
Thesis for the Degree of Doctor of Philosophy

Topics in Distributed Algorithms:
On Wireless Networks,

Distributed Storage and Streaming

Thomas Petig

Department of Computer Science and Engineering
Chalmers University of Technology

Göteborg, Sweden 2017



Topics in Distributed Algorithms:
On Wireless Networks, Distributed Storage and Streaming
Thomas Petig
ISBN 978-91-7597-673-0

Copyright c© Thomas Petig, 2017.

Technical report 151D
Doktorsavhandlingar vid Chalmers tekniska högskola
Ny series nr 4354
ISSN 0346-718X

Department of Computer Science and Engineering
Chalmers University of Technology
412 96 Göteborg, Sweden
Phone: +46 (0)31-772 10 53

Author e-mail: petig@chalmers.se

Printed by Chalmers Reproservice
Göteborg, Sweden 2017



Topics in Distributed Algorithms:
On Wireless Networks,
Distributed Storage and Streaming
Thomas Petig
Chalmers University of Technology

ABSTRACT
Distributed algorithms are executed on a set of computational instances. We refer to
these instances as nodes. Nodes are running concurrently and are independent from each
other. Furthermore, they have their own instructions and information. In this context,
the challenges are to show that the algorithm is correct, regardless of computational, or
communication delays and to show bounds on the usage of communication. We are espe-
cially interested the behaviour after transient faults and under the existence of Byzantine
nodes.
This thesis discusses fundamental communication models for distributed algorithms.

These models are implementing abstract communication methods. First, we address
medium access control for a wireless medium with guarantees on the communication
delay. We discuss time division multiple access (TDMA) protocols for ad-hoc networks
and we introduce an algorithm that creates a TDMA schedule without using external
references for localisation, or time. We justify our algorithm by experimental results.
The second topic is the emulation of shared memory on message passing networks.

Both, shared memory and message passing are basic interprocessor communication mod-
els for distributed algorithms. We are providing a way of emulating shared memory on
top of an existing message passing network under the presence of data corruption and
stop-failed nodes. Additionally, we ensure the privacy of the data that is stored in the
shared memory.
The third topic looks into streaming algorithms and optimisation. We study the prob-

lem of sorting a stream ofvehicles on a highway with several lanes so that each vehicle
reaches its target lane. We look into optimality in terms of minimising the number of
move operations, as well as, minimising the length of the output stream. We present an
exact algorithm for the case of two lanes and show that NP-Hardness for a increasing
number of lanes.

Keywords: Distributed Algorithm, Time Division Multiple Access, TDMA, Wireless Networks, Shared
Memory, Message Passing, Fault-Tolerance, Streaming, Optimisation, NP-Hardness





Acknowledgements

I express my gratitude to all my current and former colleagues at the Department of
Computer Science and Engineering for providing this research environment, especially:
Hiva Alahyari, Magnus Almgren, Martina Brachmann, Olaf Landsiedel, Herbert Lange,
Aljoscha Lautenbach, Ioannis Nikolakopoulos, Elena Pagnin and Daniel Schöpe. I thank
especially my friends and colleagues Iosif Salem and Valentin Tudor for five nice years
in our office EDIT 5126, as well as my flat mate Aras Atalar1. This thesis would not be
possible without the help of the administration of the CSE department.
I thank the people who I have met and from whom I have learned a lot, this includes:

Henning Brandt von Lindau, Sebastian Freitag, Melanie Haars, Marian Risse, Alexej
Smoljanov, Viviane Zwanger. Cristina Caprio, Andrea Fabio Michael Martinangeli Si-
mona and Valentin Tudor became even better friends after an excellent visit to Romania.
Furthermore, I appreciate a lot to got the opportunity to spend all these hours on the
water with Ole Martin Christensen, Jan Gustav Grolig, Steffen Hammer, Jessica Köster,
Viktor Nilsson and Tuule Soniste and the members of ChSS. I am especially glad for
comments and discussions with Tanja Zerenner. I thank my opponent, Volker Turau, for
his very valuable comments on this thesis.
Last, but not least, I thank my Family, Reinhard, Ilse, Eckart and Christine for their

support.

Thomas Petig

1With special guest Paul Renaud Goud.

iii





List of Appended Papers

First Paper "Self-stabilising TDMA Algorithms for Wireless Ad-hoc Networks without
External Reference", Thomas Petig, Elad M. Schiller, Philippas Tsigas. Extended
version of what appeared as brief announcement in the proceedings of 15th Interna-
tional Symposium Stabilization, Safety, and Security of Distributed Systems (SSS),
November 13-16, 2013, Osaka, Japan and as extended abstract in the proceedings
of 13th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET)
2014, Piran, Slovenia and as technical report, CoRR, abs/1308.6475, 2013.

Second Paper "DecTDMA: A Decentralized-TDMA with Link Quality Estimation for
WSNs", Olaf Landsiedel, Thomas Petig and Elad M. Schiller. Appeared as ex-
tended abstract in the proceedings of Stabilization, Safety, and Security of Dis-
tributed Systems - 18th International Symposium (SSS) 2016, Lyon, France.

Third Paper "Robust and Private Distributed Shared Atomic Memory in Message Pass-
ing Networks", Shlomi Dolev, Thomas Petig, Elad M. Schiller. Based on the brief
announcement as it appears in the proceedings of ACM Symposium on Principles
of Distributed Computing (PODC) 2015, Donostia-San Sebastián, Spain.

Fourth Paper "Changing Lanes on a Highway", Thomas Petig, Elad M. Schiller and
Jukka Suomela

v





List of Figures

2.1 Example for lower bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Convergence time for different graphs. . . . . . . . . . . . . . . . . . . . . 21

3.1 Example of a time slot assignment. . . . . . . . . . . . . . . . . . . . . . . 33
3.3 The hidden terminal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Experimental results on a complete graph. . . . . . . . . . . . . . . . . . . 37
3.4 The two-hop graph G2(12). . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Experimental results on the two hop graph G2(n). . . . . . . . . . . . . . 39
3.6 Experimental results on the two hop graph G2(n) with different transmis-

sion success probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7 Received packets over time in a simulator. . . . . . . . . . . . . . . . . . . 41
3.8 Received packets over time on the testbed. . . . . . . . . . . . . . . . . . . 42

5.1 An initial setup in R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 A solution S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 The modified solution S, such that a2 does not stay on row i. . . . . . . . 74
5.4 The modified solution S, such that a2 and Ri+1,2,. . . ,Ri3,2 delay by one. . 75
5.5 Stream constructed for the case of a 3-regular graph with N = 4 vertices,

cf. graph G, Figure 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.6 Graph G, which is 3-regular and has N = 4 vertices. . . . . . . . . . . . . 87

vii





Contents

Abstract i

Acknowledgements iii

List of Appended Papers v

1 Introduction 1
1.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Fault-Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 First Paper: Self-stabilising TDMA Algorithms for Wireless Ad-
hoc Networks without External Reference . . . . . . . . . . . . . . 3

1.3.2 Second Paper: DecTDMA: A Decentralized-TDMA with Link
Quality Estimation for WSNs . . . . . . . . . . . . . . . . . . . . . 4

1.3.3 Third Paper: Robust and Private Distributed Shared Atomic
Memory in Message Passing Networks . . . . . . . . . . . . . . . . 5

1.3.4 Fourth Paper: Changing Lanes on a Highway . . . . . . . . . . . . 5

2 Self-stabilizing TDMA Algorithms 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 System Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Basic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Probabilistic stabilising TDMA Allocation and Alignment Algorithm . . . 18
2.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 DecTDMA: A Decentralized-TDMA with Link Quality Estimation for WSNs 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Background: Time Slot Alignment and Allocation . . . . . . . . . . . . . . 32
3.3 TDMA Protocol with Link Quality Estimation . . . . . . . . . . . . . . . 34
3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Robust and Private Distributed Shared Atomic Memory 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 System Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

ix



Contents

4.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Changing Lanes on a Highway 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.1 Lane-Changing Problem . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.3 Model of Computation . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.2 The Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Optimum Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.1 Correctness of the direct solver . . . . . . . . . . . . . . . . . . . . 76

5.4 Optimum Agent Sorting is NP-hard: the Proof Details . . . . . . . . . . . 85
5.4.1 The construction of the stream R, for a given graph G := (V,E) . 85
5.4.2 Moving agents to their target lanes at the lower and upper cavities 86
5.4.3 Motivating the wall thickness . . . . . . . . . . . . . . . . . . . . . 87
5.4.4 Estimating the running time of the construction procedure . . . . . 87
5.4.5 Optimum placement functions, φ, and paths that lead to them . . 88
5.4.6 Ac complies with Ao’s solution and it is optimum . . . . . . . . . . 89
5.4.7 The reduction proof . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Discussion and Conclusion 101

x



1 Introduction

This work studies topics in distributed and centralised algorithms. In distributed algo-
rithms, we consider models with many separate nodes that store only limited informa-
tion locally. We assume that the nodes are connected and can exchange messages via
communication channels [9]. The nodes execute a given algorithm concurrently and in-
dependently. But, they do not necessarily execute the same instructions. In distributed
algorithms, we look into problems as complexity and fault tolerance. Complexity can, for
example, be measured in how much time does it take, or how many messages need to be
transmitted, to archive a common goal, or how much data needs to be stored locally. In
the context of fault tolerance, we discuss the options for recovering after a fault or being
resilient to faults. We address the recovery by using self-stabilisation while resilience
against data corruption is handled by an error correction algorithm. A further aspect
we present, is privacy in distributed storage algorithm. Here we ensure that data that is
stored on a set of nodes can not be revealed by a small set of nodes, where small means
the cardinality is less than a given constant.
Distributed algorithms are used within distributed systems, e.g., computer networks for

decentralised storage and computation. These systems are the backbone of many modern
technologies, e.g., cloud computing, and there size is increasing. Therefore, we need
efficient algorithms that keep the requirements for hardware and communication channels
low. Furthermore, the required level of autonomy is increasing with the increasing size
of such systems. Faults should be handled, if possible, without human interaction to
keep these systems maintainable and to ensure the system availability is high. Note that
real hardware is prone to failure. Thus, the probability that all nodes in a system are
working is decreasing exponentially with the increasing number of nodes, even without
taking the reliability of the network into account. This motivates us for studying the
complexity and fault tolerance of distributed algorithms.
Within the area of centralised algorithms, we look into optimisation algorithms and

NP-hardness results. Although, we discuss an centralised approach, the results provide
bounds on the complexity of a distributed solution. In fact, our studied problem looks
into move operations of a set of agents.
In the following, we see a which models are used in the presented papers and discuss

similarities and differences between them. We continue by a look into fault-tolerance. We
close the introduction with a summary of the presented papers and possible extensions.

1.1 Models

The discussion of distributed algorithms is dependent on the communication model that
is used to describe the architecture. The presented papers are using different models, but

1



1 Introduction

with some similarities. Note that the second paper provides an example of an implemen-
tation of the first one and does not discuss theoretical aspects. In the first and the third
paper, we consider systems that consist of a set of nodes P that can execute a program.
These nodes have a certain communication functionality, so nodes can exchange messages
with each other. In both publications we are using a communication graph G := (P, E).
The nodes are the vertices in this graph and every pair of nodes that can communicate
are represented by an edge in this graph, i.e., E ⊂ P × P.
One of the differences in the models is the way how nodes can exchange information

across the edges of the communication graph. In the first paper, a node can communicate
with all neighbours in the communication graph by using a broadcast. Such a broadcast
submits a single packet to all neighbours in the communication graph at once. This
models the behaviour of a wireless transmission. We assign to each broadcast a time
interval to model the transmission time in the wireless medium. Based on the overlap of
those intervals we allow an adversary to drop packets due to a collision. Other possible
ways—that embed the nodes in a Euclidean space—are for example the unit disc graph
model [6], or the SINR model [2].
In the third paper, we assume an asynchronous setting. This means the execution

at different nodes run with different speeds. Furthermore, we assume that the delay
on the communication channel is unbounded. The communication is based on message
passing networks. Here the node can send individual messages to each neighbour. These
messages are always delivered, i.e., message loss is not possible. But, the uncertainty
comes from the unbounded communication time. The nodes are divided into three sets,
writers, servers, and readers. The edges are the union of all pairs of servers with each
other, all pairs of servers with writers and all pairs of servers with readers. The analysis
within the underlying model is borrowed from [3].
The fourth paper does not discuss a communication model, but the movement of

agents. We place agents on a two dimensional grid and allow movement along edges to
neighbouring grid locations. A constraint, that we require, allows at most one agent per
location. This setup is close to the “15” Puzzle [7]. We call one dimension of the grid rows
and the other one lanes. In contrast to the puzzle, we only require each agent to be on a
given target lane, but we do not require a specific row in the solution. The optimization
goal is to minimise the number of move operations until every agent reaches is target
lane.

1.2 Fault-Tolerance

We consider two kinds of faults—transient faults and data corruption. To address tran-
sient faults we utilise self-stabilisation, as it was introduced in 1974 by Edsger W. Dijkstra
with his work “Self-stabilising Systems in Spite of Distributed Control” [4]. For limiting
the impact of data corruption we are looking into erasure codes [13] and error correction
algorithms.
To show self-stabilisation we assume a given communication graph G := (P, E). The

state, spi , of a node pi ∈ P consists of the value of all the variables of the node in-

2



1.3 Summary

cluding the set of all incoming communication channels. The execution of an algo-
rithm step can change the state. The term configuration is used for a tuple of the
form (sp1 , sp2 , . . . , spn), where each spi is the state of node pi. We define an execution
R = (c(0), a(0), c(1), a(1), . . .) as an alternating sequence of system configurations c(x)
and steps a(x), such that each configuration c(x + 1), except the initial configuration
c(0), is obtained from the preceding configuration c(x) by the execution of the step
a(x). For a finite execution R′ := (c′(0), a′(0), c′(1), . . . , c′(k)) and an execution R′′ :=
(c′′(0), a′′(0), c′′(1), . . .), such that c′(k) = c′′(0), we define ◦ as the operator that maps R′

and R′′ to the concatenated execution R′ ◦ R′′ := (c′(0), a′(0), . . .,c′(k),a′′(0),c′′(1), . . .).
We call R′ prefix and R′′ suffix. For R := (c(0), a(0), . . . , c(k)), we say that R’s length is
k− 1, because it includes k− 1 steps. A task T is a set of constraints for a configuration
that we require the system to fulfil. We define the set of legal executions as the set of
executions LE that fulfil T at every configuration. A safe configuration denotes a config-
uration, such that every execution that starts from this configuration is included in LE .
Every execution R of an self-stabilising algorithm can then be written as R = R′ ◦ R′′
where R′′ is a legal execution. The convergence time is then a bound on R′.
The data corruption is our model introduced by semi-Byzantine nodes. These nodes do

not manipulate the communication protocol itself, but they can send corrupted embedded
data. To address data corruption we are using a special case of maximum distance
separable (MDS) codes, so called Reed-Solomon codes [13]. These codes are in the class
of the well-known erasure codes. Erasure codes map an input vector v to an output vector
of higher dimension, w, such that this map is invertible. The mapping ensures that the
inverse map is still defined and mapping to the same v if several entries of w are erased.
This property is commonly used, e.g., on optical storage mediums, where scratches can
make parts of the medium unreadable, but it is still possible to read the original data
using these erasure codes. By using Reed-Solomon codes we archive resilience against
these semi-Byzantine attacks. For this we use the error correction of Berlekamp and
Welch [16]. This allows the reader to reconstruct the data even if up to a constant
amount of server deliver corrupted coded elements.

1.3 Summary

In this thesis some fundamental communication models for distributed algorithms are
discussed. These models provide certain guarantees for distributed applications, like
fault tolerance, privacy and bounded communication delay.

1.3.1 First Paper: Self-stabilising TDMA Algorithms for Wireless Ad-hoc
Networks without External Reference

We address time division multiple access (TDMA) protocols for decentralised ad-hoc net-
works. TDMA protocols provide, in contrast to carrier sense multiple access (CSMA),
higher throughput, and bounded communication delays if the radio channel is available.
This is useful to provide a medium access control (MAC) to an application with guaran-
tees on the message delivery time. To solve this problem, we have to solve a chicken-egg

3



1 Introduction

problem: after a transient fault one cannot rely on the MAC, but one need the commu-
nication between nodes to reorganise the MAC.

We look into a model where every node has a local clock, but we do not assume access to
external references for localisation, or time. The task T is to synchronise all local clocks
and to agree on a partition of time into intervals of equal size, called frames. Every frame
is partitioned into a constant number of equal sized time slots. Additionally, the task
includes the unique assignment of nodes to time slots, such that no two nodes with an
edge distance of two, or less, share the same interval. We assume that this assignment is
the same for every configuration in a legal execution.

We provide a lower bound for the number of time slots per frame for the task T ,
i.e., if locally too many nodes are competing for a time slot, they might block each
other. Furthermore, we propose a self-stabilising algorithm and by this it can recover
from transit faults. This algorithm is, to our knowledge, the first algorithm with these
properties. To synchronise the local clocks we utilise a converge-to-the-max approach as
it was introduced by Hermann and Zhang [5]. One important point in communication
graphs with a diameter larger than 1 is the resolution of two-hop conflicts [12]. In such
a conflict a node p ∈ P receives messages from two different neighbours concurrently.
And, therefore, it might not be able to receive any of them, due to the collision. We
address this topic by randomly utilising unassigned time slot for transmitting additional
messages and using these messages the proposed algorithm can break symmetry.

1.3.2 Second Paper: DecTDMA: A Decentralized-TDMA with Link
Quality Estimation for WSNs

After discussing theoretical results in the first paper, we look into experimental results.
We provide an example of an implementation of the Algorithm of the first paper on
TelosB motes. Then we compare with an implementation, that is named DecTDMA,
tailored to cope with unreliable links.

One of the draw backs of the self-stabilising algorithm presented in the first paper is
that packet loss is treated as transient fault. This prevents the system from stabilisation
in case there are unreliable links. The self-stabilising algorithm requires every message to
be acknowledged by all neighbours, otherwise it assumes a message loss due to conflicting
time slots. In practice, links that successfully deliver messages with probability 1 do not
exist. Especially in wireless sensor networks the success rate degenerates with distance.

The provided DecTDMA algorithm is not self-stabilising. It estimates for each neigh-
bour the link quality, i.e., the probability of successful messages delivery to that neigh-
bour. Based on this it computes an expect number of acknowledgements and compares
the measured value with the expected value. A backoff is initiated if the measured value
does not meet the expectation. On the down side, this approach is not able to han-
dle systematic message loss do to conflicting time slots. But, the practical results are
significantly better than the self-stabilising algorithm.

4



1.3 Summary

1.3.3 Third Paper: Robust and Private Distributed Shared Atomic
Memory in Message Passing Networks

Shared memory and message passing are essential communication models for distributed
algorithms. Therefore, simulation shared memory on a message passing architecture is an
important problem. The literature in this area includes the for us relevant publications of
Attiya et al. [1] for single-writer multi-reader (SWMR) and for multi-writer multi-reader
(MWMR) by Lynch and Shvartsman [10] 1.
We present an algorithm for emulation shared memory on message passing networks.

We focus on a multi-writer multi-reader shared memory, where we have a set of writers
that can write to a common shared memory and a set of readers that can read from
it. Concurrent write and read operations are explicitly allowed. The shared memory
is emulated by a set of servers. Note that we do not consider self-stabilisation. Our
work extends the work of Cadambe et al. on coded shared atomic memory algorithm
for message passing architectures [3]. They show a way to emulate shared memory on a
message passing network using maximum distance separable codes, a subclass of erasure
codes [13]. By using erasure codes, Cadambe et al. are ensuring that stop failed servers
can be tolerated.
To handle semi-Byzantine attacks, our proposed algorithm uses Reed-Solomon codes

with error correction. But, we show even more, because in this context, this leads to
additional properties. It was shown by McEliece and Sarwate in 1981 [11] that Reed-
Solomon codes can be used to implement Shamir’s secret sharing [14]. Using this we add
privacy, i.e., one has to steal at least k coded elements to reconstruct the data, where k
is a parameter of the used code.

1.3.4 Fourth Paper: Changing Lanes on a Highway

This work studies the problem of sorting agents between streams under the constraint
that each agent requires space for navigation. One could see this as vehicles on a highway
with several lanes that would like to reach there target lane. We look into optimality for
the case of two lanes in terms of minimising the number of move operations, as well as,
minimising the length of the output stream. We present an exact algorithm for the case
of two lanes and show that NP-Hardness for a increasing number of lanes. We allow to
change between neighbouring lanes and neighbouring rows if the destination is free. This
setting is similar to combinatorial puzzles [17], such as the “15” Puzzle [7].

1These are of course not the first works on shared memory emulation, earlier works are for example [15]
and [8].

5





Bibliography

[1] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. “Sharing memory robustly in
message-passing systems”. In: J. ACM (JACM) 42.1 (1995), pp. 124–142.

[2] Chen Avin, Yuval Emek, Erez Kantor, Zvi Lotker, David Peleg, and Liam Roditty.
“SINR diagrams: towards algorithmically usable SINR models of wireless networks”.
In: Proceedings of the 28th Annual ACM Symposium on Principles of Distributed
Computing, PODC 2009, Calgary, Alberta, Canada, August 10-12, 2009. Ed. by
Srikanta Tirthapura and Lorenzo Alvisi. ACM, 2009, pp. 200–209. isbn: 978-1-
60558-396-9. doi: 10.1145/1582716.1582750. url: http://doi.acm.org/10.
1145/1582716.1582750.

[3] Viveck R. Cadambe, Nancy A. Lynch, Muriel Médard, and Peter M. Musial. “A
Coded Shared Atomic Memory Algorithm for Message Passing Architectures”. In:
2014 IEEE 13th International Symposium on Network Computing and Applications,
NCA 2014, Cambridge, MA, USA, 21-23 August, 2014. IEEE Computer Society,
2014, pp. 253–260. isbn: 978-1-4799-5392-9. doi: 10.1109/NCA.2014.44. url:
http://dx.doi.org/10.1109/NCA.2014.44.

[4] Edsger W. Dijkstra. “Self-stabilizing Systems in Spite of Distributed Control”. In:
Commun. ACM 17.11 (1974), pp. 643–644. doi: 10.1145/361179.361202. url:
http://doi.acm.org/10.1145/361179.361202.

[5] Ted Herman and Chen Zhang. “Best Paper: Stabilizing Clock Synchronization for
Wireless Sensor Networks”. In: SSS. Ed. by Ajoy Kumar Datta and Maria Gradi-
nariu. Vol. 4280. LNCS. Springer, 2006, pp. 335–349. isbn: 978-3-540-49018-0.

[6] Mark L Huson and Arunabha Sen. “Broadcast scheduling algorithms for radio net-
works”. In: Military Communications Conference, 1995. MILCOM’95, Conference
Record, IEEE. Vol. 2. IEEE. 1995, pp. 647–651.

[7] Wm. Woolsey Johnson and William E. Story. “Notes on the “15” Puzzle”. English.
In: American Journal of Mathematics 2.4 (1879), pp. 397–404. issn: 00029327. url:
http://www.jstor.org/stable/2369492.

[8] Leslie Lamport. “Concurrent Reading and Writing”. In: Commun. ACM 20.11
(1977), pp. 806–811. doi: 10.1145/359863.359878. url: http://doi.acm.
org/10.1145/359863.359878.

[9] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996. isbn: 1-55860-
348-4.

7

https://doi.org/10.1145/1582716.1582750
http://doi.acm.org/10.1145/1582716.1582750
http://doi.acm.org/10.1145/1582716.1582750
https://doi.org/10.1109/NCA.2014.44
http://dx.doi.org/10.1109/NCA.2014.44
https://doi.org/10.1145/361179.361202
http://doi.acm.org/10.1145/361179.361202
http://www.jstor.org/stable/2369492
https://doi.org/10.1145/359863.359878
http://doi.acm.org/10.1145/359863.359878
http://doi.acm.org/10.1145/359863.359878


Bibliography

[10] Nancy A. Lynch and Alexander A. Shvartsman. “Robust Emulation of Shared
Memory Using Dynamic Quorum-Acknowledged Broadcasts”. In: Digest of Papers:
FTCS-27, The Twenty-Seventh Annual International Symposium on Fault-Tolerant
Computing, Seattle, Washington, USA, June 24-27, 1997. IEEE Computer Society,
1997, pp. 272–281. isbn: 0-8186-7831-3. doi: 10.1109/FTCS.1997.614100. url:
http://dx.doi.org/10.1109/FTCS.1997.614100.

[11] R. J. McEliece and D. V. Sarwate. “On Sharing Secrets and Reed-Solomon Codes”.
In: Commun. ACM 24.9 (1981), pp. 583–584. issn: 0001-0782. doi: 10.1145/
358746.358762. url: http://doi.acm.org/10.1145/358746.358762.

[12] Stéphane Pomportes, Joanna Tomasik, Anthony Busson, and Véronique Vèque.
“Self-stabilizing Algorithm of Two-Hop Conflict Resolution”. In: 12th Inter. Symp.
on Stabilization, Safety, and Security of Distributed Systems (SSS’10). 2010,
pp. 288–302.

[13] Ron M. Roth. Introduction to coding theory. Cambridge Press, 2006. isbn: 978-0-
521-84504-5.

[14] Adi Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (1979), pp. 612–
613. doi: 10.1145/359168.359176. url: http://doi.acm.org/10.1145/359168.
359176.

[15] Paul M. B. Vitányi and Baruch Awerbuch. “Atomic Shared Register Access by
Asynchronous Hardware (Detailed Abstract)”. In: 27th Annual Symposium on
Foundations of Computer Science, Toronto, Canada, 27-29 October 1986. IEEE
Computer Society, 1986, pp. 233–243. isbn: 0-8186-0740-8. doi: 10.1109/SFCS.
1986.11. url: http://dx.doi.org/10.1109/SFCS.1986.11.

[16] L.R. Welch and E.R. Berlekamp. Error correction for algebraic block codes. US
Patent 4,633,470. 1986. url: https://www.google.com/patents/US4633470.

[17] Richard M Wilson. “Graph puzzles, homotopy, and the alternating group”. In:
Journal of Combinatorial Theory, Series B 16.1 (1974), pp. 86–96.

8

https://doi.org/10.1109/FTCS.1997.614100
http://dx.doi.org/10.1109/FTCS.1997.614100
https://doi.org/10.1145/358746.358762
https://doi.org/10.1145/358746.358762
http://doi.acm.org/10.1145/358746.358762
https://doi.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
https://doi.org/10.1109/SFCS.1986.11
https://doi.org/10.1109/SFCS.1986.11
http://dx.doi.org/10.1109/SFCS.1986.11
https://www.google.com/patents/US4633470


PAPER I

Thomas Petig, Elad M. Schiller, Philippas Tsigas

Self-stabilizing TDMA Algorithms for Wireless Ad-hoc Networks
without External Reference

Appeared as technical report
CoRR, abs/1308.6475

http://arxiv.org/abs/1308.6475
2013

As extended abstract in the proceedings of
13th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET)

Piran, Slovenia
June 2-4, 2014, pp. 87–94

As brief announcement in the proceedings of
15th International Symposium Stabilization, Safety, and Security of Distributed Systems

Osaka, Japan
November 13-16, 2013, pp. 354–356



10



2 Self-stabilizing TDMA Algorithms for
Wireless Ad-hoc Networks without
External Reference

Time division multiple access (TDMA) is a method for sharing communication media.
In wireless communications, TDMA algorithms often divide the radio time into timeslots
of uniform size, ξ, and then combine them into frames of uniform size, τ . We consider
TDMA algorithms that allocate at least one timeslot in every frame to every node. Given
a maximal node degree, δ, and no access to external references for collision detection,
time or position, we consider the problem of collision-free probabilistic stabilising TDMA
algorithms that use constant frame size.
We demonstrate that this problem has no solution when the frame size is τ is less

than max{2δ, χ2}, where χ2 is the chromatic number for distance-2 vertex colouring. As
a complement to this lower bound, we focus on proving the existence of collision-free
probabilistic stabilising TDMA algorithms that use constant frame size of τ . We consider
basic settings (no hardware support for collision detection and no prior clock synchro-
nization), and the collision of concurrent transmissions from transmitters that are at
most two hops apart. In the context of probabilistic stabilising systems that have no
external reference, we are the first to study this problem (to the best of our knowledge),
and use simulations to show convergence even with computation time uncertainties.

