated
with a start bit and ends with a stop bit. It is recommended to measure the time between the
falling edges of both, the start bit and bit 7, and to divide the obtained value by 8. This value
is the time unit Tbit.[7]

Appendix A

34

Figure A.4: SYNCH FIELD [7]

IDENT FIELD

The last part of the header is the identifier field which specifies content, destination and
length of a message. [7]

Figure A.5: IDENT FIELD [7]

ID0…ID3 is the ID-bits and states message type and receiver node. ID4, ID5 are the length
control bits defining the length of the message, i.e. number of data bytes. Finally the parity
check bits set below: [7]

)(54311

)(42100

parityoddIDIDIDIDP

parityevenIDIDIDIDP

⊕⊕⊕=

⊕⊕⊕=
 Equation A.1[7]

This way no pattern with all bits recessive or dominant will be possible.[7]

A.2.1.3 RESPONSE/REQUEST field

The Response/Request field contains two, four or eight DATA FIELDs (quantity specified in
the IDENT FIELD). The last field in the RESPONSE/REQUEST field is the CHECKSUM
FIELD) [7]

DATA FIELD

The DATA FIELD consists of a eight bits of data. The LSB is transmitted first (Figure A.6).
If the MESSAGE FRAME contains a RESPONSE field, the master task expect information
from the SN. And if the MESSAGE FRAME includes a REQUEST field, the SN expect
information from the master task. [7]

Appendix A

35

Figure A.6: DATA FIELD [7]

CHECKSUM FIELD

The purpose of the CHECKSUM FIELD is to detect errors in the message. When all the
numbers in the RESPONSE/REQUEST field is added, the sum should be ‘0xFF’. The sum is
calculated by ‘ADD with Carry ‘ where the carry bit of each addition is added to the LSB of
its resulting sum. The CHECKSUM FIELD is designed specificly for this purpose. [7]

A.2.2 Length of message frame

The BYTE-FIELDS within a MESSAGE FRAME are seperated by inter-byte-spaces and in-
fram responce space. The length for these variables are not specified, only the total length of a
MESSAGE FRAME is limited. The minimum Frame length TFRAME_MIN is the minimum time
needed to transmit a complete frame (length of interbyte-spaces and in-frame response
space = 0). The maximum Frame length TFRAME _MAX is the maximum time allowed for the
transmission of the frame. The values are given in Table A.1. They are dependent on the
number of Data Byte Fields NDATA and do not include system inherent signal delays. [7]

Table A.1: Timing of a Message Frame[7]

TIME NAME Time [Tbit]

Minimum Length of Message Frame TFRAME_MIN 10 * NDATA + 44

Minimum Length of Header THEADER_MIN 34

Maximum Length of Header THEADER_MAX (THEADER_MIN +1) * 1.4

Maximum Length of Message Frame TFRAME_MAX (TFRAME_MIN +1) * 1.4

Bus Idle Time-Out TTIME_OUT 25,000

Appendix B

36

B APPENDIX B

VARIABLES
Table B.2 and B.3 are lists of the input-, output and internal variables mentioned in Appendix .
The variables are used when designing the FAM model and the controller in Stateflow. The
variables are also illustrated in D.2.

Table B.2: Variables used in the FAM

Type

Name Length Description

Input

(LIN):

runMode 3-bits The master requests the slave to execute
this command or run mode.

 targetPos 12-bits The desired position of the slave node
 swap 1-bit See D.3.1.1

Internal

variables:

endPos1 12-bits The first end stop

 endPos2 12-bits The second end stop
 Range 12-bits endPos2-endPos1

Output

(LIN)

Actuator status:
 notCalib

 stall

 dir

 run

1-bit
1-bit
1-bit
1-bit

Describes which state the particular slave
node is in.

 actualPos 12-bits Actual position of the slave node
 Last_min_torque 8-bits The minimum torque during a

movement. This is not used when
modelling the FAM or controller.

 Last_max_torque 8-bits The maximum torque during a
movement. This is not used when
modelling the FAM or controller.

 failureReg_bit0

-

failureReg_bit7

8-bits If the slave node recognize a failure the
register bits are set.

