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MODELING AND VERIFICATION OF A STEPPER MOTOR SUPERVISORY 
CONTROLLER 
 
Master of Science thesis 
Olof Bergquist & Marcus Sjödin 
Department of signals and systems, Chalmers University of Technology 

 

ABSTRACT 
This master thesis has been carried out at Volvo Technology (VTEC) in Gothenburg during 
the winter of 2007 and the spring of 2008.  

In cars with electronic climate control the air flaps are controlled by a couple of 
intelligent step motors or flap actuator modules (FAM). The supervision of the FAM is very 
complex, because every case of failure has to be handled accurately. This has been a problem 
for VTEC when designing the software of the supervisor. One of the problems has been to 
guarantee total accuracy. 

The objective of this master thesis has been to find a design tool and then design a 
model of the FAM. With this done, the task was to design a supervisory controller of the 
FAM model. Formal verification has been used to guarantee accuracy of the supervisory 
controller and of the FAM model. VTEC has a simulation system and use it among other 
things for testing the software. Parts of the environment in the car are simulated in Simulink. 
One of the objectives of this thesis has been to try to implement the FAM into the simulated 
environment.  

The FAM model and the supervisory controller have been designed in Mathworks 
Stateflow, and Mathworks Design Verifier has been used for formal verification. Using 
Stateflow for solving this type of modelling problem has been flexible Stateflow supports a 
variety of different design patterns. Stateflow’s graphical debugger makes it easy to follow 
the path of execution in the chart and to pin point where design errors originate. When it came 
to Design Verifier and formal verification, the results varied. Design errors were found in 
both the controller and the FAM model that would have been hard to find using only 
validation and simulation. In that sense formal verification could be applied for verifying 
models of this complexity and structure.  

The final objective to implement the FAM in VTEC’s simulation system confirmed that 
these types of models can run without any alteration in the simulation system and that several 
instances of the FAM model can run in parallel in the simulation system. Also the FAM 
model was compatible with the existing software and its control sequences for actual stepper 
motors. 
 
 
 
 
 
 
 
 
 
 
 
Key words: Finite state machine, Automata, Formal verification, Simulink, Stateflow, Design 
Verifier 



 

 iii

MODELLERING OCH VERIFIERING AV EN STEGMOTORSTYRNING 
 
Examensarbete i civilingenjörsprogrammet Mekatronik 
Olof Bergquist & Marcus Sjödin 
Institutionen för signals and systems, Chalmers Tekniska Högskola 
 

SAMMANFATTNING 
Detta examensarbete har genomförts på Volvo Technology i Göteborg under vintern 2007 och 
våren 2008.  

I fordon med elektronisk klimatreglering (ECC) kontrolleras luftspjällen av ett antal 
intelligenta stegmotorer (FAM). Logiken för att sekvensstyra stegmotorerna blir komplex 
eftersom varje fall av fel måste behandlas individuellt och korrekt. Det har varit ett problem 
för VTEC att designa mjukvaran till den här övervakaren. Ett problem har varit att garantera 
att övervakaren är felfri. 

Uppgiften med det här examensarbetet har varit att hitta ett verktyg för att sedan göra en 
modell av en stegmotor (FAM). När detta var genomfört var uppgiften att designa en 
övervakare för FAM-modellen. Formell verifiering har använts för att garantera att 
övervakaren och FAM-modellen är felfri. VTEC har ett simuleringssystem (HIL) och 
använder det bland annat för att testa programvara. En del av miljön i detta simuleringssystem 
är simulerad i Simulink. En av uppgifterna har varit att försöka att implementera FAM- 
modellen i den simulerade miljön. 

FAM-modellen och övervakaren har konstruerats i Mathworks Stateflow och Design 
Verifier har använts för formell verifiering. Att använda Stateflow för denna typ av 
modelleringsproblem är flexibelt. Stateflow stödjer en rad olika design möjligheter. 
Stateflows grafiska debugger gör det enkelt att följa exekveringsordningen i tillstånds-
maskinerna och att hitta exakt var felen härstammar. Vad det gäller Design Verifier och 
formell verifiering så var resultaten varierade. Brister i designen, som skulle varit svåra att 
hitta genom enbart simulering och validering, hittades i både övervakaren och FAM 
modellen.  I detta avseende kan formell verifiering vara användbart för att verifiera en modell 
av denna komplexitet och struktur. 

Den sista uppgiften, att implementera FAM-modellen i VTECs simuleringssytem, 
bekräftade att denna typ av modell kan köra utan att göra några ändringar i 
simuleringssystemet. Dessutom visade det sig, att flera instanser av FAM-modellen kan köra 
parallellt i systemet. FAM-modellen var dessutom kompatibel med existerande programvara 
och dess styrsekvenser för verkliga stegmotorer. 
 
 
 
 
 
 
 
 
 
 
 
Nyckelord: Tillståndsmaskin, automat, formell verifiering, Simulink, Stateflow, Design 
Verifier 
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1 INTRODUCTION 
 

This chapter will introduce the background to why Volvo Technology decided to 
initiate this master thesis project. On the basis of the background, the tasks of this 
thesis are distinguished and will be presented. The delimitation and disposal of this 
thesis will then finally be presented. 

 

1.1 Background 

 
Volvo Technology (VTEC) is the centre for innovation, research and development in the 
Volvo Group. The mission of the company is to develop a lead in existing and future 
technology areas of high importance to Volvo. This means that they focus on both hard and 
soft projects within a system approach framework. Their customers include all Volvo Group 
companies and Volvo Cars, but also some selected suppliers. VTEC participate in national 
and international research programmes involving universities, research institutes and other 
companies. VTEC is located both at Lundbystrand and at the Chalmers Science Park in 
Göteborg, and at Volvo’s establishments in Lyon, France, as well as in Greensboro, USA.  

‘Mechatronics and Software’ is a department under VTEC that provides Volvo with 
specialists on embedded control systems. They provide knowledge and experience in 
software, hardware and control engineering. Our master thesis is subordinated under this 
department [11].  

The Electronic Climate Control (ECC) is a fully automatic automobile climate 
controller; it controls the fan, the heater flaps, the A/C, the recirculation and outside air flaps, 
the air distribution, and the rear electric defroster. The driver selects a temperature and may 
choose certain manual overrides. A central part of an ECC is the control algorithm, which is 
implemented in the software. Since there are many inputs and outputs to and from the ECC 
and the system to be controlled has some non-linear behavior, the control algorithm is quite a 
challenge to design [9][10].  

In one setup, an electrical supervisor in the ECC is communicating via a serial data bus 
with a number of intelligent stepper motors or flap actuator modules (FAM) (Figure 1.1). The 
air flaps in the climate system is controlled by these electrical stepper motors. The supervision 
of the stepper motors is very complex, mostly because every case of failure has to be handled 
accurately. This is to avoid deadlocks and forbidden states. VTEC supplies the software of the 
supervisor to the ECC. There have been problems when designing the software of this 
supervisor. One of the problems has been to guarantee total accuracy and that deadlock and 
forbidden states are excluded.  

 

 
Figure 1.1: The EATON Stepper motor (FAM). 
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Previous implementation of the supervisory controller has been constructed in Mathworks 
Stateflow. The implementation has been difficult to maintain and verify for accuracy. The 
code from Stateflow was generated with dSpace TargetLink. TargetLink is a software system 
that generates production code (C code) straight from the MATLAB/Simulink/Stateflow 
graphical development environment [3]. 

Interviews at VTEC have shown that the experience level of working with Stateflow 
was rather low when the work to construct the supervisory controller began. Interviews at 
VTEC have shown that the experience level of working with Stateflow was rather low when 
the work to construct the supervisory controller began. When the development started, the full 
specification and behaviour of the stepper motor was not known. This led to a somewhat 
messy design that is difficult to maintain and verify. It was also experienced that the 
generated code grew larger when making adjustments in the state machines, as the work had 
been in process for some time. When the prior supervisor, produced by VTEC, was code 
generated in TargetLink and tested on the hardware, it appeared as if the code was not 
completely accurate. Therefore, it was necessary to make adjustments in the state machines in 
Stateflow [3]. 

 

1.2 Task 

 
The task of this thesis is to design a model of the FAM and to examine if formal methods and 
software for formal synthesis and verification can be used to implement a supervisory 
controller of the FAM model. This controller should be more robust and easier to maintain 
and verify for accuracy.  

VTEC has also shown interest in studying the possibility to implement the model of the 
FAM in their simulation environment. It is most likely that this phase of the thesis will not be 
completely finished.   
 
The objectives of this thesis are dealt with according to the following work order. 
 

o Find a design tool that manages state machines. 
There are several requirements on this tool to handle different design methods. 
There is also a demand that the tool handles some kind of formal verification. 
 

o Design a model of the flap actuator modules (FAM). 
This model should of course be a generalization of the real FAM. The essential 
properties should however be fulfilled.  
Note: VTEC has not designed a model of the FAM prior to this work. 
 

o Design a supervisory controller of the FAM model. 
This controller should be tested and verified on the FAM model, but the 
possibility to implement it in reality should be considered. 
 

o Use formal methods for validation and verification of the designed 

supervisory controller. 

 

o Make an attempt to implement the model of the FAM in VTEC’s simulation 

environment. 
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1.3 Delimitation 

 
There are several tools used to design supervisory controllers. This thesis will discuss and 
examine which tool or tools that are most fit for the task. The model and supervisor will be 
implemented in only one of these tools.  

To implement the model of the FAM in VTEC’s simulation environment is very 
complex and most likely some adjustments in the simulation design have to be made. An 
attempt for implementation will be made but due to the time limit of this thesis, it is not 
certain that this work will be finished. To implement the controller is even more complex and 
includes code generation. This will not be realized in this thesis. 

 

1.4 Outline 

Part one – introduction and methodology  

The next chapter in this first part of the thesis will describe the method that has been used 
when working with this thesis. The theory behind state machines and different design tools 
will be presented. The thought is to investigate which design tool is the best to solve the tasks 
presented above. 

Part two – implementation in Stateflow 

The second part in this thesis is about the implementation in the chosen design tool. The first 
chapter in this part treats the modeling of the FAM and modeling of the supervisory controller 
to the FAM. The second and third chapters are about validating and verifying the models. The 
last chapter in this part treats the attempt to implement our FAM model in VTEC’s simulation 
environment: Hardware-in-the-loop. 

Part three – summing up 

The last part of this thesis handles the presentation and analysis of the results. Are the 
objectives of this thesis reached? In the last chapter there will be a discussion about the results 
of this thesis. There will also be some suggestions how to continue working with the kind of 
task this thesis handles.  
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2 METHOD 
 

The following chapter will describe the method that has been used when working 
with this thesis. First of all, some theory about finite state machines and how to 
design them will be presented. Second there will be information about some of the 
design tools available on the market. 