11



2 Self-stabilizing TDMA Algorithms

2.1 Introduction

Autonomous and cooperative systems will ultimately carry out risk-related tasks, such as
piloting driverless cars, and liberate mankind from mundane labour, such as factory and
production work. Note that the implementation of these cooperative systems implies the
use of wireless ad hoc networks and their critical component – the medium access control
(MAC) layer. Since cooperative systems operate in the presence of people, their safety
requirements include the provision of real-time guarantees, such as constant communica-
tion delay. Infrastructure-based wireless networks successfully provide high bandwidth
utilization and constant communication delay. They divide the radio into timeslots of
uniform size, ξ, that are then combined into frames of uniform size, τ . Base-stations,
access points or wireless network coordinators can schedule the frame in a way that en-
ables each node to transmit during its own timeslot, and arbitrate between nearby nodes
that wish to communicate concurrently. We strive to provide the needed MAC protocol
properties, using limited radio and clock settings, i.e., no external reference for collision
detection, time or position. Note that ad hoc networks often do not consider collision de-
tection mechanisms, and external references are subject to signal loss. For these settings,
we demonstrate that there is no solution for the studied problem when the frame size is
τ < max{2δ, χ2}, where δ is a bound on the node degree, and χ2 is the chromatic number
for distance-2 vertex colouring. The main result is the existence of collision-free proba-
bilistic stabilising TDMA algorithms that use constant frame size of τ > max{4δ,X2}+1,
where X2 ≥ χ2 is a number that depends on the colouring algorithm in use. To the best
of our knowledge, we are the first to study the problem of probabilistic stabilising TDMA
timeslot allocation without external reference. The algorithm simulations demonstrate
feasibility in a way that is close to the practical realm.
Wireless ad hoc networks have a dynamic nature that is difficult to predict. This

gives rise to many fault-tolerance issues and requires efficient solutions. These networks
are also subject to transient faults due to temporal malfunctions in hardware, software
and other short-lived violations of the assumed system settings, such as changes to the
communication graph topology. We focus on fault-tolerant systems that recover after the
occurrence of transient faults, which can cause an arbitrary corruption of the system state
(so long as the program’s code is still intact). These self-stabilising [9] design criteria
simplify the task of the application designer when dealing with low-level complications,
and provide an essential level of abstraction. Consequently, the application design can
easily focus on its task – and knowledge-driven aspects. Probabilistic stabilisation [13]
ensures that the recovery happens with probability 1.
ALOHAnet protocols [1] are pioneering MAC algorithms that let each node select one

timeslot per TDMA frame at random. In the Pure Aloha protocol, nodes may transmit
at any point in time, whereas in the Slotted Aloha version, the transmissions start at
the timeslot beginning. The latter protocol has a shorter period during which packets
may collide, because each transmission can collide only with transmissions that occur
within its timeslot, rather than with two consecutive timeslots as in the Pure Aloha
case. Note that the random access approach of ALOHAnet cannot provide constant
communication delay. Distinguished nodes are often used when the application requires

12



2.1 Introduction

bounded communication delays, e.g., IEEE 802.15.4 and deterministic self-stabilising
TDMA [2, 15]. Without such external references, the TDMA algorithms have to align
the timeslots while allocating them. Existing algorithms [4] circumvent this challenge by
assuming that τ/(∆ + 1) ≥ 2, where ∆ is an upper bound on the number of nodes with
whom any node can communicate with using at most one intermediate node for relaying
messages. This guarantees that every node can transmit during at least one timeslot, s,
such that no other transmitter that is at most two hops away, also transmits during s.
However, the τ/(∆ + 1) ≥ 2 assumption implies bandwidth utilization that is up to O(δ)
times lower than the proposed algorithm, because ∆ ∈ O(δ2).
As a basic result, we show that τ/δ ≥ 2, and as a complement to this lower bound, we

focus on considering the case of τ/δ ≥ 4. We present a collision-free probabilistic stabil-
ising TDMA algorithm that use constant frame size of τ . We show that it is sufficient
to guarantee that collision freedom for a single timeslot, s, and a single receiver, rather
than all neighbours. This narrow opportunity window allows control packet exchange,
and timeslot alignment. After convergence, there are no collisions of any kind, and each
frame includes at most one control packet.
Related work Herman and Zhang [12] assume constant bounds on the commu-
nication delay and present self-stabilising clock synchronization algorithms for wireless
ad hoc networks. Herman and Tixeuil [11] assume access to synchronized clocks and
present the first self-stabilising TDMA algorithm for wireless ad hoc networks. They use
external reference for dividing the radio time into timeslots and assign them according
to the neighbourhood topology. The self-stabilisation literature often does not answer
the causality dilemma of “which came first, synchronization or communication” that re-
sembles Aristotle’s ‘which came first, the chicken or the egg?’ dilemma. On one hand,
existing clock synchronization algorithms often assume the existence of MAC algorithms
that offer bounded communication delay, e.g. [12], but on the other hand, existing MAC
algorithms that provide bounded communication delay, often assume access to synchro-
nized clocks, e.g. [11]. We propose a bootstrapping solution to the causality dilemma of
“which came first, synchronization or communication”, and discover convergence criteria
that depend on τ/δ.
The converge-to-the-max synchronization principle assumes that nodes periodically

transmit their clock value, ownClock. Whenever they receive clock values, receivedClock
> ownClock, that are greater than their own, they adjust their clocks accordingly, i.e.,
ownClock ← receivedClock. Herman and Zhang [12] assume constant bounds on the
communication delay and demonstrate convergence. Basic radio settings do not include
constant bounds on the communication delay. We show that the converge-to-the-max
principle works when given bounds on the expected communication delay, rather than
constant delay bounds, as in [12].
The proposal in [10] considers shared variable emulation. Several self-stabilising al-

gorithms adopt this abstraction, e.g., a generalized version of the dining philosophers
problem for wireless networks in [6], topology discovery in anonymous networks [20],
random distance-k vertex colouring [21], deterministic distance-2 vertex colouring [3],
two-hop conflict resolution [25], a transformation from central demon models to dis-
tributed scheduler ones [27], to name a few. The aforementioned algorithms assume that

13



2 Self-stabilizing TDMA Algorithms

if a node transmits infinitely many messages, all of its communication neighbours will
receive infinitely many of them. We do not make such assumptions about (underlying)
transmission fairness. We assume that packets, from transmitters that are at most two
hops apart, can collide every time.
The authors of [16] present a MAC algorithm that uses convergence from a random

starting state (inspired by self-stabilisation). In [17, 23], the authors use computer net-
work simulators for evaluating self-? MAC algorithms. A self-stabilising TDMA algo-
rithm, that accesses external time references, is presented in [18]. Simulations are used
for evaluating the heuristics of MS-ALOHA [26] for dealing with timeslot exhaustion by
adjusting the nodes’ individual transmission signal strength. We provide an algorithm
to solve this while considering basic radio settings. The results presented in [14, 7] do
not consider the time it takes the algorithm to converge, as we do. We mention a num-
ber of MAC algorithms that consider onboard hardware support, such as receiver-side
collision detection [7, 26, 5, 29, 4]. We consider merely basic radio technology that is
commonly used in wireless ad hoc networks. The MAC algorithms in [29, 28] assumes the
accessibility of an external time or geographical references or the node trajectories, e.g.,
Global Navigation Satellite System (GNSS). We instead integrate the TDMA timeslot
alignment with clock synchronization.
Our contribution Given a maximal node degree, δ, we consider the problem of the
existence of collision-free probabilistic stabilising TDMA algorithms that use constant
frame size of τ . In the context of (probabilistic) self-stabilising systems that have no
external reference, we are the first to study this problem (to the best of our knowledge).
The proposed probabilistic stabilising and bootstrapping algorithm answers the causality
dilemma of synchronization and communication.
For settings that have no assumptions about fairness and external reference existence,

we establish a basic limit on the bandwidth utilization of TDMA algorithms in wireless
ad hoc networks (Section 2.3). Namely, τ < max{2δ, χ2}, where χ2 is the chromatic
number for distance-2 vertex colouring. We note that the result holds for general graphs
with a clearer connection to bandwidth utilization for the cases of tree graphs (χ2 = δ+1)
and planar graphs [22] (χ2 = 5δ/3 +O(1)).
We claim the existence of collision-free probabilistic stabilising TDMA algorithms that

use constant frame size of τ without assuming the availability of external references
(Section 2.4). We also demonstrate convergence of the concept via simulations that take
uncertainties into account, such as (local) computation time.

2.2 System Settings

The system consists of a set, P := {pi}i, of communicating entities, which we call nodes.
An upper bound, ν > |P |, on the number of nodes in the system is known. Subscript
font is used to point out that Xi is pi’s variable (or constant) X. Node pi has a unique
identifier, idi, that is known to pi but not necessarily by pj ∈ P \ {pi}.
Communication graphs With δi ⊆ P we denote the set of nodes with which a node
pi ∈ P can communicate. The system can be represented by an undirected network

14



2.2 System Settings

of directly communicating nodes, G := (P,E), named the communication graph, where
E := {{pi, pj} ∈ P × P : pj ∈ δi}. We assume that G is connected. For pi, pj ∈ P , we
define the distance, d(pi, pj), as the number of edges in an edge minimum path connecting
pi and pj . We denote by ∆i := {pj ∈ P : 0 < d(pi, pj) ≤ 2} the 2-neighbourhood of
pi, and the upper bounds on the sizes of δi and ∆i are denoted by δ ≥ maxpi∈P (|δi|),
and respectively, ∆ ≥ maxpi∈P (|∆i|). We assume that diam ≥ maxpi,pj∈P d(pi, pj) is an
upper bound on the network diameter.
Synchronization The nodes have fine-grained clock hardware (with arbitrary clock
offset upon system start). For the sake of presentation simplicity, our work considers
zero clock skews, i.e., the clocks of all nodes run at the same speed. We denote with
clock tick, the time interval it takes for the clocks to increment by 1. We assume that
the clock value, C ∈ {0, . . . , C − 1}, and any timestamp in the system have C states.
The pseudo-code uses the GetClock() function that returns a timestamp of C’s current
value. We say that the clocks are synchronized when ∀pi, pj ∈ P : Ci = Cj , where Ci
is pi’s clock value. Since the clock value can overflow at its maximum, and wrap to the
zero value, arithmetic expressions that include timestamp values are module C, e.g., the
function AdvanceClock(x) := C ← (C + x) mod C adds x time units to clock value, C,
modulo its number of states, C.
Periodic pulses invoke the MAC protocol, and divide the radio time into (broadcasting)

timeslots of ξ time units in a way that provides sufficient time for the transmission of a
single packet. We group τ timeslots into (broadcasting) frames. The pseudo-code uses
the event timeslot() that is triggered by the event 0 = Ci mod ξ and s() := Ci÷ξ mod τ
is the timeslot number, where ÷ is the integer division.
Operations The communication allows a message exchange between the sender and
the receiver. After the sender, pi, fetches message m ← MACfetchi() from the upper
layer, and before the receiver, pj , delivers it to the upper layer in MACdeliverj(m),
they exchange m via the operations transmiti(m), and respectively, m ← receivej().
We model the communication channel, qi,j (queue), from node pi to node pj ∈ δi as
the most recent message that pi has sent to pj and that pj is about to receive, i.e.,
|qi,j | ≤ 1. When pi transmits message m, the operation transmiti(m) inserts a copy of
m to every qi,j , such that pj ∈ δi. Once m arrives, pj executes receive() and returns
the tuple 〈i, ti, tj ,m〉, where ti = Ci and tj = Cj are the clock values of the associated
transmiti(m), and respectively,m← receivej() calls. We assume zero propagation delay
and efficient time-stamping mechanisms for ti and tj . Moreover, the timeslot duration,
ξ, allows the transmission and reception of at least a single packet, see Property 1.

Property 1. Let pi ∈ P , pj ∈ δi. At any point in time ti in which node pi transmits
message m for duration of ξ, node pj receives m if there is no node pk ∈ (δi ∪ δj) \ {pi}
that transmits starting from time tk with duration ξ such that [ti, ti + ξ) and [tk, tk + ξ)
are intersecting.

This means a node can receive a message if no node in the neighbourhood of the sender
and no node in the neighbourhood of the receiver is transmitting concurrently.
Interferences Wireless communications are subject to interferences when two or
more neighbouring nodes transmit concurrently, i.e., the packet transmission periods

15



2 Self-stabilizing TDMA Algorithms

overlap or intersect. We model communication interferences, such as unexpected peaks
in ambient noise level and concurrent transmissions of neighbouring nodes, by letting
the (communication) environment to selectively omit messages from the communication
channels. We note that we do not consider any error (collision) indication from the
environment.
The environment can use the operation omissioni,j(m) for removing message m from

the communication channel, qi,j , when pi’s transmission of m to pj ∈ δi is concurrent
with the one of pk ∈ ∆i. Immediately after transmiti(m), the environment selects a
subset of pi’s neighbours, Omitm ⊆ δi, removes m from qi,j : pj ∈ Omitm and by that it
prevents the execution of m← receivej(). Note that Omitm = δi implies that no direct
neighbour can receive message m.
Probabilistic stabilisation Every node, pi ∈ P , executes a program that is a sequence
of (atomic) steps, ai. The state, sti, of node pi ∈ P includes pi’s variables, including the
clocks and the program control variables, and the communication channels, qi,j : pj ∈ δi.
The (system) configuration is a tuple c := (st1, . . . , st|P |) of node states. Given a system
configuration, c, we define the set of applicable steps, a = {ai}, for which pi’s state, sti,
encodes a non-empty communication channel or an expired timer. An execution is an
unbounded alternating sequence R := (c(0), a(0), c(1), a(1), . . .) (Run) of configurations
c(k), and applicable steps a(k) that are taken by the algorithm and the environment.
The task T is a set of specifications and LE (legal execution) is the set of all executions
that satisfy T . We say that configuration c is safe, when every execution that starts from
it is in LE . An algorithm is called probabilistic self-stabilising [13, 8] if it reaches a safe
configuration with probability 1.
Task definition We consider the task TTDMA , that requires all nodes, pi, to have
timeslots, si, that are uniquely allocated to pi within ∆i. We define LE TDMA to be
the set of legal executions, R, for which ∀pi ∈ P : (pj ∈ P ⇒ Ci = Cj) ∧ (((si ∈
{0, . . . , τ − 1}) ∧ (pj ∈ ∆i)) ⇒ si 6= sj) holds in all of R’s configurations. We note that
for a given finite τ , there are communication graphs for which TTDMA does not have a
solution, e.g., the complete graph, Kτ+1, with τ + 1 nodes. In Section 2.3, we show that
the task solution can depend on the (arbitrary) starting configuration, rather then just
the communication graph.

2.3 Basic Results

We establish a basic limitation of the bandwidth utilization for TDMA algorithms in
wireless ad hoc networks. Before generalizing the limitation, we present an illustrative
example (Lemma 1) of a starting configuration for which τ < max{2δ, χ2}, where χ2 is
the chromatic number for distance-2 vertex colouring.

Lemma 1. Let δ ∈ N and τ < 2δ. Suppose that the communication graph, G :=
({p0, . . . pδ}, E), has the topology of a star, where the node pδ is the centre (root) node
and E := {pδ} × L, where L := {p0, . . . pδ−1} are the leaf nodes. There is a starting
configuration c(x), such that an execution R starting from c(x) of any algorithm solves
the task TTDMA does not converge.

16



2.3 Basic Results

frame = 9 slots

Figure 2.1: The outer five nodes are covering nine timeslots. The top horizontal line
and its perpendicular marks depict the radio time division according to the
central node, pδ. The grey boxes depict the radio time covered by the leaf
nodes, pi ∈ L.

Proof. We prove this Lemma by showing an example in which we assign timeslots to
a subset of nodes in a way, such that they block each other and, thus, disconnect the
communication graph.
Let τ = 2δ − 1. Let c(x) be such that: (1) Ci in c(x) has the properties (Ci +

(2ξ − 1)i) mod ξ = 0 and (Ci + (2ξ − 1)i) ÷ ξ mod τ = si for all pi ∈ L \ {pδ}, (2)
sδ = ⊥ and (3) there is no message in transit. Figure 2.1 shows such a graph for
δ = 5. This means the next timeslot of node pi ∈ L \ {pδ} starts (2ξ − 1)i clock ticks
after c(x). The gap between the time pi’s timeslot ends and pi+1’s timeslot starts is
(2ξ−1)(i+1)− ((2ξ−1)i+ξ) = ξ−1 < ξ clock ticks long and, thus, smaller than a time
slot. The gap between the next transmission of pδ−1 and the next next transmission of
p0 is (2δ − 1)ξ + (2ξ − 1)0 − ((2ξ − 1)(δ − 1) + ξ) = δ − 1 < ξ. This pattern repeats,
because only pδ receives these messages transmitted by the leaves and pδ does not have
a time slot assigned and according to Property 1 any attempt of pδ in transmitting can
fail. Thus, no algorithm can establish communication here.

The proof of Lemma 1 considers that case of τ < 2δ and the star topology graph.
We note that the same scenario can be demonstrated in every graph that includes a
node with the degree δ. Thus, we can establish a general proof for τ < max{2δ, χ(G2)}
using the arguments in the proof of Lemma 2, where χ2 is the chromatic number when
considering distance-2 colouring.

Lemma 2. Let ξ ∈ R, τ ∈ N and S := {[aξ, (a+ 1)ξ) : a ∈ {0, . . . , τ − 1}} be a partition
of [0, ξτ). The intervals C := {[bi, bi + ξ) : bi ∈ R}i intersects maximum 2|C| elements
of S.

Proof. Suppose that [b, b + ξ) ∈ C intersects I := [aξ, (a + 1)ξ) ∈ S for some a. Either

17



2 Self-stabilizing TDMA Algorithms

I = [b, b + ξ), b ∈ I or b + ξ ∈ I. Therefore, any element [bi, bi + ξ) of C intersects
maximum 2 elements of S, one that contains bi and one that contains bi + ξ.

2.4 Probabilistic stabilising TDMA Allocation and
Alignment Algorithm

We propose Algorithm 1 as a self-stabilising algorithm for the TTDMA task. The nodes
transmit data packets, as well as control packets. Data packets are sent by active nodes
during their data packet timeslots. The passive nodes listen to the active ones and do not
send data packets. Both active and passive nodes use control packets, which include the
reception time and the sender of recently received packets from direct neighbours. Each
node aggregates the frame information it receives. It uses this information for avoiding
collisions, acknowledging packet transmission and resolving hidden node problems. A
passive node, pi, can become active by selecting random timeslots, si, that are not used
by active nodes. Then pi sends a control packet in si and waiting for confirmation. Once
pi succeeds, it becomes an active node that uses timeslot si for transmitting data packets.
Node pi becomes passive whenever it learns about conflicts with nearby nodes, e.g., due
to a transmission failure.
The hidden node problem refers to cases in which node pi has two neighbours, pj , pk ∈

δi, that use intersecting timeslots. The algorithm uses random back off techniques for
resolving this problem. The passive nodes count a random number of unused timeslots
before transmitting a control packet. The active nodes use their clocks for defining frame
numbers. They count down only during TDMA frames whose numbers are equal to si,
where si ∈ [0, τ − 1] is pi’s data packet timeslot. These back off processes connect all
direct neighbours and facilitate clock synchronization, timeslot alignment and timeslot
assignment. During legal executions, in which all nodes are active, there are no collisions
and each node transmits one control packet once every τ frames.
Algorithm details The node status, statusi, is either active or passive. When it is
active, variable si contains pi timeslot number.
The frame information is the set FI i := {idk, typek, occurrencek, rxT imek}k ⊂ FI =

ID× {message, welcome} × {remote, local} ×N that contains information about recently
received packets, where ID := {⊥} ∪ N is the set of possible ids and the null value
denoted by ⊥. An element of the frame information contains the id of the sender idk.
The type typek = message indicates that the sender was active. For a passive sender
typek = welcome indicates that there was no known conflict when this element was added
to the local frame information. If occurrencek = local, the corresponding packet was
received by pi, otherwise it was copied from a neighbour. The reception time rxT imek
is the time when this packet was received, regarding the local clock Ci, i.e., it is updated
whenever the local clock is updated. The algorithm considers the frame information to
select an unused timeslot. An entry in the frame information with timestamp t covers
the time interval [t, t+ ξ).
Nodes transmit control packets according to a random back off strategy for collision

avoidance. The passive node, pi, chooses a random back off value, stores it in the variable

18



2.4 Probabilistic stabilising TDMA Allocation and Alignment Algorithm

Algorithm 1: Probibilistic stabilising TDMA Allocation, code for node pi
statusi ∈ {active, passive}; /* current node status */
si ∈ {0, . . . , τ − 1}; /* current data packet timeslot */
waiti, waitAddi ∈ {0, . . . ,maxWait}; /* current back off countdown */
FI i := {idk, typek, occurrencek, rxT imek}k ⊂ FI; /* frame information */
BackOff () := let (tmp, r) ← (waitAddi, rnd({1, . . . , 3∆})); return (τ + r + tmp, 3∆− r);
/* reset backoff counter */

frame() := (GetClock()÷ ξτ) mod τ,; /* the current frame number */
Slot(t) := (t÷ ξ mod τ), s() := Slot(GetClock()); /* slot number of time t */
Local(set) := {〈•, local, •〉 ∈ set}; /* dist-1 neighbours in set */
Used(set) :=

⋃
〈•,tk〉∈set

{Slot(tk), . . . , Slot(tk + ξ − 1)};
Unused(set) := {0, . . . , τ − 1} \Used(set); /* set of (un)used slots */
ConflictWithNeighbors(set) := (@〈idi•〉∈set∨ si ∈ {Slot(ti), . . . , Slot(ti + ξ)}∨
∃〈k,•,rxTime〉∈set,k 6=idi : si ∈ {Slot(rxT ime− tj + ti), . . . , Slot(rxT ime− tj + ti + ξ)}); /* check
for conflicts */

AddToFI(set, o) := FI i ← FI i ∪ {〈x, y, remote, z′〉 : 〈x, y, •, z〉 ∈ set, z′ :=
(z + max{0, o}) mod C, z′ ≤(τ+1)ξ Ci}; /* set+ FI i */

IsUnused(s) := s ∈ Unused(FI i) ∨ (Unused(FI i) = ∅ ∧ s ∈ Unused(Local(FI i))); /* is s an
unused slot? */

1.1 upon timeslot() do
1.2 if s() = si ∧ statusi = active then /* send data packet */

transmit(〈statusi,Local(FI i),MACfetch()〉)
1.3 else if ¬(statusi = active ∧ frame() 6= si) then /* check if our frame */
1.4 if IsUnused(s()) ∧ waiti ≤ 0 then /* send control packet */
1.5 transmit(〈statusi,Local(FI i),⊥〉);

〈waiti, waitAddi〉 ← BackOff (); /* next control packet countdown */
1.6 if statusi 6= active then 〈si, statusi〉 ← 〈s(), active〉;
1.7 else if waiti > 0 ∧ IsUnused((s()− 1) mod τ) then /* count down */

waiti ← max{0, waiti − 1}

1.8 FI i ← {〈•, rxT ime〉 ∈ FI i : rxT ime ≤(τ+1)ξ GetClock()}; /* remove old entries from FI i
*/

1.9 upon 〈j, tj , ti, 〈statusj ,FI j ,m
′〉〉 ← receive() do

1.10 if ConflictWithNeighbors(FI j) ∧ statusi = active then /* conflicts? */
〈〈waiti, waitAddi〉, status〉 ← 〈BackOff (), passive〉; /* get passive */

1.11 if statusj = active then /* active node acknowledge */
1.12 if m′ 6= ⊥ then FI i ← {〈idi, •〉 ∈ FI i : idi 6= j}∪ {〈j,message, local, ti〉};
1.13 else if tj = ti ∧ Slot(tj) 6∈ Used(FI i) then /* passive node acknowledge */
1.14 FI i ← {〈idk, •〉 ∈ FI i : idk 6= j}∪ {〈j,welcome, local, ti〉};
1.15 if ti < tj then /* converge-to-the-max */
1.16 AdvanceClock(tj − ti); /* adjust clock */
1.17 FI i ← {〈•, (rxT ime+ tj − ti) mod c〉 : 〈•, rxT ime〉 ∈ FI i}; /* shift timestamps in FI i

*/
1.18 〈〈waiti, waitAddi〉, statusi〉 ← 〈BackOff (), passive〉; /* get passive */

1.19 AddToFI(FI j , ti − tj); /* Aggregate information on used timeslots */
1.20 if m′ 6= ⊥ then MACdeliver(m′);

waiti, and uses waiti for counting down the number of timeslots that are available
for transmissions. When waiti = 0, node pi uses the next unused timeslot according

19



2 Self-stabilizing TDMA Algorithms

to its frame information. During back off periods, the algorithm uses the variables
waiti and waitAddi for counting down to zero. The process starts when node pi assigns
waiti ← waitAddi + r, where r is chosen uniformly by random from the set {1, . . . , 3∆},
and updates waitAddi ← 3∆− r, cf. BackOff ().

The node clock is the basis for the frame and timeslot starting times, cf. frame(),
and respectively, s(), and also for a given timeslot number, cf. Slot(t). When working
with the frame information, set , it is useful to have restriction by local occupancies,
cf. Local(set) and to list the sets of used and unused timeslots, cf. Used(set), and
respectively, Unused(set). We check whether an arriving frame information, set , conflicts
with the local frame information that is stored in FI i, cf. ConflictWithNeighbors(set),
before merging them together, cf. AddToFI(set , offset), after updating the timestamps
in set , which follow the sender’s clock.

Node pi can test whether the timeslot number s is available according to the frame
information in FI i and pi’s clock. Since Algorithm 1 complements the studied lower
bound (Section 2.3), the test in IsUnused(s) checks whether FI i encodes a situation in
which there are no unused timeslots. In that case, IsUnused(s) tests whether we can say
that s is unused when considering only transmissions of direct neighbours. The algorithm
relies on the case in which τ > max{4δ,∆ + 1}. We use Lemma 2 here to argue that
there are always a free time slot to communicate with neighbours.

The code of Algorithm 1 considers two events: (1) periodic timeslots (line 1.1) and (2)
reception of a packet (line 1.9).

(1) timeslot(), line 1.1: Actives nodes transmit their data packets upon their times-
lot (line 1.2). Passive nodes transmit control packets when the back off counter, waiti,
reaches zero (line 1.5). Note that passive nodes count only when the local frame infor-
mation says that the previous timeslot was unused (line 1.7). Active nodes also send
control packets, but rather than counting all unused timeslots, they count only the un-
used timeslots that belong to frames with a number that matches the timeslot number,
i.e., frame() = si (line 1.3).

(2) receive(), line 1.9: Active nodes, pi, become passive when they identify conflicts
in FI j between their data packet timeslots, si, and data packet timeslots, sj of other
nodes pj ∈ ∆i (line 1.10). When the sender is active, the receiver records the related
frame information. Note that the payload of data packets is not empty in line 1.12, c.f.,
m′ 6= ⊥. Passive nodes, pj , aim to become active. In order to do that, they need to
send a control packet during a timeslot that all nearby nodes, pi, view as unused, i.e.,
Slot(t) 6∈ Used(FI i), where t is the packet sending time. Therefore, when the sender
is passive, and its data packet timeslots are aligned, i.e., ti = tj , node pi welcomes pi’s
control packet whenever Slot(tj) 6∈ Used(FI i). Algorithm 1 uses a self-stabilising clock
synchronization algorithm that is based on the converge-to-the-max principle. When
the sender clock value is higher (line 1.15), the receiver adjusts its clock value and the
timestamps in the frame information set, before validating its timeslot, si, (lines 1.16
to 1.18). The receiver can now use the sender’s frame information and payload (lines 1.19
to 1.20).

20



2.5 Experimental results

20 40 60 80
0

50

100

150

number of nodes
fr

am
es

grid graph
random graph

Figure 2.2: The convergence time in frames for different graphs. In the grid graph, nodes
are placed on a lattice and connected to their four neighbours. The conver-
gence times are the average over 16 runs that start each with random clock
offsets. The random node graph is a unified disk graph with random node
placement with maximal 16 neighbours pair node.

2.5 Experimental results

We demonstrate the implementation feasibility. We study the behaviour of the proposed
algorithm in a simulation model that takes into account timing uncertainties. Thus, we
demonstrate feasibility in a way that is close to the practical realm.
The system settings (Section 2.2) assumes that any (local) computation can be done

in zero time. In contrast to this, the simulations use the TinyOS embedded operating
systems [19] and the Cooja simulation framework [24] for emulating wireless sensor nodes
together with their processors. This way Cooja simulates the code execution on the nodes,
by taking into account the computation time of each step. We implemented the proposed
algorithm for sensor nodes that use IEEE 802.15.4 compatible radio transceivers. The
wireless network simulation is according to the system settings (Section 2.2) is based on
a grid graph with 4 ≥ δ as an upper bound on the node degree and a random graph with
16 ≥ δ as an upper bound on the node degree. The implementation uses clock ticks of 1
millisecond. We use a time slot size of ξ = 20 clock ticks, where almost all of this period
is spent on transmission, packet loading and offloading. The frame size is τ = 16 ≥ 4δ
time slots for the grid graph and τ = 64 ≥ 4δ for the random graphs. For these settings,
all experiments showed convergence, see Figure 2.2.

2.6 Conclusions

In Section 2.5, we presented experimental results that are based on the concept of Algo-
rithm 1. Motivated by these results, we claim the following theorem.

Theorem 1. Algorithm 1 is a probabilistic self-stabilising implementation of task TTDMA.

The proof of Theorem 1 starts by showing the existence of unused timeslots by consid-
ering the case in which τ > max{4δ,∆ + 1}. For this, we use Lemma 2. This facilitates

21



2 Self-stabilizing TDMA Algorithms

the proof of network connectivity, as a success probability for control packets on each
edge, clock synchronization (similar to [12]) and bandwidth allocation (Based on the fact
that there are at least twice as many timeslots as competing nodes).

2.7 Acknowledgements

This work would not have been possible without the contribution of Olaf Landsiedel
and Mohamed H. Mustafa in many helpful discussions, ideas, problem definition and
analysis.

22



Bibliography

[1] Norman Abramson. “Development of the ALOHANET”. In: Info. Theory, IEEE
Trans. on 31.2 (1985), pp. 119–123.

[2] M. Arumugam and S.S. Kulkarni. “Self-stabilizing deterministic time division mul-
tiple access for sensor networks”. In: AIAA Journal of Aerospace Computing, Info.,
and Comm. (JACIC) 3 (2006), pp. 403–419.

[3] Jean R. S. Blair and Fredrik Manne. “An efficient self-stabilizing distance-2 coloring
algorithm”. In: Theor. Comput. Sci. 444 (2012), pp. 28–39.

[4] C. Busch, M. Magdon-Ismail, F. Sivrikaya, and B. Yener. “Contention-free MAC
protocols for asynchronous wireless sensor networks”. In: Distributed Computing
21.1 (2008), pp. 23–42. doi: 10.1007/s00446-007-0053-x. url: http://dx.doi.
org/10.1007/s00446-007-0053-x.

[5] Hector Agustin Cozzetti and Riccardo Scopigno. “RR-Aloha+: A slotted and dis-
tributed MAC protocol for vehicular communications”. In: Vehicular Networking
Conference (VNC), 2009 IEEE. 2009, pp. 1 –8. doi: 10.1109/VNC.2009.5416375.

[6] Praveen Danturi, Mikhail Nesterenko, and Sébastien Tixeuil. “Self-stabilizing
philosophers with generic conflicts”. In: ACM Tran. Autonomous & Adaptive Sys-
tems (TAAS) 4.1 (2009).

[7] Murat Demirbas and Muzammil Hussain. “A MAC Layer Protocol for Priority-
based Reliable Multicast in Wireless Ad Hoc Networks”. In: BROADNETS. IEEE,
2006.

[8] S. Devismes, S. Tixeuil, and M. Yamashita. “Weak vs. Self vs. Probabilistic Sta-
bilization”. In: 2008 The 28th International Conference on Distributed Computing
Systems. 2008, pp. 681–688. doi: 10.1109/ICDCS.2008.12.

[9] Shlomi Dolev. Self-Stabilization. MIT Press, 2000. isbn: 0-262-04178-2.

[10] Ted Herman. “Models of Self-Stabilization and Sensor Networks”. In: IWDC. Ed.
by Samir R. Das and Sajal K. Das. Vol. 2918. LNCS. Springer, 2003, pp. 205–214.
isbn: 3-540-20745-7.

[11] Ted Herman and Sébastien Tixeuil. “A Distributed TDMA Slot Assignment Algo-
rithm for Wireless Sensor Networks”. In: Algorithmic Aspects of Wireless Sensor
Networks: First International Workshop, ALGOSENSORS 2004, Turku, Finland,
July 16, 2004. Proceedings. Vol. 3121. LNCS. Springer, 2004, pp. 45–58. isbn: 3-
540-22476-9. doi: 10.1007/978-3-540-27820-7_6. url: http://dx.doi.org/
10.1007/978-3-540-27820-7_6.

23

https://doi.org/10.1007/s00446-007-0053-x
http://dx.doi.org/10.1007/s00446-007-0053-x
http://dx.doi.org/10.1007/s00446-007-0053-x
https://doi.org/10.1109/VNC.2009.5416375
https://doi.org/10.1109/ICDCS.2008.12
https://doi.org/10.1007/978-3-540-27820-7_6
http://dx.doi.org/10.1007/978-3-540-27820-7_6
http://dx.doi.org/10.1007/978-3-540-27820-7_6


Bibliography

[12] Ted Herman and Chen Zhang. “Best Paper: Stabilizing Clock Synchronization for
Wireless Sensor Networks”. In: SSS. Ed. by Ajoy Kumar Datta and Maria Gradi-
nariu. Vol. 4280. LNCS. Springer, 2006, pp. 335–349. isbn: 978-3-540-49018-0.

