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Abhstract

The covariant action for superstrings is i ‘

analyzed by means of the Dirac method, and the

light front action is derived. The actioﬁ gives

rise to second class constraints which cannot be
solved for in a covariant way. Covariant gauge i
fixing, in any conventiocnal sense, cannot be ap-

plied, which leaves the question of covariant

guantization of the superstrings open. A similar

statement holds for a massless supersymmetric

point-particle.




1. Introduction

The subject of superstrings [1] has been developed by
Green and Schwarz. In Ref.[Z] they presented a light front
action which describes the guantum mechanics of free super-
strings. For closed boundary conditions this action gives a
superstring with N=2 supersymmetry (in ten space-time dimen-
sions ). A covariant formulation of this interesting model
- it is connected to N=8 supergravity in the so-called zerg-
slope limit of the interacting theory - is lacking, though.

" In Ref.[3], a covariant action was given, which in a light
front gauge reduces to the action of Ref. [2]. We will demon-
strate that the covariant action does not admit covariant gauge
fixing. Before the completion of this wprk, a paper by Green
and Schwarz [4] appeared in which a covariant gauge was pro-

posed. Our analysis shows that their procedure is deficient.

The reason why covariant gauge fixing is impossible is to
be found in the constraint structure of the model. For bosonic
strings, the covariant action gives rise to constraints among
the canonical variables which are all first class, i.e. they
obey a closed algebra among themselves and with the Hamiltonian
{the terminology is that of Dirac [5]1). First class constraints
correspond to gauge symmetries. They may.be imposed as condi-
tions on the guantum states, while the naive Poisson brackets
are retained. This strategy is used in covariant guantization,
most elegantly performed using the BRS technique (see Ref. [&]
for BRS quantization of bosonic strings). The superstring action

gives rise to some constraints which do not obey the above men-




2. A supersymmetric point particle

t+ioned condition. Such constraints are called gecond class and

they have to be explicitly accounted for before gquantization is The supersymmetric point particle acti i
i0on is

attempted. In the canonical formalism the naive Poisson brackets
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have to be replaced by Dirac brackets;

where
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Here, the ¢i's are second class constraints. In the path inte- . p ) ,
Zl = X~ 18ylé
gral formalism, the constraints give rise to a non-trivial (4)

as follows:

factor in the path integral measure (7],
The action i : "
n is left invariant by the global supersymmetry trans-
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are first class constraints and Xy are gauge conditions. 5)([‘_—; ;EX/‘Q 5Qa_éq S
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where wi

The problem that we will encounter in the superstring model

second class constraints cannot be accounted for ' }
The momenta conjugate to x", 6. and V are
>3

is that the

in a covariant way (in fact, they cannot even be identified

.
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in a covariant way).

e There exists a supersymmetric point particle action [8]

I which is closely analogous to the string actions discussed We recognize the primary constraint
raints

here, and we will begin by analyzing this simpler case. See the

AE - /“9“ = =
¢ Po 2y )F}. o P =0 . o

appendix for our conventions.

The canonical Hamiltonian may now be calculated
r

o o o .
M= XIB +&p, + VP -ZL = S V(P+m*) . (8) |

We im i
pose on the coordinates and their conjugate momenta the

naive Poisson brackets at equal T




[xt,P"1=qt |
{6, pst=38%

)
[v.R1=1, v

and all other Poisson brackets zero.

e constraints are ccensistent

We now have to ensure that th

e.g. we have to require

with the time evolution of the system,

that

[p, Hl=0.

This generates a seccndary constraint

2 2 (11)
Yz Pirm =0 | |

Tt follows that H is weakly zero, in the sense of Dirac. Having

it i i i the
found the secondary constraint, it is convenient to impose

i be dropped from the
gauge choice v=1, after which V and P may be PP

problem.

The naive Poisson brackets among the constraints are

[ 33 =2¢(ch)4épr, (12)

i i int
and all the others vanish. Thus, Y is a first class constraint,

i i i i e mas-—
which corresponds to reparametrization invariance. In th

i ix in
sive case, all the ¢a's are second class, since the matrix
r

Eg. (12) possesses the inverse

r (< n}:ﬁP/“- (13)
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Tt is straight forward to introduce the appropriate Dirac

brackets [8].

When m=0, the matrix in Eg. (12} becomes singular and the
inverse no longer exists. This means that some of +the ¢a's are
first class, corresponding to an extra gaugesymmetry of the ac-

tion (the local supersymmetry of ref. [9]).

In fact, the ¢a's contain both first and second class con-
straints. Since first and second class constraints are to be
handled in different ways, it is necessary to separate them
from each other before we proceed. However, the required sépa—
ration cannot be performed covariantly. This is clear on dimen-
sioﬁal grounds - the constraint matrix (12) has dimension of

mass, so that it is necessary to divide by an object having the

dimension of mass in order to invert any part of it. Unless man-
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ifest covariance is given up, the only available object is P,

which is zero. Therefore the second class constraints cannot be

eliminated in a covariant fashion.

