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ULTRASONIC WAVE PROPAGATION IN AN ANISOTROPIC
CLADDING WITH A WAVY INTERFACE

TATIANA KRASNOVA, PER-AKE JANSSON, AND ANDERS BOSTROM

ABSTRACT. The propagation of ultrasonic waves in a thick plate with a cladding is in-
vestigated in the two-dimensional case. The surfaces of the plate are traction-free except
where an ultrasonic probe is attached and emits waves into the plate. The plate is made
of two different materials, the base material and the cladding, and these are both allowed
to be anisotropic. The interface between the base material and the cladding is assumed to
be wavy (sinusoidal) and this is common in practice for welded claddings. The null field
approach is used to solve the wave propagation problem. Thus the starting point is the
(surface) integral representations in the two materials. The Green’s tensors are chosen as
the half space Green’s tensors as only the integrals along the interface then remain. The
Green’s functions are expanded in Fourier transforms along the interface and the surface
fields are likewise expanded. Applying the periodicity of the interface a discretized set of
equations remains. For the sinusoidal interface all integrals can be computed analytically
which leads to an efficient numerical scheme. Some numerical results show the influence
of the anisotropy and the wavy interface.

1. INTRODUCTION

Ultrasonic methods are widely used in nondestructive testing, e.g. in the aerospace
and nuclear power industries. A mathematical modelling of the testing situation is very
valuable for a number of reasons. The modelling helps the physical intuition and in the
interpretation of tests. It is also very easy to perform parametric studies with a model and
it is therefore a valuable tool in the development and qualification of testing procedures.

The generation, propagation, and scattering of ultrasonic waves in elastic solids (often
called elastic waves) have attracted a lot of interest during the years, both from the the-
oretical and experimental sides. Modelling has been performed for many situations and
there now exists a number of models that include the whole chain from the generation,
propagation, scattering, to the detection. These models all have their limitations, like two-
dimensionality, approximate ray-tracing, or Kirchhoff scattering. Most models only deal
with isotropic media, although there are of course important situations where anisotropy
is an essential feature.

One situation of particular importance in the nuclear power industry is that of a plate
or pipe that has a cladding, usually for corrosion protection. These claddings can be
fabricated in different ways. One common way is to apply an austenitic cladding on a
ferritic base material by a welding process. From an ultrasonic testing point of view
this leads to at least two difficulties. The austenitic cladding is anisotropic with the

complications this lead to. The material can also be inhomogeneous to some degree,
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particularly through varying orientation of the crystal axes. More importantly, the interface
between the cladding and the base is usually corrugated, and this can lead to strong effects
on the ultrasonic properties. Hudgell [1] gives a description of austenitic clad components
and of the ultrasonic testing of such components.

The intention here is to model the propagation of ultrasound in a clad component taking
both the anisotropy and the interface corrugation into account. Both because this is
realistic and because it simplifies the analysis the interface is taken to be sinusoidal and
thus periodic. It is noted that periodic interfaces are treated extensively in the literature,
particularly in electromagnetism but also for elastic waves, see, e.g. Fokkema and van den
Berg [2], Fokkema [3]|, Glass et al. [4], Bostrom [5], Lakhtakia et al. [6], Roberts et al.
[7], Varadan et al. [8], and El-Bahrawy [9]. However, it seems that the combination of a
periodic interface and an anisotropic medium has not been investigated.

To solve the wave propagation problem in the presence of a periodic interface the null
field approach is used. The starting point is then an (surface) integral representation with
the Green’s tensor (here half-space Green’s tensors are actually used). The Green’s tensor
in the anisotropic case is only known in the form of integral repesentations (Fourier integrals
or similar), but this is exactly what is needed in the null field approach. In contrast, in
traditional integral equation approaches (Fokkema and van den Berg [2], Glass et al. [4],
Roberts et al. [7]) it is much more efficient (or even essential) to use the closed form of the
Green’s tensor. The null field approach is used by Bostrém [5], Lakhtakia et al. [6], and
Varadan et al. [8] to treat elastic wave propagation and scattering problems for periodic
surfaces.