[13] Amos Israeli and Marc Jalfon. “Token Management Schemes and Random Walks
Yield Self-stabilizing Mutual Exclusion”. In: Proceedings of the Ninth Annual ACM
Symposium on Principles of Distributed Computing. PODC ’90. Quebec City, Que-
bec, Canada: ACM, 1990, pp. 119–131. isbn: 0-89791-404-X. doi: 10.1145/93385.
93409. url: http://doi.acm.org/10.1145/93385.93409.

[14] Arshad Jhumka and Sandeep S. Kulkarni. “On the Design of Mobility-Tolerant
TDMA-Based Media Access Control (MAC) Protocol for Mobile Sensor Networks”.
In: Distributed Computing and Internet Technology, 4th International Conference,
ICDCIT 2007, Bangalore, India, December 17-20, Proceedings. Ed. by Tomasz
Janowski and Hrushikesha Mohanty. Vol. 4882. LNCS. Springer, 2007, pp. 42–
53. isbn: 978-3-540-77112-8. doi: 10.1007/978-3-540-77115-9_4. url: http:
//dx.doi.org/10.1007/978-3-540-77115-9_4.

[15] Sandeep S. Kulkarni and Mahesh Arumugam. “Transformations for write-all-with-
collision model, ”. In: Computer Communications 29.2 (2006), pp. 183–199.

[16] Pierre Leone, Marina Papatriantafilou, and Elad Michael Schiller. “Relocation
Analysis of Stabilizing MAC Algorithms for Large-Scale Mobile Ad Hoc Net-
works”. In: 5th Inter. Workshop Algo. Wireless Sensor Net. (ALGOSENSORS).
2009, pp. 203–217.

[17] Pierre Leone, Marina Papatriantafilou, Elad Michael Schiller, and Gongxi Zhu.
“Chameleon-MAC: Adaptive and Self-? Algorithms for Media Access Control in
Mobile Ad Hoc Networks”. In: 12th Inter. Symp. on Stabilization, Safety, and Se-
curity of Distributed Systems (SSS’10). 2010, pp. 468–488.

[18] Pierre Leone and Elad Michael Schiller. “Self-Stabilizing TDMA Algorithms for Dy-
namic Wireless Ad-hoc Networks”. In: Int. J. Distributed Sensor Networks 639761
(2013).

[19] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin Whitehouse,
Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer, et al. “TinyOS: An
operating system for sensor networks”. In: Ambient intelligence. Springer, 2005,
pp. 115–148.

[20] Toshimitsu Masuzawa and Sébastien Tixeuil. “On bootstrapping topology knowl-
edge in anonymous networks”. In: ACM Trans. Auton. Adapt. Syst. 4.1 (2009), 8:1–
8:27. issn: 1556-4665. doi: 10.1145/1462187.1462195. url: http://doi.acm.
org/10.1145/1462187.1462195.

[21] Nathalie Mitton, Eric Fleury, Isabelle Guérin Lassous, Bruno Sericola, and
Sébastien Tixeuil. “Fast Convergence in Self-Stabilizing Wireless Networks”. In:
12th Int. Conf. Parallel and Distributed Systems (ICPADS’06). 2006, pp. 31–38.

24

https://doi.org/10.1145/93385.93409
https://doi.org/10.1145/93385.93409
http://doi.acm.org/10.1145/93385.93409
https://doi.org/10.1007/978-3-540-77115-9_4
http://dx.doi.org/10.1007/978-3-540-77115-9_4
http://dx.doi.org/10.1007/978-3-540-77115-9_4
https://doi.org/10.1145/1462187.1462195
http://doi.acm.org/10.1145/1462187.1462195
http://doi.acm.org/10.1145/1462187.1462195


Bibliography

[22] Michael Molloy and Mohammad R. Salavatipour. “A bound on the chromatic num-
ber of the square of a planar graph”. In: J. Comb. Theory, Ser. B 94.2 (2005),
pp. 189–213.

[23] Mohamed Mustafa, Marina Papatriantafilou, Elad Michael Schiller, Amir Tohidi,
and Philippas Tsigas. “Autonomous TDMA Alignment for VANETs”. In: 76th IEEE
Vehicular Technology Conf. (VTC-Fall’12). IEEE, 2012, pp. 1–5. isbn: 978-1-4673-
1880-8.

[24] Fredrik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and Thiemo
Voigt. “Cross-level sensor network simulation with cooja”. In: Local Computer Net-
works, Proceedings 2006 31st IEEE Conference on. IEEE. 2006, pp. 641–648.

[25] Stéphane Pomportes, Joanna Tomasik, Anthony Busson, and Véronique Vèque.
“Self-stabilizing Algorithm of Two-Hop Conflict Resolution”. In: 12th Inter. Symp.
on Stabilization, Safety, and Security of Distributed Systems (SSS’10). 2010,
pp. 288–302.

[26] Riccardo Scopigno and Hector Agustin Cozzetti. “Mobile Slotted Aloha for Vanets”.
In: Proceedings of the 70th IEEE Vehicular Technology Conference, VTC Fall 2009,
20-23 September 2009, Anchorage, Alaska, USA. IEEE, 2009, pp. 1–5. doi: 10.
1109/VETECF.2009.5378792. url: http://dx.doi.org/10.1109/VETECF.2009.
5378792.

[27] Volker Turau and Christoph Weyer. “Randomized Self-stabilizing Algorithms for
Wireless Sensor Networks”. In: IWSOS/EuroNGI. Ed. by Hermann de Meer and
James P. G. Sterbenz. Vol. 4124. LNCS. Springer, 2006, pp. 74–89. isbn: 3-540-
37658-5.

[28] Saira Viqar and Jennifer L. Welch. “Deterministic Collision Free Communication
Despite Continuous Motion”. In: 5th Inter. Workshop Algo. Wireless Sensor Net.
(ALGOSENSORS). 2009, pp. 218–229.

[29] Fan Yu and Subir Biswas. “Self-Configuring TDMA Protocols for Enhancing Ve-
hicle Safety With DSRC Based Vehicle-to-Vehicle Communications”. In: Selected
Areas in Communications, IEEE Journal on 25.8 (2007), pp. 1526 –1537. issn:
0733-8716. doi: 10.1109/JSAC.2007.071004.

25

https://doi.org/10.1109/VETECF.2009.5378792
https://doi.org/10.1109/VETECF.2009.5378792
http://dx.doi.org/10.1109/VETECF.2009.5378792
http://dx.doi.org/10.1109/VETECF.2009.5378792
https://doi.org/10.1109/JSAC.2007.071004




PAPER II

Olaf Landsiedel, Thomas Petig and Elad M. Schiller

DecTDMA: A Decentralized-TDMA with Link Quality Estimation
for WSNs

Appeard as extended abstract in the proceedings of
Stabilization, Safety, and Security of Distributed Systems - 18th International

Symposium, SSS 2016
Lyon, France

November 7-10, 2016, pp. 231–247





3 DecTDMA: A Decentralized-TDMA
with Link Quality Estimation for
WSNs

In wireless sensor networks (WSNs), different motes may transmit packets concurrently,
i.e., having overlapping transmission periods. As a result of this contention, there are
no packet reception guarantees and significant bandwidth can be lost. This contention
can have a strong impact on the performance together with other kinds of interference
sources, e.g., ambient noise. As a result, WSN’s connectivity tends to have a very
dynamic nature.
In this paper, we devise DecTDMA (Decentralized-TDMA), a fully decentralized

medium access controller (MAC) that significantly reduces contention. It is based
on a self-stabilizing algorithm for time division multiple access (TDMA). This self-
stabilizing TDMA algorithm uses no external assistance or external references, such as
wireless access points (WAPs) and globally-synchronized clocks. We present the design
and implementation of DecTDMA and report encouraging results: our Cooja simulations
and Indriya testbed experiments show stable connectivity and high medium utilization
in both single and multi-hop networks. Since DecTDMA has favorable characteristics
with respect to connection stability, we show that common link quality estimation (LQE)
techniques further improve the operation of DecTDMA in the dynamic environment of
low-power wireless networks.

29



3 DecTDMA: A Decentralized-TDMA with Link Quality Estimation for WSNs

3.1 Introduction

Wireless sensor networks (WSNs) are self-organizing systems where computing devices,
so called motes (or nodes), set up – by themselves – a networking infrastructure without
relying on external assistance. In this paper, we focus on medium access control (MAC)
in WSNs. We present DecTDMA (Decentralized-TDMA) — a fully-decentralized MAC
protocol for WSNs. Our decentralized solution does not assume access to external refer-
ences, such as wireless access points (WAPs), and individual nodes in DecTDMA do not
have special tasks, such as acting as elected coordinators. In this work, we aim to mitigate
one of the key sources of internal interference: concurrent transmissions by neighboring
motes, which cause radio interferences. The event of concurrent transmissions refers to
the occurrence of multiple transmissions, such that the periods of these transmissions
overlap. Concurrent transmissions have a great impact on the throughput in WSNs.
For example, they can reduce the packet reception ratio (PRR) [26]. DecTDMA uses a
self-stabilizing algorithm [19] for time division multiple access (TDMA) that significantly
reduces the occurrence of concurrent transmissions. In addition, we show that DecTDMA
deals well with other causes of WSN dynamics, such as mote or link failure and wireless
links of intermediate quality, i.e., links with a PRR between 10% and 90%. DecTDMA
uses a link quality estimation (LQE) technique for estimating the PRR of both broadcasts
and their respective acknowledgements. We use this elegant (lightweight) and software-
based technique for masking short term link failures, i.e., sporadic (receiver-side) packet
omissions. It allows DecTDMA to sift out both disconnected links and (many) interme-
diate quality links. We present a TinyOS implemention of DecTDMA and evaluate it via
Cooja simulations and experiments in the Indriya testbed [6]. During these experiments,
we observe rather stable PRR values. Moreover, during our experiments, DecTDMA
achieves PRR values that approach the analytical bounds.
Challenges In wireless communications, a single message may reach many receivers
(due to the broadcast nature of radio transmissions). The success of message arrival de-
pends on the distance between the transmitter and potential receivers as well as complex
signal propagation patterns: wireless signals propagate unequally in different directions
due to antenna characteristics, over many paths, and are subjected to interference. In
WSNs, different (possibly neighboring) transmitters may send concurrently. In such
cases, there are no guarantees for any receiver to get the packet and significant band-
width can be lost. Thus, one of the key challenges in simplifying the use of WSNs is to
limit the occurrence of such local contention factors. The studied question is whether
one can device a MAC protocol that avoids contention, i.e., significantly reduces the
occurrence of concurrent transmissions. We present DecTDMA and report encouraging
results about the feasibility of TDMA protocols that require no external references, such
as WAPs and global clocks.
Evaluation criteria Medium access control with high throughput is essential for many
WSN protocols, especially for routing protocols [2]. Using statistical characterization,
methods for link quality estimation (LQE) provide insights for routing protocols on
which links they should forward packets. By avoiding low and intermediate quality links,
the MAC layer can limit its packet loss, reduce the number of re-transmissions, and

30



3.1 Introduction

provide better connectivity. This also impacts the higher layers, e.g., it reduces the need
for selecting new routes at the network layer and reduce the end-to-end latency of the
transport layer.
PRR is a common evaluation criterion in (wireless) communication networks [2]. For

WSNs, PRR is often an elegant criterion that is easy to implement and according to
which routing protocols can estimate link quality. In this work, we are interested both in
the PRR values themselves and their stability over time. The motivation for the latter
criterion is by the fact that stable PRR values are easier to work with (from the point
of view of the higher layers).
The literature refers to PRR both as an evaluation criterion and as a basic mechanism

for evaluating link quality. It is well-known that there are more advanced LQE mech-
anisms that provide more stable estimation than the average PRR mechanism [2]. We
follow the common practice that often use average PRR mechanisms for simplicity and
choose an LQE mechanism that considers the PRR values of both messages and their
acknowledgements.
Design criteria In this paper, we focus on MAC protocols for low-power wireless
networks that autonomously set up their networking infrastructure. WSNs are subject
to faults that occur due to temporal hardware or software malfunctions or the dynamic
nature of low-power wireless communications.
Fault-tolerant systems that are self-stabilizing [7] can recover after the occurrence of

transient faults. These faults can cause an arbitrary corruption of the system state (as
long as the code of the program is still intact). Transient faults can also represent tempo-
rary violations of the assumptions according to which the communication links and the
entire dynamic networks behaves during normal operation. In order to provide DecT-
DMA with properties of self-organization and self-recovery, we base the implementation
of DecTDMA on an existing self-stabilizing TDMA algorithm [19]. This algorithm helps
DecTDMA to significantly reduce the occurrence of concurrent transmissions. We note
that the design of the TDMA algorithm in [19] focuses on packet loss due to concurrent
transmissions and models all other kinds of packet loss as transient faults (after which a
brief recovery period is needed). DecTDMA extends this, by utilizing an LQE technique
for masking sporadic packet loss. Thus, DecTDMA considers fewer occurrences of spo-
radic packet loss as transient faults than the TDMA algorithm by Petig et al [19]. As a
result, DecTDMA avoids unnecessary recovery periods. This increases the performance
and the stability of the packet reception ratio (PRR) values.
Our design criteria of self-organization and self-recovery simplify the use of WSNs. It

reduces the effect of local and low-level complications, such as contention management,
that many systems leave to be handled by the higher layers. Consequently, we provide
an important level of abstraction that allows the higher layers to focus on their tasks,
such as routing table construction, packet forwarding, and end-to-end communications.
We do not claim that the studied implementation is self-stabilizing. Note that the

implementation of a self-stabilizing system requires every system element to be self-
stabilizing [3], rather than just a subset of the needed algorithms. This includes the use
of compliers that preserve any invariant that is related to the corretness proof [9], as well
as the use of self-stabilazing CPUs [8], self-stabilazing operating systems [10] to name a

31



3 DecTDMA: A Decentralized-TDMA with Link Quality Estimation for WSNs

few.
Our Contribution In this paper, we present DecTDMA — a decentralized TDMA that
does not assume access to external references, such as wireless access points (WAPs) or a
global clock. For DecTDMA, we (a) extend and (b) implement an existing self-stabilizing
algorithm [19] and (c) evaluate our implementation both via WSN simulations and a
real-world testbed. By that, we provide stable connectivity with high values of packet
reception ratio (PRR). We also offer a masking technique as a way to further improve
the channel stability by considering sporadic packet losses as normal faults rather than
transient ones. The studied technique estimates the stability of every TDMA time slot
and lets DecTDMA to keep only time slots that are above a predefined threshold. We
evaluate our TinyOS implementation via Cooja simulations on both single and multiple
hop networks as well as on Indriya Testbed at NUS (with 97 motes). The results validate
that DecTDMA (and its LQE technique for masking sporadic packet loss) provides stable
connectivity with high PRR values. For the studied cases of network simulations, DecT-
DMA achieves PRR values that are rather stable and approach the analytical bounds.
We believe that these findings demonstrate the feasibility of decentralized reference-

free TDMAs that provide stable communication among the WSN motes without the
need for an external coordinator nor access to a global time reference. The design and
implementation of DecTDMA exposes the advantage of following the self-stabilization
design criteria. DecTDMA is a multifaceted TDMA protocol that can deal with a number
of failures. This fault model includes concurrent transmissions and sporadic packet loss,
as well as different violations of the algorithm assumptions, which we model as transient
faults.
Document Structure As background knowledge (Section 3.2), we present the self-
stabilazing TDMA algorithm by Petig et al. [19], which DecTDMA extends. We complete
the description of DecTDMA by discussing the details of our LQE technique (Section 3.3).
We present our evaluation of DecTDMA by studying the results of our experiments
(Section 3.4). Finally, we discuss the related work (Section 3.5) and our concluding
remarks (Section 3.6).

3.2 Background: Time Slot Alignment and Allocation

DecTDMA uses a TDMA algorithm by Petig et al. [19] for aligning the frame and letting
each mote access a time slot that is unique within its 2-hop neighbourhood (Figure 3.1).
For the sake of self-containment of this paper, we describe the algorithm and how it
works under the assumptions of Petig et al. [19]. In real-world WSNs, there are different
sources for interferences that cause packet loss. The TDMA algorithm of Petig et al. [19]
focuses on packet losses that are due to concurrent transmissions and models all other
kinds of packet losses as transient faults (after which brief recovery periods are needed).
Therefore, DecTDMA extends it and uses an LQE technique for masking sporadic packet
loss (Section 3.3). We show that DecTDMA can perform well in real-world WSNs, which
do not need to follow the assumptions made by Petig et al. (Section 3.4).
In the TDMA algorithm by Petig et al. [19], motes send both data and control packets.

32



3.2 Background: Time Slot Alignment and Allocation

Figure 3.1: Time slot assignment in multi-hop network graphs. Neighbours with a dis-
tance of at least 3 can share the same time slot without collision.

Also, the motes can play an active or a passive role according to their (local) status. When
the mote pi’s status is active, it sends data packets during a time slot that is designated
for pi’s data packets, which we call pi’s transmission time slot, si. When pi’s status is
passive, it listens to the active motes, and it does not send any data packets. The motes
send, regardless of their status, control packets which include the frame information
(FI). The field FI includes data about the recently received data packets from direct
neighbours. That information refers both to the sender identity and the packet sending
time. The TDMA algorithm by Petig et al. aggregates the frame information it receives
during the past frame. The algorithm relies on FI to acknowledge transmissions, resolve
hidden terminal phenomena and avoid concurrent transmissions. The mote active-passive
status changes according to the filed FI.

(1) The passive mote pi takes the following steps in order to become active. It
selects a random time slot, si, that no active mote within two hops uses according
to pi’s FI. Mote pi tests the use of time slot si by sending a control packet and
waiting for acknowledgement from neighbouring motes. These acknowledgements
are included in their data and control packets. Whenever that test works, mote
pi changes its status to active and uses si as its transmission time slot for data
packets.

(2) The active mote pi can become passive due to the following. An active mote

33



3 DecTDMA: A Decentralized-TDMA with Link Quality Estimation for WSNs

pi changes its status to passive after its FI field reports about another mote, pj ,
that transmits during its time slot si, where pj is at most two hops away from
pi. Recall that during the occurrence of hidden terminal phenomenon, mote pi has
a neighbour, pj , and a distance two neighbour, p`, such that pi and p` use time
slots with overlapping periods. In this case, there is no grantee that pi receives
pj ’s frame information (and acknowledgements) to pi’s packets. In order to deal
with this issue, the TDMA algorithm by Petig et al. also considers the absence of
pj ’s acknowledgement as an implicit report on a possible occurrence of the hidden
terminal phenomenon. Note that, unlike the TDMA algorithm by Petig et al.,
DecTDMA uses an LQE technique for mitigating the effect of sporadic packet loss,
say, due to ambient noise. Namely, DecTDMA lets pi change its status from active
to passive only according to LQE indication (Section 3.3).

Petig et al. [19] uses a random back-off mechanism for dealing with contention scenarios
in which “too many” passivemotes are testing random time slots concurrently, see case (1)
above. This mechanism counts down (from a randomly selected backoff value) every time
the node observes a time slot that for which it receives no message. The TDMA algorithm
by Petig et al. also adopts a technique for clock synchronization according to which it
aligns the TDMA time slots. Petig et al. [19] show that their self-stabilizing TDMA
algorithm can provide, after a convergence period, guarantees that each active mote can
transmit successfully once in every TDMA frame. The proof of self-stabilization by Petig
et al. assumes that packet loss occurs only due to concurrent transmissions. However, in
real-world WSNs the above assumption does not hold. This work proposes DecTDMA,
which does not follow this assumption. Instead, it uses an LQE technique for avoiding a
change in pi status from active to passive due to the occurrence of sporadic packet losses
(and does allow this change whenever pi’s time slot, si, losses packets repeatedly, see
Section 3.3).

3.3 TDMA Protocol with Link Quality Estimation

In real-world WSNs, packet losses occur due to many reasons, such as external inter-
ference or concurrent transmissions, i.e., when neighboring nodes transmit during over-
lapping periods. DecTDMA addresses the challenge of sporadic packet losses via a Link
Quality Estimation (LQE) procedure. Here, mote pi does not stop sending a data packet
in its transmission time slot si due to a sporadic packet loss. We use a software-based
LQE technique that estimates pi’s LQE by accumulating the acknowledgments that pi
receives over a time window and comparing them to the number of transmitted packets.
We use this lightweight LQE technique for deciding whether pi shall keep its transmis-
sion time slot, si, or try to randomly select a new one after a random back-off period
(Section 3.2).
Our LQE technique considers a time window of w TDMA frames. We use arrays of

integers, ack i[] and rx i[] (each of w entries), which in the beginning of every time window,
we initialize each entry with the zero value. During each time window, when pi receives
a data packet during time slot sj , it increments rx i[j]. Moreover, if that packet includes

34



3.4 Evaluation

an acknowledgement for the packet pi sent previously, it also increments ack i[j]. At the
end of each time window, pi tests whether there is a time slot sj for which rx i[j] ≥ Trx
(the reception threshold) and ack i[j] ≤ Tack (the acknowledgement threshold). In case pi
finds such sj , it stops using its transmission time slot, si. This process repeats in every
time window during which pi’s status is active.
Note that we assume that the communication links have symmetrical packet loss be-

havior. We justify the packet reception and acknowledgement thresholds of Trx, and
respectively, Tack by considering a pair of neighbouring motes, pi and pj . Suppose that
the successful transmission probability from pi to pj (and visa verse) is p. In a given
time window of w frames, the expected number of pi’s packets that pj receives is wp
and the expected amount of acknowledgements is wp2. During our experiments, we have
selected a window of w = 20 TDMA frames, the reception threshold Trx = 0.8w = 16 by
taking p = 0.8 and considering a value that includes all reliable links, which are defined
as the ones that have 90% PRR [2]. We decided to consider Tack = 0.4w = 8 as the
acknowledgement threshold since it presented a more stable behavior than p2 = 0.64
during our experiments (Section 3.4).

3.4 Evaluation

We evaluate DecTDMA with respect to channel stability and throughput via the Cooja
simulator and the Indriya Testbed at NUS with 97 motes. We implemented DecTDMA
on top of TinyOS version 2.1.1. For the Cooja simulations, we select both single and
multiple hop topologies whereas in the testbed experiments the focus is on the multiple
hop case. Our results show a high throughput as well as acceptable channel stability
performances of DecTDMA under real-world conditions. We also show that DecTDMA
further improves the TDMA algorithm by Petig et al. [19] via the proposed mechanism
for channel quality estimation.
Every WSN has a number of inherent uncertainties. In this dynamic environment, it

is challenging for any node to maintain a stable rate of packet reception. This channel
stability criterion is one of the important metrics, which we evaluate. Another important
criterion is the throughput of DecTDMA, which considers the number of successful packet
receptions. Note that for the simulation results, we normalize these numbers of successful
packet receptions and compare them to an analytical maximum (which we tailor for each
studied topology).
The TDMA frame setup We use the notation below when presenting our results.
DecTDMA considers the case in which every node uses at most one time slot per TDMA
frame for data packets. Despite this assumption, DecTDMA is obviously extendable by
simply allowing each mote to use more than one time slot. We use τ to denote the
number of time slots per TDMA frame and ξ to refer to the length of each time slot in
seconds. Node that each mote can transmit at most ((1 s/ξ)/τ) packets per second. In
our frame setup, ϕ = ((1 s/ξ)/τ) = 2 is an upper bound on the number of frame per
seconds that each node uses (after convergence) for data packets in every second.
Single hop WSNs: simulation results Single hop WSNs represent the case in

35



3 DecTDMA: A Decentralized-TDMA with Link Quality Estimation for WSNs

which every mote can communicate directly with any other mote. The complete graph
topology of these networks is absent from multi-hop dynamics that are due to, for exam-
ple, fading signal strength. Moreover, this setup has a clear analytical upper bound of
the throughput, i.e., in a network of n transmitters at most n−1 packets are received per
transmission. In this basic setup, we are able to demonstrate that DecTDMA’s through-
put approaches the analytical upper bound. Note that even though this setup is simpler
than all the others that we study, the presented performances are not straightforward,
because our fully-decentralized implementation has no access to external assistance, such
as access points, or external references, such as a global clock. Yet, we show that DecT-
DMA’s performances are close to the analytical bounds.
We model a single-hop graph using the complete graph Kn. During the Cooja sim-

ulation, we use p as the transmission success probability when a packet is sent from a
node to a neighboring one. We use these settings for evaluating how close can DecTDMA
approach the analytical bounds, which depend on p. We normalize the number of re-
ceived data packet per second using #pkts/T/(n−1)/(ϕ/n), where #pkts/T refers to the
average number of received packets per second over a time period T and ϕ is the amount
of data packets per node that we expect per second. Note that, (n − 1)/(ϕ/n) defines
the expected number of received packets in Kn (if there is no packet loss). Therefore,
#pkts/T/(n− 1)/(ϕ/n) should approach p, when the packet reception probability is p.
The plot in Figure 3.2 presents the (normalized) number of received packets for different

numbers of nodes when considering Kn, where n ∈ {5, 6, . . . , 40}. The chart shows that
DecTDMA behaves well when the transmission (and reception) success probability is
p = 1. Note that this is the case in which we are running DecTDMA as an implementation
of Petig et al., because the settings are similar to the ones that Petig et al. considered
in [19]. Since Petig et al. do not consider the case of p < 1, DecTDMA version with
LQE indeed out performs the one without. Thus, for the case of single hop networks,
DecTDMA with LQE performs well for the case of p < 1 and for the case of p = 1, there is
no need to use LQE as a masking technique (and the theoretical assumption that p = 1).

• p2• p0 • p1

Figure 3.3: The hidden terminal.

Multiple hop WSNs: simulation re-
sults The phenomenon of hidden termi-
nal consider the case in which mote p1 can
communicate directly with both p0 and
p2 but p0 and p2 cannot communicate di-
rectly (Figure 3.3). In this case, node p0

is hidden from p2 and thus the only way
that it can identify that its transmissions
occur concurrently with p2 is via p1 assis-
tance. We consider a multiple hop setup,
in which the hidden terminal phenomenon
exists and yet we are able to compare be-
tween DecTDMA’s throughput and an analytical upper bound that we tailor. Interest-
ingly, these simulations show a behavior that is similar to the above single hop networks,
which use the complete graph Kn.
We also consider settings for the a 2-hop graph G2(n) := (V,E)(n) with n vertices.

36



3.4 Evaluation

5 10 15 20 25 30 35 40

0.2

0.4

0.6

0.8

1

Number of nodes

N
or

m
al

iz
ed

th
ro

ug
hp

ut

DecTDMA’s throughput on the complete graph Kn in the Cooja simulator

w/ LQE p = 1 w/ LQE p = 0.8 w/ LQE p = 0.6 w/ LQE p = 0.3

p = 1 p = 0.8 p = 0.6 p = 0.3

Figure 3.2: DecTDMA without and with LQE on the complete graph Kn. The prob-
ability of a successful transmission is p. The throughput is normalized by
#pkts/T/(n− 1)/2/n. The (colourful) horizontal lines represent the analyti-
cal bounds on the throughput. The (red) vertical lines stand for the bounds
for guaranteed convergence, which is 15, and the frame size, which is 32.

The set of vertices is partitioned in four sets S0, S1, S2 and S3, such that each set forms
a clique in G2 (Figure 3.4). We define a cardinally constraint that requires these cliques
to be of similar size: |Si+1| + 1 ≥ |Si| ≥ |Si+1| for i ∈ {0, 1, 2} and |S3| + 1 ≥ |S0|. In
addition to the edges within every vertex to any other vertex in its clique, we define an
edge between every vertex and any other vertex that is in a neighboring clique. We say
that clique Si is neighboring to clique Si+1 mod 4 and Si−1 mod 4. Note that for the case
of n mod 4 = 0, G2 is regular, i.e., all vertexes have the same degree. During the Cooja
simulation, we use p and q = 0.4p as the transmission success probabilities when a packet
is sent from a node to a neighboring one that shares, and respectively, does not share the
same clique. In this rather simple settings for multiple hop networks, we can still evaluate
how DecTDMA is close to analytical bounds that depend on p and q = 0.4p. Note that
we study DecTDMA behavior on multiple hop graph using testbed experiments.
We normalize the throughput (Figure 3.5) by the expected throughput for the case

there is no packet loss. The difference to the 1-hop case on the Kn is that from one clique,
Si, the opposite corner clique, Si+2 mod 4, cannot be reached, thus the number of nodes
we expect to received a packet is reduced by a quarter. This leads to #pkts/T/(3

4n −
1)/(ϕ/n). In Figure 3.6, we use a different probability for successful reception for the
neighboring cliques. Since they contain half of the nodes and packets are received with
probability q = 0.4 in case p = 1, we get the bound (0.5nq+0.25n−1)/(ϕ/n). Note that

37



3 DecTDMA: A Decentralized-TDMA with Link Quality Estimation for WSNs

S1 S2

S3S4

Figure 3.4: The G2(12) graph. We assume two probabilities for a sucessfull transmission,
p and q. Nodes at the end of solid lines in this figure can successfully transmit
packets with probability p and nodes at the end of dotted lines with probabil-
ity q. The results are presented in figures 3.5 with q = p, and respectively, 3.6
with q = 0.4p.

the rate q is linear in p. Thus, q scales down for smaller values of p. This leads to the
fact that for a given transmission success rate of p (within the clique), we also expect p
to be the normalized throughput.
The plots in figures 3.5 and 3.6 present the simulation results for the G2(n) topology

and n ∈ {5, 6, . . . , 40} when considering the cases in which the successful transmission
probability of links that connects nodes that are at different cliques is q = 0.4p and within
a clique p (cf. Figure 3.4). We note the similarly of the results that appear in figures 3.2
and 3.5 even though the latter set of experiments refer to a two hop communication
graph, rather than one hop, as in the former set. Moreover, when running DecTDMA
with LQE, we observe an acceptable degree of stability in the number of packets received
for every transmission. Of course, the values in Figure 3.6 are significantly less than the
ones in Figure 3.5 (due to higher packet loss rate between neighboring cliques).
Multiple hop WSNs: testbed experiments We complete our evaluation of DecT-
DMA by running experiments in the Indriya Testbed at NUS [6]. This is a controllable
environment and yet it is representative to real-world WSNs with respect to the actual
interference that the deployed motes encounter, e.g., dynamic link behavior, say, with
respect to PRR values [2]. Our experiments consider running DecTDMA over 97 motes
that form a multipile hop network (Figure 3.8). Such real-world networks are known to
have different and dynamic transmission success rates. We compare between the cases
in which DecTDMA includes and does not include our LQE technique. The plot in Fig-
ure 3.8 shows the long term impact of ambient noise on DecTDMA with and without
LQE. Whereas the former is able to improve over time by learning about the presence of
links with low PRR values, the latter can spiral down due the fact the Petig et al. [19]

38



3.4 Evaluation

10 15 20 25 30 35 40

0.2

0.4

0.6

0.8

1

Number of nodes

N
or

m
al

iz
ed

th
ro

ug
hp

ut

The 2-hop graph (experiments in the Cooja simulator)

w/ LQE p = 1 w/ LQE p = 0.8 w/ LQE p = 0.6 w/ LQE p = 0.3

p = 1 p = 0.8 p = 0.6 p = 0.3

Figure 3.5: DecTDMA with and without LQE on the 2-hop graph G2(n) and uniform
probability, p, of successful transmissions, where n ∈ {6, 7, . . . , 40} and p ∈
{0.3, 0.5, 0.8, 1.0} is the probability for successful transmission between any
pair of motes that can communicate directly. The horizontal (colourful) lines
represent the analytical bounds and the (red) vertical lines the bounds for
convergence (15) and the frame size (32). The throughput is normalized by
#pkts/T/(0.75n− 1)/2/n.

do not consider sporadic packet omission.