Appendix B

37

Table B.3: Variables used in the controller

Type

Name Lengt

h

Description

Input

(NOT LIN):

CCM Integer
0-1000

Desired value of the position for the heater
flaps.

Input (LIN-

bus)

Actuator status:
 notCalib

 stall

 dir

 run

1-bit
1-bit
1-bit
1-bit

Describes which state the particular slave
node is in.

 actualPos 12-bits Actual position of the slave node
 Last_min_torque 8-bits The minimum torque during a movement.

This is not used when modelling the FAM
or controller.

 Last_max_torque 8-bits The maximum torque during a movement.
This is not used when modelling the FAM
or controller.

 failureReg_bit0

-

failureReg_bit7

8-bits If the slave node recognize a failure the
register bits are set.

Internal

variables:

endPos1 12-bits The first end stop

 endPos2 12-bits The second end stop
 Range 12-bits endPos2-endPos1

Output

(LIN-bus):

runMode 3-bits The master requests the slave to execute
this command or run mode.

 targetPos 12-bits The desired position of the slave node
 swap 1-bit See D.3.1.1

Appendix C

38

C APPENDIX C

SPECIFICATION OF THE EATON FAM MODEL

C.1 General

The EATON Stepper motor (FAM – Flap Actuator Module) has a 3-pole connector: Voltage
pin, ground pin, and one LIN communication bus. On the LIN network, a FAM is often
referred to as an Actuator or a Slave Node (SN). This specification includes the necessary
information to create a simulation model of the FAM’s function. This specification is
extracted from the product specification of the EATON BLDC Actuator.[6]

C.2 Exchange of messages

Figure C.2: Model of how the Actuator exchange messages on the LIN bus.

The exchange from the Master node (controller) to the actuators is realized according to the
LIN protocol (Appendix A). Actuators receive order by REQUEST frame and answer in
RESPONSE frame (see Figure A.6). Each Slave has its own identification for REQUEST
(Request ID) and RESPONSE (Response ID) based on a Slave Node Address (SNA). The
Actuator is always able to receive or transmit frames if it is powered, even during movement.
If the Actuator is not able to move due to hardware failure or other restriction, the failure is
reported to the Master node. Actuator will not start moving in normal run mode while major
failure flags are set. The Actuator has possibility to move in a failure mode with a special
command. [6]

C.2.1 Request frame implementation

Figure C.3: Request message frame.[6]

A request message from the Master is either a target position with corresponding run mode, or
a request to the actuator to clear a status flag. A request message is implemented as in Figure
C.3. The request identifier labels the message as a request message and to which slave node it
is addressed. The following two data bytes (DB1_REQ and DB2_REQ) is the command itself
and sets run mode and absolute target position. See C.1 for details of the data bytes structure.
Table C.2 and Table C.3 specify and explain the different run modes. [6]

Header

Request
Identifier

Synchro break Synchro
Field (0x55) DB1_REQ Checksum DB2_REQ

Appendix C

39

Note that if the actuator experiences hardware failure, stall or other restriction, the
failure flag is set and reported to the Master. The actuator cannot move in normal run mode
until failure flag is acknowledged and cleared by the Master. However, the actuator can move
in failure state with a special run command. For information on the checksum
implementation, see A.2.1.3. [6]

Table C.1: Bit configuration of DB1_REQ and DB2_REQ.[6]

Table C.2: Run mode specification. [6]

Data Byte 1

RUN mode

bit 7 bit 6 Bit 5
Name Description

0 0 0 STOP_STALL Stop actuator and clear stall flag
0 0 1 STOP_FAILURE Stop actuator and clear failure flags

0 1 0 NORMAL_RUN
Actuator moves to target position in a closed
loop. Depending on requested movement angle,
the actuator uses high or low speed.

0 1 1
NORMAL RUN
FIXED LOW

Actuator moves (speed fixed) to target position
in a closed loop.

1 0 0 FAILURE RUN Actuator moves to target without feedback

1 0 1 NORMAL RUN
LOW

Actuator moves in low speed mode to target
position in a closed loop.