2. PROBLEM FORMULATION

Consider the 2D wave propagation problem as depicted in Fig. 1. A plate of total
thickness d; + dy is made of two different anisotropic materials. The interface between the
materials is assumed to be periodically corrugated with a period a. Later the interface will
be taken as sinusoidal, but this assumption is not essential for most of what follows. An
129 coordinate system is introduced with the origin in the middle of the interface, the
x1 axis along the plate surfaces and the x, axis perpendicular to them. The interface is
denoted by Sy and its unit normal 7y is pointing into the upper material. The upper and
lower plate surfaces are denoted by S; and Sy, respectively, and their unit normals are n;
and ng, respectively (both parallel to the unit vector in the z, direction, of course).

The material parameters and other quantities in the two materials are denoted by an
upper index 1 or 2. Thus the densities are p' and p* and the stiffnesses are cj,,;,,» and
c?mj,m,. Here the tensor indices run over 5 = 1,2, etc, and the summation convention is
adopted for the tensor indices (but not for the mode indices that will appear shortly). It
is assumed that the z;z5 plane is a plane of elastic symmetry of the material, so that an
inplane 2D wave propagation problem is possible. However, it is not assumed that the z;
and x, axes are crystal axes of the material. Typically, the materials can be orthotropic
with tilted crystal axes in the x;x9 plane.
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FI1GURE 1. The 2D geometry with a thick plate consisting of two anisotropic
materials with a wavy interface and an ultrasonic probe.

Only time harmonic conditions are considered. The time factor exp(—iwt), where w is
the angular frequency and ¢ is time, is suppressed throughout. The elastodynamic equation
of motion can then be written

o . o
g Omi TP =0, (1)
in the two materials i = 1,2. Here u is the displacement and o7, ;
which is related to the displacement by the constitutive equation
0

Umj = ijm/j/aleum/. (2)

is the stress tensor,

The surfaces S; and S; of the plate are assumed to be traction-free except that ultrasound
is excited in the plate by an ultrasonic contact probe situated on the upper surface S;. The
probe is modelled by the traction it exerts on the plate, more is said about this later on.
The two materials of the plate are in perfect contact so both displacement and traction are
continuous along the interface Sy. Finally, to fully specify the wave propagation problem all
waves must be outgoing at infinity (this means that the group velocity must be outgoing).

When employing the null field approach the starting point is an integral representation
instead of the differential equation. To this end the Green’s tensor G%; (x;x’) of material
7 is introduced as the solution to the differential equation

0
ox,,
where 6;; is the Kronecker delta and 6(x — x’) is th 2D delta 'function’. The Green’s

stress triadic has the same relation to the Green’s tensor as the stress tensor has to the
displacement

Zbﬂ(x; x') + pinGél(x; x') = —0;0(x — x'), (3)

0

i
i ! 3! T~
mim' 5 o

Ei

mjl(x; x') =¢C G (X; XI) (4)
Note that the derivatives in Egs. (3) and (4) are with the respect to the first argument in
the Green’s tensor.

The (surface) integral representations are obtained in the usual way by multiplying

Eq. (1) by G¥(x;x’) and Eq. (3) by u}(x), integrating the difference of the obtained
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equations over the volume of material 7, and using Gauss’ theorem to obtain
U [ [ x)) = Gl )y () S
i—0

{ul (x), inside material i,

0, outside material 7.

(5)

The factor (—1)* in front of the integral is to take care of the different directions of the
surface normals in the two materials. The surface normal component n,, is taken for the
surface in question, of course.

The Green’s tensor in material 7 is now chosen as the half-space Green’s tensor which
satisfies traction-free boundary conditions on S;. Using also the traction-free boundary
conditions on S; for the fields, the integrals over S; and S, disappear in Eq. (5) except
that the integral over S; yields the incoming field ui]-n, which thus appears as a term of its
own. Note that the incoming field is the one that would exist in material 1 if it were a
homogeneous half-space.