 

2.1 Theory 

 

2.1.1 The Finite State Machine 

A finite state machine (FSM) is a model of behavior composed of a finite number of states, 
transitions between those states, and actions. [1] 

The FSM is a system that at any time unit occupies a unique state of being, out of a 
finite set of such states. Man made, non physical systems containing information handling 
parts, such as manufacturing systems and communication protocols, are profitably modeled as 
discrete events systems (DES).[1] 

 

transition

event

state

State name

 
Figure 2.1: Example of a finite state machine with two states. 

 
Initially, one state in the state machine is active. The state machine will shift its active state 
when an event occurs and that event is connected to a transition, leading to another (possibly 
the same) state. The event is said to be guarding the transition. In the figure above this would 
correspond to if the state Running is active and the event stop occurs, then the state Stopped 
will be active. In the example above, only one state is active at the same time.  

Instead of an event guarding a transition there could be a Boolean expression with 
variables. There is also a possibility to define different actions (Figure 2.1) when entering or 
exiting a state, or while remaining in a state. Exit actions for a state are executed when the 
state is active and a transition out of the state is taken. Entry actions are executed for a state 
when the state is entered (becomes active). During action are executed for a state when it is 
active and an event occurs and no valid transition to another state is available. This action can 
trigger some procedure or even another event. These systems are called extended finite 
automata (EFA)[1][2][4][16]. 
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2.1.1.1 Mealy and Moore machines 

There are generally three types of FSM: Mealy, Moore and classic. Classic statecharts 
includes both Mealy and Moore semantics. The Moore FSM uses only entry actions, i.e. the 
output depends only on the state. The advantage of the Moore model is a simplification of the 
behavior which in turn leads to better code generation. The Mealy FSM uses only input 
actions, i.e. the output depends on the input and the state. The use of a Mealy FSM often leads 
to a reduction of the number of states. Often a mixed, classic model is used which in many 
cases is the easiest solution, compared to using either Mealy or Moore [2]. 

2.1.1.2 Parallel states 

In many systems it is not exclusively one state that is active at the same time. Imagine two 
machines (e.g. robots) working together in a cell. Each machine could be either running or 
stopped. Figure 2.2 below illustrates these two machines where machine1 and machine2 has a 
parallel execution order. The semantic of the system is an AND-operation between machine1 
and machine2. The dotted lines indicate that the two states are parallel [4]. 

 

 
Figure 2.2: Example of two parallel FSM 

 

2.1.1.3 Deadlock 

It is important to avoid deadlock when designing the state machines. Deadlock refers to a 
specific condition when two or more processes are each waiting in a circular chain for another 
to release a resource. This is a state where the system is locked no matter which event occurs. 
Deadlock is common when several processes, i.e. several FSM, share a mutually exclusive 
resource, e.g. software. Deadlock may occur if there is dependence between two state 
machines, e.g. an event in one state machine triggers a transition in the other. This is why it is 
important to have the execution order in mind when designing machines with parallel states 
[14].  

2.1.1.4 Superstate 

In Figure 2.3 there are three states. Since event β takes the system to state B from either A or 
C, it is tempting to cluster the latter into a new superstate D, depicted in Figure 2.4. The two β 
arrows are replaced by one. The semantic of D is then the exclusive-or of A and C, i.e. to be 
in state D one must be either in A or in C, but not in both. D is an abstraction of A and C with 
the common property that β leads from them to B. One purpose of doing so is to economize 
the number of arrows, thus making the FSM much easier to survey [12]. 
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Figure 2.3: FSM with three states[12] 

 

 
Figure 2.4: FSM with a superstate D[12]   

 
 

A superstate can itself consist of several other superstates. In this way it is possible to 
construct a system with hierarchy. In a superstate with several other parallel superstates it is 
possible with more than one active state at the same time [4].  

2.1.1.5 Default transition 

Default transitions are primarily used to specify which exclusive (OR) state is to be entered 
when there is ambiguity among two or more neighboring exclusive (OR) states. They are 
required when such ambiguity exists. Default transitions have a destination but no source 
object. For example, default transitions specify which substate of a superstate with exclusive 
(OR) decomposition the system enters by default, in the absence of any other information 
such as a history junction (see Figure 2.5). Default transitions are also used to specify that a 
junction should be entered by default [4]. 

 

 
Figure 2.5: Example of default transition and history junction 

2.1.1.6 History Junction 

A history junction is used to represent historical decision points in the state machines. The 
decision points are based on historical data relative to state activity. Placing a history junction 
in a superstate indicates that historical state activity information is used to determine the next 
state to become active. The history junction applies only to the level of the hierarchy in which 
it appears. Not every design tool support history junctions [4]. 

History junctions override default transition paths in superstates with exclusive (OR) 
decomposition. In parallel states, a default transition must be present to indicate which of its 
states is active when the parallel state becomes active [4].  

2.1.2 Modeling 

A model is an abstraction that tries to capture the characteristics of an object that are 
important to the user. The real object has an infinite number of attributes, of which the model 
can only ever capture a finite number. It is therefore crucial that the model captures exactly 
the relevant characteristics of the real system. It is equally as important that the model 
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captures only those aspects that are relevant. Otherwise the model may get too complicated. 
This implicates that it does not necessarily mean that there exists a single unique model of a 
given system [16].  

When the task is to make a model of a system it might be a good idea to first locate the 
superstates and the relationship between each and every one of them. This way there will be 
states grouped together with independencies towards other states in the FSM. After this has 
been done the aim is to make refinements inside the superstates, i.e. zooming in and adding 
states, transitions and events, thus working in a top-down manner. This way of working is 
illustrated in Figure 2.6 [4].  

 

 
Figure 2.6: Working in a top-down manner with superstates 

  

2.1.3 Specification 

A specification describes the desired behavior of the process (system) or model of the process. 
Typically the process is to be controlled, thus a specification expresses a restriction of the 
behavior of the process. The necessary characteristic of the formal specification is that it must 
express the entire desired and allowed behavior of the closed-loop system [1].  

2.1.4 Verification 

Verification typically means ascertaining whether a given system fulfills some desired 
property. This thesis will deal with formal verification, where mathematical models of the 
system components are manipulated to achieve an exhaustive and automatic ascertaining of 
the given properties. Manual verification, such as many types of testing, suffers from the fact 
that only presence of errors can be verified. Formal verification can guarantee also absence of 
errors [1]. 

In all cases of model-based development and design, the results hold only if the models 
captures the characteristics of the real system. It is the models that are verified, not reality. If 
the verification models are incorrect, then no guarantees can be given about the real system 
[1][2]. 

2.1.5 Validation 

Validation is the process of checking if something satisfies a certain criterion. The question is 
if the system behaves as the user really requires. In the case of verification, the equivalent 
question is if the system conform the specifications. Often validation and verification makes 
up the overall testing of whether a system is correct [2][16]. 
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2.1.6 Synthesis 

Automatic generation of a controller through some form of algorithm is what we refer to as 
synthesis. The controller is generated from the process model and the specification. The 
algorithms to synthesize a controller exist, are well known and easy to implement. 
Furthermore, the synthesis algorithms have been mathematically proven to always return a 
correct result. Still there are not many design tools implementing synthesis. However, it is 
usual to design a controller manually and then verify correctness by formal verification. The 
adjustments made in the controller, due to results of the verification are a kind of manual 
synthesis [3][16].  

 

2.2 Design tools 

 
The choice of design tool is first and foremost dictated by availability, but also by the 
capability of formal verification and design flexibility. A main goal of this thesis work is to 
investigate and apply a method of verification to ascertain certain properties and control 
sequences. Therefore it is crucial that the chosen tool has the possibility to perform formal 
mathematical verification for design correctness and robustness. It is also important that the 
tool has the modeling potential of designing a model as tight to the specification as possible. 
For example, basic mathematical functions and variables need to be readily accessible and so 
on. Seeing that the target is embedded systems, the chosen tool should also be able to generate 
code, in this case C code, or work with a standalone code generator. This demand is not in 
main focus, but will be taken into account. 

When considering the demands above, we found three software design tools of interest 
that we decided to look further into. They are described in the following text. 

2.2.1 Supremica 

Supremica is a tool that helps engineers to develop robust control systems and is developed at 
Chalmers University. Thus, the authors have been in contact with the software during courses 
at said university. 

Supremica allows the user to model a plant, i.e. the uncontrolled physical system, and to 
create a specification that expresses the allowed sequences and events of the plant. A 
synthesis of the two models can then be done. This will result in a supervisory controller that 
restricts the uncontrolled system such that the closed-loop system fulfills the specifications. 
This is the main purpose of Supremica [16]. Supremica includes formal verification 
algorithms to verify controllability and non-blocking properties.  

Supremica is also free of charge for education and research and since it is developed 
mainly at Chalmers, expertise and support on the software is easily available. The 
documentation is very insufficient and supplementary development takes place abroad. 

However, implemented mathematical operators and supported syntaxes are very limited 
and the documentation covering this area is more or less nonexistent. The use of variable 
types is also currently limited.  

According to Supremica developers, there is a possibility to generate some sort of C 
code called NQC, Not Quite C. Information regarding this function is not yet available and 
the function itself is not yet public, but NQC is said to include some of the most basic C 
commands. 
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2.2.2 UPPAAL 

UPPAAL is an integrated tool environment for modeling, simulation and verification of 
real-time systems, developed jointly by Basic Research in Computer Science at Aalborg 
University in Denmark and the Department of Information Technology at Uppsala University 
in Sweden. The UPPAAL software is free for non-commercial use. Typical application areas 
include real-time controllers and communication protocols in particular, those where timing 
aspects are critical [13]. 

UPPAAL consists of three main parts: a description language, a simulator and a model-
checker. The description language is a non-deterministic guarded command language with 
simple data types (e.g. bounded integers, arrays, etc.). It serves as a modeling or design 
language to describe system behavior as networks of automata extended with clock and data 
variables. The simulator is a validation tool, which enables examination of possible dynamic 
executions of a system during early design (or modeling) stages. Thus it provides a mean of 
fault detection prior to verification by the model-checker, which covers the exhaustive 
dynamic behavior of the system [13]. 

A downside with UPPAAL is that larger models become hard to overview and that the 
support for mathematical functions is limited. There is no documentation on UPPAAL’s 
webpage about any possibility to generate C-code [13]. 

2.2.3 Stateflow 

Stateflow extends Simulink with a design environment for developing state machines and 
flow charts. Stateflow provides the language elements required to describe complex logic in a 
natural, readable, and understandable form. It is tightly integrated with MATLAB and 
Simulink, providing an environment for designing embedded systems that contain control, 
supervisory, and mode logic.  

Stateflow provides language elements, hierarchy, parallelism, and deterministic 
execution semantics for describing complex logic. It is also possible to define different 
actions when entering or exiting a state, or while remaining in a state. Exit actions for a state 
are executed when the state is active and a transition out of the state is taken. Entry actions are 
executed for a state when the state is entered (becomes active). During actions are executed 
for a state when no valid transition to another state is available. 

Stateflow makes it possible to specify functions graphically using flow diagrams. 
Embedded MATLAB functions are possible as well as functions in tabular form (truth tables). 