1 1 0 CLEAR_NOT-
CALIB

Clear notCalib flag

1 1 1 NORMAL RUN
HIGH

Actuator moves in High speed mode to target
position in a closed loop

Table C.3: Explanation of the different RUN modes. [6]

RUN MODE STOP_STALL(b000)

Actuator is

running

Stops the actuator. Stall flag is cleared when the motor has stopped
completely.
Note: If stall is detected and not acknowledge by LIN Master, the motor can

move only in failure mode; normal run mode is inhibited until stall flag is

cleared.

Actuator is

stopped

Actuator Stall status =1 :This command acknowledge the stall detection
Actuator Stall status =0 : No action

DB1_REQ

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

RUN MODE SWAP FLAG TARGET POS (MSB)

DB2_REQ

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TARGET POS (LSB)

Appendix C

40

RUN MODE STOP_FAILURE(b001)

Actuator is

running

Stops the actuator. Failure flag is cleared when the motor has stopped
completely.
Note: Except communication failure, if a failure is detected the motor can

move only in failure mode; normal run mode is inhibited until failure flag is

cleared

Actuator is

stopped

This command acknowledge the failure detection, if the reason of failure has
disappeared (example over-voltage detected: this failure can’t be cleared until
voltage has decreased under over-voltage detection)
If no failure was detected : No action

RUN MODE NORMAL RUN (b010)

Actuator is

running

If the target position has changed, the actuator will start moving towards the
new target.
If the target is the same as it is serving : No action

Actuator is

stopped

LIN master requests the actuator to move in normal mode to target postion in
a closed loop by a feedback hall effect sensor. The speed is controlled but not
fixed.
Depending on requested movement angle the actuator uses high or low speed:
The low speed (low noise) is requested for movements shorter then 44
± 0.17° and high speed for longer.
In normal run mode (high or low speed) the stall detection at constant torque
functionality is enabled (48Ncm ± 5Ncm).
- High speed : 7.8rpm ±0.5rpm @0N.cm @ 13.5V
- Low noise : speed not fixed
The motor can not acknowledge this request if the motor is in failure (except
communication failure) or if stall detection is not acknowledged by the
Master.

RUN MODE NORMAL RUN FIXED LOW (b011)

Actuator is

running

If the target position has changed, the actuator will start moving towards the
new target. If the target is the same as it is serving : No action

Actuator is

stopped

LIN Master requests the actuator to move in stepper mode to target position
in a closed loop by a feedback hall effect sensor. The speed is fixed
(210steps/s).
Stall detection functionality is enabled but not accurate (not at constant
torque), the actuator may loose step (EPM failure) when it reaches a stall.
The motor can not acknowledge this request if the motor is in failure (except
communication failure) or if stall detection is not acknowledge by the Master

RUN MODE FAILURE RUN (b100)

Actuator is

running

If the target position has changed, the actuator will start moving towards the
new target. If the target is the same as it is serving : No action

Actuator is

stopped

Request to the actuator to moves in Failure mode to target position without
feedback (stepper mode). In this mode the speed is fixed (210steps/s)
Stall detection functionality is disabled.
Note: This mode could be used when the motor is in failure, which can not be

cleared. No inhibition to run in this mode.

Appendix C

41

RUN MODE NORMAL RUN LOW (b101)

Actuator is

running

If the target position has changed, the actuator will start moving towards the
new target.
If the target is the same as it is serving : No action

Actuator is

stopped

LIN Master requests the actuator to move in normal mode to target position in
a closed loop by a feedback hall effect sensor. Speed is controlled but not
fixed.
The low speed (low noise) is requested. Stall detection functionality at
constant torque is enabled.

RUN MODE CLEAR_NOT-CALIB (b110)

Actuator is

running

This command clear the notCalib flag, it means that the actuator is declared
as accurate.