Since this work considers experiments that run both on the Cooja simulator and the
Indriya testbed, we also wanted to run in Cooja experiments on a multiple hop graph
that resembles the one that the Indriya testbed uses (Figure 3.7). Broadly speaking,
the two plots in figures 3.7 and 3.8 resembles. We note that there is no clear recipe for
Cooja to consider in detail the dynamics of real-world WSNs, such as the Indriya testbed.
Hence, differences between these plots are inevitable. Also, there is no straightforward
way to compare our results on the Indriya testbed to an analytical bound, as we did in
figures 3.2, 3.5 and 3.6.

Evaluation summary DecTDMA with LQE presents high and stable throughput
values in Cooja simulations (in single and multiple hop networks) that approach our
analytical bounds. The Indriya testbed experiments show stability of the throughput
values that resembles to the ones in the Cooja simulations.

39



3 DecTDMA: A Decentralized-TDMA with Link Quality Estimation for WSNs

10 15 20 25 30 35 40

0.2

0.4

0.6

0.8

1

Number of nodes

N
or

m
al

iz
ed

th
ro

ug
hp

ut

The 2-hop graph with weak communication links (in the Cooja simulator)

w/ LQE p = 1 w/ LQE p = 0.8 w/ LQE p = 0.5 w/ LQE p = 0.3

p = 1 p = 0.8 p = 0.5 p = 0.3

Figure 3.6: DecTDMA with and without LQE on the 2-hop graph G2(n), where n ∈
{6, 7, . . . , 40}. The probability of successful transmissions between any two
motes that belong to the same clique is p ∈ {0.3, 0.5, 0.8, 1.0}. The ones that
belong to neighboring cliques have the probability of q = 0.4p. The horizontal
(colourful) lines represent the analytical bounds, which depends on p, and the
(red) vertical lines the bounds for convergence (15) and the frame size (32).
The throughput is normalized by #pkts/T/(0.75n−1)/2/n, as in Figure 3.5.

3.5 Related Work

ALOHAnet and its many variances [1] are MAC protocols that schedule the medium
access randomly. Time division multiple access (TDMA) follows a scheduled approach
that divides the radio time into TDMA frames and then further divides these frames into
time slots. We note that at high and stable PRR values, TDMA protocols offer inherently
a greater degree of predictability than the ones that access the medium randomly. The
TDMA task that we consider in this work includes both the alignment of frames and
time slots as well as the allocation of these time slots to the motes, rather than just the
latter part of the task, as many existing TDMA protocols do.
Existing approaches for MAC-layer contention management consider priorities (for

maintaining high bandwidth utilization while meeting the deadlines, such as [22]) or
modifying the signal strength or carrier sense threshold [25]. We view both approaches
as possible extensions to DecTDMA, which considers a single priority and does not adjust
the radio settings dynamically. DecTDMA uses fixed size TDMA frames and it allocates
TDMA time slots until saturation, i.e., no more time slots are left to allocate. Note
that a number of techniques can prevent starvation in saturated situations, such as

40



3.5 Related Work

0 20 40 60 80 100 120 140 160 180 200

0.2

0.25

0.3

0.35

0.4

0.45

s (time)

re
ce

iv
ed

pa
ck

et
s

The Cooja simulator

LQE no LQE

Figure 3.7: Comparison between TDMA with and without link quality estimation on the
Cooja simulator. This plot shows the number of received packets accumulated
in intervals of 100 s in Cooja. The overall time of the experiment is 200 s on
the 2-hop graph G2(40).

limiting the number of TDMA frames that the application can use consecutively without
deferring further communication. Once, we apply such techniques, the (common) back-off
mechanism of DecTDMA will prevent starvation.
The literature considers receiver-side collision detection [25, 5], which requires hard-

ware support for signal processing as well as receivers to notify senders about the success
or failure of transmissions. In this paper, we assume hardware that does not support col-
lision detection (on the sending side or on the receiving side). In DecTDMA, however, the
payload does include a short summary of the frame information (FI) [19]. We prefer not
to assume access to external references and provide a fully-decentralized implementation
since unbounded signal failure can occur, e.g., in underground tunnels. STDMA [27] is an
example of a protocol that assumes the availability of an external reference (GNSS [24]).
It allocates bandwidth according to the position of motes.
The (self-stabilization) literature on TDMA algorithms often does not answer the

causality dilemma of “which came first, synchronization or communication.” On one

41



3 DecTDMA: A Decentralized-TDMA with Link Quality Estimation for WSNs

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0.7

0.8

0.9

1

1.1

1.2

·104

100 s (time)

re
ce

iv
ed

pa
ck

et
s

The Indriya testbed

LQE no LQE

Figure 3.8: Comparison between TDMA with and without link quality estimation on
the INDRIYA testbed [6]. This plot shows the number of received packets
accumulated in intervals of 100 s as an average over 10 run each. The total
run time for each run is 3600 s. The error bars represent in both graphs the
standard deviation.

hand, existing clock synchronization algorithms often assume the existence of MAC al-
gorithms that offer bounded communication delay. However, on the other hand, existing
MAC algorithms that provide bounded communication delay, often assume access to syn-
chronized clocks. For example, some TDMA protocols [21] assume the availability of a
clock synchronization algorithm that can reach the needed clock synchrony bound before
starting the allocation of time slots. Where there is no external reference or assistance,
the implementation of TDMA protocol requires time slot alignment during the time slot
allocation process. DecTDMA needs to address these tasks at the same time (without
external reference). Busch et al. [4] and Petig et al. [19] propose TDMA algorithms that
address the above challenge without assuming access to external references. Busch et
al. [4] address this by assuming that the number of time slots in each frame is at least
2(∆ + 1), where ∆ is an upper bound on the number of nodes with whom any node can
communicate with using at most one intermediate node for relaying packets. Petig et

42



3.6 Discussion

al. [19] provides a solution that requires a frame size to could be O(
√

∆) times smaller.
Moreover, they show that you cannot do much better than that. Schneider and Wat-
tenhofer [23] present a local algorithm for vertex coloring that could be the basis a for
self-organizing TDMA protocol. We chose to base DecTDMA on a TDMA algorithm [19]
that considers self-stabilization explicitly. Other proposals for self-stabilizing MAC algo-
rithms exist [11, 12, 16] as well as other algorithm cited by [19]. We choose the one that
can deal with networks dynamics, assume no access to external reference, has a more
attractive overhead (with respect to the frame information) and follows conventional
TDMA practice, such as fix packet size.
The IEEE 802.15.4-2015 standard describes the DSME extension. This extension

covers multi-hop TDMA and a slot allocation method. One possible implementation is
OpenDSME [13] and [17]. The authors also provide a formal analysis of the time slot
allocation [14] and an analytical model for large scale networks [18]. In contrast to our
our work, requires DSME separate clock synchronisation, which is done by beacons that
are transmitted by specific nodes. Another difference lays on the communication side,
while we use a time slot to send a broadcast, is the time slot in DSME dedicated to pairs
of nodes. This is motivated by the fact that IEEE 802.15.4 describes a full protocol stack
for real-world applications which in cloud the routing of information between two nodes
over multiple hops in the network. Our focus, in contrast, is on looking into bounds for
embedding decentralised synchronisation and time slot assignment in one single radio
channel.
We are not the first to consider the provision of improved link quality. One of the

most notable examples is a line of research work that has started by Kuhn, Lynch and
Newport [15], which presented the abstract MAC model. They propose a number of
high-level communication primitives that use an (abstract) unreliable MAC layer, and
yet provide guarantees with respect to the packet delivery to the application layer at the
receiver-side, say, after a bounded number of retransmissions. We follow a complementary
approach to the one of Kuhn, Lynch and Newport [15], because we are interested in
possible guarantees with respect to the packet reception at the receiver-side without
considering the possibility to retransmit a lost packet.

3.6 Discussion

Designing and implementing a MAC protocol for WSNs is a non-trivial task. The chal-
lenges include a various source of interferences as well as the need to recover rapidly from
the occurrence of failures that these interferences cause. Using DecTDMA, we were able
to exemplify how to have the self-stabilization design criteria in mind while designing a
MAC protocol that works well in a real-world WSN testbed, such as Indriya [6].
This design process started with the self-stabilizing TDMA algorithm by Petig et

al. [19]. That algorithm modelled, for example, the communication graph and the man-
ner in which the motes exchange messages. The focus of Petig et al. is on dealing with
one of the most destructive interferences in WSNs, which is packet loss due to concurrent
transmissions. Petig et al. consider a fault model that includes concurrent transmissions

43



3 DecTDMA: A Decentralized-TDMA with Link Quality Estimation for WSNs

whereas sporadic packet losses, say, due to ambient noise, are considered as transient
faults. This focus on concurrent transmissions allows, via a rigorous analysis, an exact
design of their self-stabilizing TDMA algorithm. Our experiments validate that indeed,
in the absence of transient faults, e.g., sporadic packet loss, the self-stabilizing TDMA
algorithm Petig et al. addresses the challenge of avoiding concurrent transmissions (fig-
ures 3.2 and 3.5).
We present DecTDMA, which is a TDMA protocol that extends the fault model of

Petig et al. and thus sporadic packet loss are no longer considered as transient faults.
This paper shows that via an elegant LQE technique that masks the effect of sporadic
packet loss, the PRR levels of DecTDMA are higher significantly than the ones of Petig
el al. [19]. Moreover, we observe the stability of these PRR values also in a real-world
testbeds, such as Indriya [6] (Figure 3.8).
This work shows how to deal with failures and interferences in non-trivial real-world

challenges, such as the design of fully-decentralized reference-free TDMA protocol. Our
design process enhanced iteratively the fault model during the design of Petig el al. [19]
and then in this work, we used an elegant masking technique to further enhance the
fault model. DecTDMA is a successful example of the above design and development
process that have the self-stabilization design criteria in mind. As future work, we offer
the reader to study real-world problems and use the presented design and development
process.

Acknowledgments

We knowledge the participation of Henning Phan in this work by assisting the protocol
implementation [20]. This work has been partially supported by the Swedish Energy
Agency under the program Energy, IT and Design.

44



Bibliography

[1] Norman M. Abramson. “Development of the ALOHANET”. In: IEEE Trans. Infor-
mation Theory 31.2 (1985), pp. 119–123. doi: 10.1109/TIT.1985.1057021. url:
http://dx.doi.org/10.1109/TIT.1985.1057021.

[2] Nouha Baccour et al. Radio Link Quality Estimation in Low-Power Wireless Net-
works. Springer Briefs in Electrical and Computer Engineering. Springer, 2013.
isbn: 978-3-319-00773-1. doi: 10.1007/978-3-319-00774-8. url: http://dx.
doi.org/10.1007/978-3-319-00774-8.

[3] Olga Brukman, Shlomi Dolev, Yinnon A. Haviv, Limor Lahiani, Ronen I. Kat, Elad
Michael Schiller, Nir Tzachar, and Reuven Yagel. “Self-Stabilization from Theory
to Practice”. In: Bulletin of the EATCS 94 (2008), pp. 130–150.

[4] C. Busch, M. Magdon-Ismail, F. Sivrikaya, and B. Yener. “Contention-free MAC
protocols for asynchronous wireless sensor networks”. In: Distributed Computing
21.1 (2008), pp. 23–42. doi: 10.1007/s00446-007-0053-x. url: http://dx.doi.
org/10.1007/s00446-007-0053-x.

[5] Murat Demirbas, Onur Soysal, and Muzammil Hussain. “A Singlehop Collaborative
Feedback Primitive for Wireless Sensor Networks”. In: INFOCOM 2008. 27th IEEE
International Conference on Computer Communications, Joint Conference of the
IEEE Computer and Communications Societies, 13-18 April 2008, Phoenix, AZ,
USA. IEEE, 2008, pp. 2047–2055. isbn: 978-1-4244-2026-1. doi: 10.1109/INFOCOM.
2008.270. url: http://dx.doi.org/10.1109/INFOCOM.2008.270.

[6] Manjunath Doddavenkatappa, Mun Choon Chan, and Akkihebbal L. Ananda. “In-
driya: A Low-Cost, 3D Wireless Sensor Network Testbed”. In: Testbeds and Re-
search Infrastructure. Development of Networks and Communities - 7th Interna-
tional ICST Conference,TridentCom 2011, Shanghai, China, April 17-19, 2011,
Revised Selected Papers. 2011, pp. 302–316. doi: 10.1007/978-3-642-29273-
6_23. url: http://dx.doi.org/10.1007/978-3-642-29273-6_23.

[7] Shlomi Dolev. Self-Stabilization. MIT Press, 2000. isbn: 0-262-04178-2.

[8] Shlomi Dolev and Yinnon A. Haviv. “Self-Stabilizing Microprocessor: Analyzing
and Overcoming Soft Errors”. In: IEEE Trans. Computers 55.4 (2006), pp. 385–
399. doi: 10.1109/TC.2006.61. url: http://dx.doi.org/10.1109/TC.2006.61.

[9] Shlomi Dolev, Yinnon A. Haviv, and Mooly Sagiv. “Self-stabilization preserving
compiler”. In: ACM Trans. Program. Lang. Syst. 31.6 (2009). doi: 10 . 1145 /
1552309.1552312. url: http://doi.acm.org/10.1145/1552309.1552312.

45

https://doi.org/10.1109/TIT.1985.1057021
http://dx.doi.org/10.1109/TIT.1985.1057021
https://doi.org/10.1007/978-3-319-00774-8
http://dx.doi.org/10.1007/978-3-319-00774-8
http://dx.doi.org/10.1007/978-3-319-00774-8
https://doi.org/10.1007/s00446-007-0053-x
http://dx.doi.org/10.1007/s00446-007-0053-x
http://dx.doi.org/10.1007/s00446-007-0053-x
https://doi.org/10.1109/INFOCOM.2008.270
https://doi.org/10.1109/INFOCOM.2008.270
http://dx.doi.org/10.1109/INFOCOM.2008.270
https://doi.org/10.1007/978-3-642-29273-6_23
https://doi.org/10.1007/978-3-642-29273-6_23
http://dx.doi.org/10.1007/978-3-642-29273-6_23
https://doi.org/10.1109/TC.2006.61
http://dx.doi.org/10.1109/TC.2006.61
https://doi.org/10.1145/1552309.1552312
https://doi.org/10.1145/1552309.1552312
http://doi.acm.org/10.1145/1552309.1552312


Bibliography

[10] Shlomi Dolev and Reuven Yagel. “Towards Self-Stabilizing Operating Systems”. In:
IEEE Trans. Software Eng. 34.4 (2008), pp. 564–576. doi: 10.1109/TSE.2008.46.
url: http://dx.doi.org/10.1109/TSE.2008.46.

[11] Ted Herman and Sébastien Tixeuil. “A Distributed TDMA Slot Assignment Algo-
rithm for Wireless Sensor Networks”. In: Algorithmic Aspects of Wireless Sensor
Networks: First International Workshop, ALGOSENSORS 2004, Turku, Finland,
July 16, 2004. Proceedings. Vol. 3121. LNCS. Springer, 2004, pp. 45–58. isbn: 3-
540-22476-9. doi: 10.1007/978-3-540-27820-7_6. url: http://dx.doi.org/
10.1007/978-3-540-27820-7_6.

[12] Arshad Jhumka and Sandeep S. Kulkarni. “On the Design of Mobility-Tolerant
TDMA-Based Media Access Control (MAC) Protocol for Mobile Sensor Networks”.
In: Distributed Computing and Internet Technology, 4th International Conference,
ICDCIT 2007, Bangalore, India, December 17-20, Proceedings. Ed. by Tomasz
Janowski and Hrushikesha Mohanty. Vol. 4882. LNCS. Springer, 2007, pp. 42–
53. isbn: 978-3-540-77112-8. doi: 10.1007/978-3-540-77115-9_4. url: http:
//dx.doi.org/10.1007/978-3-540-77115-9_4.

[13] F. Kauer, M. Köstler, T. Lübkert, and V. Turau
. “OpenDSME - a portable framework for reliable wireless sensor and actuator
networks”. In: 2017 International Conference on Networked Systems, NetSys 2017,
Göttingen, Germany, March 13-16, 2017. 2017, pp. 1–2. doi: 10.1109/NetSys.
2017.7931495. url: https://doi.org/10.1109/NetSys.2017.7931495.

[14] Florian Kauer, Maximilian Köstler, Tobias Lübkert, and Volker Turau. “Formal
Analysis and Verification of the IEEE 802.15.4 DSME Slot Allocation”. In: Pro-
ceedings of the 19th ACM International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems. Malta, Nov. 2016, pp. 140–147.

[15] Fabian Kuhn, Nancy A. Lynch, and Calvin C. Newport. “The abstract MAC layer”.
In: Distributed Computing 24.3-4 (2011), pp. 187–206. doi: 10.1007/s00446-010-
0118-0. url: http://dx.doi.org/10.1007/s00446-010-0118-0.

[16] Christoph Lenzen, Jukka Suomela, and Roger Wattenhofer. “Local Algorithms:
Self-stabilization on Speed”. In: Stabilization, Safety, and Security of Distributed
Systems, 11th International Symposium, SSS 2009, Lyon, France, November 3-6,
2009. Proceedings. 2009, pp. 17–34. doi: 10.1007/978-3-642-05118-0_2. url:
http://dx.doi.org/10.1007/978-3-642-05118-0_2.

[17] Florian Meier. “Ph.D. Forum Abstract: Scalable Wireless Networks for Industrial
Control Systems with Time and Reliability Constraints”. In: Proceedings of the 15th
ACM/IEEE Conference on Information Processing in Sensor Networks. Vienna,
Austria, Apr. 2016.

[18] Florian Meier and Volker Turau. “An Analytical Model for Fast and Verifiable
Assessment of Large Scale Wireless Mesh Networks”. In: Proceedings of the Design
of Reliable Communication Networks (DRCN). Kansas City, MO, USA, Mar. 2015,
pp. 185–190.

46

https://doi.org/10.1109/TSE.2008.46
http://dx.doi.org/10.1109/TSE.2008.46
https://doi.org/10.1007/978-3-540-27820-7_6
http://dx.doi.org/10.1007/978-3-540-27820-7_6
http://dx.doi.org/10.1007/978-3-540-27820-7_6
https://doi.org/10.1007/978-3-540-77115-9_4
http://dx.doi.org/10.1007/978-3-540-77115-9_4
http://dx.doi.org/10.1007/978-3-540-77115-9_4
https://doi.org/10.1109/NetSys.2017.7931495
https://doi.org/10.1109/NetSys.2017.7931495
https://doi.org/10.1109/NetSys.2017.7931495
https://doi.org/10.1007/s00446-010-0118-0
https://doi.org/10.1007/s00446-010-0118-0
http://dx.doi.org/10.1007/s00446-010-0118-0
https://doi.org/10.1007/978-3-642-05118-0_2
http://dx.doi.org/10.1007/978-3-642-05118-0_2


Bibliography

[19] Thomas Petig, Elad Schiller, and Philippas Tsigas. “Self-stabilizing TDMA algo-
rithms for wireless ad-hoc networks without external reference”. In: 13th Annual
Mediterranean Ad Hoc Networking Workshop, MED-HOC-NET 2014, Piran, Slove-
nia, June 2-4, 2014. IEEE, 2014, pp. 87–94. doi: 10.1109/MedHocNet.2014.
6849109. url: http://dx.doi.org/10.1109/MedHocNet.2014.6849109.

[20] Henning Tuan Hy Phan. “Towards Wireless Communication with Bounded De-
lay”. MA thesis. Gothenburg, Sweden: Department of Computer science, Chalmers
University of Technology, 2016.

[21] Injong Rhee, Ajit Warrier, Jeongki Min, and Lisong Xu. “DRAND: Distributed
Randomized TDMA Scheduling for Wireless Ad Hoc Networks”. In: IEEE Trans.
Mob. Comput. 8.10 (2009), pp. 1384–1396. doi: 10.1109/TMC.2009.59. url:
http://dx.doi.org/10.1109/TMC.2009.59.

[22] Raphael Rom and Fouad A. Tobagi. “Message-Based Priority Functions in Local
Multiaccess Communication Systems”. In: Computer Networks 5 (1981), pp. 273–
286. doi: 10.1016/0376-5075(81)90004-0. url: http://dx.doi.org/10.1016/
0376-5075(81)90004-0.

[23] Johannes Schneider and Roger Wattenhofer. “Coloring unstructured wireless multi-
hop networks”. In: Proceedings of the 28th Annual ACM Symposium on Principles
of Distributed Computing, PODC 2009, Calgary, Alberta, Canada, August 10-12,
2009. 2009, pp. 210–219. doi: 10.1145/1582716.1582751. url: http://doi.acm.
org/10.1145/1582716.1582751.

[24] Riccardo Scopigno and Hector Agustin Cozzetti. “GNSS Synchronization in
Vanets”. In: NTMS 2009, 3rd International Conference on New Technologies,
Mobility and Security, 20-23 December 2009, Cairo, Egypt. 2009, pp. 1–5. doi:
10.1109/NTMS.2009.5384821. url: http://dx.doi.org/10.1109/NTMS.2009.
5384821.

[25] Riccardo Scopigno and Hector Agustin Cozzetti. “Mobile Slotted Aloha for Vanets”.
In: Proceedings of the 70th IEEE Vehicular Technology Conference, VTC Fall 2009,
20-23 September 2009, Anchorage, Alaska, USA. IEEE, 2009, pp. 1–5. doi: 10.
1109/VETECF.2009.5378792. url: http://dx.doi.org/10.1109/VETECF.2009.
5378792.

[26] Dongjin Son, Bhaskar Krishnamachari, and John S. Heidemann. “Experimental
study of concurrent transmission in wireless sensor networks”. In: Proceedings of
the 4th International Conference on Embedded Networked Sensor Systems, SenSys
2006, Boulder, Colorado, USA, October 31 - November 3, 2006. 2006, pp. 237–250.
doi: 10.1145/1182807.1182831. url: http://doi.acm.org/10.1145/1182807.
1182831.

[27] Fan Yu and Subir K. Biswas. “Self-Configuring TDMA Protocols for Enhancing
Vehicle Safety With DSRC Based Vehicle-to-Vehicle Communications”. In: IEEE
Journal on Selected Areas in Communications 25.8 (2007), pp. 1526–1537. doi:

47

https://doi.org/10.1109/MedHocNet.2014.6849109
https://doi.org/10.1109/MedHocNet.2014.6849109
http://dx.doi.org/10.1109/MedHocNet.2014.6849109
https://doi.org/10.1109/TMC.2009.59
http://dx.doi.org/10.1109/TMC.2009.59
https://doi.org/10.1016/0376-5075(81)90004-0
http://dx.doi.org/10.1016/0376-5075(81)90004-0
http://dx.doi.org/10.1016/0376-5075(81)90004-0
https://doi.org/10.1145/1582716.1582751
http://doi.acm.org/10.1145/1582716.1582751
http://doi.acm.org/10.1145/1582716.1582751
https://doi.org/10.1109/NTMS.2009.5384821
http://dx.doi.org/10.1109/NTMS.2009.5384821
http://dx.doi.org/10.1109/NTMS.2009.5384821
https://doi.org/10.1109/VETECF.2009.5378792
https://doi.org/10.1109/VETECF.2009.5378792
http://dx.doi.org/10.1109/VETECF.2009.5378792
http://dx.doi.org/10.1109/VETECF.2009.5378792
https://doi.org/10.1145/1182807.1182831
http://doi.acm.org/10.1145/1182807.1182831
http://doi.acm.org/10.1145/1182807.1182831


Bibliography

10.1109/JSAC.2007.071004. url: http://dx.doi.org/10.1109/JSAC.2007.
071004.

48

https://doi.org/10.1109/JSAC.2007.071004
http://dx.doi.org/10.1109/JSAC.2007.071004
http://dx.doi.org/10.1109/JSAC.2007.071004


PAPER III

Shlomi Dolev, Thomas Petig and Elad Michael Schiller

Robust and Private Distributed Shared Atomic Memory in Message
Passing Networks

Based on Brief Announcement: Robust and Private Distributed Shared Atomic Memory
in Message Passing Networks that appeared in the proceedings of

2015 ACM Symposium on Principles of Distributed Computing (PODC)
Donostia-San Sebastián, Spain
July 21 - 23, 2015, pp. 311–313





4 Robust and Private Distributed Shared
Atomic Memory

We study the problem of privately emulating shared memory in message passing networks.
The system includes N servers and at most e semi-Byzantine servers that can deviate
from the algorithm by sending corrupted data. Moreover, at most f servers can fail and
stop.
The focus is on coded atomic storage (CAS) algorithms. We present a variant that

ensures no information leakage by letting the servers store their data as secret shares.
Our enhancement to CAS uses d(N + k+ 2e)/2e-size quorums and Reed-Solomon codes.
This enhancement preserves the algorithm ability to function in asynchronous system
settings.
To the best of our knowledge, we are the first to address the privacy issue when

emulating shared memory in message-passing systems.

51



4 Robust and Private Distributed Shared Atomic Memory

4.1 Introduction

Security and privacy are often imperative for distributed systems. This motivates us to
study the problem of emulating shared memory in message passing networks that include
N servers, at most f crash-stop failures and e semi-Byzantine servers that can deviate
from the algorithm by sending corrupted data, but cannot deviate from the protocol. We
look at coded atomic storage algorithms that ensure no information leakage by letting the
servers store their data as secret shares. We consider an enhancement of the coded atomic
storage (CAS) algorithm by Cadambe et al. [3] in which we use d(N + k + 2e)/2e-size
quorums and (N, k)-Reed-Solomon codes, where k represents the message length.
The first algorithm for emulating a single-writer multi-reader shared memory by Attiya

et al. [1], as well as the multi-writer multi-reader version by Fan and Lynch [4], handle
fail-stop failures and packet failures, such as packet omission, duplication and reordering.
Spiegelman et al. [14] discuss the bounds on the space requirement under asynchrony.
Furthermore, they provide an algorithm that is close to their lower bound. Cadambe et
al. [3] present the coded atomic storage (CAS) algorithm and improve communication
and storage costs by using quorums and (N, k)-maximum distance separable (MDS)
codes [9]. The CAS algorithm enables the reader to restore the data under the presence
of N−k

2 stop-failed servers. We address privacy by storing on each node merely parts of
the data, as in Shamir’s secret sharing scheme [10], which we can implement using Reed-
Solomon codes [7] and a matching error correction algorithm (Berlekamp-Welch [15]).
This variation of the CAS algorithm also provides resilience against other errors, for
example, data corruption of a bounded number of secret shares. We show how to combine
shared-memory emulation with robustness and privacy.
Background This short introduction in coding follows [9] and [5]1. Shannon studied
in 1948 communication over a noise channel and introduced a channel model [11]. Such
a channel is given as (X ,Y, PY |X), where X is the input alphabet, i.e., a set of symbols,
Y is the output alphabet and the conditional probability PY |X is the channel law. A
special case is the discrete memoryless channel (DMC), which requires the channel law
to fulfil PYk|X1,...,Xk,Y1,...,Yk−1

(yk|x1, . . . , xk, y1, . . . , yk−1) = PY |X(yk|xk) for all k. This
definition of the channel law implies in particular that the distribution of Yk does not
change over time. An example of a DMC is the binary erasure channel with erasure
probability pe. This channel is defined by X = {0, 1}, Y = {0, 1,⊥}, Pe|1 = Pe|0 = pe
and P1|1 = P0|0 = 1− pe. In this channel, a symbol is erased with probability pe, where
earasure means that it is replaced by ⊥.

Maximum Distance Separable Codes

To tackle these noisy channels and to increase the amount of information we can transmit
over it we use coding schemes. A (2dNRe, N) coding scheme over the alphabet X is given
by a set of messages M := {1, . . . , 2dNRe}, an encoder Φ : M → XN and a decoder
Ψ : Y N → M̂ := M ∪ {⊥}, where ⊥ is the error symbol for case the decoder fails. We

1The lecture notes of Stefan M. Moser, http://moser-isi.ethz.ch/lectures.html, are also worth to
read.

52

http://moser-isi.ethz.ch/lectures.html


4.1 Introduction

say Φ(m) is a code word and the image of Φ is the codebook C. The rate 0 < R ≤ 1 is
a measure for the redundancy used, i.e., how much longer the code words are compared
to the message. The block length N is the length of the code words.
For an alphabet A, we denote the Hamming distance of two words x, y ∈ AN by

dHamming(x, y) :=
∑N

i=1 1xi 6=yi . We say a (|M |, N) coding scheme is a (|M |, N, d) coding
scheme if d is the minimum distance d := minΦ(m1) 6=Φ(m2) dHamming(Φ(m1),Φ(m2)). We
denote by GF(q) the Galois field of size q ∈ N. A linear |M |, N, d coding scheme over an
alphabet X = GF(q) is a |M |, N, d coding scheme, such that for all m1,m2 ∈M and all
x1, x2 ∈ X exists m3 ∈M , such that x1Φ(m1) + x2Φ(m2) = Φ(m3). Or, in other words,
C is a linear subspace of XN over X . Thus, we can denote the dimension of C as k and
we denote a linear (|M |, N, d) coding scheme also as (k,N, d) coding scheme.
The Singleton bound for a (|M |, N, d) coding scheme is given by d ≤ N−(logq(|M |)+1

and for a linear (k,N, d) coding scheme by d ≤ N −K + 1 [12]. We call a coding scheme
that attains equality maximum distance separable (MDS).
As above, let M = X k = GF(q). Let α1, . . . , αq−1 ∈ X and non-zero. We us the

Vandermonde matrix

G =


1 1 · · · 1
α1 α2 · · · αq−1

α2
1 α2

2 · · · α2
q−1

...
...

. . .
...