A non-covariant decomposition may be performed, however.

In particular, the light front decomposition
1
¢=:L?£++q£w_: ZA/"X'*%*-%JQ’J’% {(14)

proves to serve our purpcses well, ¢_ may be viewed as second

class since

{47, 41&} = 21 (X+C’)aép+; , (15)




| *o i ingula-
the  determinant of which is zero only for P =0 . This sing

i ; i massless
rity is not serious {(more over, it is unavoidable for

particles [10]). We then find the Dirac brackets

(45,407 = 1 —g-;(a/“c)“{’
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the gauge choice 8_=0.

i from
The essentlal points of cur reasoning should be clear

exal(lple Ih.e SLIPEIStxlng case lIWOerS Sllghtly more WOIk
th.ls .

but no new ideas.

3. Generalization to Superstrings

A natural generalization of the point particle action -

first considered in 1976 [11] - appears to be

S= %jdrdr(—j)%j“/szaz/‘/s , (17)

where

However, it exhibits undesirable features. lLet us sketch what

they are. Tn the ON-gauge gaB:ﬂaB (corresponding to the gauge

V=1 in the point particle case) one finds the first class con-

straints (corresponding to the reparametrization invariance of

the world sheet of the string)
Y, ()

Yo(T) = P/“Z’/u =0 (19)
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as well as the spinorial constraints
¢NT) = F;" -;((5,}9)“;9[: o, (20)

Using the naive Poisson brackets, one finds that !

(21) *
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Since the determinant of this matrix is non-zerc in general,

there are no first class constraints among the ¢a's, and thus




=0. For this

no gauge symmetry to allow the gange choice 8 _

reason the action (17) cannct be used to describe the super-

strings of ref. [2]. On the other hand, the matrix (21} is

singular when PZ(G):O. We believe that this singularity is

serious and means that the model is inconsistent. However, it

is concievable that the action {17) could be used in connection

with a Polyakov-type string in four dimensions, having a massive

spectrum, if supplemented with some extra degrees of freedom

{although it should be said that definite obstacles to a Polyakov

Note that the super-

treatment of superstrings are known 121 .

charge

@'= Jdr LF;+ i(d/f,e?)“P/‘] = 21 jdcr (&.6)“?/‘ (22)

contains enough independent degrees of freedom to create an N=1
massive supermultiplet (which again shows that the action {17}

has nothing to do with massless superstrings) .

Tn order to make the action (17} locally supersymmetric,

i.e. to make some of the spinorial constraints first class, som

extra terms have tc be added. The action must contain an N=2

symmetry and was obtained in ref. [31,
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calculated for the case of closed strings, are
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(27)

(28)
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{30)




(A is not summed over), where

= Pr+sfE (32)

T
1

z
Note that

(33)

2
(M )" = ¥ 5%
An attempt to invert the constraint matrix C%Bab(c,a') of

Eg. (30) gives the result

-1 1 TTr (0") s
(C ):B(rcr’l = 2B (Cy, Jup — 2 S(a-a) (34)

{this is similar to the c¢ase of the massless point particle}7

The authors

However, the analysis of ref. [4] amounts to this.

of ref., [4] proceed to guantize the model using the ensuing

"Dirac brackets", and fail to do so which is a consequence of

their inconsistent classical treatment. Another serious mistake

in treating all the spinorial constraints as second class, as

[4],

is done in ref.

of freedom. It is clear that - as in the massless point particle

case - the spinorial constraints contain both first and second

c¢lass constraints, which have to be disentangled before we pro
ceed. A strong argument against this problem having a covariant:

solution, is the fact that, since the ¢A's already are in_the

smallest (16-dimensional) spinor representation of S0(1,9%), they

cannot be deccmposed covariantly. However, this argument has a

This cannot be allowed since division by zero has been performed:

is that one miscounts the number of degrees

flaw, to which we wiil return. A fruitful choice for a non-~

covariant decomposition ig the light front decomposition

trtrd = Gppd e Lpgd.

(35}

¢_A

may ke viewed as second c¢lass, since

Aa 86, , - . a
{76 5@y} = 225"y, ¢ S 5 (o) , (36)

the determinant of whi i *
ich is zerc only for Ta {¢)=0, the usual

singularity of the light front formalism. The ensuing Dirac

brackets between the remaining constraints are

Dh@ )1 = [Vl o]

(37)
{4/, 2541 = Lty o (T o
. [NGCs
(38)
[45) @) 15 = A L %) Y )] =
- _ - 7 @ (77})2( -J 4
24 QY~ 94) (7} -_?T:.%H S(a-a’) i (39)

which shows that they are all firsge class. Thus, the rank of the

constraint matrix is 16. This is what one should predict, knowing

the amount of gauge symmetry in the model. We now have a con-
7’ 8istent Hamiltonian system, to which BERS quantization, say, can
r

be applied, but this at the price of loss of manifest covariance

On the other hand, we can impose the light frent gauge




choices

Xta) =0 |, plc) =p+

(40)

ey =0

r

together with the orthonormal gauge choice

(-9)%qF = qF

which leads us to the light front lagrangian (the light front

+ -
hamiltonian is p P )

o‘f/,g,f = X'P* 4+ éL:F;“* F*PH=
= = G X AX TP o p Ae )

W i —Zero.
hich, of course, 1s in accordance with ref. [2]. The non-ze
r

Dirac brackets between the physical variables are

[ XY%), pie)] = sUs@-a)

(efw1, 6] = -8 () G seray .