Actuator is

stopped

This command clear the notCalib flag, it means that the actuator is declared
as accurate

RUN MODE NORMAL RUN High(b111)

Actuator is

running

If the target position has changed, the actuator will start moving towards the
new target.
If the target is the same as it ‘s serving : No action

Actuator is

stopped

LIN Master requests the actuator to move in normal mode to target position in
a closed loop by a feedback hall effect sensor. The speed is controlled but not
fixed
The High speed is requested. Stall detection functionality is enabled.

Appendix C

42

C.2.1.1 Position calculus and SWAP FLAG

The actuator uses a 12-bit position representation of the output shaft, which means 0…4095
addressable positions. If the swap flag is not toggled, the need of movement is calculated in
the actuator motor control according to Table C.4 example case 1.

When the actuator receives a REQUEST message with the swap flag set, it means that
the target position is shifted by the master task. The actuator motor control calculates an
shifted actual position.. The actuator is fed these shifted positions and coordinates the move
that now has been shifted into an addressable range. For more information of the swap flag
see Appendix D.3.1.1. [6]

Table C.4: Position calculation. [6]

Ex.

case

ACTUAL

POS

Register

SWAP

flag

SHIFTED

ACTUAL POS

GOAL

POS

Register

MOTOR CONTROL

(need of movement)

1
actual

Pos
0 actualPos

Target

Pos
targetPos–actualPos

2
actual

Pos
1

actualPos

XOR
0x800

Target

Pos

XOR
0x800

(targetPos XOR 0x800)
–
(actualPos XOR 0x800)

C.2.2 Response frame implementation

When the LIN master sends a response message header on the bus, corresponding slave will
as soon as possible reply with its response data (Figure C.4). The response includes actuator
information stated in Table C.5 with further explanation and implementation in Table C.6 and
Table C.7. [6]

response

Identifier
Synchro

break

Synchro
Field (0x55)

DB1_RES ChecksumDB2_RES DB3_RES DB4_RES DB5_RES

Header

Response field

response

Identifier
Synchro

break

Synchro
Field (0x55)

response

Identifier
Synchro

break

Synchro
Field (0x55)

DB1_RES ChecksumDB2_RES DB3_RES DB4_RES DB5_RESDB1_RES ChecksumDB2_RES DB3_RES DB4_RES DB5_RES

Header

Response field

Figure C.4: Response message frame and actuator response. [6]

Appendix C

43

Table C.5 : Bit configuration of DB1_RES…DB5_RES. [6]

DB1_RES

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Actuator STATUS ACTUAL POS (MSB)

DB2_RES

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ACTUAL POS (LSB)

DB3_RES

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Last Min Torque

DB4_RES

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Last Max Torque

DB5_RES

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Failure Register

C.2.2.1 Implementation of the actuator status (DB1_RES bit 7...bit 4)

Table C.6: Implementation of the actuator status flags. [6]

Data Byte 1

Actuator Status

Bit 7

NOT-

CALIB

Bit 6

STALL

Bit 5

DIR

Bit 4

RUN

Description in normal condition

0 - - - actualPos is accurate
1 - - - actualPos is not accurate. Calibration is required
- 0 - - Actuator has reached the goal position without stall
- 1 - - Actuator has stalled
- - 0 - Last or actual movement is incremental
- - 1 - Last or actual movement is decremental
- - - 0 Actuator is stopped
- - - 1 Actuator is running

Table C.7: Activation and reset of Status flags. [6]

FLAG NOT-CALIB (bit #7)

Actuator
behavior

Normal behavior

Activation
condition

Flag is set when actuator has detected conditions which may have
corrupted its actual position.
This condition are failure, or when actuator detects an end stop after a
travel length move shorter than 3.4°C (20 pos =40 steps).

Reset condition Flag is cleared when the master requests CLEAR_NOT-CALIB.

Appendix C

44

FLAG STALL (bit #6)

Actuator
behavior

Actuator is blocked and no NORMAL_RUN until stall flag is
acknowledged from the master. When the stall condition is detected the
actuator stops and sets stall flag.

Activation
condition

Flag is set when the torque reach the defined stall limit.

Reset condition Flag is cleared when the master request the STOP_STALL.