The simulation of Stateflow charts logs data to enhance understanding of the system and 
assist debugging. The debugger itself can be used for setting graphical breakpoints, stepping 
through charts, and browsing data variables [4].  

There are two C code generators available for Stateflow, Target Link and Stateflow 
Coder. Target Link is developed by dSPACE and Stateflow coder is developed by 
Mathworks. 

2.2.3.1 Design Verifier 

Stateflow does not provide the possibility of performing formal verification using 
mathematical algorithms. However, Stateflow is compatible with the Design Verifier software 
(also from Mathworks), which generates tests for Stateflow models that satisfy model 
coverage and user-defined objectives. It also proves model properties and generates examples 
of violations [5]. 

Design Verifier does not support every feature in Stateflow. Hence, it is recommended 
to have this in mind when using Stateflow for modeling purposes. It does not support 
recursion, calls to MATLAB functions or access to MATLAB workspace variables. Also, it 
does not support calls to certain C math function supported in Stateflow [5]. 
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2.3 Results of the design tool study 

Of the three design tools that we looked into in the previous chapter, UPPAAL showed to be 
the least suitable software and our supervisor at Chalmers did not recommend it for our tasks. 

Initial modeling attempts were made in both Supremica and Stateflow to decide which 
software covers most of our modeling and verification demands. In an early stage it was clear 
that Supremica did not possess the design flexibility necessary for our implementation. It 
lacked Stateflow’s support for parallelism, mathematical functions and logic as well as history 
junctions. Also, there is no documentation about the syntax supported in Supremica. The 
possibility to follow the execution step-by-step and track all data calculations in the graphical 
debuggers was also a strong reason for choosing Stateflow as the final design tool. Stateflow 
and Simulink Design Verifier offer a complete suite for flexible modeling and formal 
verification. 

Another strong argument for choosing Stateflow was that VTEC have already been 
using Simulink and Stateflow in prior work. If our work was to be integrated in VTEC’s 
software, it would be easier to use Mathworks’ products. 
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3 MODELING 
 

The first topic in this chapter will describe how the EATON FAM model was 
implemented in Stateflow. Secondly, there will be an explanation of how the 
controller was implemented. The controller has been designed with the purpose to 
send and receive messages to and from the FAM. Note that both the controller and 
FAM model use Mealy and Moore semantics, i.e. both are of type classic state 
machines. The modeling task is too complex to be solved in a manageable way if 
limited to only Mealy or Moore (2.1.1.1). 

 

3.1 Modeling EATON FAM 

As suggested in Chapter 2.1, the first step when modeling the FAM, is to pinpoint the 
superstates in the system. One of the most important things is to ask which superstates should 
be parallel (AND) and which should be exclusive (OR).  

 

 
Figure 3.1: Superstates of the EATON FAM. (dotted line indicates parallelism) 

 
In the FAM there are five distinguished blocks. All of these blocks are working in a parallel 
execution order. These five blocks can be represented with five superstates in the model. In 
every moment when running the model, at least one state has to be active in each superstate. 
The superstates are: communication, move, stall, failure and calibration. These superstates 
have to be parallel because a change in these states respective is allowed at every time step. In 
the following, each superstate will be further explained. Some functions and truth tables in the 
superstates are removed to simplify the figures. 

3.1.1 Communication 

The communication superstate is where the FAM sends or receives messages to or from the 
controller. In reality the FAM is continuously listening to the bus for a request or response 
header (C.2). In the model, these headers are represented by two specific input events instead.  

 

 
Figure 3.2: Principle of the communication superstate 
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3.1.2 Move 

The move superstate is the state where the move of the shaft is simulated. The shaft is moving 
when some conditions (Appendix C) in the state machine are fulfilled. The stop transition is 
triggered from either the stall superstate or the failure superstate. 
 

 
Figure 3.3: Principle of the move superstate 

3.1.3 Stall 

The stall superstate handles the stall of the shaft. In the model it is hard to simulate a stall 
during a movement. This is because a stall depends on several factors. It obviously depends 
on the distance to the end stop. It also depends on acceleration and speed of the shaft. Stall is 
simulated with the help of the stallSimulator depicted below. The FAM is stopped, with the 
stop event in the state stallMode (Figure 3.4).   

 

 
Figure 3.4: Principle of stall superstate 

3.1.4 Failure 

The failure superstate contains two states: failureMode and noFailure. When there is failure 
the FAM is stopped with the stop event. If the Failure Register is equal to anything other than 
8, the notCalib flag is set (C.2.2.4). Failure is cleared with the stop_failure event. 

 

 
Figure 3.5: Principle of the failure superstate 

3.1.5 Calibration 

The calibration superstate also contains two states: calibrated or notCalibrated. 

 
Figure 3.6: Principle of calibration superstate 
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3.2 Modeling the controller 

The principle of the design of the controller is very different from the FAM model. It is built 
based upon hierarchy and history junctions. The design of the controller is depicted in Figure 
3.7 and Figure 3.8 below. The two figures are in fact the same controller, but illustrate the 
principle from two different perspectives. The different blocks represent superstates with 
different sizes, e.g the requestHandler block includes both the moveHandler and the 
errorHandler block (Figure 3.7).  

The design of this state machine controls one FAM but it is possible to use several 
instances of this controller in order to control several FAMs. These instances share the same 
bus. That is why there is a need for a scheduler which controls when each controller is 
allowed to operate. After a given time interval the scheduler (not illustrated, see Appendix D) 
sends an event to the controller. This event could mean that the controller should send a 
request header followed by a request message to the bus. Another event means that the 
controller should send a response header and then be ready to receive the response message 
from the FAM. Since these events from the scheduler are generated automatically at a certain 
time, it is necessary to save historical state activity information by using history junctions 
(2.1.1.6). To control certain events in the FAM the controller has to send a sequence of 
different run modes (e.g. see calibration routine D.3.2.1). This is the purpose of the history 
junctions. 

 

 
Figure 3.7: Superstates of the Controller. (dotted line indicates parallelism) 

 
 

 
Figure 3.8: Superstates of the Controller. (dotted line indicates parallelism) 

 
The principle of the controller will be explained on the basis of Figure 3.8. This figure has 
been altered to explain the structure of the controller. The design and representation in this 
figure is not supported in Stateflow.  
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3.2.1 Master 

The entire controller is included in a single superstate at the top of the state-hierarchy; the 
master state. The master contains two substates: communicationHandler and requestHandler. 
The main feature of the controller is to send and receive information from the FAM. This is 
managed in the communicationHandler. The states in the communicationHandler follow a 
specific sequence described in D.2. When the controller has received information from the 
FAM this information has to be interpreted, and that is when the transition is triggered from 
the communicationHandler to the requestHandler.  

Again, at a specific time or timeout, the communicationHandler state is reentered. The 
information from the FAM has been processed and new control information is to be sent to 
the FAM. This specific time (timeout) is controlled by the scheduler outside of the controller. 

3.2.2 RequestHandler 

The requestHandler state processes the information sent from the FAM. The requestHandler 
contains two substates: moveHandler and errorHandler. When entering the requestHandler 
superstate for the first time it enters the substate moveHandler, because of its default 
transition. However, next time the requestHandler state is entered, the history junction 
(illustrated in Figure 3.7), determines which substate is to be active.  

In the moveHandler state, targetPos, swap and runMode is set. There is a transition from 
the moveHandler to the errorHandler. It is triggered if failure, stall or the need of calibration 
is present in the FAM. (D.3.1) 

3.2.3 ErrorHandler 

Stall, failure and calibration are processed in the errorHandler state. There are two substates: 
failureHandler and calibAndStall. The default transition is assigned to the calibAndStall state. 
However, a failure is to be prioritized, thus immediately firing the transition from the default 
state to the failureHandler state if a failure is present. 

The failureHandler substate handles the different procedures to reset the different 
failures. The procedures are further explained in D.3.2.3 When the failures have been reset 
then the failureHandler substate is exited. 

The calibAndStall substate handles stall and calibration of the FAM. This state is also 
composed of two substates: calibHandler and stallHandler. These two states have a parallel 
execution order. The reason is because the calibration procedure uses stall detection. 
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4 VALIDATION  
 

This chapter describes how the FAM and the closed system are validated with our 
MATLAB GUIDE interface. The closed system is our two models, FAM and 
controller, connected. The controller is controlling the FAM as in the physical 
system. 

4.1 Interface 

In order to test sequences and to validate that the FAM and the closed system behave as 
intended, we constructed a MATLAB GUIDE interface (Figure 4.1). When this application is 
configured to validate the FAM, it lets the user function as a controller and set all the run 
modes that are specified in the FAM specification, for detailed information see C.2.1. 

You can also invoke stall or failure and set calibration status as well as manually specify 
the end positions and set the swap flag (C.2.1.1). 

When the interface is configured to act upon the closed system, the user can only set a 
CCM value and invoke errors such as stall, failure, and lost calibration. The run modes are 
now restricted and set by the controller model itself. One aim of the interface in this mode is 
to validate correct control sequences when an error is set by the user. Another aim is to check 
that the FAM reaches its target position correctly. 

 

 
Figure 4.1: The interface of the FAM, which is used to validate the model 
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4.2 Validating the FAM 

The purpose of validating the FAM is to make sure that the specification is implemented 
correctly in Stateflow. Properties specifically tested were stall detection, swap flag 
functionality, run modes and also combinations of the previously mentioned features.  

 

4.3 Validating the closed system 

As previously stated, the purpose of this validation process is to validate correct control 
sequence as a result of one or more invoked errors. With the specification as a background, 
different combinations of errors are set and the behavior of the controller is correlated with 
the sequences stated in the specification of the controller. 
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5 VERIFICATION 
 

This chapter describes the method and results of formal verification using Design 
Verifier with Simulink and Stateflow. The FAM and the controller model are verified 
separately. Attempts were made to verify the closed loop system of the FAM and 
controller model but the overall complexity of this system made it difficult to use 
Design Verifier efficiently. 
 

5.1 Design Verifier 

One option in Design Verifier is to prove properties. Here, the term property refers to a 
logical expression of signal values in a model. For example, one can specify that a signal in a 
model should attain a particular value or range of values during simulation. The Simulink 
Design Verifier software can then prove whether such properties are valid. The software 
performs a formal analysis of the model to prove or disprove the specified properties. If the 
software disproves a property, it provides a counterexample that demonstrates a property 
violation. 

The Simulink Design Verifier software provides two blocks that allow you to specify 
properties in Simulink models. The Proof Objective block is used to define the values of a 
signal that the Simulink Design Verifier software will prove. The Proof Assumption block is 
used to constrain the values of a signal during a proof [5]. 

5.1.1 Strategies in Stateflow 

For complex models, it is often necessary to verify the Stateflow state space directly; for 
example, to check if two states can be active at the same time. This can be done by assigning 
a Stateflow outport to an ‘in’-function. An ‘in’-function gives a true answer if the current state 
is active. Here, state SF_out (Figure 5.1) is parallel and passes state space information to the 
Simulink workspace and to Design Verifier, e.g. if state s1 is active out1 becomes true 
.  

 
Figure 5.1: Passing state information to the Simulink workspace. 