3. THE GREEN’S TENSOR

The elementary plane wave solutions to Eq. (1) can be obtained by solving the disper-
sion relation (in 2D the dispersion relation can be solved analytically for simple untilted
materials). However, a reformulation to a generalized eigenvalue problem is performed
(this being even more convenient in 3D). To this end the following vector is introduced:

Uy

v=|2 (6)

where the two traction components in the xo direction supplement the two displacement
components. Assuming a dependence exp (i(gz; + hxs)) for the components of v, Egs. (1)
and (2) give

Av = hBv, (7)

where h is the eigenvalue and v is the eigenvector in the generalized eigenvalue problem.
The matrices A and B depend on ¢, the angular frequency w, and the material parameters:

C16q Ce6q i 0
_ C129q Co6q 0 [ (8)
cng® —pw® cgg® 0 0
0 —pw? —ig 0
—ceg  —C6 0 O
—Co6 —c 0 0
B = . , 9
—cigq —ci2q ¢t 0 ( )
0 0 0 1
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where the stiffnesses now are given in abbreviated notation. The solutions to Eq. (7) are
denoted A and h;, where n = 1,2 is a mode index and the superscript indicates if the

corresponding plane wave is up- or down-going (as determined by the group velocity). The
corresponding eigenvector is denoted

Un 1
Un2
Tnl ’
Tn2

(10)

with a superscript + or — as appropriate. To discriminate between the solutions in the two
media a superscript i (= 1, 2) is added: hif, USS, Tr.

Using the symmetries the free space Green’s tensor can be expressed as a Fourier trans-
form in zq:

. o0 2 . . . . ’ 3 ’
Gty = [ 3 DREURUR e g, ()
0 p=1

with the + sign for zo2x5. The coefficients D are integration constants that are de-
termined by the jump conditions that the Green’s tensor must satisfy at zo = z,, which
give

2

Y (DY URUS = Dy Ui U ) =0, Gil=1,2, (12)
n=1
2 5
> (DFTHUL — DETISUY) = —2—1;, jl=1,2. (13)
n=1

There are actually eight equations for the four unknowns Dt and D¢, n = 1,2, for each
1. This situation arises because the symmetries of the Green’s tensor have been exploited
when writing Eq. (11). A good choice seems to be to use only the equations with j = [ in
Egs. (12) and (13).

To obtain the half-space zo < d; Green’s tensor for material ¢ = 1, a reflected part is
added to the free space Green’s tensor

2
o
: ol 1+ .
Gh(ar, o) = [ 3 DI UL sl g
0 p=1
2

+/oo Z DL UNRL, UL eilal@m—a)+h 7 (@a—d)—hit (@h—d)) g (14)

nn'
n,n’'=1
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for zo2x). The reflection matrix is obtained from the stress-free boundary condition at
To = d12

Tt + Z RL, T4 =0, nj=12 (15)
n'=1
The reflection matrix is essentially composed of the ordinary reflection coefficients, alt-
hough it of course depends on the normalization of the plane waves.
For material 4 = 2 the half-space Green’s tensor for zo > —ds is similarly

G 1(3317 To; 331, $2 / Z DQiUQI:tUz;_t ei(q(:nfw’1)+h%i(z27z’2))dq

/ Z D> UZ R2, UZ elatm s th, [ artda)—hir () g (16)

© nn/=1

The reflection matrix is determined from

T + Z RE,TZE =0, n,j=1,2. (17)
n'=1
The corresponding Green’s stress tensors are obtained according to Eq. (4). For example,
for the first term in Eq. (16) this amounts to exchanging U, 2* for

S2i = Z(qcm]]’l + hQi mgg’2)U2:t (18)

nmj

The other terms in the Green’s tensors are treated in the same way.