FLAG DIR (bit #5)

Actuator
behavior

Presents the present or last movement direction.

Activation
condition

Flag is set with decrement move direction.

Reset condition Flag is cleared with incremental move direction.

FLAG RUN (bit #4)

Actuator
behavior

Actuator is Running.

Activation
condition

Flag is set while the actuator is running.

Reset condition Flag is cleared when actuator is stopped.

C.2.2.2 Implementation of the Last Min Torque (DB3_RES)

The Last Min Torque is the measured information torque during the movement. The torque
values are relative and without unit. This value is not implemented in the FAM model. [6]

The torque is measured continuously between two consecutive response frames. When
the LIN actuator is stopped due to stall condition it shall use the « torque »value measured
when the stall was detected. The value is set to 0xFF when the stall flag is cleared. [6]

C.2.2.3 Implementation of the Last Max Torque (DB4_RES)

The Last Max Torque is the measured information torque (without unit) during the
movement. The torque values are relative and without unit. This value is not implemented in
the FAM model. [6]

The torque is measured continuously between two consecutive response frames. When
the LIN actuator is stopped due to stall condition it shall use the « torque » value measured
when the stall was detected. The value is set to 0xFF when the stall flag is cleared (and motor
is stopped). [6]

C.2.2.4 Implementation of the failure flags (DB5_RES)

When a failure is set, except communication failure (bit3), the actuator is kept in stop mode
until failure flag is cleared from LIN master. Only run in failure mode command allows
actuator to move. The notCalib flag is set when each failure, except Communication failure
(bit #3), is triggered. [6]

Appendix C

45

Table C.8 describes the failure register (DB5_RES) and explanation, how the flags are set and
how to reset the flags, is found in Table C.9.

Table C.8 Failure register. [6]

Data Byte 5

Failure Register

bit 7 bit 6 bit 5 Bit 4 Bit 3 Bit 2 Bit1 Bit0

Hall sensor
supply
current
limitation

Default
position
restore
(0x800)

Extreme
position
maintain-
able (EPM)

Over
voltage or
over
temperature

Communic-
ation
failure

Feedback
failure

Coil circuit
failure or
coil driver
failure

Calibration
lost during
movement
when
power
failed

Table C.9: Activation and reset of failure flags. [6]

Flag Bit #7

Flag Name Hall Sensor supply current Limitation (HSL)

Flag Activation

condition
Flag is set when the hall sensor output exceed the current limitation.

Flag Reset condition
Flag is cleared when current has decreased below the limit and the
master requests the STOP_FAILURE mode.

Actuator behavior

When failure flag is set the actuator is only able to run in
FAILURE_RUN mode. In FAILURE_RUN mode the hall sensor
feedback is disabled. No stall detection is possible.
The actuator will loose positions if it was running when this failure
occurred.

Flag Bit #6

Flag Name Default position restore (0x800) (DPR)

Flag Activation

condition

Flag is set after actuator is reset and default position has to be restored
in actuator memory because normal position save failed

Flag Reset condition Flag is cleared when the master requests the STOP_FAILURE mode.

Actuator behavior
After a reset the actuator has not been able to restore a position from
the Memory bank and will retrieve the position 0x800.
Actuator remains stopped until failure flag is cleared.

Flag Bit #5

Flag Name Extreme position maintainable (EPM)

Flag Activation

condition

Flag is set when actuator is stopped and is unable to keep its position.
External force on the flap may trigger this event.
This failure can occur, if CCM request to reach stall detection while
the actuator is already in a grey zone.

Flag Reset condition Flag is cleared when the master requests the STOP_FAILURE mode.

Actuator behavior

If the external, not controlled, force or the end stop pushing force is
larger then the holding torque, the actuator is not able to keep its
position.
Actuator remains stopped until failure flag is cleared.

Appendix C

46

Flag Bit #4

Flag Name Over voltage or over temperature (OTF)

Flag Activation

condition

Flag is set when thermal disjunction detected by the hardware (typical
140°C) or if over voltage above +18V is detected

Flag Reset condition

The thermal disjunction has to decrease to at least 20°C and the
voltage has to decrease below +16V until the failure flag can be
cleared.
Flag is cleared when the master requests the STOP_FAILURE mode.