There is one possible objection to the argument above for -

the non-existence of a covariant gauge fixing procedure: We have
demonstrated that the spinorial constraints contribute 16 secon

class constraints, and it remains to be investigated whether

they can all be collected into one S0(1,9) spinor. Consider thé

constraint matrix (evaluated with the naive Poissen brackets)

Aab(ﬂ", a’) = { cﬁf“rcrj + aﬁf’z“(q‘)J q.':“m—’) + a«#%{q")} =
P (45)
= Zi(ﬁ’r cJ“"[(aﬁf) (F/+SF) +@*~1)2F (e} & (r-a7)

Its inverse is

(A Ny = Ligey ) (@4 1)(Frest) +(a=1)Z ) st
JAERY Tzt f = T XO-T =

2, 2’_ //"
(ﬂ‘r"?)(?’/"i—s.f')f;(a 7)2'—‘(0“]4(0’16”}_
(P+s) (46

4 .
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The last quality is obtained using the constraint (24). Un-
fortunately,_Eq. {46) is singular when (P+S)2=0. We belive

that this is inconsistent, and consequently the second class
constraints cannot be covariantly eliminated. We do not know

how to demonstrate the inconsistency, however, and therefore

we proceed.

When ¢1+a¢2 is taken te¢ be sacond c¢lass, the remaining
constraints (w1, wz and a¢1-¢2) cbey a closed Dirac bracket
algebra among themselves. If we disregard the fact that the
various Dirac brackets invelve division by (P+5)2, we would
conclude that we have obtained a consisﬁent Hamiltonian system
without giving up manifest covariaﬁce. No gauge fixing has been
performed at this point. If one sets a=1 and imposes the gauge
choice 91—82:0 to solve for the first class constraint ¢J_¢2:0’
one arrives at the model described by the action {17)! In this
gauge S“=Ol, and division by P2 has been performed, which clearly

is inconsistent for massless strings. In general, the supercharge




s of freedom tc create a massive

Q1+aQ2 contains enough degree

i i i uch
romultiplet. What one ¢an not do is to fix the gauge in s
supe .

i i description of the super-
a way that one obtains the light front P

[2]. Therefore, the covariant Eamiltonian system

strings of ref.

does not describe these superstrings.

a1 {ther
In conclusion then, there are two possibilities. Either,

ted,

i limina
the second class constraints cannot be covariantly e

admits no covariant gauge, O

and conseguently the action {23)

(P+S)2 ig allowed {(we stress that we do not

else, division by

. . . to
believe this), but in this ¢ase the action (23) gives rise
e

i nonco-
two inequivalent Hamiltonian systems, of which only the

variant one describes the superstrings of ref. [z21.

3. Conclusions

We have seen how the constraint structure of the covariant
N=2 superstring theory in 10-dimensional space-time allows
us to chocse gauge conditions that make it reduce to the light-
front theory earlier known. At the same time we have shown,
that the structure is such,.that it does not-allow covariant
gauge fixing ( in any conventional sense; at least not for the
superstrings of ref. [2]1). The samme statement holds true for
the massless supersymmetric point—partic;e. This phenomenon is
a serious obstacle to covariant quantization of the model; no
conventional method is applicable. A result like this should
however not be taken merely as negative. Tt has been realized
in recent years that fully covariant formalisms for certain com-
plex models, involving eitended supersymmetry and higher spins,
may become quite unwieldy and may not even exist. The problem
noted have shed some light on the difficulties involved. On the
other hand, the non-covariant lighf front method has been suc-
cessfully applied to superstrings. This suggests that the fur-

ther development of non-covariant methods may be impertant.
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Appendix on conventions and notation

The Regge slope parameter is taken to be

space-like metric is used throughout,

ﬂ""a d.ig,j (-ll l.!-'" t)

q‘F- ding (-1, 1) (23)

Derivation with respect to the parameters ¢ and T is depoted

1ot

A=%A Asx A : (nd4)

at

T

For Majorana spinors in the 10-dimensional space,

- 4 - b0
>\q_""-")\ C-bq' = - A Kba.

and in the 2-dimensional parameter space,

- &
Nz Qai(_

where YU and pa are Dirac matrices:

v v (A7)
{¥r¢y=-29"

{@“: Pg} = "iqﬂs

Plus and minus components of a vector are defined by

A= o (a%xat) (29)
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