αk−1
1 αk−1

2 · · · αk−1
q−1


as generator matrix. We define a Reed-Solomon coding scheme2 as a mapping Φ(m) =
mG. Thus Φ(m)i =

∑k−1
j=0 mjα

j
i and, due to the properties of a Galois field, m0 =

−∑q−1
i=1 Φ(m)i. It is easy to see that this is a linear coding scheme. A proof that Reed-

Solomon codes are maximum distance separable can be found in [9].

Secret Sharing

Let us look for a moment at secret sharing. The (N, k)-threshold scheme for integers k
and N , such that 0 < k ≤ N , is defined by Shamir [10] and splits a secret s into N
secret shares {si}i∈{1,...,N}. This scheme requires that there exists a mapping from any
S ⊆ {si}i∈{1,...,N} with |S| ≥ k to the secret s, but it is impossible to determine s from
a set of less than k secret shares. Shamir gives an example for a (N, k)-threshold scheme
using polynomials [10] on a Galois field GF(q) for some prime q. We assume we can map
our secret to some number, m0 ∈ GF(q) and we choose m1, . . . ,mk−1 randomly from a
uniform distribution over GF(p). Now we use the polynomial Q(α) :=

∑k−1
j=0 mjα

j in
GF(p) to generate the secret shares Q(1), Q(2), . . . , Q(N). Given k of there secret shares
we can interpolate the polynomial and generate the secret m0 = Q(0). By only having
k − 1 secret shares, all p elements of GF(p) are equally likely to be the secret.
The (N, k)-Reed-Solomon coding scheme can be used as a (N, k)-threshold scheme [7].

To implement this we let X = GF(p) for a prime p and we choose αi = i. We store the

2This generator matrix actually gives us only a special case of Reed-Solomon codes

53



4 Robust and Private Distributed Shared Atomic Memory

Algorithm 2: Berlekamp-Welch decoder, Ψ as based on [6] for a N, k-Reed-Solomon
coding scheme with e < N−k+1

2 − f errors.
input : Set I = {(i, wi)}i
output: Secret s

1.1 if |{wi : (i, wi) ∈ I, wi 6= ⊥}| ≥ k + 2e then return ⊥ ;
1.2 Compute E,P ∈ GF(p)[X] with deg(E) = e and deg(P ) = k − 1 + e and E 6= 0 such that

wiE(i) = Q(i) for all (i, wi) ∈ I with wi 6= ⊥;
1.3 if E does not divide Q then return ⊥;
1.4 Let P := Q/E;
1.5 if |{i : P (i) 6= wi}| > e then return ⊥;
1.6 return P ;

secret in m0 and choose m1, . . . ,mk−1 randomly from a uniform distribution over GF(p).
Then Φ(m)i =

∑k−1
j=0 mjα

j
i = Q(i) and the Reed-Solomon coding scheme defined above

corresponds to a (N, k)-threshold scheme with secret shares Φ(m)i.
Our output alphabet is Y = GF(p) ∪ {⊥}. Meaning, we assume erasures which we

denote by a special erasure symbol, ⊥, as in the BEC and, thus, we know the position of
the erasure. To reconstruct the secret, we need a decoder for the Reed-Solomon coding
scheme. One decoder was presented in the paper by Reed and Solomon [8], but it is
impractical since it requires O(

(
N
k

)
) steps. The Berlekamp-Welch algorithm, Ψ, can

correct (N, k)-Reed-Solomon codes within O(N3) time in the presence of e errors and f
erasures, as long as 2e+f < N−k+1 [15] as described in [6]. This algorithm is presented
here as Algorithm 2. Line 1.2 can be solved in O(N3) time using Gaussian elimination.
Intuitively speaking, an erasure is not a problem as long as there are enough points left
to interpolate the polynomial. Each symbol that is changed in the code word requires
one additional as redundancy to allow us to detect the error and recover the polynomial
and with this the message.
Our contribution We show how to emulate atomic shared memory in the presence
of semi-Byzantine servers. This approach ensures privacy. Namely, no group of up to
k−1 servers is able to reconstruct the stored data, i.e., the secret. Furthermore, a reader
can reconstruct the correct secret even if up to e servers deliver corrupted secret shares.
We do that using Reed-Solomon codes [8] and the Berlekamp-Welch error correction
algorithm [15]. This works because Cadambe et al. [3] use the class of maximum-distance
separable codes for their CAS algorithm, which includes the Reed-Solomon codes.

4.2 System Settings

We consider message passing networks in which nodes exchange messages via communi-
cation links. Messages are of the form (t, w, d) ∈ T ×W ∪ {⊥} × D, where T is the set
of tag tuples (z, i) that contain an integer z and a node identifier i. With W we denote
the set of secret shares, where ⊥ is the invalid share and D := {‘pre’, ‘fin’} is the label
set. We assume that T is lexicographical ordered. We distinguish among three node
types: server, reader and writer. Each writer and each reader is reliably connected to all

54



4.2 System Settings

Algorithm 3: The robust and private coded atomic storage algorithm, code for pi.
The difference to CAS [3] lays in the encoding during write operations, decoding
during read operations and the different quorum size.

2.1 Writer: // Writes secret s.
2.2 Query for the highest finalised tag from a quorum, select the message ((z, k), w, ‘fin’) such that z is

max.;
2.3 pre-write: Send ((z + 1, i),Φpj (s), ‘pre’) to all pj ∈ P and wait until quorum acknowledges;
2.4 finalise: Send ((z + 1, i),⊥, ‘fin’) to all pj ∈ P and wait until quorum acknowledges;

2.5 Reader: // Returns secret s, or ⊥ in case of failure.
2.6 Query for the highest finalised tag from a quorum, select the tag ((z, j), wpj , ‘fin’) such that z is

maximal;
2.7 Finalise: Send (t,⊥, ‘fin’) to all s ∈ P and let Q be the set responses of a quorum of servers

containing a tuple (j, wj) for each server pj that responded with a secret share wj 6= ⊥ ;
2.8 return Ψ(Q)

2.9 Server: Storage variable: S ⊂ T × (W ∪ {⊥})× {‘pre’, ‘fin’};
2.10 upon (receive query) do
2.11 Reply with highest finalised tag;

2.12 upon (receive pre-write (t, w, ‘pre’)) do
2.13 if @(t, •) ∈ S then S ← S ∪ (t, w, ‘pre’);
2.14 Reply with acknowledgement;

2.15 upon (receive finalise (t,⊥, ‘fin’) from writer) do
2.16 if ∃(t, w, ‘pre’) ∈ S then
2.17 S ← (S \ {(t, w, ‘pre’)}) ∪ (t, w, ‘fin’);
2.18 else Add (t,⊥, ‘fin’) to S;
2.19 Reply with acknowledgement and gossip (t, ‘fin’);

2.20 upon (receive finalise (t,⊥, ‘fin’) from reader) do
2.21 if ∃(t, w, •) ∈ S : w 6= ⊥ then
2.22 S ← (S \ {(t, w, •)}) ∪ {(t, w, ‘fin’)}; reply (i, w) and gossip (t, ‘fin’);
2.23 else S ← S ∪ {(t,⊥, ‘fin’)}; reply (i,⊥) and gossip (t, ‘fin’) ;

2.24 upon (receive gossip (t,⊥, ‘fin’) from server) do
2.25 if m := ∃(t,⊥, •) ∈ S then S ← (S \ {m}) ∪ (t, w, ‘fin’) ;
2.26 else Add (t,⊥, ‘fin’) to S;

servers and all servers are connected with each other, as described in Cadambe et al. [3].
Let P be the server set, where N := |P|. Each server has a local storage S for recieved
messages.
The multi-writer, multi-reader (MWMR) shared memory emulation problem in mes-

sage passing systems, is the problem of emulating a shared register in the above settings.
This register can be atomically changed by the writers, and atomically read by the read-
ers, while tolerating fail-stop failure of at most f server. The parameter k restricts the
size of the part of the shared register that can be stored on a single server, i.e., each server
can store up a fraction of dk−1e of the size of the register. A solution for 1 ≤ k ≤ N −2f
is the CAS algorithm [3].
In addition to the requierments MWMR shared memory emulation problem, the robust

and private distributed shared atomic memory problem allows server to deliver corrupted
information and we require privacy. Our settings are motivated by (reliable) servers that

55



4 Robust and Private Distributed Shared Atomic Memory

stores large secret shares on (unreliable) mass storage systems. We allow at most e semi-
Byzantine servers and at most f failures. We assume that semi-Byzantine servers can
send corrupted secret shares to readers, but not corrupted tags or labels, i.e., when a
semi-Byzantine server replies with a tuple (t, w, d), only w might be corrupted.
In the proposed Algorithm 3, the writers split secrets using the (N, k)-Reed-Solomon

code and submit the resulting secret shares to the servers. Servers store their secret shares
and deliver them to the readers upon request. The proposed solution withstands a fault
model that includes both server stop-failure and server semi-Byzantine behaviour. Note
that this is an erasure channel, but, in contrast to the BEC, with memory. The prob-
ability of an erasure, i.e., a server stop-failed, depends on previous server stop-failures,
because a stop-failed server stays stop-failed. The upper bounds on the number of stop-
failed servers, as well as semi-Byzantine servers allows the Berlekamp-Welch Algorithm 2
to always be able to correct the errors and erasures and, thus, it never returns ⊥ in our
case.
We say that a secret sharing protocol is t-private when a set of at most t servers cannot

compute the secret, as in [2]. Note that a 0-private protocol preserves no privacy. When
the presence of at most t semi-Byzantine servers and at most s stop-failed servers does
not influence the correctness of secret restored by a reader, we say that the protocol is
(s, t)-robust, similar to t-resilience in [2].
Quorums of (k+ 2e)-overlap Quorum systems can be used for ensuring transaction
atomicity in replica system despite the presence of network failures [13]. We define a
quorum as a server subset Q ⊆ P with at least dN+k+2e

2 e elements, and we write Q
as the set of all quorums. Lemma 3 uses the quorum definition to show that any two
different quorums share at least k+2e servers, rather than just k of them as in Cadambe
et al. [3]. These quorums guarantees that once a writer finishes its write operation, any
reader can retrieve at least k + 2e secret shares and reconstruct the secret. We have to
show, similar to Cadambe et al. [3], that two different quorums share by definition at
least k + 2e server. This guarantees that after a writer wrote to a quorum, a reader can
read enough values to reconstruct the secret.

Lemma 3. (Variation of [3], Lemma 5.1) Suppose that 1 ≤ k ≤ N − 2f − 2e. (1) If
Q1, Q2 ∈ Q, then |Q1∩Q2| ≥ k+ 2e. (2) The existence of such a k implies the existence
of Q ∈ Q such that Q has no crashed servers.

Proof. (1) Let Q1, Q2 ∈ Q, then |Q1∩Q2| = |Q1|+ |Q2|−|Q1∪Q2| ≥ 2
⌈
N+k+2e

2

⌉
−N ≥

k + 2e. (2) Since there are at most f crashed servers, we can show that without such
f servers, there are still enough alive servers for a quorum. It follows that N − f ≥
N −

⌊
N−k−2e

2

⌋
=
⌈
N+k+2e

2

⌉
.

By Lemma 3, the atomicity and liveness analysis in [3, Theorem 5.2 to Lemma 5.9]
also holds when the CAS algorithm that uses (k + 2e)-overlap quorums.

56



4.3 The Algorithm

4.3 The Algorithm

In order to tolerate at most e semi-Byzantine servers and the corrupted secret shares
they send to a reader, we propose Algorithm 3 as a variation of Cadambe et al. [3] CAS
algorithm that uses (k+ 2e)-overlap quorums and (N, k)-Reed-Solomon codes [8], which
is an (N, k)-MDS [9] code that Cadambe et al. [3] uses. By the atomicity and liveness
analysis for the case of (k+ 2e)-overlap quorums (the remark after Lemma 3), the reader
retrieves k + 2e unique secret shares that include at most e manipulated shares. The
server itself does not differ from [3], since it only stores the secret shares and it does not
read or manipulate them. The meta data is identical to [3]. A secret is written by one
of the writer using three phases: query, pre-write and finalise. First it queries for the
maximal tag number, but it only waits for the replies from a quorum. This means it might
not use the maximal tag number in the system, which might in the mean time increase
anyway, due to concurrent write operations. The new tag tuple for this write operation
consist of an incremented tag value and the node id of the current writer. In the pre-write
phase the individual secret shares are generated for each server and delivered together
with the new tag tuple. The last phase, finalise, makes the tags on the server visible for
read operations since the pre-write waits for a quorum to acknowledge, it is ensured a
read operation can read enough secret shares to decode the secret. After receiving the
finalise message, a server sends a gossip messages to all other servers (Line 2.19).
A read operation consists of two phases. The query is identical to the write operation.

Instead of incrementing, the tag tuple is used as it is for a finalise step. The finalise
step asks for the secret share associated with this tag tuple. Since we use quorums, it is
ensured that enough overlap exists and that the reader receives enough secret shares to
decode the secret.

Corollary 1. For 1 ≤ k ≤ N−2f−2e, Algorithm 3 emulates a shared atomic read/write
memory.

Robustness Robustness is added by the ability of the Berlekamp-Welch algorithm to
correct error in the Reed-Solomon codes. Note that semi-Byzantine servers only introduce
corrupted secret shares. So, we do not need to handle corrupted tags, or labels. Lemma 4
shows the robustness of Algorithm 3 against up to e semi-Byzantine servers and up to f
stop-failed servers.

Lemma 4. For k ∈ {1 . . . , N − 2f − 2e}, Algorithm 3 (f, e)-robust.

Proof. If a writer issues a query, pre-write and finalise operations it does not read back
the secret from the server. Thus, writers are immune to semi-Byzantine servers. Servers
do not exchange secrets with other servers and thus are not directly affected by semi-
Byzantine servers. A reader collects secret shares from quorum of servers, but never
writes them to servers, since a query and a finalise only contains a ⊥ in place of a secret
share. By Lemma 3 and Corollary 1 follows that a reader pi receives at least k + 2e
secret shares from the finalise operation. From these k + 2e secret shares at most e are
corrupted and, thus, pi computes the correct secret by applying Berlekamp-Welch.

57



4 Robust and Private Distributed Shared Atomic Memory

Privacy Our approach ensures privacy of the secret among servers. In Lemma 5 we
see that a group of less than k servers are not able to reconstruct the secret by combining
the secret shares they have stored locally.

Lemma 5. For 1 ≤ k ≤ N − 2f − 2e, Algorithm 3 is (k − 1)-private.

Proof. Let t be a tag and k > 1. A set of k− 1 servers store together k− 1 secret shares
associated to the tag t. Since the secret shares encode a secret using Reed-Solomon
codes, it is impossible to compute the original secret with less than k secret shares [7].
The case of k = 1 implies that the secret shares are the secret itself and, thus, privacy is
compromised, i.e., it is 0-private. It follows that Algorithm 3 is (k − 1)-private.

Note that in the case k = 1, even if privacy is not protected, it is still possible to
correct corrupted memory copies. This holds because the reader reads 1 + 2e secret
shares and, thus, the additional 2e secret shares contain redundant information for the
Berlekamp-Welch error correction.

4.4 Conclusions

Interestingly, fundamental building blocks for distributed systems can provide privacy
and robustness. We show how to implement a robust and private coded atomic storage
protocol, which is resilient to semi-Byzantine servers using shared memory emulation in
message passing networks. In addition, our algorithm tolerates server crashes, and at
the same time, it ensures the privacy of the stored data. We believe that our approach
and techniques are useful for providing robustness and privacy for many more building
blocks for distributed systems.

58



Bibliography

[1] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. “Sharing memory robustly in
message-passing systems”. In: J. ACM (JACM) 42.1 (1995), pp. 124–142.

[2] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Completeness Theorems
for Non-Cryptographic Fault-Tolerant Distributed Computation”. In: 20th Symp.
on Theory of Computing. ACM, 1988, pp. 1–10. isbn: 0-89791-264-0. doi: 10.
1145/62212.62213. url: http://doi.acm.org/10.1145/62212.62213.

[3] Viveck R. Cadambe, Nancy A. Lynch, Muriel Médard, and Peter M. Musial. “A
Coded Shared Atomic Memory Algorithm for Message Passing Architectures”. In:
2014 IEEE 13th International Symposium on Network Computing and Applications,
NCA 2014, Cambridge, MA, USA, 21-23 August, 2014. IEEE Computer Society,
2014, pp. 253–260. isbn: 978-1-4799-5392-9. doi: 10.1109/NCA.2014.44. url:
http://dx.doi.org/10.1109/NCA.2014.44.

[4] Rui Fan and Nancy A. Lynch. “Efficient Replication of Large Data Objects”. In:
Distributed Computing, 17th International Conference. Vol. 2848. LNCS. Springer,
2003, pp. 75–91. isbn: 3-540-20184-X. doi: 10.1007/978-3-540-39989-6_6. url:
http://dx.doi.org/10.1007/978-3-540-39989-6_6.

[5] Abbas El Gamal and Young-Han Kim. Network Information Theory. New York,
NY, USA: Cambridge University Press, 2012. isbn: 1107008735, 9781107008731.

[6] Peter Gemmell and Madhu Sudan. “Highly Resilient Correctors for Polynomials”.
In: Inf. Process. Lett. 43.4 (1992), pp. 169–174. doi: 10.1016/0020-0190(92)
90195-2. url: http://dx.doi.org/10.1016/0020-0190(92)90195-2.

[7] R. J. McEliece and D. V. Sarwate. “On Sharing Secrets and Reed-Solomon Codes”.
In: Commun. ACM 24.9 (1981), pp. 583–584. issn: 0001-0782. doi: 10.1145/
358746.358762. url: http://doi.acm.org/10.1145/358746.358762.

[8] Irving S Reed and Gustave Solomon. “Polynomial codes over certain finite fields”.
In: J. Society for Industrial & Applied Math. 8.2 (1960), pp. 300–304.

[9] Ron M. Roth. Introduction to coding theory. Cambridge Press, 2006. isbn: 978-0-
521-84504-5.

[10] Adi Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (1979), pp. 612–
613. doi: 10.1145/359168.359176. url: http://doi.acm.org/10.1145/359168.
359176.

[11] C. E. Shannon. “A mathematical theory of communication”. In: The Bell System
Technical Journal 27.3 (July 1948), pp. 379–423. issn: 0005-8580. doi: 10.1002/
j.1538-7305.1948.tb01338.x.

59

https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
http://doi.acm.org/10.1145/62212.62213
https://doi.org/10.1109/NCA.2014.44
http://dx.doi.org/10.1109/NCA.2014.44
https://doi.org/10.1007/978-3-540-39989-6_6
http://dx.doi.org/10.1007/978-3-540-39989-6_6
https://doi.org/10.1016/0020-0190(92)90195-2
https://doi.org/10.1016/0020-0190(92)90195-2
http://dx.doi.org/10.1016/0020-0190(92)90195-2
https://doi.org/10.1145/358746.358762
https://doi.org/10.1145/358746.358762
http://doi.acm.org/10.1145/358746.358762
https://doi.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x


Bibliography

[12] R. Singleton. “Maximum Distance Q-nary Codes”. In: IEEE Transactions on In-
formation Theory 10.2 (Apr. 1964), pp. 116–118. issn: 0018-9448. doi: 10.1109/
TIT.1964.1053661.

[13] Dale Skeen. “A Quorum-Based Commit Protocol”. In: Berkeley Workshop. 1982,
pp. 69–80.

[14] Alexander Spiegelman, Yuval Cassuto, Gregory V. Chockler, and Idit Keidar.
“Space Bounds for Reliable Storage: Fundamental Limits of Coding”. In: Proceed-
ings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC
2016, Chicago, IL, USA, July 25-28, 2016. Ed. by George Giakkoupis. ACM, 2016,
pp. 249–258. isbn: 978-1-4503-3964-3. doi: 10.1145/2933057.2933104. url: http:
//doi.acm.org/10.1145/2933057.2933104.

[15] L.R. Welch and E.R. Berlekamp. Error correction for algebraic block codes. US
Patent 4,633,470. 1986. url: https://www.google.com/patents/US4633470.

60

https://doi.org/10.1109/TIT.1964.1053661
https://doi.org/10.1109/TIT.1964.1053661
https://doi.org/10.1145/2933057.2933104
http://doi.acm.org/10.1145/2933057.2933104
http://doi.acm.org/10.1145/2933057.2933104
https://www.google.com/patents/US4633470


PAPER IV

Thomas Petig and Elad M. Schiller and Jukka Suomela

Changing Lanes on a Highway





5 Changing Lanes on a Highway

We study a combinatorial optimisation problem that is motivated by the scenario of
autonomous, collaborative agents driving on a multi-lane highway: some agents need
to change lanes before the next intersection, and if there is congestion, the agents need
to slow down to make space for those who are changing lanes. There are two natural
objective functions to minimise: (1) the makespan, i.e., how long does it take for all
traffic to clear the road, and (2) the total cost, i.e., the total number of manoeuvres
over all agents. In this work we present efficient approximation algorithms for these
problems in the two-lane case, and hardness results in the multi-lane case. We also
discuss distributed, self-stabilising, and online versions of the problems.

63



5 Changing Lanes on a Highway

5.1 Introduction

5.1.1 Lane-Changing Problem

Consider a number of autonomous vehicles driving on a two-lane highway:

1

2 2

2

2

1

1:

2:

Each car is labelled with a lane number, 1 or 2, indicating where it needs to be before
the next intersection. Our task is to instruct the cars to adjust their speed and change
lanes so that all cars with label ` are on lane `:

1

2 2 22

11:

2:

We discretise the traffic by assuming that there is a grid of slots that is moving at some
fixed speed s (for example, s is the speed limit of the highway), and each car occupies
one slot (there are infinitely many free slots behind the last cars):

1

2 2

2

2

1

1:

2:
s

If there are no steering manoeuvres, each car will remain in its current slot (i.e., it
is driving along the current lane, at a constant speed s). We can use the following
manoeuvres to alter the relative positions of the cars.
First, a car that is currently on the wrong lane can switch lanes, assuming there is

an empty slot next to it:

1

2 2

2

2

1

1:

2:

Second, any car can slow down a bit to move backwards relative to the traffic around
it, assuming there is an empty slot behind it:

1

2 2

2

2 11:

2:

64



5.1 Introduction

5.1.2 Objectives

It is easy to find a feasible solution by following a simple greedy strategy: for example,
for each car x that is on the wrong lane, slow down all behind x on either lanes to make
space for x to move to the right lane. However, this is clearly not an ideal strategy in
the general case.
We will consider the following objective functions that we would like to minimise:

• Makespan: What is the last non-empty row that is occupied by a car in the final
configuration? Intuitively, we measure here how much do we stretch the traffic, or
equivalently, how long does it take for all traffic to clear the road.

1

2 2 22

11:

2:

makespan

• Total cost: What is the total number of steering manoeuvres (switching lanes or
slowing down) that we need to solve the problem? Note that the number of lane
changes is simply equal to the number of cars on the wrong lane, so the interesting
question is the number of slow down operations. Intuitively, we measure here the
average delay for the traffic.

In addition to these objectives, there is a third natural objective function that is inter-
esting in this setting: parallel time, i.e., the number of time units needed to solve the
problem, assuming that we can do multiple non-conflicting steering manoeuvres simulta-
neously in parallel. There are many reasonable definitions of non-conflicting manoeuvres
(for example, can we have a consecutive chain of cars all slowing down simultaneously?),
each of them requiring somewhat different strategies. We will leave a detailed discussion
of minimising parallel time for future work, but we point out here that our algorithms
have a structure that makes them easy to adapt them to a setting in which we can
manipulate an entire chain of cars simultaneously in parallel.

5.1.3 Model of Computation

To focus on the most interesting algorithmic aspects, we present our algorithms from
the perspective of a global omniscient entity that has a full control over all vehicles.
However, we emphasise that our algorithms can be adapted to the following distributed,
online setting:

• There is an infinite stream of cars driving along the highway.

• Lane changing is initiated when the first car reaches a fixed milestone (for example,
a traffic sign warning about the intersection).

65



5 Changing Lanes on a Highway

• The vehicles can send small messages to other vehicles in their immediate neigh-
bourhood.

Furthermore, our algorithms can be made self-stabilising: we do not need to maintain
any other logical state of the system beyond the current physical locations of the cars.
We will discuss these aspects in more detail in the full version of this paper.

5.1.4 Contributions

In this work, we present polynomial-time algorithms for the two-lane version of the lane
changing problem:

• a 1.5-approximation of the total cost that is makespan optimum,

• an exact algorithm regarding the total cost.

We conjecture that there exists an efficient exact algorithm also for minimising the total
cost. However, we show that the natural multi-lane extension of the problem is NP-
hard. (The details of the hardness proof appears in Appendix 5.4.)
We note the resemblance between the problem studied by us in this work and combi-

natorial puzzles [21], such as the “15” Puzzle [9], which is a game that considers a framed
four by four matrix that has 15 cell-tiles (agents); randomly ordered from 1 to 15. The
goal of the game is to slide the tiles so that the tiles are ordered. For large-scale versions
of the n-puzzle, finding an optimum solution is NP-hard [15, 16]. The problem studied
by us considers a different kind of a combinatorial puzzle in which all the agents have one
of ` target lanes assigned; many agents can share the same lane. Also, the “15” Puzzle [9]
considers title sliding in all four directions whereas the studied problem considers agents
that can either swap or delay, i.e., three directions rather than four. Moreover, the hard-
ness result presented in this paper does not use techniques that are related to the ones
that appear in [15, 16]. Feigenbaum et al. [4] formulated a number of graph problems
for the semi-streaming model. Unlike their model, the studied problem does not allow a
pair of nearby agents to swap cells, because the swap move requires the target cell to be
empty.
Problems related to lane-change consider traffic streams from the point of view of

vehicular control [14, 2, 7], traffic flow control [11], the scheduling of lane changes for
autonomous vehicles [1], assessment of the situation before changing lane [17], and ne-
gotiation before lane changing [19] to name a few. It is often the case, as in [1, 14],
that these problems consider a small set of nearby vehicles that need to coordinate a
single lane-change manoeuvre. A number of recent efforts, such as the European project
AutoNet2030 [19], considers the need to perform lane changes in congested traffic sit-
uations, as we do in this paper. Their study focuses on distributed mechanisms, i.e.,
the communication protocols, for enabling coordinated lane changes whereas this work
focuses on (the difficulty of) finding an optimum solution with respect to the total num-
ber (and order) of vehicular manoeuvres. We view the solution proposed in this work as
an essential component in the realisation of 25 years old vision of Automated Highway
Systems (AHS) [18].

66



5.1 Introduction

Cellular automata are often used for microscopic traffic flow prediction [12]. These
models resembles the one of the studied problem in the sense that each vehicle occupies
a single cell. However, Nagel [12] considers cellular automata that move the vehicles
forward, whereas the studied models consider the vehicles that can merely change their
current lanes or delay, i.e., the studied models consider silent moving forward actions
because we do not aim at predicting all traffic patterns and just aim at minimizing the
number of delays and lane changes. The systematic approach presented in [13] shows
that their lane change rules can provide “realistic results” with respect to the system
ability to offer an accurate traffic prediction. A complementary approach for studying
the effect of lane-change behaviour via cellular automata [8] is the observation of driver
behaviour [5, 22].
Wang et al. [20] offer a fully automated lane-changing controller that considers control

variables for both (discrete) lane change times and (continuous) accelerations. Some of
the vehicles make decisions to minimize the costs that are associated with undesirable
situations and some vehicles minimize their own costs only. To the end of determining the
controller behaviour, Wang et al. formulate a dynamic game problem, which they solve
via an iterative numerical simulation at the microscopic level. The studied problem has
different settings and optimization goals. Moreover, our analysis focuses on the structural
aspects of the problem with respect to the computational complexity and approximation
ratios.
Fang et al. [3] (and references therein) study a complementary problem of lane reser-

vation that considers each a network of road segments that they call lanes and we call
streams. There, each road segment has a limited capacity and thus vehicles reserve these
road segments so that they travelling time is not added with unnecessary delay. Fang et
al. use two integer linear programming models to formulate the problem and show that
the complexity of the problem is non-deterministic polynomial-time hard.
We denote by N = {1, 2, . . .} the set of natural numbers excluding 0. Let A ⊂ N

be the set of agents1. For now, we consider the case of two lanes. We consider a
set of targets S := {1, 2} and assume that the targets for the agents are given by a
function t : A ∪ {⊥} → S ∪ {⊥} with ⊥ 7→ ⊥ for the emptp space. For a vector
v := (v1, . . . , vk) ∈ (A ∪ {⊥})k for some k ∈ N we define t(v) := (t(v1), . . . , t(vk)). Let
j ∈ {1, 2} and i ∈ N. We define an agent stream with 2 lanes2, R ∈ (A ∪ {⊥})N×2, as
an infinite table with rows indexed by N, and lanes indexed by {1, 2} and each entry is
either ⊥, or an agent out of A. We require that every agent in A occurs exactly once in
R. The ⊥ symbol is a placeholder for empty space. We assume Ri,j > Ri′,j′ if (i, j) is
lexicographically larger then (i′, j′). We define two (stream) operations, one for delaying
to the next row and one for swapping between lanes, as following:

• Delay at (i, l), ↓(i, l). This operation delays the agent at Ri,l to Ri+1,l if
t(Ri,l, Ri+1,l) ∈ S × {⊥}.

• Swap at (i), ↔(i). This operation swaps one agent at Ri,1 or Ri,2 if t(Ri) ∈
1This unique identifier could be related to the position in the input stream.
2The case of more than two lanes is discussed later in Section 5.4.

67



5 Changing Lanes on a Highway

{(⊥, 1), (2,⊥)}.

Note that this requires that one of the swapped stream positions is ⊥ and the other one
an agent. We define a stream R to be feasible iff for all l ∈ {1, 2} and for all i ∈ N we
have t(Ri,l) ∈ {⊥, l}.
The Agent Sorting (AS) task given a stream R is to compute a feasible stream R′

using legal slowing down and moving sideways operations. The Optimum Agent Sorting
(OAS) task is to solve AS with the minimal sum of delay and swap operations.
For a lane l ∈ {1, 2}, we define l̄ = 2 if l = 1 and l̄ = 1 if l = 2.

Observation 1. The exact amount of swaps needed is |{Ri,l : t(Ri,l) /∈ {⊥, l}}|.

We say an agent is coming from above into row i if it delays from row i− 1 to row i.
In general, for a given row i, we refer to above in the stream, when we refer to rows j
with j < i.

5.2 Upper Bounds

With Algorithm 4, we present an algorithm that computes an optimum solution for OAS
for simple input streams and approximates an optimum solution for the general input.
It consists of two for loops, where the first estimates the cost, i.e., the number of delays
that are necessary to solve congestion, as well as, to make space for moving agents to
their target lane and stores it for each row in d. The second loop iterates in reverse
direction over the stream and moves the agents according to the computed cost. The
output is then a feasible, but not necessary optimum, solution for OAS. We proof an
approximation ratio of 1.5 later.