4. THE NULL FIELD APPROACH

To proceed the expansion of the Green’s tensor in Eq. (14) is now inserted into the
integral representation (5). Then the two cases when the field point is inside or outside
material 1 must be distinguished. It is also noted that the Green’s function expansion is
only valid in the half-space zo < d;. Letting the field point x’ lie in material 1 in the
region above the maximum of the interface Sy (so that z, > x5 in the free space part of the
Green’s tensor expansion (14)), the following representation is obtained for the scattered

field uS°" = uj — ul* (use also the property Gjl(:rl,xg; zh, xh) = G (), xhs 21, 12)):

uf! (11, 1) / Zf ULt et T2 4 ZRln,Ul,l el (@2=d1)+ha +d1)} e'dq, (19)

n'=1

where
fﬁ(Q)=/ [7m (— Sim])uj(fvlaxz)—Unlftj(fvla$2)]Di+efi(q:"”h#”)ds- (20)
So

Here u; and t; = n,,,0,,; are the (unknown) displacement and traction on S;. Due to the
interface conditions the displacement and traction are of course the same on both sides of
So-
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Letting the field point lie below the minimum of the interface Sy in the integral repre-
sentation (5) gives an expansion of the incoming field

o 2
. 1—
u;n(xl’ 31‘2) — / Zé.n(q)Urlll_ eilazit+hn (l‘z—dl))dq, (21)
X n=1

where

fn(Q) :_/ ([ ( Sle—n]) ihy ™ (d1— $2)+ZD S;tn] erz,’n eih;j_(dl_z?)]nmuj(ajl,lé)
So

n'=1

2
_ [DTIL—U;]_— Qi (di—m2) Z D1+U1+R1 oih ot (di- :cz)}tj(xl’ xQ))e—iqwldS' (22)

n’=1

Here the unknown displacement and traction on Sy again enter. As the incoming field
is given by specifying the probe, the expansion coefficients £, can be regarded as known
quantities.

Turning to material 2, the same procedure is repeated. Inserting the Green’s tensor
expansion (16) into the integral representation (5) with the field point in material 2 below
the minimum of the interface Sy gives

(U/l2($1,-7;2 / Z f2 U2 Zhn T2 + z R2n’ 2 ez(h2+($2+d2) h%_d2)]eiq$1dq, (23)

n'=1

where
f2(q) :—/ [Tm (=S (1, T2) — US (1, 20) | D e i@nthia g (24)
So

In contrast to the situation in material 1 this is the total field (because there is no incoming
field in material 2). Finally, letting the field point lie above the maximum of the interface
Sp gives

0= _/ ([D?L-F( SZ-I— —zhn+:v2 + Z D 52— R2 z( (d2+$2)+h d2)]nmuj(xla ZEQ)
So

nm] n' m]
n'=1

2
—[D2UZ e 3 D2 U2 RS, o e W)y ) )o S, (25)

n’=1

Equations (20), (22), (24), and (25) contain the fields u; and t; on the interface, but
also the expansion coefficients f, and f? are unknowns at this stage. The equations can be
solved by suitable expansions of u; and ¢;. To obtain integrations that can be performed
analytically for a sinusoidal interface it is convenient to use x; as the integration variable
in the integrations over the interface. Let the interface be given by x5 = s(z1) where s(z1)
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is a differentiable function. The unit normal to the interface has the components

n=—s(14(s)%) "2, (26)

ny =(1+ (s)*) 7"/, (27)
where s’ = ;2-5(z1). The integration measure is dS = dz(1 + (s')?)"/? and it is convenient
to incorporate this in the expansions of the surface fields as follows:

wie = [ ) 29
—00
*° ;1
1+ &) P = [ Bty (29
-0
As the integrals containing u; also contain n,, but those containing ¢; do not contain n,y,,
this means that the factor (1 + (s')2)*/? does not appear in any of the integrals. It is now
possible to insert Eqgs. (28) and (29) into Egs. (22), (25), (20), and (24). In general this
leads to double integrals without any possibilities of simplification (the expressions are not

given as they are not very enlightening). However, it is noted that the developments so far
have not made any use of the periodicity of the interface.