 
Another way to achieve this is to use the implemented Design Verifier functions directly in 
Stateflow.  The following syntax invokes these functions in a Stateflow chart:   

 
dv.prove(expr, "{values}") 

dv.assume(expr, "{values}") 

 
Design Verifier lacks the ability to directly verify a sequence of events or state entries. This is 
one downside of Design Verifier, particularly in our case. However, using Simulink and 
Stateflow blocks and charts, one can construct logic to indirectly verify sequences. This can 
become somewhat time consuming, and increases the overall complexity of the model. 
Another problem with Design Verifier occurs when verifying a model with counters. The 
search process proceeds in a breadth-first manner. All configurations that can be reached in a 



5. Verification   

 20 

single time step are investigated before any of the configurations that can be reached in two 
time steps. Likewise, all configurations that can be reached in two time steps are investigated 
before any configuration that requires three or more time steps, etc. Thus a counter will 
expand the search depth with the size of the counter. Therefore, if the design includes large 
counters, it could be a good idea to choose a small counter value when running Design 
Verifier analysis [5].  

5.1.2 Strategies for Large Models 

Proving large and complex models can be very time consuming. This calls for some sort of 
strategy when setting up the test cases and configuring Design Verifier. 

First, use the bounded property proving method. This means searching for property 
violations to a predefined limit of time steps. If no violations are found within the time span, 
increase the bounded limit. There is a limit for when the bounded search can be more complex 
than the unbounded. A recommendation is that if no property violations are found within 50 
steps, switch to unbounded property proving. We have found this method of property proving 
most efficient when proving our models. Often a property violation found quickly in a small 
bounded limit can take a great deal of time when running the unbounded property proving. 
However, unbounded property proving is necessary when exhaustively proving the absence of 
violations [5].  

 

5.2 About the test cases 

Generally, it is always better to verify the closed loop system. Parts of the system can be 
accurate when tested separately, but when the parts are connected different behavior could 
occur. Hopefully, the closed loop system’s behavior is captured by validating the closed loop 
system and verifying the FAM and controller separately.  

The following test cases exemplify different scenarios that can be verified using Design 
Verifier. Some of these examples show how Design Verifier can be used to verify that the 
output variables have correct values. One other important thing to verify is whether some 
internal states are active at the same time. The reason is that some states are not allowed to be 
active at the same time. There are of course a lot of other examples of test cases not 
mentioned below. 

The runModes mentioned in the tables below can be found in Table C.2. The states used 
together with the ‘in’-function are internal states in either the FAM-model or the controller. 

 

5.3 Verifying the FAM model 

Can the FAM be in stall-mode and still be running? 
 

Test case 1: 

Assertion: runMode={0,1,2,4,6} 

 
Property: (in(stallHandler.stallMode) && 

in(moveHandler.running))==0 

(The state stallHandler.stallMode is active when the FAM-model has stalled. 
The state moveHandler.running is active when the FAM-model is running.) 

Results: The property was proven false. This is correct behavior since 
runMode==FAILURE_RUN is permitted when FAM is in stall mode. 



5. Verification   

 21 

 

Test case 2: 

 

Assertion: runMode={0,1,2,6} 

(runMode==5 means FAILURE RUN and is excluded) 
Property: (in(stallHandler.stallMode) && 

in(moveHandler.running))==0 

(The state stallHandler.stallMode is active when the FAM-model has stalled. 
The state moveHandler.running is active when the FAM-model is running.) 
 

Results: The property was proven true. The FAM will not be able to move when in 
stallMode and FAILURE_RUN is disabled. This proves that when the 
FAM is in stall, FAILURE_RUN is the only command that is allowed to move 
the actuator. 

 
  

Conclusion:  
 

These two cases prove that the FAM can move in stall mode, but only with the 
FAILURE_RUN command. 

 
 

Can the FAM be in failure-mode and still be running? 
 

Test case 1: 

Assertion: runMode={0,1,2,4,6}, failureReg={0,1,2,3,4,5,6,7} 

 
Property: (in(failureHandler.failure) &&    

in(moveHandler.running))==0 

(The state failureHandler.failure is active when failure is present. The state 
moveHandler.running is active when the FAM-model is running) 
 

Results: The property was proven false. This is correct behavior since run mode 
FAILURE_RUN is permitted when FAM is in failure. 

 

Test case 2: 

 

Assertion: runMode={0,1,2,6} 

(runMode==5 means FAILURE_RUN and is excluded) 
Property: in(failureHandler.failure) && 

in(moveHandler.running))==0 

(The state failureHandler.failure is active when a failure is present. The state 
moveHandler.running is active when the FAM-model is running) 

 

Results: The property was proven true. The FAM will not be able to move when in 
failure and FAILURE_RUN is disabled  

  
Conclusion:  

 
These two cases prove that the FAM can move in failure mode, but only with 
the FAILURE_RUN command. 

 



5. Verification   

 22 

 
Can the FAM be in notCalib-mode while a communication failure is set? 
The FAM should not set the notCalib-flag due to a communication failure 

 

Test case: 

Assertion: runMode={0,1,2,4,6}, failureReg={0,1,2,3,4,5,6,7} 

 
Property: in(failureHandler.failure) &&   

in(calibHandler.notCalib) && failure!=3 
(The state failureHandler.failure is active if a failure is present. The state 
calibHandler.notCalib is active if the FAM requires calibration. Failure==3 
means a communication failure.) 

Results: The property was proven false. This property is broken by the following 
sequence of events according to Design Verifier: A failure, other than the 
communication failure, occurs. This sets the FAM in notCalib-mode. Now, the 
FAM receives STOP_FAILURE and exits the failure mode. FAM is still in 
notCalib until the calibration sequence is done. If a communication error would 
occur before calibration is completed, the above property is broken. Note that 
this is actually correct behavior for this sequence and not a modeling error. 

 
 
 

Can the FAM’s actual position register to be outside the interval [0  4095]? 
 

Test case: 

Assertion: targetPos=[0 4095], runMode={0,1,2,4,6}, swap={0,1} 

 
Property: actualPos=[0 4095] 

Results: The property proven false. Design Verifier finds actualPos = 4096. 
Simulation of the generated test harness shows actualPos outside range at 
time step = 20. After 20 time steps in the graphical debugger an error in our 
implemented modulus function calculates actualPos to 4096. The error is 
corrected and the property is proven true. 
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5.4 Verifying the controller 

 
Can the master send NORMAL_RUN if there is a failure in the FAM? 

 

Test case: 

Assertion: CCM=[0 1000], failureReg_bit0=[0 1], 

input_actualPos=[0 1000], input_notCalib=[0 1], 

input_stall=[0 1].  

 
Property: runMode==NORMAL_RUN && getFailure()>0 

Results: The property was first proven false. It appeared that if some bit of the failure 
register was set, there was still a possibility for the controller to send 
runMode==NORMAL_RUN. The failure bit was acknowledged in the 
controller but there was not enough time to change the runMode to 
STOP_FAILURE. The reason was that the controller could not execute enough 
states to change the run mode before there was a scheduled timeout (3.2). This 
timeout decides when the controller should send request messages to the FAM. 
Next time the controller returned to process information from the FAM, the run 
mode STOP_FAILURE was however set properly. The solution was to 
increase the number of states that are allowed to execute before there is a 
timeout from 5 states to 10 states. The results of this property proving were 
then satisfying. 
Note: Increasing the timeout to 10 states is not critical considering the real-time 
scheduling constraints  

 
 
Is it possible for the Master to handle Stall and failure at the same time? 

 

Test case: 

Assertion: CCM=[0 1000], input_stall=[0 1],  

failureReg_bit7=[0 7]  

 
Property: The idea was to examine if the controller could handle that stall and failure 

were set at the exact same moment, i.e. examine when stall==1 && 
failureReg_bit7==1.  

 

Results: The property was proven satisfied. If stall was set at the same time as failure, 
failure was prioritized. When the failure was cleared, the stall procedure was 
commenced as expected. 

 



5. Verification   

 24 

 
Are the output variables from the controller within the boundaries? 

 

Test case: 

Assertion: CCM=[0 1000], input_stall=[0 1],  

input_notCalib=[0 1], failureReg_bit7=[0 7]  

 
Property: output_targetPos=[0 4095], output_runMode=[0 7], 

output_swap=[0 1]  
 

Results: The property was proven false. Two important discoveries were made. The first 
discovery was that the target position could be set in an interval between 0 and 
4096. The reason for this was a miscalculation in the modulus function. This 
was corrected. The second discovery was that many variables in the Stateflow 
chart were of the type double, thus allowing floating-point values in the design. 
This was also corrected. 

 
 

Is it possible for the output variable target position to be outside the boundaries set by the 

end positions?  
 

Test case: 

Assertion: CCM=[0 1000],  input_stall=[0 1],  
input_notCalib=[0 1], failureReg_bit7=[0 7]  

. 
Property: The property tested was if  

targetPos<endPos1 || targetPos>endPos2. 

Results: The property was proven false. This property is of course supposed to give a 
falsified answer. However, important is that the only case when this property is 
allowed is when the calibration procedure is executed and the objective is to 
achieve stall near one of the end positions. In that case, the target position is set 
to 50 steps past the end position.  

5.4.1 Defining a sequence property 

As previously mentioned, Design Verifier does not have properties for directly verifying a 
given sequence. A solution to this problem is constructed using a verification subsystem, 
basically with a Simulink “detect change” block and a very simple state machine. When this 
subsystem is triggered, it starts to listen to its inport for a specific sequence. If the sequence 
after the trigger pulse deviates from the desired sequence, the subsystem violates its property 
block and Design Verifier presents a counter-example. Originally, this sequence logic was 
created to verify correctness of the runMode variable from the controller, i.e. to verify 
correct sequence of run modes as a result of an error or stall. It can however be used to verify 
an arbitrary signal sequence. 

. 
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6 AN ATTEMPT FOR IMPLEMENTATION IN “HARDWARE-
IN-THE-LOOP” 

 
Hardware-in-the-loop (HIL) simulation is a technique that is used in the development and 
testing of complex real-time embedded systems. Software, hardware and a simulated 
environment are tested in a real-time environment. HIL-simulation provides an efficient 
platform by adding the complexity of the plant under control to the test platform. The 
complexity of the plant under control is included in test and development by adding a 
mathematical representation of all related dynamic systems. These mathematical 
representations are referred to as the “plant simulation” [15]. 

VTEC has an HIL-simulation system and uses it among other things for testing of the 
software. Some of the environment in the car is simulated in Simulink. The idea is to 
implement the model of the FAM into this simulated environment. This could be helpful in 
the future when making tests on the HIL-system. 

The first problem is to clarify if the FAM model works at all in the HIL-system. The 
Stateflow FAM model is hence copied into the simulated Simulink environment. Constants 
are connected to the inputs of the FAM. All the outputs variables except the actualPos are 
terminated. The system is uploaded into the HIL system. It is possible to survey the actualPos 
variable in the running system to determine if the FAM model is running. The results are 
positive and the FAM model is working in the HIL-system. The next thing is to make several 
instances of the FAM model and see if they are working separately. There was some 
uncertainty whether the variables in the FAM model are local if the compilation can be run 
without errors. The result was satisfactory and the variables were found to be local in each 
FAM model. 