5.2.1 The Algorithm

The first loop ensures there is later enough free space to move the agents. From the
congestion point of view, without loss of generality, let us look on lane 1. We have three
cases for each row depending on how many agents in this row have the target lane 1:

1. If there are 2 agents, then the congestion increases by one.

2. If there is 1 agent, then the congestion does not change.

3. If there are 0 agents, then the congestion decreases by one.

The same three cases appear for lane 2. A special case occurs if t(Ri) = (2, 1), where we
need to ensure the d value is at least one and, therefore, there is space to delaying one
and then swap both agents to their target lane.
Algorithm 4 implements this idea as follows. In line 4.6 that all cases of (⊥, 1) and

(2,⊥) are resolved immediately. For the case Ri = (2, 1), Algorithm 4 ensures d is at
least 1 on both lanes in line 4.7 to generate space for swapping the agents at row i. In
case there is a pair of agents with target 1 in lane i, di,1 is incremented in line 4.12.

68



5.2 Upper Bounds

Algorithm 4: OAS Approximation
4.1 Input: R;
4.2 Output: R;
4.3 variable: d = {0}|R|×2 ∈ N|R|×2;
4.4 function ↓(i, l, a): for j ∈ N from i to i+ a− 1 do ↓(j, l);

4.5 for i ∈ N from 1 to |R| do
4.6 if t(Ri) ∈ {(2,⊥), (⊥, 1)} then ↔(i);
4.7 if t(Ri) = (2, 1) then di ← (max{1, di,1},max{1, di,2}) ;
4.8 else
4.9 if t(Ri,1) 6= 1 then di,1 ← max{0, di,1 − 1};

4.10 if t(Ri,1) = 2 then di,2 ← di,2 + 1;
4.11 if t(Ri,2) 6= 2 then di,2 ← max{0, di,2 − 1};
4.12 if t(Ri,2) = 1 then di,1 ← di,1 + 1;

4.13 di+1 ← di;

4.14 for i ∈ N from |R| to 1 do
4.15 switch (t(Ri,1), t(Ri,2)) do
4.16 case (1,⊥) do ↓(i, 1, di,1); break;
4.17 case (⊥, 2) do ↓(i, 2, di,2); break;
4.18 case (1, 1) do ↓(i, 1, di,1); ↔(i); ↓(i, 1, di,1 − 1); break;
4.19 case (2, 2) do ↓(i, 2, di,2); ↔(i); ↓(i, 2, di,2 − 1); break;
4.20 case (2, 1) do ↓(i, 1); ↔(i+ 1); ↔(i); ↓(i, 1, di,1); ↓(i+ 1, 2, di,2 − 1); break;

And the similar occurs for lane 2 in line 4.10. Any free space on one of the lanes leads
to a decrement of di,1 in line 4.9 or of di,2 in line 4.11. This ensures d represents the
congestion including the additional space needed to sort out (2, 1) cases.
The second loop performs the move operations starting from the back of the stream

(line 4.14). The case of (⊥, 1) and (2,⊥) was transformed in line 4.6 to (1,⊥) and,
respectively, to (⊥, 2). For the case of t(Ri) = (1,⊥) in line 4.16 and for the case of
t(Ri) = (⊥, 2) in line 4.17 the agent gets delayed according to the d value. The same
for case of t(Ri) = (1, 1) in line 4.18 and for the case of t(Ri) = (2, 2) in line 4.19, but
additional the agent, that is not on its target lane, is swapped to its target lane and
delayed as well. The d value is sufficiently large for this, since it was incremented either
in line 4.10, or in line 4.12. The last case, t(Ri) = (2, 1) is handled in line 4.20. First the
agent on lane 1 is delayed one row. This is possible since we ensure that the d value is
at least 1 in line 4.7. Afterwards, both agents are swapped to their target lane and then
delayed according to the d values. By pushing the accumulated space requirements to
the next rows (line 4.13), we ensure that the agents in row i+ 1 make enough space for
the agents in row i.

5.2.2 The Analysis

In the following, we will denote the indicator function with 1. We denote with |R| the
largest index of an agent in R, i.e., R|R| 6= (⊥,⊥) and Rj = (⊥,⊥) for all j > |R|.

69



5 Changing Lanes on a Highway

Definition 1. Let R be an agent stream. An l-congested region in R is an integer
interval {i, . . . , i+a} of maximal length, such that for every k with 1 ≤ k ≤ a+ 1 we get
cost(i, k, l, R) :=

∑i+k−1
j=i 1t(Rj,1)=l + 1t(Rj,2)=l > k. We call an agent stream R simple if

there is no i such that (t(Ri,1), t(Ri,2)) ∈ {(2, 1), (⊥, 1), (2,⊥)}.

We observe that the cost is upper bounded by cost(i, k, l, R) ≤ 2k, since there are not
more than two agents per row.

Lemma 6. Let 1 ≤ i1 < i2 < |R|. Then cost(i1, i2− i1 + k, l, R)− cost(i1, i2− i1, l, R) =
cost(i2, k, l, R)

Proof. Let C := cost(i1, i2 − i1 + k, l, R)− cost(i1, i2 − i1, l, R).

C =

i1+i2−i1+k−1∑
j=i1

(
1t(Rj,1)=l + 1t(Rj,2)=l

)
−
i1+i2−i1−1∑

j=i1

(
1t(Rj,1)=l + 1t(Rj,2)=l

)

=

i2+k−1∑
j=i2

1t(Rj,1)=l + 1t(Rj,2)=l

= cost(i2, k, l, R).

Lemma 7. Let I1 and I2 be two different l-congested regions in R. Then I1 ∩ I2 = ∅.

Proof. Assume I1 ∩ I2 6= ∅. Let, i1 = min I1, i′1 = min I2, i2 = max I1 and i′2 = max I2.
If i2 = i′2, then I2 contradicts the maximal length requirement of an l-congested region,
or I1 = I2. A similar argument holds for the case i1 = i′1. Without loss of generality, let
i2 < i′2. But, then we can we can extend I1 by adding the elements i2+1, i2+2, . . . , i′2 ∈ I2.
By applying Lemma 6 every time, we see that it still fulfils the requirements of an l-
congested region and therefore contradicts the maximality of I1. Thus, if I1 ∩ I2 6= ∅
then I1 = I2.

N.B. Lemma 7 does not hold if I1 is a 1-congested region and I2 is a 2-congested region.
For an index i, with 1 ≤ i ≤ |R|, exists maximal one 1-congested region and maximal
one 2-congested region that include i.

Lemma 8. Let R be an agent stream and let i with 1 ≤ i ≤ |R| be an index. The number
of agents with target l that need to delay at least to row i in R is at least cost(i0, i− i0 +
1, l, R)− (i− i0 + 1) for every i0 < i.

Proof. The cost function cost(i0, i − i0, l, R) returns the number of agents with target l
between index i0 and i. Since a feasible output can have maximal one agent per lane
per row, we can leave i − i0 agents between index i0 and i. Therefore, cost(i0, i − i0 +
1, l, R)− (i− i0 + 1) represents the number of agents that cannot stay above index i in
a feasible solution due to congestion. Thus, they need to be delayed even further.

70



5.2 Upper Bounds

Lemma 9. Let I = {i, i + 1, . . . , i + a}. The number of delays of agents with target l
needed to convert the congested region I to a feasible stream is at least∑

k∈I
(cost(i, k − i+ 1, l, R)− (k − i+ 1)) .

Proof. In Lemma 8 we saw a lower bound for the number of agents delaying over a given
index. From Lemma 7 we know that there is no other congested region for this lane that
intersects I. We now sum over all indexes that I covers.

Lemma 10. Algorithm 4 computes a feasible agent stream using a minimum number of
swaps.

Proof. To compute a feasible output, all cases of target pairs

(t(Ri,1), t(Ri,2)) ∈ {(⊥, 1), (2,⊥), (2, 1), (2, 2), (1, 1)}

needs to be solved. The case (⊥, 1) is converted to (1,⊥), and the case (2,⊥) is converted
to (⊥, 2), immediately with exactly one swap in row i in line 4.6. Line 4.7 ensures that
both agents in the (2, 1) case are delayed by at least one. This ensures that if agents
are in the following row then they get delayed and there is space to swap the position of
them in line 4.20.
We show that Algorithm 4 matches the lower bound with respect to swaps (Observa-

tion 1). Algorithm 4 is only doing swaps in line 4.18 and line 4.19 This does not include
line 4.6, which we have already considered above. In both cases, the algorithm swaps an
agent to its target lane. Thus, a necessary swap is performed. If the opposite lane is used
by another agent in this row, the agent there is delayed at least once and therefore the
swap is legal. This gives us the minimal number of swaps. Thus, Algorithm 4 matches
the lower bound given in Observation 1.
Now, we show that delaying an agent at Ri,l according to di,l is legal. We point out

that di,l − 1 ≤ di+1,l ≤ di,l + 1 for all i and for all l (cf. lines 4.7, 4.9, 4.10, 4.11 and
4.12). Let i ∈ N and l ∈ {1, 2}, such that 0 ≤ i ≤ |R|, t(Ri,l) = l and di,l > 0. We need
to show that Rj,l = ⊥ for all j ∈ {i+ 1, . . . , i+ di,l}, i.e., we can legally delay the agent
at position (i, l) for di,l times in the within the second for loop (line 4.14). We need to
look at all agents in the interval {i+ 1, . . . , i+ di,l} on both lanes.
Assume there is an agent at position j ∈ {i+ 1, . . . , i+ di,l}. If there is no such agent,

we are done. In case t(Rj,l) = l, i.e., the agent is not on its target lane in the input R,
then this agent was swapped to its target lane in a previous iteration of this loop in the
lines 4.18, 4.19, or 4.20. Thus, it is not in the way for a delay of the agent Ri,l on lane l.
The proof also considers the cases of t(Rj,l) = l and t(Rj,l) = l. That is, there are

agents with target lane l. We observe that dj,l > di,l−(j−i) and thus this agent is moved
far enough in a previous iteration in this loop, since this loop goes from the largest row
index to the smallest, we have that all agents placed in the input in rows with an index
larger than i are moved before the agent at row index i. This happens for agents that
are on their target lane in the lines 4.16 and 4.17, 4.18 and 4.19 as well as for agents not
on their target lane in the lines 4.18, 4.19, and 4.20.

71



5 Changing Lanes on a Highway

Lemma 11. Let R be a simple stream and I := {i0, . . .} be an l-congested region in
R. Let i ∈ I. Then di,l = max{0, cost(i0, i − i0 + 1, l, R) − i + i0 − 1} at line 4.14 of
Algorithm 4.

Proof. Let i be an index 1 ≤ i < |R| and l be lane. We see that di+1,l ∈ {di,l−1, di,l, di,l+
1}. Especially, di+1,l = di,l + 1t(Ri+1,1)=l + 1t(Ri+1,2)=l − 1. Let di,l > 0 and let i1 ≤ i be
minimal such that dj,l > 0 for all j ∈ {i1, . . . , i}. Thus, either i1 = 1, or di1−1,l = 0. In
both cases, are two statements following. First, di1,l = 1, because it can only increment
by one. Second, t(Ri1) = (l, l), because there must be congestion to increment by one.
Furthermore, we see that

di,l = di−1,l + 1t(Ri,1)=l + 1t(Ri,2)=l − 1

=

i∑
j=i1

1t(Rj,1)=l + 1t(Rj,2)=l − 1

=

 i∑
j=i1

1t(Rj,1)=l + 1t(Rj,2)=l

− (i− i1 + 1)

= cost(i, i− i1 + 1, l, R)− (i− i1 + 1). (5.1)

From (5.1) and the definition of i1, it follows that i1 is part of the l-congested region
I := {i0, . . .}.
To conclude this lemma, we need to prove that i1 = i0, i.e., both i0 and i1 start the same

l-congested region I. Assume that i0 < i1 (because we have just showed that i0 > i1 is not
possible). This means that t(Ri0,l) = (l, l) and, therefore cost(i0, 0, l, R) = 1 = d(i0, l).
From Definition 1 it follows that for all j ∈ I := {i0, . . . , i}, we have cost(i0, j−i0, l, R) >
j − i0. And by using (5.1) we get dj,l > 0. But, this is a contradiction to the minimality
of i1.

Lemma 12. Algorithm 4 solves OAS for simple agent streams.

Proof. From Lemma 10, we know that Algorithm 4 computes a feasible agent stream
using a minimal number of swaps. Since the input is simple, the condition in line 4.7 is
always false. Now, let I be a l-congested region. We point out that Algorithm 4 delays
an agent with target l at position i, l exactly di,l times (lines 4.16, 4.17, 4.18, 4.19) and
an agent with target l at position i, l exactly di,l − 1 times (lines 4.18 and 4.19).
From Lemma 11 we know that di,l = max{0, cost(i0, i− i0 + 1, l, R)− i+ i0 − 1} and

from Lemma 8 we know that this is the number of agents that pass index i.
We need to show that

∑
k∈I 1t(Rk,l)=ldi,l+1t(Rk,l)=l

(di,l−1) is equal to the lower bound

72



5.2 Upper Bounds

from Lemma 9. For this we rearrange the sum:∑
k∈I

1t(Rk,l)=ldi,l + 1t(Rk,l)=l
(di,l − 1)

=
∑
k∈I

( ∑
i:i0<i≤k,t(Ri,l)=l

1i+di,l>k +
∑

i:i0<i≤k,t(Ri,l̄)=l

1i+di,l−1>k

)
(5.2)

=
∑
k∈I

(
cost(i, k − i+ 1, l, R)− (k − i+ 1)

)
. (5.3)

For (5.2) we sum over all row indices k the agents that cross this index and for (5.3) we
use the assumption that I is a congested region, otherwise we get negative terms. We
also use the assumption that the input is simple, so the di,l only represent congestion,
as it is counted by the cost function. Thus, the lower bound of Lemma 9 is met and,
therefore, the number of delays is minimum.

Definition 2. The OAS problem with the additional constraint that for every t(Ri) =
(2, 1), neither the agent at Ri,1, nor at Ri,2, are allowed to stay at row i in the solution
is called constrained optimum agent sorting (cOAS).

Lemma 13. Algorithm 4 computes an optimum solution for cOAS.

Proof. For every row i with t(Ri) = (2, 1) and, both, di,1 > 0 and di,2 > 0, we have that
every agent at Ri+1 is delayed due to the di+1 values. This means there is space to sort
the agents at row i without additional delays to the ones needed to resolve congestion.
The interesting case is if at least one of di,1 and di,2 is zero. First, we consider that both

are zero. For the case of di,1 = 0 and di,2 = 0, we will need at least two additional delays
compared to an optimum solution for OAS, one for each lane. We also know there is no
agent moving from Ri−1,l to Ri,l for all l. Algorithm 4 is clearing row i+ 1, delaying a2,
swapping both agents and delaying a1 in line 4.20. For now, take an optimum solution
where a1 ends on index i1. Then, we can keep a1 in place do all operations below i+ 1
and delay the whole block Ri+1,1, . . . , Ri1,1 and finally move a1 to row i+ 1. This holds
for a2 as well. Thus, the solution of Algorithm 4 is for this case optimum with regard to
cOAS.
For the other two cases, i.e., exactly one of di,1 and di,2 is larger than zero, we now

assume, without loss of generality, that di,1 = 0 and di,2 > 0 and i is maximal. This
means, agent a2 := Ri,1, which has target t(a2) = 2, needs to delay anyway due to
congestion, as we have the assumption that di,2 > 0. For a1 := Ri,2 we need to add at
least one additional delay to fulfil the constraints of cOAS. We know that only on lane
2 agents delay from Ri−1,2 to Ri,2, because di,1 = 0. To conclude this lemma, we let
S′ be an optimum solution cOAS. In case a1 does not end up at (i + 1, 1), but at some
i1 > i + 1 in S′, one can rearrange the operation. Instead of the operations leading to
S′, one can apply all operations necessary to empty the position (i1, 1), but none of the
operations that move a1. This means a1 stays in position (i1, 1). Then we delay the
block from (i + 1, 1), . . . , (i1 − 1, 1) and delay a1 to (i + 1, 1) using the same amount

73



5 Changing Lanes on a Highway

row i i+1 i3
lane 1 a2 Ri+1,2 . . . Ri3,2
lane 2 a1 • . . . •

Figure 5.1: An initial setup in R.

row i i+1 i3 i3 + 1 i2
lane 1 • . . . . . . a1

lane 2 a2 Ri+1,2 . . . Ri3,2 b1 . . .

Figure 5.2: A solution S.

of delay operations. Since only twos coming from above, a2 can swap in between, or
in front of them for the same cost, which is based on congestion. Since only agents
aj,l := Rj,l : j < i ∧ l ∈ {1, 2} with lane 2 = t(aj) as their target lane, move in S′ from
row i− 1 to i. Agent a2 can swap in between (or in front as well as after) the agents aj,l.
for the same cost. Thus, the output of Algorithm 4 has the same cost as any optimum
solution cOAS.

Lemma 14. An optimum solution for cOAS does not use more than 2 times the delays
of an optimum solution for OAS and 1.5 times the total amount of operations.

Proof. Let R be an agent stream. Let S be an optimum solution of OAS on R. Let i
be a minimal row index, such that t(Ri) = (2, 1) and, either Si,1 = Ri,2, or Si,2 = Ri,1.
If there is no such i, then Lemma 14 follows immediatly, because S is also an optimum
solution for cOAS.
Without loss of generality, we assume Si,1 = Ri,2 =: a2. Let a1 = Ri,1 be the agent

with t(a1) = 2. According to our assumption, a1 must delay at least once, since its
neighbour a2 swaps in row i. Let us assume it swaps lanes at row i1 with i1 > i, and its
final position in S is (i2, 2) with i2 ≥ i1.

Let i3 < i1 be maximum, such that for all j ∈ {i + 1, . . . , i3} =: γ we have Sj,1 =
Rj,2 6= ⊥. This setup is shown in Figure 5.1. We denote with G the set of these agents
in {Rj,2}j∈γ . Assume there is an agent b1 = Si3+1,1, as we show in Figure 5.2. Since γ
is maximal, b1 6= Ri3+1,2. The agent b1 either followed after a1 on lane 1 to its position
in S, or it delayed on lane 2 after the agents in G swapped to lane 1. Thus, b1 position
in R was above row i.
If we look in the first case, we note that there cannot follow another after b1 since the

row i i+1 i3 i3 + 1 i2
lane 1 • . . . . . . a1

lane 2 b1 Ri+1,2 . . . Ri3,2 a2 . . .

Figure 5.3: The modified solution S, such that a2 does not stay on row i.

74



5.3 Optimum Solution

row i i+1 i3 i3 + 1 i2
lane 1 • . . . . . . a1

lane 2 b1 a2 Ri+1,2 . . . Ri3,2 . . .

Figure 5.4: The modified solution S, such that a2 and Ri+1,2,. . . ,Ri3,2 delay by one.

agents in G only swap once and do not do any further operation and these agents block
the way, i.e., every further delay is blocked by b1, every swap blocked by an agent in G.
In this case, one could delay a2 instead of b1 and leave b1 at position (i, 1) and a2 at
position (i3, 1) and a2 fulfils the constraint for cOAS at the same cost and we obtain the
solution presented in Figure 5.3.
For the second case, one could delay everyone in G and a2 by one after they swapped.

Note that this swap is necessary for b1 to pass on on lane 2. Here b1 stays at index i and
swaps. Since a2 delayed by 1 the constraint of cOAS is fulfilled without extra cost. We
see this solution in Figure 5.4.
For the case that Si3+1,1 = ⊥, we delay all agents in G by one and then delay a2.

Thus, we fulfil the constraint of cOAS. We point out that a1 delayed at least |G| + 1
times and the agents in G perform |G| swaps. Thus, we additionally pay at most |G|+ 1
delays. Therefore, we increase the number of delays by at at most a factor of 2 and we
increase the number of total operations by at most a factor 1.5.

Theorem 2. Algorithm 4 is an 1.5-approximation for OAS.

Proof. Apply Lemma 14 to Lemma 13.

Definition 3. Makespan is defined as max{i : t(Ri) 6= (⊥,⊥)}−min{i : t(Ri) 6= (⊥,⊥)}.

Theorem 3. Algorithm 4 computes the minimum makespan.

Proof. Using the argumentation of the proof of Lemma 14, we see that the constructed
solution by modifying the OAS solution S has the same makespan. But, this is not
less than the makespan Algorithm 4 produces. Since after adding additional delays if
necessary for the case the targets are (2, 1) in line 4.7, all further rows are sorted using
a minimum number of operations as we saw in Lemma 13.

5.3 Optimum Solution

The direct solver presented in Algorithm 5 has, as the approximation Algorithm 4, two
stages. First, the cost is estimated, then the agents are moved. The main difference is
that the queues in Algorithm 5 give us more details on how to move agents than the d
values in Algorithm 4. This allows us to compute the minimum amount of operations that
are necessary to compute a feasible solution for OAS. Nevertheless, we will see that for
simple inputs, the length of the queues corresponds to the d values of the approximation
Algorithm.

75



5 Changing Lanes on a Highway

We use queues to store the order in which agents delay from on row to the next. This
means if a queue q(i)

1 contains the agents a1, a2 and a3 in this order and where a1 is the
first, then to create the solution S and some point a1 will delay from position (i− 1, 1)
to (i, 1) and then a2 and afterwards a3. Before and between these delays might other
steps be executed. But, there will be no delay from (i− 1, 1) to (i, 1) after a3 delayed.
Algorithm 5 consists of two phases. First, for each row of the input it uses Algorithm 6

to fill up the queues for the next row. For this, it only uses the knowledge from above
and it do not look ahead. The |R| + 1‘s call of line 5.2 is using an empty row. This
allows Algorithm 6 to sort both queues, q|R|,1 and q|R|,2. Afterwards, only empty rows
are following, so we just leave the agents in the order they appear in the queues in line 5.3.
This means the last elements of q(|R|+2)

1 and q(|R|+2)
2 are stored in S|R|+2, the second last

in S|R|+3 and so on. Afterwards we know already how the solution, S, looks like. To
actually move the agents Algorithm 5 calls Algorithm 9 in line 5.4.

Algorithm 5: Directly Computing the optimum solution w/o wrong-side-moves in
one pass.
input : Stream R ∈ (I ∪ {⊥})2×|R|

output: Stream S ∈ (I ∪ {⊥})2×|R|

/* Assume that (q
(i)
1 , q

(i)
2 ) = (∅, ∅) for all i ∈ N */

5.1 for i ∈ {1, . . . |R|+ 1} do
5.2 (q

(i+1)
1 , q

(i+1)
2 , Si)← SolveRow(q

(i)
1 , q

(i)
2 , Ri);

5.3 S|R|+2 ← (q
(|R|+2)
1 , q

(|R|+2)
2 );

5.4 Apply moves from (q
(i)
l )

1≤i≤|R|+2,l∈{1,2} to R;

5.3.1 Correctness of the direct solver

Theorem 4. Algorithm 5 terminates eventually.

Proof. Algorithm 8 terminates in O(1), since the push operation to a queue terminates
in O(1). Algorithm 7 iterates over all over all elements in both input queues and the
2 agents in the given row. For each iteration, it calls Algorithm 8. Thus, Algorithm 7
terminates within O(|q1|+ |q2|). Algorithm 6 iterates at most once over one of the input
queues, to determine if the queue needs to be split before calling Algorithm 7. This has a
time requirement of O(max{|q1|+ |q2|}). It splits a queue if necessary, calls Algorithm 7,
and copies the rest of the queue at most once. This leads to an overall time requirement
of O(|q1|+ |q2|). Note that every agent occurs at most once in the queues. Thus, we can
rewrite the time requirement as O(|R|).
The sort step in line 5.2 is executed |R| + 1 times and essentially sorts the queues

together with the agents on the current row. There cannot be more than 2i agents in
the queues q(i)

1 and q(i)
2 together. We know Algorithm 6 requires O(|R|). This leads to

a time requirement of O(|R|2) for the first |R| + 1 rows. line 5.3 takes at most O(|R|),
because we are just coping element wise.

76



5.3 Optimum Solution

Algorithm 6: SolveRow(): Directly Computing the optimum solution w/o wrong-
side-moves for a given row.
input : Queues q1 and q2 and a row (r1, r2)
output: q1, q2, r1, r2

6.1 if |q1| = |q2| = 0 then SortStep((r1, r2), q1, q2); (l1, l2)← (pop(q1), pop(q2)) ;
6.2 else if |q1| = |q2| > 0 then
6.3 if t(last(q1)) = 1 ∧ t(last(q2)) = 2 then
6.4 (l1, l2)← (pop(q1), pop(q2)) and Sort(q1, q2, r1, r2);
6.5 else if t(last(q2)) = 2 then
6.6 (l1, l2)← (⊥, pop(q2)); Let j be max. s. t. t(q2(j)) = 1, or −1 otherwise;
6.7 if j 6= −1 then
6.8 l1 ← q[j] Sort q1, q2[0 : j], r1, r2 to (q′1, q

′
2); Append q2[j + 1 :] to q′2;

6.9 (q1, q2)← (q′1, q
′
2);

6.10 else if t(r2) = 1 then If t(r1) 6= ⊥ then prepend r1 to q1; l1 ← r2 ;
6.11 else
6.12 if t(last(q1)) = 1 then l1 ← pop(q1); ;
6.13 else if |q1| = 0 ∧ t(r1) = 1 then l1 ← r1; r1 ← ⊥ ;
6.14 Sort(q1, q2, r1, r2);

6.15 else if t(last(q1)) = 1 then Same as for t(last(q2)) = 2 with changed lanes ;
6.16 else (l1, l2) = (pop(q2),⊥); Sort q1, q2, r1, r2 to q1, q2 ;
6.17 else if |q1| < |q2| then
6.18 if t(last(q2)) = 2 then
6.19 (l1, l2)← (⊥, pop(q2)); Let j be max. s. t. t(q2(j)) = 1, or −1 otherwise;
6.20 if j 6= −1 then
6.21 if |q1| = 1 and 1 = t(q1[0]) and q1[0] < q2[j] then
6.22 l1 ← pop(q1) and Sort q1, q2, r1, r2 to (q1, q2);
6.23 else
6.24 Sort q1, q2[0 : j], r1, r2 to (q′1, q

′
2); Append q2[j + 1 :] to q′2;

6.25 (l1, q1, q2)← (q2(j), q′1, q
′
2);

6.26 else if t(r2) = 1 then If r1 6= ⊥ then prepend r1 to q1; l1 ← r2 ;
6.27 else
6.28 if t(last(q1)) = 1 then l2 ← pop(q1); ;
6.29 else if |q1| = 0 ∧ t(r1) = 1 then l1, l2 ← r1; r1 ← ⊥ ;
6.30 Sort(q1, q2, r1, r2);

6.31 else
6.32 if |q2| > 0 and t(last(q2)) = 2 then
6.33 (l1, l2)← (⊥, pop(q2)); Let j be max. s. t. t(q2(j)) = 1, or −1 otherwise;
6.34 if j 6= −1 then
6.35 if |q1| = 1 and 1 = t(q1[0]) and q1[0] < q2[j] then
6.36 l1 ← pop(q1) and Sort q1, q2, r1, r2 to (q1, q2);
6.37 else
6.38 Sort q1, q2[0 : j], r1, r2 to (q′1, q

′
2); Append q2[j + 1 :] to q′2;

6.39 (l1, q1, q2)← (q2(j), q′1, q
′
2);

6.40 else if t(r2) = 1 then If r1 6= ⊥ then prepend r1 to q1; l1 ← r2 ;
6.41 else (l1, l2)← (pop(q2),⊥); Sort q1, q2, r1, r2 to q1, q2. ;
6.42 else (l1, l2)← (pop(q2),⊥); Sort q1, q2, r1, r2 to q1, q2. ;

6.43 else Same as for |q1| < |q2|, but with changed lanes ;
6.44 return q1, q2, l1, l2;

77



5 Changing Lanes on a Highway

Algorithm 7: Sort():
input : Queues q1 and q2 and a row (r1, r2)
output: q1, q2

7.1 (q′1, q
′
2)← ([], []);

7.2 while |q1|+ |q2| do
7.3 SortStep(r1, r2, q

′
1, q
′
2);

7.4 if first(q1) > first(q2) then (r1, r2)← (unshift(q1),⊥) ;
7.5 else (r1, r2)← (⊥, unshift(q2)) ;

7.6 SortStep(r1, r2, q
′
1, q
′
2);

7.7 return q′1, q
′
2;

Algorithm 8: SortStep():
input : Queues q1 and q2 and a row (r1, r2)
output: q1, q2

8.1 switch r1, r2 do
8.2 case (⊥, 1) do push(q1, r2);
8.3 case (⊥, 2) do push(q2, r2);
8.4 case (1,⊥) do push(q1, r1);
8.5 case (1, 1) do push(q1, r1); push(q1, r2);
8.6 case (1, 2) do push(q1, r1); push(q2, r2);
8.7 case (2,⊥) do push(q2, r2);
8.8 case (2, 1) do push(q1, r1); push(q1, r2);
8.9 case (2, 2) do push(q2, r1); push(q2, r2);

Algorithm 9: Apply moves: Constructing a sequence of moves given solution of
Algorithm 5
input : Queues q(i)

l and streams R and S.
output: For now we directly solve the stream, so the output is actually the same stream as the

output S of Algorithm 5. Technically it is the sequence of moves we are doing to get from
R to S.

9.1 while |{Ri,l : t(Ri,l) /∈ {⊥, l}}| > 0 do
9.2 Select i, l such that Ri,l = ⊥ and either first(q(i)

l ) = Ri−1,l, or t(Ri,l̄) = l;
9.3 if first(q(i)

l ) = Ri−1,l then
9.4 if (Si,l = Ri−1,l and |q(i+1)

l | = 0) or first(q(i+1)
l ) = Ri−1,l or Ri−1,l ∈ q(i+1)

l̄
∧Ri−1,l̄ = ⊥

or Si,l̄ = Ri−1,l ∧ 0 = |q(i)

l̄
∩ {Ri,l̄} ∪ q

(i+1)
l | then

9.5 ↓(i− 1, l) and unshift(q(i)
l );

9.6 else if Ri,l̄ = Si,l or first(q(i+1)
l ) = Ri,l̄ then

9.7 ↔(i);

78



5.3 Optimum Solution

Algorithm 9 is called in line 5.4. This Algorithm moves one agent at each iteration.
The agents are sorted into queues, such that either their order is kept among the agents
that stay on the same lane, as in lines 8.4, 8.3 and 8.6, or their is space for a swap, as in
lines 8.5, 8.7, 8.8 and 8.9 and the fact Algorithm 8 is called in lines 7.3 and 7.6 only on
the first elements of the queue, which is removed and then Algorithm 8 is called again
on the new first element until there are no elements left.
We must delay at least one agent in Ri, if t(Ri) = (2, 1). But, we can sort all the agents

delaying from row i− 1 to row i, by only delaying agents in one row per iteration, as we
see in lines 7.4 and 7.5, while prioritising on the position in R to ensure the feasibility of
this delay.
This ensures that if there is an agent in the way, meaning it is at some position (i, l),

it is going to move before any agent swaps, or delays, to position (i, l). Since the input
stream is of bounded length |R| and afterwards it is empty, there is at least one agent
that can be moved.