5. THE PERIODIC INTERFACE

To proceed the periodicity of the interface is now exploited. If the function g(z) is
periodic with period a the following relation is valid

/_OO g(z) dx = p,,Z:OO 5(% +p") /o g(x) " dx. (30)

When Egs. (28) and (29) are inserted into Eq. (22), and Eq. (30) is used the result is

o a
— Z / Dl S%m ihl™(d1—s(z1))
pll_ 0 ]

2
ih 2! 1
D0 Dyt Sy B o B O (g = =) + [D7U e ()
n/=1
2 2mp”
Bt (d I
+ Z D1+U1+R1 z 1—s(z1)) ]/Bj( p )) 2mip wl/adxl. (31)
n'=1
Here 7; = —s'(x1) and fs = 1 are unnormalized components of the normal to the interface
So. It must be remembered that hl~, DL~ S}L;n], R! ., etc, all are functions of ¢ although

this dependence is not explicitly shown. It is seen in Eq. (31) that &,(q), o(g — 27mp"/a)
and (3;(q—2mp”/a) only couple for ¢ values that differ by a multiple of 27 /a. It is therefore
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natural to write ¢ = qo + 27p/a, with |g| < 7/a, and to introduce

2mp

&np(d0) =&nlqo + T) (32)
Oy (10) =m0 + 2, (33)
B (40) =Balao + 22, (34)
where p' = p — p”. Summing over p' instead of p”, Eq. (31) then becomes
b= D Qi + @B ). (35)

p'=—o0

Here it must be remembered that there is also a summation over the tensor index j. Here
and in the following the dependence on ¢, is suppressed. The matrices are

1 _,:/a (Dl Gl=  gihnp(di—s(z1))
0

npjp np W»me
2
D Do Sty € N ) i 27 DI (36)
2 n,:al 1—771 2h d
npjp’ :/0 (D Un]p e’ np( 1=e(@))
2
+ZD71L—;U71L—SPR; € z' p(d1 s(ac1))>e27ri(p’—p)m1/adx1. (37)
n'=1

Here (cf. Egs. (32)-(34))

Py = by (90) = by (g0 + —), (38)

and similarly for the other quantities having an index p.
In the same way Eqgs. (25), (20), and (24) give

0= Z (sz’p’aﬁp' + Qipjp’ﬁjp'>’ (39)
p'=—00

np = Z (P;Pjp’ajp' + iy Bt ) (40)
p'=—00

_Z ( npjp Oy’ T anp’/BJP> (41)



10 TATIANA KRASNOVA, PER-AKE JANSSON, AND ANDERS BOSTROM

The matrices are

3 _ 24 @2+ —ih2} s(z1)
npjp’ _A (an Snm]p

. 2 2 -
+ z be pSﬁ*me i ez(*hn/p(d2+3($1))+hn;d2)) T e?m(p fp):vl/adl,l’ (42)
’ (1)
4 _ 2471724+ —zhn s(x
npjp’ _A (D Un]p P
2
+ Z D2 U2 Ry el sl ES ) ) il oy (43)
Py = / DA S i o PS8 42507 e, ()
0
Pspjp’ — / DH_UTZ; hﬂ;s(m)+27r(pl_p)$1/a)dxl’ (45)
np]p / D721p SrZLmjp_ i( hi;s(w1)+27r(p'7p)x1/a)dxl, (46)
npjp / D2 Ug;p i(— hnp s(z1)+2m(p’' —p)z1/a) d.Tl (47)

As the incoming field, and thereby &,,(go), can be regarded as known, Egs. (35) and (39)
can be solved for the unknown expansion coefficients o, and Bjp of the surface fields. Eqs.
(40) and (41) then give the expansion coefficients f,, and f2, of the scattered fields which
are given by Egs. (19) and (23). Expressed in f,, Eq (19) becomes

scl E : 1+ zh T
‘/El b x2 / Unlp e
m/a .,

p=—00
+ Z Rnn pU;Jp i( n/_ ($2_d1)+h711,_;d1)] eia:l(q0+27rp/a)dq0’ (48)
n’'=1

and similarly for Egs. (23) and (21).