Actuator behavior

Coil is switched off when thermal disjunction detected or over voltage
is detected. The actuator stops as soon as possible, dependent on rotor
speed when the coil is switched off.
Actuator remains stopped until failure flag is cleared. (It can move
only in FAILURE mode)
The actuator will lose positions if it was running when failure
occurred.

Flag Bit #3

Flag Name Communication Failure (COF)

Flag Activation

condition

Flag is set when Communication failure occur.

Flag Reset condition Flag is cleared when the master requests the STOP_FAILURE mode.

Actuator behavior

When a problem of a LIN frame request is detected the COF flag is
set. The Received message will be scrapped.
The COF fag will not affect any other functionality (still able to run
actuator).The problems with a LIN frame which will cause the COF
flag to be set are:
bit frame error
synchronization oscillator error
synchronization byte error
parity error
time out error
over run error
If the header is cancelled or dropped by the master task, the actuator
keeps the latest OK message.

Flag Bit #2

Flag Name Feedback failure (FBF)

Flag Activation

condition

Flag is set when the synchronization between the hall sensor feedback
and the coil commutation is missed.

Flag Reset condition Flag is cleared when the master requests the STOP_FAILURE mode.

Actuator behavior

When the synchronization between the hall sensor feedback and the
coil commutation fails the actuator stops.
Actuator remains stopped until failure flag is cleared.
It may be caused if the "Hall sensors supply current limitation"
appears.
While failure flag is active the actuator can only run in
FAILURE_RUN mode.

Appendix C

47

Flag Bit #1

Flag Name Coil circuit failure or coil driver failure (CCF)

Flag Activation

condition

Flag is set when actuator is stopped and an open coil circuit appears.
On external move, the rotation of the magnet generate a back
electromagnetic voltage in the motor coil up to 45 V. This failure will
be diagnostic first as an EPM but also as a coil failure.

Flag Reset condition
Flag is cleared when the master requests the STOP_FAILURE mode
and the failure has disappeared.

Actuator behavior

Unknown behavior when coil circuit gets open when the actuator is
running. Rotor can continue to rotate, stop or turn in reverse direction.
Actuator is kept in stop until failure flag is cleared.
While failure flag is active the actuator can only run in
FAILURE_RUN mode.

Flag Bit #0

Flag Name Calibration lost during movement when Power Failed (CPF)

Flag Activation

condition

Flag is set after actuator reset and if the actuator has detected
calibration lost during movement when power failed.

Flag Reset condition
Flag CPF is cleared when the master requests the STOP_FAILURE
mode.

Actuator behavior

The CPF will occur if power is lost (Ubat < 8V) when actuator is
running. The Actuator will then brake the rotor for 10 ms before
position is saved in EEPROM. The flag will also be stored in
EEPROM that indicate a CPF.
Actuator remains stopped until failure flag is cleared.

Appendix D

48

D APPENDIX D

SPECIFICATION OF THE MASTER TASK

D.1 General

The master task is the controller of the Slave nodes. The master task communicates with the
different slave nodes in a particular sequence, according to a scheduled loop. The principle is
illustrated in Figure D.1; the master task sends a message to all slave nodes, respectively.
When all the slave nodes have been addressed, the master task requires the slave nodes to
respond with their current status. After this the routine starts over from the top again. [6]

header Request field Addressed to slave 1

header Request field Addressed to slave n

header

Response field

Addressed to slave 1

header

Response field

Addressed to slave n

Response from slave 1

Response from slave n

header Request field Addressed to slave 1

header Addressed to slave n

header

Response field

Addressed to slave 1

header

Response field

Addressed to slave n

Response from slave 1

Response from slave n
Figure D.1: Schedule for the communication between master and slaves

The master task checks the consistency of a message being initiated by the master task and
being received by its own slave task. In case of inconsistency the master task can change the
message schedule.