Now we look into simple streams and use lemmas 15 to 16 conclude that the queues
in Algorithm 5 behave the same as the d values in Algorithm 4. Thus, it computes an
optimum solution on simple streams.

Lemma 15. In line 5.4, we have q(i)
l = ∅ for all i > 2|R|.

Proof. Every call to Algorithm 6 with a given row index i leaves in the lines 6.1, 6.4, 6.6,
6.10, 6.12, 6.13, 6.16, 6.19, 6.26, 6.28, 6.29, 6.42, 6.33, 6.36, 6.39, 6.40 and 6.41 at least
one agent in row i if the input queues are not empty, or there are agents in Ri. Since |R|
rows contain at most 2|R| agents, no agent is delayed beyond row 2|R|.

Lemma 16. If R is simple, then t(a) = l for all a ∈ q(i)
l with i ∈ N and l ∈ {1, 2}.

Proof. We need to consider all cases in Algorithm 8, besides line 8.8, because we assume
that R is simple. In all these cases, Algorithm 8 pushes agents only the queues of their
target lanes. There two more cases in which Algorithm 6 adds agents to queues. But,
from R being simple follows, that in lines 6.10 and 6.26, the agent at r1 has t(r1) = 1.
The same holds for the case |q1| > |q2| in line 6.43, where t(r2) = 2. Thus, the lemma
statement holds until the row for which Algorithm 6 is called. For all further rows
after the last call to to Algorithm 6, the lemma statement follows from the assumption
(Algorithm 5) that the queues are initially empty and Algorithm 5 does not modify any
further queue then the ones discussed Lemma 15.

Lemma 17. If R is simple then di,l = |qi,l|.

Proof. From Lemma 16 we know that every agent is assigned to its target queue in
Algorithm 7. In Algorithm 6 we see (lines 6.1, 6.4, 6.6, 6.10, 6.12, 6.13, 6.16, 6.19, 6.26,
6.28, 6.29, 6.42, 6.33, 6.36, 6.39, 6.40 and 6.41) that the agents that are left on row i,
i.e., (l1, l2) are the last elements of the queues, or the agents in row i in case there is no
previous congestion. Meaning all, but one agent, for each lane is moved to the next row.
The queues represent the congestion and the size of the queues increase, or decrease,

79



5 Changing Lanes on a Highway

their size, like the d values increase, or decrease, in the first for loop of Algorithm 4.
Note that the assignments in the lines 6.8, 6.22 and 6.25 of Algorithm 6 do not occur,
since R is simple.

Theorem 5. Algorithm 5 computes an optimum solution for simple streams.

Proof. Algorithm 5 only performs operations on agents when calling Algorithm 9. Delays
are only performed if the agent is an element of a queue. Lemma 16 implies that this
agent is removed from that queue after the operation in line 9.5 brings this agent to its
correct lane. From Lemma 17 we know that the number of delays is the same as the sum
of the d values of Algorithm 4. The optimality follows from Lemma 12.

Lemma 18. Let R be an agent stream and assume there exists exactly one i with Ri =
(2, 1). If an optimum solution that does not delay any agent from i− 1 to i exists, then
also exists an optimum solution S with Si = (1,⊥) and Si+1 = (⊥, 2).

Proof. Let R be an agent stream, such that there is exactly one i with Ri = (2, 1) and
such that there is an optimum solution S′, such that no agent coming from above into
row i. Let a1 := Ri,2 and a2 := Ri,1. We note that t(a2, a1) = (2, 1). Let us assume
there is an optimum solution, such that neither a1, nor a2 stay at row i. Without loss of
generality, we assume a2 is delayed first. But, then we can let a1 stay at row i since there
is no agent coming from above into row i. Swapping a1 to lane 1 in row i and apply all
other steps of the optimum solution creates a solution that uses at least one less delay,
which is a contradiction to the optimality.
Thus, at least one agent of {a1, a2} stays at row i. Without loss of generality, we

assume that a1 stays. Furthermore, assume a2 delays at lane 1 until row j, then swaps
at j and delays on lane 2 until j′. If we take the operations for the optimum solution,
but we keep a1 and a2 in place. Then, the position (j′, 2) is empty and between row i+1
and j we have maximal j − i − 1 agents, since only agents on lane 2 can stay there, all
others need to move away when a2 comes down.
So, we can use the delays we saved for not moving a2 down, to delay the agents between

row i + 1 and j by using j − i − 1 delays and row i + 1 is now empty. So far we spend
at least one delay less than the optimum solution. Thus, we can now either delay a1, or
a2 to row i+ 1 and perform the swaps on rows i and i+ 1.

Note that the proof of Lemma 19 considers Algorithm 4 and any optimum solution (and
not necessarily the one by Algorithm 5). Theorem 7 uses this insight for arguing about
the structural properties that an optimum can have in the presence of both 1-congested
and 2-congested regions.

Lemma 19. Let R be an agent stream and assume there exists exactly one index i with
t(Ri) = (2, 1). Let R′ be identical to R, besides t(R′i) = (1, 2). Assume i is part of
an 1-congested region, as well as a 2-congested region. Then, there exists an optimum
solution S for R, which is also an optimum solution for R′.

80



5.3 Optimum Solution

Proof. From Lemma 12 we know that Algorithm 4 computes an optimum solution S′ for
R′. In case there are agents in row i + 1, Algorithm 4 is delaying them at least once to
make space for the congestion above.
Let (a2, a1) = Ri. To construct an optimum solution for R, one uses the created free

space in row i + 1 to delay one agent from row i. This gives us the space to swap both
agents, a1 and a2 and then move both to the to the same final position using the same
steps as Algorithm 4 used. In fact this solution is identical to S′.

Lemma 20. Let R be an agent stream and assume that there exists exactly one i with
t(Ri) = (2, 1). Assume there exists an optimum solution that delays k > 0 agents from
i − 1 to i on one lane and that does not delay any agent on the other lane. Then there
exists an optimum solution S with Si,1 = Ri,2 and Ri,1 delayed at least once and at most
k times on lane 1 before it swaps.

Proof. Let us assume we have an optimum solution S. Without loss of generality, we
assume that there is at some point an agent at lane 2 and row i−1 that is delayed to row
i. We do not loose generality, because if it would be on lane 1 it would be symmetric.
However, throughout the solution S, there is no agent delayed on lane 1 from row i− 1
to i. First, we assume that the agent a2 := Ri,1 with target t(a2) = 2 performs a swap
at row i. This means that the agent a1 := Ri,2 must delay on lane 2 at least to row i+ 1.
Without loss of generality, we assume a1 delays to row i′1, then swaps there and delays
to its final position Si′′1 ,1 with i′′1 ≥ i′1. After its swap at row i, agent a2 only delays until
reaching its final position at Si′2,2 with i′2 > i.
We can delay every agent between row i+1 and i′1 by one for the same cost as delaying

a1 to row i′1 and make space for the swap there. This makes space for delaying a2 on
lane 1 by one and then swap it on row i+ 1 with further delays afterwards until its final
position. By the lemma assumption, no agent is delaying on lane 1 from row i − 1 to
row i and, thus, a1 can stay at row i. But, this is a contradiction to the optimality of S,
since this solution use at least on delay less. Therefore, a2 cannot swap, as assumed, in
row i and in an optimum solution a1 stays in row i.
Delaying a2 by one could recreate the same situation when the target of the agent on

lane 2 is 1 as well, but the amount of agents delayed to row i+ 1 is one less, since there
is no agent with target 2 on row i any more. This can be repeated at most k times.

Definition 4. Let R be an agent stream. A row index j with t(Rj) = (2, 1) is called
critical (row index). We denote with J(R) the set of critical row indices, or simply the
set of critical rows. We define q−1,1 = q−1,2 = ∅. Let j ∈ J(R). If |qj−1,1| > 0 and
|qj−1,2| > 0, we say that j is a critical row index with filled queues. If j ∈ J(R) and
|qj−1,1| = 0 and |qj−1,2| = 0, then we say j is a critical row index with empty queues.
Otherwise, we say j is a critical row index with mixed queues.

Lemma 21. Let R be an agent stream. Let q be the queues computed by Algorithm 6 and
d as computed by Algorithm 4. If all critical rows have empty queues, then |qi,l| ≤ di,l
for all i and for l ∈ {1, 2}.

81



5 Changing Lanes on a Highway

Proof. For simple inputs, the statement follows from Lemma 17. Assume the set of
critical rows, J(R), is not empty. Assume there are only critical rows with empty queues
and let j := minJ(R) be the first one. Then for all j′ < j, we have |qi,l| = di,l as we saw
in Lemma 17. Algorithm 4 ensures that dj,1 and dj,2 are larger or equal to 1 in line 4.7.
Algorithm 6 does not delay both agents in Rj , but leaves one of these two agents at row
j (line 6.1), namely the agent with target one, as we see in line 8.8 of Algorithm 8. Thus,
|qj,1| < dj,1. For multiple occurrences, we repeat this argument and point out that for
rows, that are not critical, the congestion based changes to the queues follow the changes
of the d values, as we see in Lemma 17, i.e., |qi−1,l| − |qi,l| = di−1,l − di,l.

Lemma 22. Let R be an agent stream. Let q be the queues computed by Algorithm 6
and d as computed by Algorithm 4. Then |qi,1|+ |qi,2| ≤ di,1 + di,2 for all i.

Proof. For critical rows with filled queues, Algorithm 4 uses no additional delay, cf.
line 4.7. It sorts the critical rows by using the space already created to solve the conges-
tion above. Let us denote Rj = (a2, a1). The direct solver would delay a2 on lane 1, so
a1 can swap at row j (line 8.8 of Algorithm 8). Thus, |qj,1| = dj,1 +1 and |qj,2| = dj,2−1.
The crucial part is to see if the direct solver is able to leave at least as many agents in
a row than Algorithm 4, as this is equivalent to looking at the size of the queues and,
respectively, at the d values.
For each row in the solution S, as it is computed by Algorithm 5, there are at most

two agents in this row, one on each lane. Let us consider a row index i, such that there
is at least one agent in Si. One of the agents in Si is the last one of a queue, i.e., either
last(q(i−1)

1 ), or last(q(i−1)
2 ). If there there are two agents in Si, then we assume without

loss of generality, that one of them was the last one in the queue of lane 1. If it had
target 1, then the second agent is coming either from q

(i−1)
1 , from Ri,1, from last(q(i−1)

2 ),
or there is none. If there is one agent place in row i, which is the last element of a queue,
but it still needs to swap, then there is no second agent left in this row, as we see in
lines 6.16 and 6.42 of Algorithm 6. The only case where an agent a with target l is added
to the queue of lane l, is the case in which t(Ri) = (2, 1). This agent a continues to delay
on the wrong lane if t(Ri,l̄) = l and the queues of lane l̄ are still longer then on lane l,
i.e., |q(j)

l | < |q
(j)

l̄
| for the next lanes j > i. Thus, for a given row, agents are delaying

on the wrong side at most on one lane, but never on both, i.e., if for an index j there
is an agent with target 2 in q

(j)
1 then there is none with target 1 in q

(j)
2 . This means

the direct solver can leave two agents in this row. Therefore, we can leave at least as
many agents per row as the approximation algorithm does, which gives us the statement,
|qi,1|+ |qi,2| ≤ di,1 + di,2 for all i.

Theorem 6. Algorithm 5 computes the minimum makespan.

Proof. Theorem 3 shows that Algorithm 4 computes the minimum makespan. From
Lemma 22 we know that Algorithm 5 does not delay further than Algorithm 4 does.

82



5.3 Optimum Solution

Lemma 23. Let l ∈ {1, 2} and q be the queues after executing Algorithm 5 until line 5.3.
If there exists an agent a ∈ q

(i)
l with t(a) = l̄, then there is no agent a′ ∈ q

(i)

l̄
with

t(a′) = l.

Proof. We discuss two cases, first both agents where in the same row initially, e.g.,
Ri = (a, a′), then the case that they did not share the same row in R.
Neither Algorithm 8, nor Algorithm 6 move an agent a into q(i)

l with t(a) = l̄ and agent
a′ into q(i)

l̄
with t(a′) = l in the same iteration, i.e., a and a′ are added during different

calls to Algorithm 6 using different row indices. More precisely, since we do not swap
an agent that is already on its target lane to the opposite lane, the only case we need to
look into is t(Ri) = (2, 1). But, this is in general handled in line 8.8, where indeed the
agent on lane 2 with target 1 is added to the queue of lane 1. For the special cases of
lines 6.40, 6.26 and 6.10 (and the occurrences in the symmetric part, e.g., line 6.43), one
agent is swapped to its target lane. Thus, Algorithm 6 has not added them in the same
row and they must be added in separate rows, i.e., one agent was in the queue on the
not-target lane and one in the row when calling Algorithm 6.
To conclude the lemma, we need to look into the case the agents a and a′ are added

during different calls to Algorithm 6. We assume there is an agent a ∈ q(i−1)
l with t(a) = l̄

and no such agent in q(i−1)

l̄
. If there is no such row, then the lemma statement follows

immediately. To add agent a′ into q(i)

l̄
with t(a′) = l it needs to be in Ri,l̄. There are

two possible reasons for a′ to be added to q(i)

l̄
. Either, Ri,l stays in place, or Ri,l swaps

to lane l̄. The first case cannot happen because |q(i−1)
l | > 0 and the second case implies

that all agents in q(i−1)
l with target lane l̄ because a′ already paid for moving away, but

then there is no agent b ∈ q(i)
l with t(b) = l̄.

Theorem 7. Algorithm 5 computes an optimum solution.

Proof. The cost of an optimum solution is lower bounded by the cost of congestion, i.e.,
the cost of solving an input where all critical rows are swapped in place before solving
it, i.e., replace Ri = (a, b) such that t(a, b) = (2, 1) with (b, a). The additional costs,
compared, to the congestion, come from solving critical rows. In the situation that both
agents in a critical row need to delay anyway due to congestion, the space for swapping
is generated for free.
For simple inputs, we showed optimality in Theorem 5. Assume we only have critical

rows with empty queues. Then, the solution of the critical rows does not affect each other
and the direct solver is constructing the solution of Lemma 18. If we have additionally
rows with full queues, we see that the direct solver constructs a solution as in Lemma 19.
In fact, this case can be solved without using more delays than those required to solve
congestion as we saw in the proof of Lemma 22.
The interesting case is when the we have critical rows with mixed queues. Here, we

want to apply Lemma 20. Let (a2, a1) := Ri be this row and let, without loss of generality,
|q(i−1)

2 | > 0. We know from Lemma 20 that a2 is delaying at least once, which also means
an agent at Ri+1,1 needs to move away. If the next row is empty, a2 just swaps to lane 2

83



5 Changing Lanes on a Highway

and no unnecessary delays have been executed, since there were agents delaying on lane
2. Similarly, if there is an agent on Ri+1,2 with target lane 2. This agent delays to make
space for a2. If there is an agent a3 := Ri+1,2 with t(a3) = 1, then there are three cases.
The first is that a3 swaps and delays before a2 comes down, the second that a3 delays
on lane 2 and a2 swaps on lane i+ 1 and the third that a2 delays further on lane 1 and
a3 swaps afterwards.

If |q(i+1)
1 | > 1 then all other agents besides a2 in q

(i+1)
1 have target lane 1, which is

implied by Lemma 23. If we assume |q(i+1)
1 | > 2, then it follows that |q(i)

2 | > 1 and at
least one agent in q(i)

2 has target lane 1. The only case in which such an agent delays on
lane 2 is that t(Ri−1,1) = 2 and q(i−1)

1 is either empty, or contains one agent with target
lane 1. Since Ri−1,1 swapped |q(i−1)

1 | = |q(i−1)
2 |, but then we can have at most two agents

with target lane 1 in q(i−1)
2 . Since every agent with target lane 1 swapped in row i there

is no such agent in q
(i)
2 . We also see, if we denote with j > i the row index in which

a2 swaps to lane 2, no additional agents gets added to q(j)
2 . Because, t(Rj,2) = 1 and it

swaps in row j, otherwise a2 would swap into the free space in row j. This goes on until
|q(j)

1 | = |q
(j)
2 |, where a2 swaps lane.

We show optimality by showing that we can apply Lemma 20 and that we do not do
unnecessary operations within the bounds of Lemma 20. The problem occurs if we have
agents with some target l in some queue q(i)

⊥ , but we need to leave the output at (i−1, l)
empty, i.e., Si−1,l = ⊥, meaning this agents could have stayed. This can happen for a
critical row, where one of the agents must delay on the wrong side, as well as afterwards,
where such an agent stays on the wrong side for some more rows. For the critical row,
we have two choices of who is delaying, but from Lemma 20, we know who it is. For
the case an agent was in a queue and stayed in the wrong lane, this can only happen in
lines 6.10 and 6.26 of Algorithm 6. This is the case if we have a row j such that some
a2 ∈ q(j)

1 exists with t(a2) = 2 and t(Rj,2) = 1 and |q(j)
1 | ≤ |q

(j)
2 |. If t(Rj,2) 6= 1, then

we can sort all queues and all delays are based on congestion and therefore we use the
minimum amount, besides if there is now agent with target 1 after a2 in q(j)

1 , but at least
one before. This means they have to delay one more to let a2 through and, one could say,
this artificially increases the congestion on lane 1 by one. Nevertheless, a2 has overtaken
a agent with target lane 1 on every lane it delayed. If a2 would swap earlier to lane 2,
then this would require one of these agents on lane 2 to delay to provide space, but this
would have created real congestion and therefore would have created at least the same
cost.
From Lemma 23 we know that there is no agent in q(j)

2 with target lane 1. Thus, as
long as |q(j)

1 | ≤ |q
(j)
2 |, we can leave the last element of q(j)

2 , as well as Rj,2 in row j. If
now |q(j)

1 | > |q
(j)
2 | and if there is an agent a4 with target lane 1 after a2 in q(j)

1 , then two
agents can be left in row j without extra cost, i.e., every agent in q(j)

2 delays further to
row j + 1, then a2 swaps, and Sj = (a4, a2. If not and if there are agents with target 1

in Rj,2, or before a2 in q(j)
1 , then they stay in row j, since if a2 stays, it is not possible

to let another agent stay. If this is not possible then a2 stays in row j. Then additional

84



5.4 Optimum Agent Sorting is NP-hard: the Proof Details

delays to make space for a2 might be required to make space to swap lanes. This might
create, as in the previously discussed case, congestion in the following lanes.
Thus, all alternatives ways in resolving a case with t(Ri) = (2, 1) results in at least the

same number of congestion and additional delays for navigation in the successive rows
and, therefore, we can conclude the optimality of Algorithm 5.

5.4 Optimum Agent Sorting is NP-hard: the Proof Details

In this section, we will study what happens when we generalise the OAS problem from
two lanes to multiple lanes. Assume that we have ` lanes, and the agents are labelled
with targets S ′ := {1, 2, . . . , `} by the mapping t : A 7→ S ′. With A we denote again
the set of agents. The stream is then given by R ∈ (A ∪ {⊥})N×`, where is agent a ∈ A
occurs only once in R. With cell we denote the positions Ri,l.
The stream operations are a natural generalisation of the two-lane case: we can delay

an agent, if there is empty space behind it, and we can move an agent sideways if there
is empty space in an adjacent lane. We can only move agents sideways towards their
target lane, not away from it. We will now prove that minimising the total cost for this
generalisation is NP-hard.
A vertex cover of graph G := (V,E) is a set of vertices V ′ ⊆ V , such that each edge

of G is incident to at least one vertex in V ′. The minimum vertex cover problem deals
with finding the smallest vertex cover, V ′, in graph G and it is NP-hard [10]. Theorem 8
shows that the studied problem is reducible to the minimum vertex cover problem. For
the sake of simple presentation of the proof, throughout this section, we assume that
graph G is 3-regular [6] and that it has an even number, N = |V |, of vertices.

Theorem 8 (A Reduction from the Minimum Vertex Covering problem). For any even
integer number N ∈ N and a 3-regular graph G = (V,E) that has N vertices: (1) there is
a polynomial time construction of the stream R (Section 5.4.1), according to G = (V,E)
(2) if there is a polynomial time and exact algorithm, Ao, that solves R, we can present
an algorithm that takes Ao’s output and provides an optimum solution for the constructed
stream R within a polynomial time (Algorithm 10), and (3) there is a polynomial time
transformation from Ac’s solution for R, to a solution of the Minimum Vertex Covering
problem for G = (V,E).

5.4.1 The construction of the stream R, for a given graph G := (V,E)

For any given even number N ∈ N and a 3-regular graph G = (V,E) with V = {1, . . . , N}
as the set of vertices, we construct the stream R, with ` = 18N/2 + 1 lanes and O(N3)
rows in which we place agents, see Figure 5.5. The stream R is the basis of our reduction
proof (Theorem 8). We start by describing the stream details and their polynomial time
construction (Lemma 24) before presenting Ac and showing its optimality.

85



5 Changing Lanes on a Highway

Figure 5.5: Stream constructed for the case of a 3-regular graph with N = 4 vertices, cf.
graph G, Figure 5.6

5.4.2 Moving agents to their target lanes at the lower and upper cavities

In Figure 5.5, the painted cells refer to agents that are placed in their target lanes, i.e.,
R(x)’s solution places them in their current lanes. The agents that are not placed in their
lanes are marked by their lane tags that refer to edges. This associates vertex k ∈ V and
its edges, with a set of three agents E(k) = {(k, •) ∈ E}. Note that the agents’ target
lanes are at the first (from the left) 3N/2 lanes, cf. the top left part of Figure 5.5.
We assume that the 5(N −k)-th (from the top) row includes the agent (k, ki) ∈ E(k) :

k 6= ki ∧ i ∈ {1, 2, 3} at the cells on the lanes x+ i according to their lexical order, where
x = 3N/2 + 6k− 2. Note that each agent (k, ki) that is not placed on its target lane, has
an open path to the lower cavity, which includes the 3N/2 first (most left) at the 5N + 1
row (from the top). Moreover, (k, ki) can also move to the upper cavity, which is one
row above the lower cavity, i.e., row 5N . To that end, the algorithm can delay a special
agent, which we call the N -th valve, on the 3N/2 + 4 lane (and perhaps there is also a
need to move agent (k, kj) : j < i, if exists). By that, the algorithm opens a path to the
upper cavity, see for example the 4-th valve on the first row (lane 3N/2 + 4), which has
no agent behind it on the 2-nd row.

86



5.4 Optimum Agent Sorting is NP-hard: the Proof Details

Figure 5.6: Graph G, which is 3-regular and has N = 4 vertices.

5.4.3 Motivating the wall thickness

Observe the set of agents that are placed between the paths that lead the agents (k, •) ∈
E(k) to the lower and upper cavities, which appear as painted cells in Figure 5.5. We
use the name the (inner) wall (of vertex k) when referring to this set. The proof shows
(Lemma 26) the existence of an exact algorithm that moves all agents to their target
lanes at the lower and upper cavities. Moreover, it shows (Theorem 9) that this exact
algorithm never moves agents that are already in their target lanes. For the sake of simple
proof presentation, starting from the 4N + 2 row, our construction includes O(N3) rows
of agents that are placed in their target lanes, cf. the rows that appear immediately
below the lower cavity. Moreover, the (inner) walls between the paths (from above and
from below) to the cavities are at least three cell thick.

5.4.4 Estimating the running time of the construction procedure

Lemma 24 shows that the stream R can be constructed within polynomial time.

Lemma 24 (Polynomial construction time of R). For any given N ∈ N : N/2 ∈ N and
a 3-regular graph G = (V,E), we can construct stream R in O(N4) time.

Proof. We start by showing how to construct the stream R, before estimating the running
time of this construction procedure. Observe that Figure 5.5 depicts a somewhat recursive
structure. Namely, when considering the vertices in the graph G := (V,E), we can extend
the construction in Figure 5.5, which considers the case of N = 4. Suppose we have
constructed a stream for the case of N = 4 and now we wish to extend to the case of
N = 5. Let us do that by simply adding five more rows on the top and six more lanes
on the right as well as three move lanes between lane 3N/2 and 3N/2 + 1. Moreover, we
perform this extension by taking the following steps (i) to (iii). The construction for the
cases of N = 6, 7, . . . is done in a similar manner after reaching the (N − 1)-th stage.

i We lay the N -th (inner) wall (which has the N -th valve) that is dedicated to the
added vertex. We do that while keeping the lower and upper paths to the newly
added target lanes in the lower and upper cavities.

ii We place agents in painted cells (and by that mark that they have reached their
target lanes) at the rows that start at the 4N + 2 row (and then below) as well as
in the upper left corner of the stream (where we have just added more rows).

87



5 Changing Lanes on a Highway

iii We make sure that the labels of agents (k, •) ∈ E(k) and the first (3N/2) (left
most) lanes are according to the edges in the graph that considers N = 5 nodes.

In order to estimate the running time of the above procedure, we say the following:
(1) copying the array that stores the stream R, to an array that stores R(N + 1) can
be done in O(N3) time, because of the array dimensions are in O(N3), (2) running the
above procedure can be done in polynomial time, because steps (i) to (iii) require each
O(N3) time, and (3) starting from N = 2, we can construct R : N/2 ∈ N using a liner
number of times in which we run steps (i) to (iii).

5.4.5 Optimum placement functions, φ, and paths that lead to them

Suppose that there is an algorithm Ao that solves the Optimum Agent Sorting problem
optimally and runs in polynomial time. We show that Ao’s solution to stream R, places
agent (k, ki) either in the lower or the upper cavities, where k ∈ V , i ∈ {1, 2, 3} and
(k, ki) ∈ E(ki) is the i-the element in E(k) when considering an acceding lexical order.
We define the optimum placement function φ(k, i) ∈ {0, 1} as one that returns 1, if and
only if, the solution of algorithm Ao places (k, ki) on a higher row than (ki, k) ∈ E(ki).
We denote Ao’s solution by the N × 3 matrix Φ = [φ(k, i)]. Note that the definitions of
φ and Φ do not consider the existence of the lower and upper cavities. Lemma 25 shows
that we can construct Φ within a polynomial time.

Lemma 25. Once Ao solves R, a polynomial time algorithm can construct Φ.

Proof. Let ξ(k, k′) be the row number that agent (k, k′) ∈ E(k) ends up at when Ao
solves R. There are O(N2) cells to scan and to decide accordingly about the value of
φ(k, k′), i.e., φ(k, k′) = 1 if ξ(k, k′) < ξ(k′, k) and φ(k, k′) = 0 otherwise.

We say that a sequence of moves of a particular agent is simple when every move is
only space dependent, rather than agent dependent. Namely, it depends only on the fact
that there are empty cells along the path that the agent moves to rather than the moves
that other agents take in order to create the needed space.
We consider two examples of simple paths:

1. The lower path is a simple path that leads agent (k, •) to its target placement at
the lower cavity. In detail, let S` be the (simple) sequence of moves in which (k, •)
first takes 5k delays and then (3N/2 + 1− plc(k, k′)) + (6k − 2 + ind(k, k′)) swaps
to the left until it reaches its placement according to Φ in the lower cavity, where
ind(k, k′) is the order of (k, •) in E(k) and plc(k, k′) is (k, •)’s order in Q.

2. After delaying the k − th valve once, the same agent has access to another simple
path, which is the upper path that leads it to the upper cavity. In detail, let S`
be the (simple) sequence of moves in which (k, •) first takes (6k − 2 + ind(k, k′))
swaps to the left, 5k − 1 delays and then (3N/2 + 1− plc(k, k′)) swaps to the left
until it reaches its placement according to Φ in the upper cavity.

88



5.4 Optimum Agent Sorting is NP-hard: the Proof Details

Algorithm 10: Ac is an algorithm that the proof shows to comply with Ao’s solution
Φ as well as to be optimum.

10.1 constants:
10.2 Q is the (lexicographic and ascending) ordered sequence of E;
10.3 ∀k ∈ V , E(k) is set of the agents (labelled by the edges of vertex k ∈ V );

10.4 functions:
10.5 ind(k, k′) returns i when (k, k′) is the i-th agent in E(k);
10.6 plc(k, k′) returns i when (k, k′) is the i-th edge in Q;

10.7 input:
10.8 The optimum placement function, φ(), which defines the matrix Φ;

10.9 for k := 1 to N do
10.10 if ∃(k, k′) ∈ E(k) : φ(k, k′) = 1 then delay valve k once;

10.11 foreach (k, k′) edge in Q (by the lexical ascending order of E do
10.12 let (k, k′) and (k′, k) two agents, such that (k, k′) ∈ E(k) ∧ φ(k, k′) = 0∧

(k′, k) ∈ E(k′) ∧ φ(k′, k) = 1; /* (k, k′) is to be placed at the lower cavity and (k′, k)
in the upper one */

/* move (k, k′) along the lower path. Note that φ(k, k′) = 0. */
10.13 delay (k, k′) for 5k − φ(k, k′) times;
10.14 swap left (k, k′) for (3N/2 + 1− plc(k, k′)) + (6k − 2 + ind(k, k′)) times;

/* move (k′, k) along the upper path. Note that φ(k, k′) = 1. */
10.15 swap left (k, k′) for (6k − 2 + ind(k, k′)) times;
10.16 delay (k′, k) for 5k − φ(k, k′) times;
10.17 swap left (k, k′) for (3N/2 + 1− plc(k, k′)) times;

5.4.6 Ac complies with Ao’s solution and it is optimum

Ac takes the function Φ as an input and leads the agents to the lower and upper cavities
according to Φ. In detail, Ac delays exactly once any k-th valve for which there is at least
one agent (k, k′), such that φ(k, k′) = 1 (line 10.10). It then scans all the edges of graph
G by their ascending lexical order (line 10.11). Note that, by the construction of the flow
R, there are two agents associated with each edge (line 10.12). One of these agents is to
move along the lower path to the lower cavity (lines 10.13 to10.14) and another to the
upper cavity via the upper path (lines 10.15 to10.17).

Lemma 26. Ac complies with Ao’s solution Φ.

Proof. We show that Ac moves agent (k, •) to the lower cavity when φ(k, •) = 0 and to
the upper one when φ(k, •) = 1. We do that by demonstrating that Ac allows a single
agent at a time to reach its placements while using φ()’s value for choosing the transit
path.
We note that, according to φ(k, •), Ac: (1) makes sure that the k-th valve is not

blocking the upper path for (k, •) to the upper cavity (line 10.10), and (2) chooses whether
to take the lower or the upper path (line 10.12 to 10.17), which can lead agent (k, •) ∈
E(k) to the lower, and respectively, to the upper cavity. Whenever Ac moves agent (k, •)
using these paths, only that agent is moving (line 10.13 to 10.17). Moreover, Ac selects

89



5 Changing Lanes on a Highway

these agents according to the ascending lexical order of the edges in E (line 10.11), which
is exactly the same order in which the first 3N/2 (from the left) lanes appear in the stream
R, (Figure 5.5). Note that each such lane has one available cell in the lower cavity and
one in the upper. Moreover, there are exactly two agents for each edge (because each
edge has two vertices). Thus, during the movement of agent (k, •), indeed these paths
stay simple (with respect to agent (k, •)), because we never have the case in which there
is an agent that blocks the way of agent (k, •) or that there is no space left for agent
(k, •) in its cavity. To end this proof, we remind that Ac places each of these two agents
in a way the complies with Φ.