The following step is to connect the LIN signals, runMode, swap, targetPos, in the 
system to the FAM model. After some problems with for example an unconnected cable, we 
managed to connect the LIN signals to the FAM model and the FAM model worked 
satisfactory with the HIL system. The output signal actualPos from the model was easy to 
follow in the control program Control Desktop. 
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7 RESULTS AND ANALYSES  
This chapter is intended as feedback to the tasks of this thesis work and includes 
condensed information of our results. 

 
o Find a design tool that manages state machines and design a model of the FAM. 

 
Firstly, using Stateflow for solving this type of modeling problem has been ideal. Even 
though Supremica may have some advantages concerning verification, it would have been 
difficult to fully implement the specified behavior for the FAM and the controller. 

In an attempt to use Stateflow efficiently from the start, different design patterns were 
studied to ensure a suitable basic structure for the FAM model. The parallel type structure 
showed itself ideal for modeling the FAM. Extending or modifying behavior late in the 
modeling process did not cause any problems.  

Ultimately, the objective of the model is to aid the validation and verification of the 
controller and for that, the FAM model fills its purpose.  
 

o Design a supervisory controller of the FAM model. 

 
A different approach was taken in terms of basic structure for the controller model; an 
exclusive, non-parallel design pattern was used. By minimizing the number of parallel states 
and using the hierarchy concept, the sequential behavior of the model was easy to analyze. 
The history junctions available in Stateflow also proved to be quite useful in this non-parallel 
method of modeling.  
 

o Use formal methods for validation and verification of the designed supervisory 

controller. 

 
The closed loop system, where the controller is actually controlling the FAM model ran 
basically as expected. Through the constructed MATLAB GUIDE interface different test 
scenarios were run to validate a correct sequence of the controller. Certain unwanted behavior 
was found, and corrected. Stateflow’s graphical debugger made it easy to follow the path of 
execution in the chart and to pin point where the design errors originated.   

When it came to Design Verifier and formal verification, the result varied. Design errors 
that would have been hard to find using only validation and simulation, were found in both 
the controller and the FAM model. In that sense, formal verification could be applied for 
verifying models of this complexity and structure. However, the closed loop system grew too 
complex for Design Verifier and poor results were achieved when performing unbounded 
exhaustive searches.  

 

o Make an attempt to implement the model of the FAM in the HIL test sytem. 
 
The final work included code generation and implementation of the FAM model in the 
Hardware-In-Loop (HIL) lab. The aim here was to implement five FAM models to aid 
validation of the existing CCM controller software. This confirmed two things; firstly that 
these type of models can run without alteration in the HIL and secondly that several instances 
of the FAM model can run parallel in the HIL environment. Also, our FAM models were 
directly compatible with the existing CCM software and its control sequences for the actual 
stepper motors.  
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8 CONCLUSSION AND DISCUSSION 
 

This chapter comments on the results of this thesis. There will be some remarks on 
how it is working with the design tools Stateflow and Design Verifier. In the end of 
this chapter we will give some recommendation for further work with these design 
tools. 

 

8.1 Realization of the thesis 

The realization of the thesis has been carried out almost accordingly to the time plan. The first 
three weeks were used to attain knowledge about the actuators and how the bus protocol is 
used. Gathering this information included reading the specifications of the FAM and the bus 
protocol. Not all behavior of the FAM is captured in the specifications and some interviews 
with employees at VTEC were carried out. This information resulted in the appendices of this 
thesis. 

We have continuously written on the report for this thesis during the work with the 
different tasks. If this had not been the case the time to finish the different tasks would have 
been shortened. Two weeks were used for research and for evaluating which design tool that 
was most suitable for our tasks. The modeling in Stateflow took four weeks and the formal 
verification also took four weeks to complete. One week was used to implement the FAM 
model in the HIL lab. The remaining weeks have basically been used for working on the 
report. 

 

8.2 Evaluation of the thesis result 

8.2.1 Designing in Stateflow 

The design of the FAM and the Controller models has lead to a rather thorough assessment of 
Stateflow and its capabilities. Working in Simulink and Stateflow has been quite satisfactory. 
It is intuitive and easy to understand, especially if you have worked with similar software for 
modeling DES. Stateflow is flexible and supports a wide spectrum of integrated functions and 
extensive semantics. In practice, this means that one can almost always tailor the model to a 
tight fit with the specification and a modeling problem can be solved in many different ways.  

The documentation of Simulink and Stateflow are quite exhaustive. The offline help 
documentation in MATLAB is sufficient when working in Stateflow. There is also a lot of 
information and examples on the web. We recommend starting with the Stateflow help if the 
tool is new to the user.  

The possibility to graphically debug the design in Stateflow is very appealing. It is easy 
to observe where a failure occurs in a decision point and consequently easy to know where to 
correct the design. The only negative aspect of this is that the debugger zooms deeply in to the 
design and this is quite annoying. 

 

8.2.2 Formal verification – Mathworks’ Simulink Design Verifier 

The task to formally verify the system in Design Verifier showed to be the most challenging. 
One reason is that everything you want to verify must be formulated as a question. For 
example: If one input signal has a specific value, is it possible to get a forbidden value on the 
output signal? Each of these questions has to be tested separately. The formal verification tool 
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Design Verifier is quite time consuming. A test could take several hours, and was often set to 
run overnight.  

Sometimes when the test had been running for several hours, the test stopped with the 
short message: “An error during analysis: Analysis produced error”. There is no possibility 
for debugging to find where the problem originates. Sometimes the message is “out of 
memory” instead. The computer capacity should be enough, since the tests were run on an 
Intel Core 2 Duo T7250 2 GHz with 2 GB memory. When these errors arise the only thing to 
do is to strip the model until the error disappears.  

We used Design Verifier version 1.1 for formal verification but since March 2008, 
Design Verifier 1.2 has been released. This new version has additional support for Stateflow 
Embedded MATLAB functions and support for Stateflow Truth Table blocks. The test 
generation has a new strategy that is optimized for large models and it has also improved data 
values for detecting errors [5]. This release has not been available for testing for the authors, 
and maybe some of the mentioned problems have been fixed.  

 

8.3 Recommendation  

When using Stateflow in its full extent it is a very powerful tool and we believe that it could 
be effective when designing systems comparable to ours. A brief look at VTEC’s prior work 
on the FAM controller in Stateflow shows that Stateflow has not been used as intended. Their 
controller was designed only with graphical functions. The design is much more difficult to 
understand and to maintain if changes are to be made.  

From the demonstration we had on the department on VTEC, we realize that there is a 
big interest in Design Verifier. Some of the engineers believe that it could help them in their 
work when designing in Simulink. It is very helpful in an early stage, when designing 
Simulink models, to verify correctness. However, Design Verifier does not have a lot of 
support for continuous blocks in Simulink. There is also no support for S-functions [5]. 
Design Verifier does however have good support for event driven systems, i.e. Stateflow. 
Thus, we recommend that Volvo Technology should get a trial license for Design Verifier if 
the aim is to evaluate an event driven system, specifically Stateflow designs.  

We believe that, if working properly in Stateflow and using Design Verifier in an early 
stage of the design work, time could be saved later on. It is time consuming to test software in 
the HIL lab since it takes time to build the whole system after changes have been made. 
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A APPENDIX A 

SPECIFICATION OF THE COMMUNICATION PROTOCOL 
 
 

A.1 General 

The communication between a Slave Node (SN) and the Master Task follows a protocol, 
according to the LIN Specification Package, Revision 1.2. This is an extract of that package 
and includes relevant information when constructing a model of the SN and the master task. 
[7] 

 The VCC transmission rate is set to 9600 bit/s ± 2%. The bus consists of a single 
channel that carries bits. The Physical layer is a single line, wired-AND with pull-up resistors 
in every node, being supplied from the vehicle power net (VBAT). [7] 

The bus can have two logical values: ‘dominant’ and ‘recessive’. The dominant value 
corresponds to the ground voltage and to the bit value 0. The recessive value corresponds to 
the battery voltage and the bit value 1.[7] 

 

A.2 Message Transfer 

Message transfer is manifested and controlled by one MESSAGE FRAME format (see Figure 
A.1). A MESSAGE FRAME carries synchronization and identifier information from the 
master task to the slave tasks. The master task is responsible for the schedule of the messages: 
It sends the HEADER of the MESSAGE FRAME. Considering the information in the 
HEADER, either the master node or one SN sends a RESPONSE- or a REQUEST FIELD. A 
“request message” refers to a MESSAGE FRAME with a REQUEST FIELD, and a “response 
message” refers to a MESSAGE FRAME with a RESPONSE FIELD. [7] 

 

 
Figure A.1: A MESSAGE FRAME, [7] 

 
The SN is constantly listening for information sent from the Master Task on the LIN bus. 
Each SN has two types of identifiers. The REQUEST ID is followed by a command of 2 data 
bytes telling the specific SN what to do. The other type is a RESPONSE ID and means that 
the SN shall send its position, status and failure flags. It’s important to notice that all 
communication is initiated by the Master Task and that the SNs shall act on or respond to 
dedicated messages on the LIN as soon as possible. [7] 
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A.2.1 MESSAGE FRAME 

A.2.1.1 BYTE fields 

The BYTE FIELD format (Figure A.2) has a lenght of ten BIT TIMES. The START BIT 
marks the begin of the BYTE FIELD and is dominant. It is followed by eight DATA BITS 
with the LSB first. The STOP BIT marks the end of the BYTE FIELD and is recessive. [7] 

 
Figure A.2: BYTE FIELD, [7] 

 
 

A.2.1.2 Header fields 

The Header contains three fields: SYNCH BREAK, SYNCH FIELD and IDENT FIELD. 