D.2 Communication

The Master task communicates with the slave node using the LIN protocol (see Appendix A).
The master task initiates the message transfer between master task and the slave nodes, as
described in Appendix A. After sending the header (A.2.1.2), the master task either sends a
request field, or waits for a response field, from a specific slave node, according to Figure
D.2. [6]

Master task

Tx

Rx Response field

Slave node

L
IN

 b
u

s

Request field

Actuator_Status

ACTUAL_POS

Last_Min_Torque

Last_Max_Torque

Failure_Register

RUN_MODE

SWAP_FLAG

TARGET POS

Master task

Tx

Rx Response field

Slave node

L
IN

 b
u

s

Request field

Actuator_Status

ACTUAL_POS

Last_Min_Torque

Last_Max_Torque

Failure_Register

RUN_MODE

SWAP_FLAG

TARGET POS

Figure D.2: Master task

Appendix D

49

The master task shall control each slave node by sending a request message with absolute
value to reach the target position (targetPos) according to Figure D.2. The variables used in
Figure D.2 are described in Table B.2.

D.3 Implementation

As mentioned in D.2 the master task either sends a header followed by a REQUEST field or a
RESPONSE field to communicate with the slave nodes. A REQUEST field (C.2.1) has the
intention to control the slave node. The request field includes the variable runMode describing
what the master commands the actuator to do. [7]

The different run modes, described in Table D.1, have the main purpose to move the
actuator to a specific position (targetPos). In case of a stall, failure or a calibration failure
there are specific run modes to apply. [6]

Table D.1: run modes. Constants used when modelling. [6]

Data Byte 1

RUN mode

bit 7 bit 6 Bit 5

Name Description

0 0 0 STOP_STALL Stop actuator and clear stall flag

0 0 1 STOP_FAILURE Stop actuator and clear failure flags

0 1 0 NORMAL_RUN Actuator moves to target position in a
closed loop. Depending on requested
movement angle, the actuator uses high or
low speed.

0 1 1 NORMAL_RUN
_FIXED_LOW

Actuator moves (speed fixed) to target
position in a closed loop.

1 0 0 FAILURE_RUN Actuator run to target without feedback

1 0 1 NORMAL_RUN_
LOW

Actuator moves in low speed mode to
target position in a closed loop.

1 1 0 CLEAR_NOT-
CALIB

Clear notCalib flag

1 1 1 NORMAL_RUN_
HIGH

Actuator moves in High speed mode to
target position in a closed loop

Whether there is a failure, stall or calibration failure, the Master Task handles the anomalies
according to the procedures specified in D.3.2.

D.3.1 Target Position

The input value from the CCM is a value within the range 0-1000, where 0 means closed flap,
and 1000 means completely open flap. In order for the master to position the slave node in
either closed or completely open, it has to know which end stop corresponds to which flap
angle. To simplify things, the closed end stop is defined in the counter-clockwise direction
and the open end stop in the clockwise direction. See Figure D.3.

Appendix D

50

Figure D.3: Definition of actuator direction

To be able to move in the absolute range the master task shall perform “Range detection” at
least once (done in factory), and store the end positions.[8] The master task calculates the
targetPos according to equation below. [6]

() 4095mod
1000

1arg
CCM

RangeendPosetPost ⋅+= Equation D.1

D.3.1.1 SWAP FLAG

As mentioned above, based on the actuator position variable in the Master and input value
received from the CCM, the Master does a computation of absoulute targetPos. [6]

The actuator calculates the direction from targetPos-actualPos, a negative sign
means a decrement direction and positive an incremental direction. [6]

Should the required path crosses the zero,see Figure D.4, a wraparound error occurs.
This will make the actuator motor control to miscalculate the direction of targetPos. For
example, if the correct direction is incremental, the motor control sets a decrement direction
and tries to reach targetPos the other way around. Naturally this is not possible due to the
flap mechanics and the actuator gets stuck in an end position of the flap before it has reached
targetPos. [6]