6. THE SINUSOIDAL INTERFACE

The interface is now chosen to be sinusoidal:

)- (49)

The main reason for this choice is that the sinusoidal shape reasonably resembles the one
that appear in real applications with a welded cladding. Besides being reasonable the
sinusoidal interface has the great advantage that the integrals appearing in Eqgs. (36),

s(x1) = bsin (
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(37), (42)—(47) can be calculated analytically. The following two integrals appear for the
sinusoidal interface:

/ efi’ysin27rw1/a GQWipwl/adxl = aJp(fy), (50)
0

/ oS 21z e—ifysin21rw1/a eQwipzl/adxl — ]ﬁjp(’}/) (51)
0 a v

where J,(y) is a Bessel function. The equations are also valid for p < 0 with J_,(y) =
(—1)PJ,(7). For the sinusoidal interface the integrals now become

_ ; 17L d

ipjp Arltpjp’ ezhnp "+ Z Arljmp R}t np € Z e, (52)
n'=1

_ i 1;" d
pip =By 4 4 Z B iRy €0 (53)
_A2+ + Z AQ— R2 'Ld2(h%}’,‘—hi,_p) (54)

nmp npjp’ n'pjp' = n'np )

n'=1

24 - 2= p2 gida(hap—h?;)

anp =By T Z By g © " (55)
n'=1
P, émp Ail;?—]l’" (56)
Iy 317]1) - B }L;Jp” (57)
3 o A2—
P, npjp’ Aanp” (58)
Propir =Brpipr» (59)
with
; 27(p —p') .

;zjz:)jp’ :( hii SnlJp + as; QJP) J (thi)D:Lip’ 1=1,2, (60)
By, =aUs Jy o(bhi)Dhy i =1,2. (61)

7. NUMERICAL RESULTS

In this section a few numerical results are given that illustrate the effects of the corru-
gated interface and the anisotropy.

The numerical computations are mostly straightforward. The integrals when computing
the fields, as in Eq. (48), contain singularities in the integrands corresponding to the plate
modes (in the whole plate consisting of the two materials with corrugated interface). This
can be circumvented by deforming the integration contour into the complex plane, but here
a small damping is introduced instead. This is both an easier way and it also corresponds
to reality as all materials have some damping. The damping is introduced by giving the
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FIGURE 2. The field in the plate with flat interface and two orientations of
the anisotropy.

stiffness constants a small imaginary part, which has been chosen as 0.5% of the real part.
All the infinite summations over p and p’ have to be truncated, of course. This has been
checked by increasing the number of terms until stable results are established. In all the
results given below it is enough to take 11 terms (i.e. p goes from -5 to 5).

There are many parameters that can be varied in the present problem, but the focus is on
illustrating the effects of the corrugation and the anisotropy and therefore only parameters
related to these are varied. The upper part of the plate is chosen as an isotropic steel
with density p = 8420 kg/m?, Young’s modulus E = 213 GPa, Poisson’s ratio v = 0.29,
and thickness d; = 15 mm. The lower part is chosen as an anisotropic austenitic weld
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(b) b=1mm

FicurE 3. The field in the plate with corrugated interface with ¢ = 5 mm
and two different heights b. Anisotropy orientation ¢ = 45°.

material with density p = 8120 kg/m? and thickness 10 mm. This material is transversely
isotropic with relevant stiffness constants in abbreviated notation C;; = 216.0 GPa, Cy =
262.7 GPa, Cgs = 129.0 GPa, and C}5 = 145.0 GPa. To fully specify the material in this
2D case also the orientation of the crystal axes must be given by an angle 1) measured
counter-clockwise from the x;-axis. This angle is given the two values 45° and 60° in the
following. Also the two parameters specifying the corrugation, the period a¢ and the half
height b, are varied.

To excite ultrasonic waves in the plate an angled SV probe is applied to the upper surface.
The probe is located at 1 = 0 and has width 10 mm, angle 45°, and frequency 1 MHz.
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xz(mm)

xz(mm)

F1GURE 4. The field in the plate with corrugated interface with ¢ = 5 mm
and two different heights b. Anisotropy orientation ¢ = 60°.

The ultrasonic wavelengths in the isotropic steel are then about 3 mm and 6 mm for S
and P waves, respectively, with similar but direction-dependent values in the anisotropic
austenite. Results are only given at a fixed frequency, this is computationally efficient and
it gives a good overall view of the field, but it does not give any travel-time information,
of course. The absolute value of the real part of the displacement vector is plotted in the
relevant part of the plate. A linear grey scale is used with black as the largest amplitude
and white as practically zero amplitude. The scale is the same in all the plots.