SYNCH BREAK 

Every message header is initiated with a SYNCH BREAK to clearly identify the beginning of 
a new message; this part is the dominant bus value with a minimum duration of TSYNBRK. Next 
part of the SYNCH BREAK is a recessive synchronization delimiter with a minimum 
duration of at least TSYNDEL. This enables the slave to recognize the start bit of the following 
SYNCH FIELD. [7] 

Maximum time for TSYNBRK and TSYNDEL are not stated, but must fit into the message 
header time budget of THEADER_MAX. Minimum time for TSYNBRK and TSYNDEL is 13 Tbit 
respectively 1 Tbit.[7] 

 
Figure A.3: SYNCH BREAK 

 

SYNCH FIELD 

The synch field gives information for the slave clock synchronization. The field itself is the 
pattern of 0x55, which gives five falling edges within 8 bit time distance. The field is initiated 
with a start bit and ends with a stop bit. It is recommended to measure the time between the 
falling edges of both, the start bit and bit 7, and to divide the obtained value by 8. This value 
is the time unit Tbit.[7] 
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Figure A.4: SYNCH FIELD [7]   

 

IDENT FIELD 

The last part of the header is the identifier field which specifies content, destination and 
length of a message. [7] 

 

 
Figure A.5: IDENT FIELD [7]  

 
ID0…ID3 is the ID-bits and states message type and receiver node. ID4, ID5 are the length 
control bits defining the length of the message, i.e. number of data bytes. Finally the parity 
check bits set below: [7] 

 

)(54311

)(42100

parityoddIDIDIDIDP

parityevenIDIDIDIDP

⊕⊕⊕=

⊕⊕⊕=
   Equation A.1[7] 

 
This way no pattern with all bits recessive or dominant will be possible.[7] 

 

A.2.1.3 RESPONSE/REQUEST field 

The Response/Request field contains two, four or eight DATA FIELDs (quantity specified in 
the IDENT FIELD). The last field in the RESPONSE/REQUEST field is the CHECKSUM 
FIELD) [7] 

 

DATA FIELD 

The DATA FIELD consists of a eight bits of data. The LSB is transmitted first (Figure A.6). 
If the MESSAGE FRAME contains a RESPONSE field, the master task expect information 
from the SN. And if the MESSAGE FRAME includes a REQUEST field, the SN expect 
information from the master task. [7] 
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Figure A.6: DATA FIELD [7] 

 

CHECKSUM FIELD 

The purpose of the CHECKSUM FIELD is to detect errors in the message. When all the 
numbers in the RESPONSE/REQUEST field is added, the sum should be ‘0xFF’. The sum is 
calculated by ‘ADD with Carry ‘ where the carry bit of each addition is added to the LSB of 
its resulting sum. The CHECKSUM FIELD is designed specificly for this purpose. [7] 

 

A.2.2 Length of message frame 

The BYTE-FIELDS within a MESSAGE FRAME are seperated by inter-byte-spaces and in-
fram responce space. The length for these variables are not specified, only the total length of a 
MESSAGE FRAME is limited. The minimum Frame length TFRAME_MIN is the minimum time 
needed to transmit a complete frame (length of interbyte-spaces and in-frame response 
space = 0). The maximum Frame length TFRAME _MAX is the maximum time allowed for the 
transmission of the frame. The values are given in Table A.1. They are dependent on the 
number of Data Byte Fields NDATA and do not include system inherent signal delays. [7] 

 
Table A.1: Timing of a Message Frame[7] 

TIME NAME Time [Tbit] 

Minimum Length of Message Frame TFRAME_MIN 10 * NDATA + 44 

Minimum Length of Header THEADER_MIN 34 

Maximum Length of Header THEADER_MAX (THEADER_MIN +1) * 1.4 

Maximum Length of Message Frame TFRAME_MAX (TFRAME_MIN +1) * 1.4 

Bus Idle Time-Out TTIME_OUT 25,000 
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B APPENDIX B 

VARIABLES 
Table B.2 and B.3 are lists of the input-, output and internal variables mentioned in Appendix . 
The variables are used when designing the FAM model and the controller in Stateflow. The 
variables are also illustrated in D.2. 

 
Table B.2: Variables used in the FAM  

Type 

 

Name Length Description 

Input 

(LIN): 

runMode 3-bits The master requests the slave to execute 
this command or run mode. 

 targetPos 12-bits The desired position of the slave node 
 swap 1-bit See D.3.1.1 

Internal  

variables: 

endPos1  12-bits The first end stop 

 endPos2 12-bits The second end stop 
 Range 12-bits endPos2-endPos1 

Output 

(LIN) 

Actuator status: 
 notCalib 

 stall 

 dir 

 run 

 
1-bit 
1-bit 
1-bit 
1-bit 

 
Describes which state the particular slave 
node is in.  

 actualPos 12-bits Actual position of the slave node 
 Last_min_torque 8-bits The minimum torque during a 

movement. This is not used when 
modelling the FAM or controller. 

 Last_max_torque 8-bits The maximum torque during a 
movement. This is not used when 
modelling the FAM or controller. 

 failureReg_bit0 

- 

failureReg_bit7 

 

8-bits If the slave node recognize a failure the 
register bits are set.  
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Table B.3: Variables used in the controller  

 
Type 

 

Name Lengt

h 

Description 

Input 

(NOT LIN): 

CCM Integer 
0-1000 

Desired value of the position for the heater 
flaps. 

Input (LIN-

bus) 

Actuator status: 
 notCalib 

 stall 

 dir 

 run 

 
1-bit 
1-bit 
1-bit 
1-bit 

 
Describes which state the particular slave 
node is in.  

 actualPos 12-bits Actual position of the slave node 
 Last_min_torque 8-bits The minimum torque during a movement. 

This is not used when modelling the FAM 
or controller. 

 Last_max_torque 8-bits The maximum torque during a movement. 
This is not used when modelling the FAM 
or controller. 

 failureReg_bit0 

- 

failureReg_bit7 

 

8-bits If the slave node recognize a failure the 
register bits are set.  

Internal  

variables: 

endPos1  12-bits The first end stop 

 endPos2 12-bits The second end stop 
 Range 12-bits endPos2-endPos1 

Output 

(LIN-bus): 

runMode 3-bits The master requests the slave to execute 
this command or run mode. 

 targetPos 12-bits The desired position of the slave node 
 swap 1-bit See D.3.1.1 
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C APPENDIX C 

SPECIFICATION OF THE EATON FAM MODEL 
 
 
 

C.1 General 

The EATON Stepper motor (FAM – Flap Actuator Module) has a 3-pole connector: Voltage 
pin, ground pin, and one LIN communication bus. On the LIN network, a FAM is often 
referred to as an Actuator or a Slave Node (SN). This specification includes the necessary 
information to create a simulation model of the FAM’s function. This specification is 
extracted from the product specification of the EATON BLDC Actuator.[6]  

C.2 Exchange of messages 

 
Figure C.2: Model of how the Actuator exchange messages on the LIN bus.  

 
The exchange from the Master node (controller) to the actuators is realized according to the 
LIN protocol (Appendix A). Actuators receive order by REQUEST frame and answer in 
RESPONSE frame (see Figure A.6). Each Slave has its own identification for REQUEST 
(Request ID) and RESPONSE (Response ID) based on a Slave Node Address (SNA). The 
Actuator is always able to receive or transmit frames if it is powered, even during movement. 
If the Actuator is not able to move due to hardware failure or other restriction, the failure is 
reported to the Master node. Actuator will not start moving in normal run mode while major 
failure flags are set. The Actuator has possibility to move in a failure mode with a special 
command. [6] 

C.2.1 Request frame implementation 

 
Figure C.3: Request message frame.[6]  

 
A request message from the Master is either a target position with corresponding run mode, or 
a request to the actuator to clear a status flag.  A request message is implemented as in Figure 
C.3. The request identifier labels the message as a request message and to which slave node it 
is addressed. The following two data bytes (DB1_REQ and DB2_REQ) is the command itself 
and sets run mode and absolute target position. See C.1 for details of the data bytes structure. 
Table C.2 and Table C.3 specify and explain the different run modes. [6] 

Header 

Request 
Identifier 

 

Synchro break Synchro 
Field (0x55) DB1_REQ Checksum DB2_REQ 
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Note that if the actuator experiences hardware failure, stall or other restriction, the 
failure flag is set and reported to the Master. The actuator cannot move in normal run mode 
until failure flag is acknowledged and cleared by the Master. However, the actuator can move 
in failure state with a special run command. For information on the checksum 
implementation, see A.2.1.3. [6] 

 
Table C.1: Bit configuration of DB1_REQ and DB2_REQ.[6] 

 
 
 

 
 
 
 
 

 
 

Table C.2: Run mode specification. [6] 

Data Byte 1 

RUN mode 

bit 7 bit 6 Bit 5 
Name Description 

0 0 0 STOP_STALL Stop actuator and clear stall flag 
0 0 1 STOP_FAILURE Stop actuator and clear failure flags 

0 1 0 NORMAL_RUN 
Actuator moves to target position in a closed 
loop. Depending on requested movement angle, 
the actuator uses high or low speed. 

0 1 1 
NORMAL RUN 
FIXED LOW 

Actuator moves (speed fixed) to target position 
in a closed loop. 

1 0 0 FAILURE RUN Actuator moves to target without feedback 

1 0 1 NORMAL RUN 
LOW 

Actuator moves in low speed mode to target 
position in a closed loop. 

1 1 0 CLEAR_NOT-
CALIB 

Clear notCalib flag 

1 1 1 NORMAL RUN 
HIGH 

Actuator moves in High speed mode to target 
position in a closed loop 

 
 

Table C.3: Explanation of the different RUN modes. [6] 

RUN MODE STOP_STALL(b000) 

Actuator is 

running 

Stops the actuator. Stall flag is cleared when the motor has stopped 
completely. 
Note: If stall is detected and not acknowledge by LIN Master, the motor can 

move only in failure mode; normal run mode is inhibited until stall flag is 

cleared.   

Actuator is 

stopped 

Actuator Stall status =1 :This command acknowledge the stall detection 
Actuator Stall status =0 : No action 

 
DB1_REQ 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

RUN MODE SWAP FLAG TARGET POS (MSB) 

DB2_REQ 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

TARGET POS (LSB) 
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RUN MODE STOP_FAILURE(b001) 

Actuator is 

running 

Stops the actuator. Failure flag is cleared when the motor has stopped 
completely. 
Note: Except communication failure, if a failure is detected the motor can 

move only in failure mode; normal run mode is inhibited until failure flag is 

cleared  

Actuator is 

stopped 

This command acknowledge the failure detection, if the reason of failure has 
disappeared (example over-voltage detected: this failure can’t be cleared until 
voltage has decreased under over-voltage detection)   
If no failure was detected : No action  

RUN MODE NORMAL RUN (b010) 

Actuator is 

running 

If the target position has changed, the actuator will start moving towards the 
new target.  
If the target is the same as it is serving : No action 

Actuator is 

stopped 

LIN master requests the actuator to move in normal mode to target postion in 
a closed loop by a feedback hall effect sensor. The speed is controlled but not 
fixed. 
Depending on requested movement angle the actuator uses high or low speed: 
The low speed (low noise) is requested for movements shorter then 44 
± 0.17° and high speed for longer. 
In normal run mode (high or low speed) the stall detection at constant torque 
functionality is enabled (48Ncm ± 5Ncm). 
- High speed : 7.8rpm ±0.5rpm  @0N.cm @ 13.5V 
- Low noise : speed not fixed  
The motor can not acknowledge this request if the motor is in failure (except 
communication failure) or if stall detection is not acknowledged by the 
Master.  