Figure D.4: Description of the address wraparound error

Appendix D

51

In case of a predicted direction error, the Master calculates a shifted targetPos and sets the
swap flag to 1. The shifted targetPos is equal to targetPos XOR 0x800 and shifts the
position half a turn. The set swap flag tells the actuator to calculate a shifted actualPos.
These shifted positions are the given positions to the actuator motor control which now
performs a correct direction calculation. [6]

Note: When the calculated need of movement (targetPos-actuator position) exceeds
a half turn (2048 pos), the master task predicts a faulty direction calculation and sets the swap
flag.[8]

D.3.2 Calibration, Stall, Failure procedures

D.3.2.1 Calibration

This procedure is applied by the master when the notCalib flag is set, (see C.2.2.4). The
master shall command the actuator to move until the actuator recognizes stall detection. This
is done by adding or subtracting (depending on dir flag) 50 positions to the realtive move in
order for the actuator to reach the end stop at full speed. This is to reach constant torque to
ensure correct stall detection. When the stall flag has been reset by the stall procedure (see
below), the master should request the run mode CLEAR_NOT-CALIB. This procedure is
called calibration in the master task. [6]

Figure D.5: Principle of calibration procedure

Note: When the flap reaches end position, it can bounce back and continue to move in the
opposite direction, back in the range towards the other end position. The actuator does not
recognize the direction change and the stall flag is not set. This means that the actuator reports
that its actualPos is 50 pos beyond the end stop, when it is actually 50 pos from the end stop
and still inside the range. The recommended procedure is to move 100 pos at a time in the
initial direction until a stall is recognized. This stall position is the new end reference point
and the other is calculated using the dir flag and the stored range value. [6]

D.3.2.2 Stall

A stall status is set by the actuator motor control when the torque reaches a defined stall limit.
The actuator will stop and all normal run modes are disabled, only FAILURE_RUN mode is
allowed. The procedure after a stall is illustrated in Figure D.6 [6]

A stall detected inside the “gray zone” should be set as a new end reference position and
the other end stop will be set using the dir flag and the stored range value. [6]

A stall detected outside the “gray zone” should be handled as a “hard flap point” and is
to be ignored. A recommendation is to request STOP_STALL, move backwards a few
positions and then push trough the stall area in NORMAL_RUN (this is implemented in the

Appendix D

52

figure below). Another recommendation is to directly push through the stall area in
FAILURE_RUN and after that request STOP_STALL to continue in a NORMAL_RUN
mode.[6]

Figure D.6: Principle of stall handling

D.3.2.3 Failure

If the master recognizes a failure through the failure register, the actuator has halted. There
are eight different failure flags, and they are thoroughly described in Table C.9. The solution
to each failure is similar and is described in General Solution below. There are some
exceptions which are described in the header Exceptions below. In every failure, except when
bit #3 in the Failure_Register is set, the notCalib flag is set. The notCalib flag remains set
until all (except bit #3) failure flags are cleared and the master task has required the run mode
CLEAR_NOT-CALIB. [6]

General Solution

The general idea to solve the failure is for the master to send a request with the run mode
STOP_FAILURE. Next thing is to wait in this mode until the failure flags are cleared. The
notCalib flag is set, and the master should request a calibration routine as described above. [6]

Exceptions

Some failures are handled differently than the procedure described above. With the run mode
FAILURE_RUN it is possible to make the actuator move even if a failure flag is raised. It is
recommended not to request to run to end stop with this command, it may break the flap and
loose accuracy. [6]

When bit #7 is set in the failuire register the general solution is used. But if the flag
remains set after some a certain timeout, then the master should assume that this failure is
permanent and should use the run mode FAILURE_RUN to move the actuator. [6]

When bit #3 is set, it means that a communication failure has occurred. The request to
clear this failure should have the lowest priority, because this flag does not inhibit any
functionality. The notCalib flag is not set when this failure is triggered. [6]

When bit #2 is set in the Failure_Register a special routine should be applied: After the
general solution has been applied, try to run the actuator in the same direction. Repeat this
routine 4 times if the same failure occurs. If the flag is still set use the general solution but try
to run in the opposite direction (≥17 pos) once. If the failure flag is set again immediately run
in FAILURE_RUN until power off. [6]