One problem that arises when plotting the field in the plate is that the fields in Egs.
(19) and (23) are only valid above the top and below the bottom, respectively, of the
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F1GUuRE 5. The field in the plate with corrugated interface with ¢ = 10 mm
and two different heights b. Anisotropy orientation ¢ = 45°.

corrugations. For small corrugations it is possible to use the expansion all the way down
to the interface as will be seen in the following. This should be equivalent to the Rayleigh
hypothesis, see e.g. van den Berg and Fokkema [10]. For larger corrugations the fields
inside the corrugations can be obtained by returning to the integral representations and
perform a direct numerical integration. This is quite complicated, however, and will not
be pursued. Instead the region inside the corrugations is left blank when the corrugations
are not small.

Figure 2 shows the field in the plate for a flat interface and the two orientations of the
anisotropy ¥ = 45° and 60°. The direct field from the probe at the angle 45° is an S wave.
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F1GURE 6. The field in the plate with corrugated interface with ¢ = 10 mm
and two different heights b. Anisotropy orientation ¥ = 60°.

The Rayleigh wave along the surface is also clearly seen. In the lower anisotropic part
the wave is more or less propagating vertically, giving a standing wave due to the total
reflection from the lower plate surface. The reflected field in the upper part is of course at
45°, but it is shifted somewhat to the right. According to simple ray theory it would hit
the upper surface at 1 = 42 mm. There is only a relatively small difference in the fields
between the two orientations of the anisotropy.

Figure 3 shows the field for a = 5 mm and b = 0.3 and 1 mm for the orientation ¢ = 45°.
For the smaller corrugation height the field is plotted also inside the corrugations, but for
the larger one this is no longer possible (using the expansions in this region very clearly
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leads to erronous, altogether too strong fields). This finding corroborates well with the fact
that the Rayleigh hypothesis is well known to be valid for b/a < 0.072 for the sinusoidal
profile, see van den Berg and Fokkema [10]. For b = 0.3 mm the differences compared to
the flat interface are negligible, but for b = 1 mm there is a clear difference with a reflected
field that is actually stronger and more concentrated.

Figure 4 is for the same case as Fig. 3 except that the orientation is ¥ = 60°. Also in
this case the height b = 0.3 mm gives negligible differences compared to the flat interface.
For b = 1 mm the differences are larger and the reflected field from the interface is more
or less split into parts.

Figure 5 shows the field for ¢ = 10 mm and b = 1 and 2 mm for the orientation ¢ = 60°.
The Rayleigh hypothesis is not valid so the field is not plotted inside the corrugations.
The smaller corrugation height b = 1 mm has a rather small effect as compared to the
flat case, but the higher corrugation b = 2 mm has a dramatic effect, particularly the field
distribution in the lower anisotropic medium is completely altered. It is also noted that
there is a directly back-scattered part that interferes with the direct field from the probe.

Figure 6 is for the same case as Fig. 5 except that the orientation is ¢y = 60°. Already
b = 1 mm has some effects on the reflected field and for b = 2 mm the effects are very
strong.

8. CONCLUDING REMARKS

The propagation of elastic waves in a thick plate with two anisotropic materials with
a wavy interface is investigated in 2D. The null field approach is employed, which has
the advantage compared to integral equations approaches that it is the Fourier transform
representation of the Green’s tensor that is needed (as opposed to the closed form, which
does not exist in the anisotropic case but is preferred in integral equations). Numerical
results illuminate the effects of both the anisotropy and the wavy interface. The two
materials are reasonably similar (isotropic steel and anisotropic austenitic weld material)
and the effects of the wavy interface are then quite small in many cases. But with larger
periods and higher amplitudes the effects of the corrugations can be dramatic as is shown
in some examples.

The present study is motivated by the need to use ultrasonic nondestructive testing
on clad components in the nuclear power industry. But due to processing conditions the
cladding is then not 2D as assumed here. The situation is truly 3D due to the fact that the
crystal axes of the austenite are skewed, so that the assumption that one of the crystal axes
is lying perpendicular to the corrugations is no longer valid. It should be straightforward
to generalize the present work to this 3D situation.
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