RUN MODE NORMAL RUN FIXED LOW (b011) 

Actuator is 

running 

If the target position has changed, the actuator will start moving towards the 
new target. If the target is the same as it is serving : No action 

Actuator is 

stopped 

LIN Master requests the actuator to move in stepper mode to target position 
in a closed loop by a feedback hall effect sensor. The speed is fixed 
(210steps/s).  
Stall detection functionality is enabled but not accurate (not at constant 
torque), the actuator may loose step (EPM failure) when it reaches a stall.  
The motor can not acknowledge this request if the motor is in failure (except 
communication failure) or if  stall detection is not acknowledge by the Master  

RUN MODE FAILURE RUN (b100) 

Actuator is 

running 

If the target position has changed, the actuator will start moving towards the 
new target. If the target is the same as it is serving : No action 

Actuator is 

stopped 

Request to the actuator to moves in Failure mode to target position without 
feedback (stepper mode). In this mode the speed is fixed (210steps/s)  
Stall detection functionality is disabled. 
Note: This mode could be used when the motor is in failure, which can not be 

cleared. No inhibition to run in this mode. 
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RUN MODE NORMAL RUN LOW (b101) 

Actuator is 

running 

If the target position has changed, the actuator will start moving towards the 
new target.  
If the target is the same as it is serving : No action 

Actuator is 

stopped 

LIN Master requests the actuator to move in normal mode to target position in 
a closed loop by a feedback hall effect sensor. Speed is controlled but not 
fixed. 
The low speed (low noise) is requested. Stall detection functionality at 
constant torque is enabled. 

RUN MODE CLEAR_NOT-CALIB (b110) 

Actuator is 

running 

This command clear the notCalib flag, it means that the actuator is declared 
as accurate.  

Actuator is 

stopped 

This command clear the notCalib flag, it means that the actuator is declared 
as accurate  

RUN MODE NORMAL RUN High(b111) 

Actuator is 

running 

If the target position has changed, the actuator will start moving towards the 
new target.  
If the target is the same as it ‘s serving : No action 

Actuator is 

stopped 

LIN Master requests the actuator to move in normal mode to target position in 
a closed loop by a feedback hall effect sensor. The speed is controlled but not 
fixed  
The High speed is requested. Stall detection functionality is enabled. 
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C.2.1.1 Position calculus and SWAP FLAG  

The actuator uses a 12-bit position representation of the output shaft, which means 0…4095 
addressable positions. If the swap flag is not toggled, the need of movement is calculated in 
the actuator motor control according to Table C.4 example case 1. 

When the actuator receives a REQUEST message with the swap flag set, it means that 
the target position is shifted by the master task. The actuator motor control calculates an 
shifted actual position.. The actuator is fed these shifted positions and coordinates the move 
that now has been shifted into an addressable range. For more information of the swap flag 
see Appendix D.3.1.1. [6] 

 
Table C.4:  Position calculation. [6] 

Ex. 

case 

ACTUAL 

POS 

Register 

SWAP 

flag 

SHIFTED 

ACTUAL POS 

GOAL 

POS 

Register 

MOTOR CONTROL  

(need of movement) 

1 
actual 

Pos 
0 actualPos 

Target 

Pos 
targetPos–actualPos 

2 
actual 

Pos 
1 

actualPos 

XOR 
0x800 

Target 

Pos  

XOR 
0x800 

(targetPos XOR 0x800)  
–  
(actualPos XOR 0x800) 

C.2.2 Response frame implementation 

When the LIN master sends a response message header on the bus, corresponding slave will 
as soon as possible reply with its response data (Figure C.4). The response includes actuator 
information stated in Table C.5 with further explanation and implementation in Table C.6 and 
Table C.7. [6] 

response 

Identifier
Synchro 

break

Synchro 
Field (0x55)

DB1_RES ChecksumDB2_RES DB3_RES DB4_RES DB5_RES

Header

Response field

response 

Identifier
Synchro 

break

Synchro 
Field (0x55)

response 

Identifier
Synchro 

break

Synchro 
Field (0x55)

DB1_RES ChecksumDB2_RES DB3_RES DB4_RES DB5_RESDB1_RES ChecksumDB2_RES DB3_RES DB4_RES DB5_RES

Header

Response field

 
Figure C.4: Response message frame and actuator response. [6] 
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Table C.5 : Bit configuration of DB1_RES…DB5_RES. [6] 

DB1_RES 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
Actuator STATUS ACTUAL POS (MSB)  

DB2_RES 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
ACTUAL POS (LSB)  

DB3_RES 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
Last Min Torque  

DB4_RES 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
Last Max Torque  

DB5_RES 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
Failure Register  

 
 

C.2.2.1 Implementation of the actuator status (DB1_RES bit 7...bit 4) 

 
Table C.6: Implementation of the actuator status flags. [6] 

Data Byte 1 

Actuator Status 

Bit 7 

NOT-

CALIB 

Bit 6 

STALL 

Bit 5 

DIR 

Bit 4 

RUN 

Description in normal condition 

0 - - - actualPos is accurate 
1 - - - actualPos is not accurate. Calibration is required 
- 0 - - Actuator has reached the goal position without stall 
- 1 - - Actuator has stalled 
- - 0 - Last or actual movement is incremental  
- - 1 - Last or actual movement is decremental 
- - - 0 Actuator is stopped 
- - - 1 Actuator is running 
 

Table C.7: Activation and reset of Status flags. [6] 

FLAG NOT-CALIB (bit #7) 

Actuator 
behavior 

Normal behavior 

Activation 
condition 

Flag is set when actuator has detected conditions which may have 
corrupted its actual position.  
This condition are failure, or when actuator detects an end stop after a 
travel length move shorter than 3.4°C (20 pos =40 steps). 

Reset condition Flag is cleared when the master requests CLEAR_NOT-CALIB. 
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FLAG STALL  (bit #6) 

Actuator 
behavior 

Actuator is blocked and no NORMAL_RUN until stall flag is 
acknowledged from the master. When the stall condition is detected the 
actuator stops and sets stall flag. 

Activation 
condition 

Flag is set when the torque reach the defined stall limit. 

Reset condition Flag is cleared when the master request the STOP_STALL. 

FLAG DIR (bit #5) 

Actuator 
behavior 

Presents the present or last movement direction. 

Activation 
condition 

Flag is set with decrement move direction. 

Reset condition Flag is cleared with incremental move direction. 

FLAG RUN (bit #4) 

Actuator 
behavior 

Actuator is Running. 

Activation 
condition 

Flag is set while the actuator is running. 

Reset condition Flag is cleared when actuator is stopped. 

 

C.2.2.2 Implementation of the Last Min Torque (DB3_RES) 

The Last Min Torque is the measured information torque during the movement. The torque 
values are relative and without unit. This value is not implemented in the FAM model. [6] 

The torque is measured continuously between two consecutive response frames. When 
the LIN actuator is stopped due to stall condition it shall use the « torque »value measured 
when the stall was detected. The value is set to 0xFF when the stall flag is cleared. [6] 

 

C.2.2.3 Implementation of the Last Max Torque (DB4_RES) 

The Last Max Torque is the measured information torque (without unit) during the 
movement. The torque values are relative and without unit. This value is not implemented in 
the FAM model. [6] 

The torque is measured continuously between two consecutive response frames. When 
the LIN actuator is stopped due to stall condition it shall use the « torque » value measured 
when the stall was detected. The value is set to 0xFF when the stall flag is cleared (and motor 
is stopped). [6] 

 

C.2.2.4 Implementation of the failure flags (DB5_RES) 

When a failure is set, except communication failure (bit3), the actuator is kept in stop mode 
until failure flag is cleared from LIN master. Only run in failure mode command allows 
actuator to move. The notCalib flag is set when each failure, except Communication failure 
(bit #3), is triggered. [6] 
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Table C.8 describes the failure register (DB5_RES) and explanation, how the flags are set and 
how to reset the flags, is found in Table C.9.  

 
Table C.8 Failure register. [6] 

Data Byte 5 

Failure Register 

bit 7 bit 6 bit 5 Bit 4 Bit 3 Bit 2 Bit1 Bit0 

Hall sensor 
supply 
current 
limitation 

Default 
position 
restore 
(0x800) 

Extreme 
position 
maintain-
able (EPM) 

Over 
voltage or 
over 
temperature 

Communic-
ation 
failure 

Feedback 
failure 

Coil circuit 
failure or 
coil driver 
failure 

Calibration 
lost during 
movement 
when 
power 
failed 

 
Table C.9: Activation and reset of failure flags. [6] 

Flag Bit #7 

Flag Name Hall Sensor supply current Limitation (HSL) 

Flag Activation 

condition 
Flag is set when the hall sensor output exceed the current limitation. 

Flag Reset condition 
Flag is cleared when current has decreased below the limit and the 
master requests the STOP_FAILURE mode.  

Actuator behavior 

When failure flag is set the actuator is only able to run in 
FAILURE_RUN mode. In FAILURE_RUN mode the hall sensor 
feedback is disabled. No stall detection is possible. 
The actuator will loose positions if it was running when this failure 
occurred. 

Flag Bit #6 

Flag Name Default position restore (0x800) (DPR) 

Flag Activation 

condition 

Flag is set after actuator is reset and default position has to be restored 
in actuator memory because normal position save failed 

Flag Reset condition Flag is cleared when the master requests the STOP_FAILURE mode. 

Actuator behavior 
After a reset the actuator has not been able to restore a position from 
the Memory bank and will retrieve the position 0x800. 
Actuator remains stopped until failure flag is cleared. 

 
Flag Bit #5 

Flag Name Extreme position maintainable (EPM) 

Flag Activation 

condition 

Flag is set when actuator is stopped and is unable to keep its position. 
External force on the flap may trigger this event. 
This failure can occur, if CCM request to reach stall detection while 
the actuator is already in a grey zone. 

Flag Reset condition Flag is cleared when the master requests the STOP_FAILURE mode. 

Actuator behavior 

If the external, not controlled, force or the end stop pushing force is 
larger then the holding torque, the actuator is not able to keep its 
position. 
Actuator remains stopped until failure flag is cleared. 
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Flag Bit #4 

Flag Name Over voltage or over temperature (OTF) 

Flag Activation 

condition 

Flag is set when thermal disjunction detected by the hardware (typical 
140°C) or if over voltage above +18V is detected 

Flag Reset condition 

The thermal disjunction has to decrease to at least 20°C and the 
voltage has to decrease below +16V until the failure flag can be 
cleared. 
Flag is cleared when the master requests the STOP_FAILURE mode. 

Actuator behavior 

Coil is switched off when thermal disjunction detected or over voltage 
is detected. The actuator stops as soon as possible, dependent on rotor 
speed when the coil is switched off. 
Actuator remains stopped until failure flag is cleared. (It can move 
only in FAILURE mode) 
The actuator will lose positions if it was running when failure 
occurred. 

Flag Bit #3 

Flag Name Communication Failure (COF) 

Flag Activation 

condition 

Flag is set when Communication failure occur. 
 

Flag Reset condition Flag is cleared when the master requests the STOP_FAILURE mode. 

Actuator behavior 

When a problem of a LIN frame request is detected the COF flag is 
set. The Received message will be scrapped. 
The COF fag will not affect any other functionality (still able to run 
actuator).The problems with a LIN frame which will cause the COF 
flag to be set are: 
bit frame error 
synchronization oscillator error 
synchronization byte error 
parity error 
time out error 
over run error 
If the header is cancelled or dropped by the master task, the actuator 
keeps the latest OK message. 

Flag Bit #2 

Flag Name Feedback failure (FBF) 

Flag Activation 

condition 

Flag is set when the synchronization between the hall sensor feedback 
and the coil commutation is missed. 

Flag Reset condition Flag is cleared when the master requests the STOP_FAILURE mode. 

Actuator behavior 

When the synchronization between the hall sensor feedback and the 
coil commutation fails the actuator stops. 
Actuator remains stopped until failure flag is cleared. 
It may be caused if the "Hall sensors supply current limitation" 
appears. 
While failure flag is active the actuator can only run in 
FAILURE_RUN mode. 
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Flag Bit #1 

Flag Name Coil circuit failure or coil driver failure (CCF) 

Flag Activation 

condition 

Flag is set when actuator is stopped and an open coil circuit appears. 
On external move, the rotation of the magnet generate a back 
electromagnetic voltage in the motor coil up to 45 V. This failure will 
be diagnostic first as an EPM but also as a coil failure. 

Flag Reset condition 
Flag is cleared when the master requests the STOP_FAILURE mode 
and the failure has disappeared. 

Actuator behavior 

Unknown behavior when coil circuit gets open when the actuator is 
running. Rotor can continue to rotate, stop or turn in reverse direction. 
Actuator is kept in stop until failure flag is cleared. 
While failure flag is active the actuator can only run in 
FAILURE_RUN mode. 

Flag Bit #0 

Flag Name Calibration lost during movement when Power Failed (CPF) 

Flag Activation 

condition 

Flag is set after actuator reset and if the actuator has detected 
calibration lost during movement when power failed. 

Flag Reset condition 
Flag CPF is cleared when the master requests the STOP_FAILURE 
mode. 

Actuator behavior 

The CPF will occur if power is lost (Ubat < 8V) when actuator is 
running. The Actuator will then brake the rotor for 10 ms before 
position is saved in EEPROM. The flag will also be stored in 
EEPROM that indicate a CPF. 
Actuator remains stopped until failure flag is cleared. 
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D APPENDIX D 

SPECIFICATION OF THE MASTER TASK 

D.1 General 

The master task is the controller of the Slave nodes. The master task communicates with the 
different slave nodes in a particular sequence, according to a scheduled loop. The principle is 
illustrated in Figure D.1; the master task sends a message to all slave nodes, respectively. 
When all the slave nodes have been addressed, the master task requires the slave nodes to 
respond with their current status. After this the routine starts over from the top again. [6] 

 
 

header Request field Addressed to slave 1

header Request field Addressed to slave n

header

Response field

Addressed to slave 1

header

Response field

Addressed to slave n

Response from slave 1

Response from slave n

header Request field Addressed to slave 1

header Addressed to slave n

header

Response field

Addressed to slave 1

header

Response field

Addressed to slave n

Response from slave 1

Response from slave n  
Figure D.1: Schedule for the communication between master and slaves 

 
The master task checks the consistency of a message being initiated by the master task and 
being received by its own slave task. In case of inconsistency the master task can change the 
message schedule. 

D.2 Communication 

The Master task communicates with the slave node using the LIN protocol (see Appendix A). 
The master task initiates the message transfer between master task and the slave nodes, as 
described in Appendix A. After sending the header (A.2.1.2), the master task either sends a 
request field, or waits for a response field, from a specific slave node, according to Figure 
D.2. [6] 
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TARGET POS
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Last_Max_Torque

Failure_Register

RUN_MODE

SWAP_FLAG

TARGET POS

 
Figure D.2: Master task 
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The master task shall control each slave node by sending a request message with absolute 
value to reach the target position (targetPos) according to Figure D.2. The variables used in 
Figure D.2 are described in Table B.2. 

 

D.3 Implementation 

As mentioned in D.2 the master task either sends a header followed by a REQUEST field or a 
RESPONSE field to communicate with the slave nodes. A REQUEST field (C.2.1) has the 
intention to control the slave node. The request field includes the variable runMode describing 
what the master commands the actuator to do. [7] 

The different run modes, described in Table D.1, have the main purpose to move the 
actuator to a specific position (targetPos). In case of a stall, failure or a calibration failure 
there are specific run modes to apply. [6] 

 
Table D.1:  run modes. Constants used when modelling. [6] 

Data Byte 1 

RUN mode 

bit 7 bit 6 Bit 5 

Name Description 

0 0 0 STOP_STALL Stop actuator and clear stall flag 

0 0 1 STOP_FAILURE Stop actuator and clear failure flags  

0 1 0 NORMAL_RUN Actuator moves to target position in a 
closed loop. Depending on requested 
movement angle, the actuator uses high or 
low speed. 

0 1 1 NORMAL_RUN 
_FIXED_LOW 

Actuator moves (speed fixed) to target 
position in a closed loop. 

1 0 0 FAILURE_RUN Actuator run to target without feedback 

1 0 1 NORMAL_RUN_ 
LOW 

Actuator moves in low speed mode to 
target position in a closed loop.  

1 1 0 CLEAR_NOT-
CALIB 

Clear notCalib flag  

1 1 1 NORMAL_RUN_ 
HIGH 

Actuator moves in High speed mode to 
target position in a closed loop  

 
Whether there is a failure, stall or calibration failure, the Master Task handles the anomalies 
according to the procedures specified in D.3.2. 

 

D.3.1 Target Position 

The input value from the CCM is a value within the range 0-1000, where 0 means closed flap, 
and 1000 means completely open flap. In order for the master to position the slave node in 
either closed or completely open, it has to know which end stop corresponds to which flap 
angle.  To simplify things, the closed end stop is defined in the counter-clockwise direction 
and the open end stop in the clockwise direction. See Figure D.3.  
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Figure D.3: Definition of actuator direction 

 
To be able to move in the absolute range the master task shall perform “Range detection” at 
least once (done in factory), and store the end positions.[8] The master task calculates the 
targetPos according to equation below. [6] 
 

( ) 4095mod
1000

1arg
CCM

RangeendPosetPost ⋅+=   Equation D.1 

  

 

D.3.1.1 SWAP FLAG 

As mentioned above, based on the actuator position variable in the Master and input value 
received from the CCM, the Master does a computation of absoulute targetPos. [6] 

The actuator calculates the direction from targetPos-actualPos, a negative sign 
means a decrement direction and positive an incremental direction. [6] 

Should the required path crosses the zero,see Figure D.4, a wraparound error occurs. 
This will make the actuator motor control to miscalculate the direction of targetPos. For 
example, if the correct direction is incremental, the motor control sets a decrement direction 
and tries to reach targetPos the other way around. Naturally this is not possible due to the 
flap mechanics and the actuator gets stuck in an end position of the flap before it has reached 
targetPos. [6] 

 

 
Figure D.4: Description of the address wraparound error 
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In case of a predicted direction error, the Master calculates a shifted targetPos and sets the 
swap flag to 1. The shifted targetPos is equal to targetPos XOR 0x800 and shifts the 
position half a turn. The set swap flag tells the actuator to calculate a shifted actualPos. 
These shifted positions are the given positions to the actuator motor control which now 
performs a correct direction calculation. [6] 

Note: When the calculated need of movement (targetPos-actuator position) exceeds 
a half turn (2048 pos),  the master task predicts a faulty direction calculation and sets the swap 
flag.[8] 

D.3.2 Calibration, Stall, Failure procedures  

D.3.2.1 Calibration 

This procedure is applied by the master when the notCalib flag is set, (see C.2.2.4). The 
master shall command the actuator to move until the actuator recognizes stall detection. This 
is done by adding or subtracting (depending on dir flag) 50 positions to the realtive move in 
order for the actuator to reach the end stop at full speed. This is to reach constant torque to 
ensure correct stall detection. When the stall flag has been reset by the stall procedure (see 
below), the master should request the run mode CLEAR_NOT-CALIB. This procedure is 
called calibration in the master task. [6] 

 

 
Figure D.5: Principle of calibration procedure 

 
Note: When the flap reaches end position, it can bounce back and continue to move in the 
opposite direction, back in the range towards the other end position. The actuator does not 
recognize the direction change and the stall flag is not set. This means that the actuator reports 
that its actualPos is 50 pos beyond the end stop, when it is actually 50 pos from the end stop 
and still inside the range. The recommended procedure is to move 100 pos at a time in the 
initial direction until a stall is recognized. This stall position is the new end reference point 
and the other is calculated using the dir flag and the stored range value. [6] 

 

D.3.2.2 Stall  

A stall status is set by the actuator motor control when the torque reaches a defined stall limit. 
The actuator will stop and all normal run modes are disabled, only FAILURE_RUN mode is 
allowed. The procedure after a stall is illustrated in Figure D.6  [6] 

A stall detected inside the “gray zone” should be set as a new end reference position and 
the other end stop will be set using the dir flag and the stored range value. [6] 

A stall detected outside the “gray zone” should be handled as a “hard flap point” and is 
to be ignored. A recommendation is to request STOP_STALL, move backwards a few 
positions and then push trough the stall area in NORMAL_RUN (this is implemented in the 
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figure below). Another recommendation is to directly push through the stall area in 
FAILURE_RUN and after that request STOP_STALL to continue in a NORMAL_RUN 
mode.[6] 

 

 
Figure D.6: Principle of stall handling 

  

D.3.2.3 Failure 

If the master recognizes a failure through the failure register, the actuator has halted. There 
are eight different failure flags, and they are thoroughly described in Table C.9. The solution 
to each failure is similar and is described in General Solution below. There are some 
exceptions which are described in the header Exceptions below. In every failure, except when 
bit #3 in the Failure_Register is set, the notCalib flag is set. The notCalib flag remains set 
until all (except bit #3) failure flags are cleared and the master task has required the run mode 
CLEAR_NOT-CALIB. [6] 
 

General Solution 

The general idea to solve the failure is for the master to send a request with the run mode 
STOP_FAILURE. Next thing is to wait in this mode until the failure flags are cleared. The 
notCalib flag is set, and the master should request a calibration routine as described above. [6] 
 

Exceptions 

Some failures are handled differently than the procedure described above. With the run mode 
FAILURE_RUN it is possible to make the actuator move even if a failure flag is raised. It is 
recommended not to request to run to end stop with this command, it may break the flap and 
loose accuracy. [6] 

When bit #7 is set in the failuire register the general solution is used. But if the flag 
remains set after some a certain timeout, then the master should assume that this failure is 
permanent and should use the run mode FAILURE_RUN to move the actuator. [6] 

When bit #3 is set, it means that a communication failure has occurred. The request to 
clear this failure should have the lowest priority, because this flag does not inhibit any 
functionality. The notCalib flag is not set when this failure is triggered. [6] 

When bit #2 is set in the Failure_Register a special routine should be applied: After the 
general solution has been applied, try to run the actuator in the same direction. Repeat this 
routine 4 times if the same failure occurs. If the flag is still set use the general solution but try 
to run in the opposite direction (≥17 pos) once. If the failure flag is set again immediately run 
in FAILURE_RUN until power off. [6] 

 