Theorem 9 (Ac is optimum). The numbers of swap and delay moves that Ac takes
for solving R are not larger than the numbers of moves that Ao takes to solve R (while
complying with the same solution, Φ).

Proof. We start the proof by noting that the only moves that Ao takes are of delay and
swap to the left. Thus, the number of swap to the left moves that Ao and Ac take is the
same, because both algorithms need to comply with the same solution, Φ. Thus, the rest
of the proof focuses merely on showing that Ao cannot take fewer delay moves than Ac.
Remark 1. By the problem definition, once Ao delays agent (k, •) at row x, it holds that
agent (k, •) never return to row x.
Let ξ(k, k′) be the row number that agent (k, k′) ∈ E(k) ends up at when Ao solves

R. Lemma 27 shows that Ao moves (k, k′) either to the lower or the upper cavities.

Lemma 27. ξ(k, k′) ∈ {5N, 5N + 1}

Proof. Suppose this lemma is false, i.e., Ao takes fewer delay moves than Ac and yet
∃(k, k′) ∈ E(k), such that: (1) ξ(k, k′) > 5N + 1 or (2) ξ(k, k′) < 5N . We show that
both case (1) and (2) lead the proof of this lemma to a contradiction.

The case of (1): ξ(k,k′) > 5N + 1. Recall that R has O(N3) rows that start
immediately after row 5N + 1 (Section 5.4.1). Therefore, in order to make a single
cell available for agent (k, k′) at row ξ(k, k′) > 5N + 1, algorithm Ao takes at least
O(N3) delay moves. We show that this leads case (1) to a contradiction by arguing
that Ac takes fewer than O(N3) delay moves for agent (k, k′) or any other agent. This
is true because agent (k, k′) takes at most (5N+1) delay moves and there are 3N agents.

The case of (2): ξ(k,k′) < 5N. Let K be the set of agents (k, k′) for which ξ(k, k′) <
5N , and pre(K) ≥∑(k,k′)∈K(5N − ξ(k, k′)) (preparation) be the sum of the number of
delay moves that Ao takes in order to prepare the cell-space needed above row 5N for
all the agents in K. By Remark 1, the number of delays that Ao takes for all agents
(k, k′) ∈ K is delayAo(K) =

∑
(k,k′)∈K(ξ(k, k′) − (5(N − k) + 1)). Let delayAc(K) =∑

(k,k′)∈K(5k−φ(k, k′)) be the number of delay steps that Ac takes for all agents (k, k′) ∈
K, cf. lines 10.13 and 10.16.
On the one hand, in order to make the cells above row 5N available for all the agents in

K, Ao prepare space for the agents inK by delaying agents (that are not necessarily inK)

90



5.4 Optimum Agent Sorting is NP-hard: the Proof Details

pre(K) times plus bringing the agents in K to their rows using delayAo(K) delays. On
the other hand, Ac delays the agents (k, k′) ∈ K at most delayAc(K) times. Therefore,
by the assumption that appears at the start of this proof that the lemma is false, the
former sum is strictly less than the latter one, cf. Equation (5.4).

pre(K) + delayAo(K) < delayAc(K) (5.4)∑
(k,k′)∈K

(5N − ξ(k, k′)) + (ξ(k, k′)− (5(N − k) + 1)) <
∑

(k,k′)∈K

(5k − φ(k, k′))

(5N − ξ(k, k′)) + (ξ(k, k′)− (5(N − k) + 1)) < 5k − φ(k, k′)

5N − ξ(k, k′) + ξ(k, k′)− 5(N − k)− 1 < 5k − φ(k, k′)

5N − ξ(k, k′) + ξ(k, k′)− 5N + 5k − 1 < 5k − φ(k, k′)

5N − 5N + ξ(k, k′)− ξ(k, k′) + 5k − 1 < 5k − φ(k, k′)

−1 < −φ(k, k′)

φ(k, k′) < 1

Recall that φ(k, k′) ∈ {0, 1} returns 1, if and only if, the solution of algorithm Ao
places (k, k′) on a higher row than (k′, k). Equation 5.4 implies that φ(k, k′) = 0 and
that (k′, k) ∈ K (in addition to the assumption that (k, k′) ∈ K), because both (k, k′)
and (k′, k) have the same target lanes, which in turn implies that φ(k′, k) = 0. The latter
contradicts φ()’s definition and the fact that only one agent can be placed in any cell.

We say that path p1 incompletely follows path p2 when an agent that follows p1 indeed
passes through some of the cells in p2 (other than perhaps the source and destination
cells) but does not exactly follow p2 from source to destination. Let Klower be the set
of agents (k, k′) ∈ E(k) for which (1) φ(k, k′) = 0 as well as (2) when Ao move agent
(k, k′) to its final placement, it incompletely follows the lower path (nor does it move
(k, k′) exactly along the upper path after delaying the k-th valve once) and yet Ao delays
agent (k, k′) fewer times than Ac. Let Kupper+valve be the set of agents (k, k′) ∈ E(k) for
which (1) φ(k, k′) = 1, as well as (2) when Ao moves agent (k, k′) to its final placement it
incompletely follows the upper path (with or without delaying the k-th valve) nor does
it move (k, k′) exactly along the lower path (if that is at all possible) and yet Ao delays
agent (k, k′) fewer times than Ac. Lemma 28 shows that these two sets, Klower and
Kupper+valve, must be empty and thus the deviations from the lower, and respectively,
the upper paths are not possible for these cases.

Lemma 28. (1) Klower = ∅ and (2) Kupper+valve = ∅.

Proof. Note that φ(k, k′) = 0 and φ(k, k′) = 1 imply that agent (k, k′) ends up at
the lower, and respectively, the upper cavities (Lemma 27 and the definition of the
φ() function). Moreover, the lower and the upper paths have an optimum number of
delay moves to the lower, and respectively, upper cavities (when assuming that no valve
blocks the way). This is true because the number of delay (and swap) moves matches

91



5 Changing Lanes on a Highway

the (Manhattan) distance from source to destination. Call the latter fact, the optimum
distance argument.
Part (1). Note that agent (k, k′) can reach the lower cavity via the upper path
only after delaying once the k-th valve. However, this cannot be done with fewer delay
moves than the ones in the lower path (due to the Manhattan distance from source to
destination). Thus, this part of the proof is true by the optimum distance argument.
Part (2). By Remark 1, agent (k, k′) cannot reach the upper cavity via the lower path.
Thus, this part of the proof is true by the optimum distance argument.

We say that paths p1 and p2 are disjoint when an agent that follows p1 does not passes
through any of the cells in p2 (other than perhaps the source and destination cells). Let
Kupper−valve be the set of agents (k, k′) ∈ E(k) for which (1) φ(k, k′) = 1, (2) Ao does
not delay the k-th valve before delaying (k, k′), as well as (3) Ao moves (k, k′) to its final
placement over any path that is disjoint with the upper path and yet Ao delays agent
(k, k′) fewer times than Ac. Lemma 29 shows that Kupper−valve must be empty.

Lemma 29. Kupper−valve = ∅.

Proof. Suppose that this lemma is false. Namely, Kupper−valve 6= ∅ and yet Ao delays
(kfirst, k

′
first) fewer times than Ac, where (kfirst, k

′
first) ∈ Kupper−valve is the first agent

when ordering Kupper−valve according to Q (line 10.2).
• Ao must move (kfirst,k

′
first) below the row of the k-th valve.

Note that, in R’s initial state, the kfirst-th valve and agent (kfirst, k
′
first) share the

same row. By item (2) in Kupper−valve’s definition, Ao does not delay the kfirst-th valve
before delaying (kfirst, k

′
first). Therefore, Ao delays agent (kfirst, k

′
first) and by that, it

leaves the row of the k-th valve. Moreover, agent (kfirst, k
′
first) never return to that row

(Remark 1).
• Ao must move (kfirst,k

′
first) above the row of the lower cavity.

By item (1) in the definition of Kupper−valve, φ(kfirst, k
′
first) = 1 and thus Ao moves

(kfirst, k
′
first) to the upper cavity (Lemma 28). Once Ao moves (kfirst, k

′
first) to the row

of the lower cavity this proof is done, because it cannot move it to the upper cavity
(Remark 1).
• Demonstrating a contradiction.
Let us consider the path along which Ao moves agent (kfirst, k

′
first), i.e., starting from

its initial position to lane 3N/2 + 1. Notice the walls (of vertices k′′ ∈ {1, . . . , kfirst})
along with any such path. By lemmas 27 and 28 as well as the two items above, agent
(kfirst, k

′
first) reaches lane 3N/2 + 1 via a path that stretches between the rows of the

kfirst-th valve and of the lower cavity in a way that must go through these k′′-th walls.
Note that breaking through each of these k′′-th walls requires Ao to delay at least three
agents that have already reached their target lanes.
By similar arguments to the ones that appear above regarding (kfirst, k

′
first), the total

number of times that Ao delays agents that have already reached their target lanes is at
least (3 · |Kupper−valve|/3) (because at least one agent in E(kfirst) has to break through
wall of kfirst so that at most three agents could travel through this opened path at
the cost of three delays). In addition to these delays, Ao has to move all the agents in

92



5.4 Optimum Agent Sorting is NP-hard: the Proof Details

Kupper−valve and perform a number of delays that is not smaller than the number that Ac
takes when moving these agents (due to the fact that both algorithms move them over
the same Manhattan distance). Thus, we have reached a contradiction, because Ao takes
at least |Kupper−valve| more delays than Ac and |Kupper−valve| ≥ 1 (by the statement of
this lemma).

Lemma 30. Ac has a polynomial running time.

Proof. Line 10.10 runs in O(N) time. Line 10.11 considers O(N2) agents and Ac moves
each agent over at most O(N2) cells. Ac’s running time is in O(N4).

5.4.7 The reduction proof

The proof of Theorem 8. We demonstrate a polynomial time construction of stream,
R, in Lemma 24, i.e., part (1) is correct. Part (2) is correct, because Lemma 26 shows
that Ac complies with the solution of Ao and Lemma 26 shows that this solution is
optimum.
Let V ′ be the set of vertices k ∈ V , such that Ac delays the k-th valve when solving R.

We show that Part (3) is correct, by showing that V ′ is a minimum vertex cover solution
for G := (V,E) and by showing the total running is polynomial.
• The set V ′ is a minimum vertex cover solution for G := (V,E). By

the construction of R, (Section 5.4.1) and the fact that Ac solves the studied problem
(Lemma 26), the upper cavity includes a set of target lanes (of agents) that includes all
the edges in E of graph G := (V,E). Namely, V ′ is a cover of the edges E in G. Recall
that Ac is optimum (Part (2) of this proof), and that it delays the k-th valve only when
there is at least one agent (k, k′) ∈ E(k) that it moves to the upper cavity (line 10.10).
Note that any other agent (k, k′′) ∈ E(k) can move to the upper cavity at a lower cost
than to the lower one (as long there is space available in the upper cavity, i.e., agent
(k′′, k) is not already there). This means that k ∈ V ′ if, and only if, agent (k, k′) or
(k′, k) ends up at the upper cavity and the latter occurs if, and only if, the optimum
solution, which Ac provides, decides to delay the k-th valve.
• The total running time is polynomial. We can solve R, using Ao in polynomial

time (by assumption), construct Φ in polynomial time (Lemma 25), run Ac in polynomial
time (Lemma 30) and then construct V ′ in polynomial time (because there are N valve
cells to check and their locations in R is known).

93





Bibliography

[1] Maksat Atagoziyev, Klaus W. Schmidt, and Ece G. Schmidt. “Lane Change
Scheduling for Autonomous Vehicles”. In: IFAC-PapersOnLine 49.3 (2016). 14th
IFAC Symposium on Control in Transportation SystemsCTS 2016, pp. 61 –66. issn:
2405-8963. doi: http://dx.doi.org/10.1016/j.ifacol.2016.07.011. url:
http://www.sciencedirect.com/science/article/pii/S2405896316302063.

[2] Wonshik Chee and Masayoshi Tomizuka. “Vehicle lane change maneuver in auto-
mated highway systems”. In: California Partners for Advanced Transit and High-
ways (PATH) (1994).

[3] Y. Fang, F. Chu, S. Mammar, and M. Zhou. “Optimal Lane Reservation in Trans-
portation Network”. In: IEEE Transactions on Intelligent Transportation Systems
13.2 (June 2012), pp. 482–491. issn: 1524-9050. doi: 10.1109/TITS.2011.2171337.

[4] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. “On graph problems in a semi-streaming model”. In: Theor. Comput. Sci.
348.2-3 (2005), pp. 207–216. doi: 10.1016/j.tcs.2005.09.013. url: https:
//doi.org/10.1016/j.tcs.2005.09.013.

[5] Li Feng, Li Gao, and Yun-Hui Li. “Research on Information Processing of Intelligent
Lane-Changing Behaviors for Unmanned Ground Vehicles”. In: Computational In-
telligence and Design (ISCID), 2016 9th International Symposium on. Vol. 2. IEEE.
2016, pp. 38–41.

[6] Gerd Fricke, Stephen T. Hedetniemi, and David Pokrass Jacobs. “Independence
and Irredundance in k-Regular Graphs”. In: Ars Comb. 49 (1998).

[7] C. Hatipoglu, U. Ozguner, and K. A. Unyelioglu. “On optimal design of a lane
change controller”. In: Intelligent Vehicles ’95 Symposium., Proceedings of the. Sept.
1995, pp. 436–441.

[8] Ding-wei Huang. “Lane-changing behavior on highways”. In: Physical Review E
66.2 (2002), p. 026124.

[9] Wm. Woolsey Johnson and William E. Story. “Notes on the “15” Puzzle”. English.
In: American Journal of Mathematics 2.4 (1879), pp. 397–404. issn: 00029327. url:
http://www.jstor.org/stable/2369492.

[10] Richard M. Karp. “Reducibility Among Combinatorial Problems”. In: Proceedings
of a symposium on the Complexity of Computer Computations, held March 20-22,
1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New
York. Ed. by Raymond E. Miller and James W. Thatcher. The IBM Research
Symposia Series. Plenum Press, New York, 1972, pp. 85–103. isbn: 0-306-30707-3.
url: http://www.cs.berkeley.edu/~luca/cs172/karp.pdf.

95

https://doi.org/http://dx.doi.org/10.1016/j.ifacol.2016.07.011
http://www.sciencedirect.com/science/article/pii/S2405896316302063
https://doi.org/10.1109/TITS.2011.2171337
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1016/j.tcs.2005.09.013
http://www.jstor.org/stable/2369492
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf


Bibliography

[11] Jorge A. Laval and Carlos F. Daganzo. “Lane-changing in traffic streams”. In:
Transportation Research Part B: Methodological 40.3 (2006), pp. 251 –264. issn:
0191-2615. doi: http://dx.doi.org/10.1016/j.trb.2005.04.003. url:
http://www.sciencedirect.com/science/article/pii/S019126150500055X.

[12] Kai Nagel. “High-speed microsimulations of traffic flow”. PhD thesis. University of
Cologne, Germany, 1995. url: http://d-nb.info/943852641.

[13] Kai Nagel, Dietrich E Wolf, Peter Wagner, and Patrice Simon. “Two-lane traffic
rules for cellular automata: A systematic approach”. In: Physical Review E 58.2
(1998), p. 1425.

[14] José Eugenio Naranjo, Carlos González, Ricardo García, and Teresa de Pedro.
“Lane-Change Fuzzy Control in Autonomous Vehicles for the Overtaking Maneu-
ver”. In: IEEE Trans. Intelligent Transportation Systems 9.3 (2008), pp. 438–450.
doi: 10.1109/TITS.2008.922880. url: https://doi.org/10.1109/TITS.2008.
922880.

[15] Daniel Ratner and Manfred K. Warmuth. “Finding a Shortest Solution for the N ×
N Extension of the 15-PUZZLE Is Intractable”. In: Proceedings of the 5th National
Conference on Artificial Intelligence. Philadelphia, PA, August 11-15, 1986. Volume
1: Science. Ed. by Tom Kehler. Morgan Kaufmann, 1986, pp. 168–172. url: http:
//www.aaai.org/Library/AAAI/1986/aaai86-027.php.

[16] Daniel Ratner and Manfred K. Warmuth. “NxN Puzzle and Related Relocation
Problem”. In: J. Symb. Comput. 10.2 (1990), pp. 111–138. doi: 10.1016/S0747-
7171(08)80001-6. url: http://dx.doi.org/10.1016/S0747-7171(08)80001-6.

[17] R. Schubert, K. Schulze, and G. Wanielik. “Situation Assessment for Automatic
Lane-Change Maneuvers”. In: IEEE Transactions on Intelligent Transportation
Systems 11.3 (Sept. 2010), pp. 607–616. issn: 1524-9050. doi: 10.1109/TITS.
2010.2049353.

[18] H. S. J. Tsao, R. W. Hall, and S. E. Shladover. “Design options for operating auto-
mated highway systems”. In: Vehicle Navigation and Information Systems Confer-
ence, 1993., Proceedings of the IEEE-IEE. Oct. 1993, pp. 494–500. doi: 10.1109/
VNIS.1993.585680.

[19] F. Visintainer, L. Altomare, A. Toffetti, A. Kovacs, and A. Amditis. “Towards
Manoeuver Negotiation: AutoNet2030 Project from a Car Maker Perspective”. In:
Transportation Research Procedia 14 (2016). Transport Research Arena TRA2016,
pp. 2237 –2244. issn: 2352-1465. doi: http://dx.doi.org/10.1016/j.trpro.
2016.05.239. url: http://www.sciencedirect.com/science/article/pii/
S2352146516302459.

[20] Meng Wang, Serge P Hoogendoorn, Winnie Daamen, Bart van Arem, and Riender
Happee. “Optimal Lane Change Times and Accelerations of Autonomous and Con-
nected Vehicles”. In: Transportation Research Board 95th Annual Meeting. 16-2914.
2016.

96

https://doi.org/http://dx.doi.org/10.1016/j.trb.2005.04.003
http://www.sciencedirect.com/science/article/pii/S019126150500055X
http://d-nb.info/943852641
https://doi.org/10.1109/TITS.2008.922880
https://doi.org/10.1109/TITS.2008.922880
https://doi.org/10.1109/TITS.2008.922880
http://www.aaai.org/Library/AAAI/1986/aaai86-027.php
http://www.aaai.org/Library/AAAI/1986/aaai86-027.php
https://doi.org/10.1016/S0747-7171(08)80001-6
https://doi.org/10.1016/S0747-7171(08)80001-6
http://dx.doi.org/10.1016/S0747-7171(08)80001-6
https://doi.org/10.1109/TITS.2010.2049353
https://doi.org/10.1109/TITS.2010.2049353
https://doi.org/10.1109/VNIS.1993.585680
https://doi.org/10.1109/VNIS.1993.585680
https://doi.org/http://dx.doi.org/10.1016/j.trpro.2016.05.239
https://doi.org/http://dx.doi.org/10.1016/j.trpro.2016.05.239
http://www.sciencedirect.com/science/article/pii/S2352146516302459
http://www.sciencedirect.com/science/article/pii/S2352146516302459


Bibliography

[21] Richard M Wilson. “Graph puzzles, homotopy, and the alternating group”. In:
Journal of Combinatorial Theory, Series B 16.1 (1974), pp. 86–96.

[22] Tay Wilson and W Best. “Driving strategies in overtaking”. In: Accident Analysis
& Prevention 14.3 (1982), pp. 179–185.

97





Discussion and Conclusion





6 Discussion and Conclusion

We discus several different topics in distributed and centralised algorithms. This includes
TDMA algorithms for wireless sensor networks, algorithms for distributed storage and
an algorithm that addresses lane changes on highways.

TDMA algorithms

Within the first two papers we look into wireless networks. The first paper considers
fault-tolerant systems that have basic radio and clock settings without access to external
references for collision detection, time or position, and yet require constant communi-
cation delay. We study collision-free TDMA algorithms that have uniform frame size
and uniform timeslots and require convergence to a data packet schedule that does not
change. Our algorithm considers the timeslot allocation aspects of the studied problem,
together with transmission timing aspects. Interestingly, we show that the existence
of the problem’s solution depends on convergence criteria that include the ratio, τ/δ,
between the frame size and the node degree. We establish that τ/δ ≥ 2 as a general con-
vergence criterion, and demonstrate the existence of collision-free TDMA algorithms for
which τ/δ ≥ 4. This improves previous results [1], that require τ/(∆ + 1) ≥ 2, where ∆
is the distance-2 neighbourhood. Unfortunately, our result implies that, for our systems
settings, there is no distributed mechanism for asserting the convergence criteria within
a constant time. For distributed systems that do not require constant communication
delay, we propose to explore such criteria assertion mechanisms as future work.
Namely, an extended version of the proposed algorithm could be based on discovering

the entire distance-2 neighbourhood by letting the control packet exchange deal with ra-
tio of τ < max(2δ, χ2) , where δ is a bound on the node degree, and χ2 is the chromatic
number for distance-2 vertex colouring. Here, each connected component needs to inde-
pendently decide on a random period during which no active node transmits, and thus
eventually all connected component share a period in which no active node transmits.
The passive nodes on hand can use well-known backoff techniques that multiplicatively
decrease the control packet rate, and thus eventually transmit during a period in which
no active node transmits.
In the second paper we look into implementations of TDMA algorithms on sensor

network hardware, i.e., the TelosB mote in the Indriya testbed [3]. Although, wire-
less sensor network applications try to save power, which contradicts our always online
TDMA algorithm, we believe that our experimental results are valuable. Controlling
robotic, or vehicular, systems, require real-time measurements of the environment which
can be implemented using the bandwidth guarantee of a TDMA schedule. We provide
two implementations. One is based on the first paper and one that is tailored to the give

101



6 Discussion and Conclusion

hardware. While the first implementation differs only slightly from the proposed the-
oretical algorithm, e.g., wrapping around the maximal clock value is not implemented,
the second implementation gives up self-stabilisation completely. Of course, even the
first implementation is not self-stabilising any more, due to the lack of self-stabilising
hardware and operating systems. The second implementation explicitly ignores weak
communication links. If the link is bad due to collisions, or due to background noise is
indistinguishable and therefore it is not able to detect all collisions. Since, nodes back off
regularly when the background noise chances and therefore collision might be resolved,
the system is most of the time in a surprisingly good state.
Our experimental results motivates to look into an upper bound on the expected

convergence time for the theoretical TDMA algorithm, which is presented in the first
paper, as well as the DecTDMA algorithm, which is presented in the second paper.
There are two possible models in which such a bound can be discussed. One would be
the communication graph which is presented in the first paper. Here the crucial task
is to show the convergence of the clock synchronisation. As pointed out in the first
paper, the number of different clock values is monotonically decreasing, but the clock
synchronisation must work against clocks that wrap around. For example, assume there
is currently a maximum value which is held by all, but one node. If the last node does
not jump to this maximum value before the nodes with maximum wrap around, then the
nodes which had the maximum value before the wrapping around might jump to the clock
value of the single node, which is now the new maximum. Will all nodes converge before
the clocks wrap around again? A good bound would take the network topology into
account. A second model would represent more realistic communication channels, based
either on the SNR, or the AWGN model. These models are more precisely modelling
the simulation and testbed results in the second paper. They are essentially allowing to
model packet loss based on noise that change over time and is either random background
noise, or simultaneous transmissions. Such models allow edges in the communication
graph not only to have packet success probabilities of 0 and 1, but also probabilities in
between. This results in new challenges which we tackle with the link quality estimation
of DecTDMA in the second paper, but which are not yet theoretical discussed for our
solutions.

Shared memory emulation

The third paper presents a way of adding privacy to an existing multi-reader multi-
writer shared memory algorithm. By extending the CAS algorithm from Cadambe et.
al [2] that is based on the I/O Automata model of Lynch [5]. We use the Reed-Solomon
code [12] with is widely used in storage solutions, like optical disks [10], or hard drive
RAID systems [11] and which can be used [6] for secret sharing [13].

Lane changing

The fourth paper presents tight bounds for sorting agents on two lanes, as well as, NP-
hardness for an increasing number of lanes. We do not consider constraints on the agent

102



dynamics, like constraints on lateral and longitudinal acceleration given by the mass,
engine power [4], tire friction [9]. Furthermore, the instability of platoons [14] need
to be considered. And, finally, the measurement noise needs to be considered. In an
implementation, every agent only holds an estimation of the current environment, as
well as, its own position.
In a bit more macroscopic picture, one can use a bit more abstract model. For example

without the target lane constraint, but with a keep left if not overtaking constraint the
Korteweg-de Vries equation can be utilised [7]. Similar approaches are using cellular
automata [8].
Our bounds are solely based on congestion and necessary space for navigation. The

space requirements are based on the size of the vehicle compared to available road seg-
ments of this size. We assume the vehicles have all the same unit size, as well as, the
same default speed and the same deceleration . Thus, this bounds also apply in realistic
scenarios. But, the solution might look different when considering agent dynamics.

103





Bibliography

[1] C. Busch, M. Magdon-Ismail, F. Sivrikaya, and B. Yener. “Contention-free MAC
protocols for asynchronous wireless sensor networks”. In: Distributed Computing
21.1 (2008), pp. 23–42. doi: 10.1007/s00446-007-0053-x. url: http://dx.doi.
org/10.1007/s00446-007-0053-x.

[2] Viveck R. Cadambe, Nancy A. Lynch, Muriel Médard, and Peter M. Musial. “A
Coded Shared Atomic Memory Algorithm for Message Passing Architectures”. In:
2014 IEEE 13th International Symposium on Network Computing and Applications,
NCA 2014, Cambridge, MA, USA, 21-23 August, 2014. IEEE Computer Society,
2014, pp. 253–260. isbn: 978-1-4799-5392-9. doi: 10.1109/NCA.2014.44. url:
http://dx.doi.org/10.1109/NCA.2014.44.

[3] Manjunath Doddavenkatappa, Mun Choon Chan, and Akkihebbal L. Ananda. “In-
driya: A Low-Cost, 3D Wireless Sensor Network Testbed”. In: Testbeds and Re-
search Infrastructure. Development of Networks and Communities - 7th Interna-
tional ICST Conference,TridentCom 2011, Shanghai, China, April 17-19, 2011,
Revised Selected Papers. 2011, pp. 302–316. doi: 10.1007/978-3-642-29273-
6_23. url: http://dx.doi.org/10.1007/978-3-642-29273-6_23.

[4] J. K. Hedrick, M. Tomizuka, and P. Varaiya. “Control issues in automated highway
systems”. In: IEEE Control Systems 14.6 (Dec. 1994), pp. 21–32. issn: 1066-033X.
doi: 10.1109/37.334412.

[5] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996. isbn: 1-55860-
348-4.

[6] R. J. McEliece and D. V. Sarwate. “On Sharing Secrets and Reed-Solomon Codes”.
In: Commun. ACM 24.9 (1981), pp. 583–584. issn: 0001-0782. doi: 10.1145/
358746.358762. url: http://doi.acm.org/10.1145/358746.358762.

[7] Takashi Nagatani. “Modified KdV equation for jamming transition in the contin-
uum models of traffic”. In: Physica A: Statistical Mechanics and its Applications
261.3 (1998), pp. 599 –607. issn: 0378-4371. doi: http://dx.doi.org/10.1016/
S0378- 4371(98)00347- 1. url: http://www.sciencedirect.com/science/
article/pii/S0378437198003471.

[8] Kai Nagel, Dietrich E. Wolf, Peter Wagner, and Patrice Simon. “Two-lane traffic
rules for cellular automata: A systematic approach”. In: Phys. Rev. E 58 (2 Aug.
1998), pp. 1425–1437. doi: 10.1103/PhysRevE.58.1425. url: https://link.
aps.org/doi/10.1103/PhysRevE.58.1425.

105

https://doi.org/10.1007/s00446-007-0053-x
http://dx.doi.org/10.1007/s00446-007-0053-x
http://dx.doi.org/10.1007/s00446-007-0053-x
https://doi.org/10.1109/NCA.2014.44
http://dx.doi.org/10.1109/NCA.2014.44
https://doi.org/10.1007/978-3-642-29273-6_23
https://doi.org/10.1007/978-3-642-29273-6_23
http://dx.doi.org/10.1007/978-3-642-29273-6_23
https://doi.org/10.1109/37.334412
https://doi.org/10.1145/358746.358762
https://doi.org/10.1145/358746.358762
http://doi.acm.org/10.1145/358746.358762
https://doi.org/http://dx.doi.org/10.1016/S0378-4371(98)00347-1
https://doi.org/http://dx.doi.org/10.1016/S0378-4371(98)00347-1
http://www.sciencedirect.com/science/article/pii/S0378437198003471
http://www.sciencedirect.com/science/article/pii/S0378437198003471
https://doi.org/10.1103/PhysRevE.58.1425
https://link.aps.org/doi/10.1103/PhysRevE.58.1425
https://link.aps.org/doi/10.1103/PhysRevE.58.1425


Bibliography

[9] E. Ono, S. Hosoe, Hoang D. Tuan, and S. Doi. “Bifurcation in vehicle dynamics
and robust front wheel steering control”. In: IEEE Transactions on Control Systems
Technology 6.3 (May 1998), pp. 412–420. issn: 1063-6536. doi: 10 . 1109 / 87 .
668041.

[10] Taegeun Park. “Design of the (248,216) Reed-Solomon decoder with erasure correc-
tion for Blu-ray disc”. In: IEEE Transactions on Consumer Electronics 51.3 (Aug.
2005), pp. 872–878. issn: 0098-3063. doi: 10.1109/TCE.2005.1510497.

[11] James S Plank et al. “A tutorial on Reed-Solomon coding for fault-tolerance in
RAID-like systems”. In: Softw., Pract. Exper. 27.9 (1997), pp. 995–1012.

[12] Irving S Reed and Gustave Solomon. “Polynomial codes over certain finite fields”.
In: J. Society for Industrial & Applied Math. 8.2 (1960), pp. 300–304.

[13] Adi Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (1979), pp. 612–
613. doi: 10.1145/359168.359176. url: http://doi.acm.org/10.1145/359168.
359176.

[14] DVAHG Swaroop and JK Hedrick. “Constant spacing strategies for platooning in
automated highway systems”. In: Journal of dynamic systems, measurement, and
control 121.3 (1999), pp. 462–470.

106

https://doi.org/10.1109/87.668041
https://doi.org/10.1109/87.668041
https://doi.org/10.1109/TCE.2005.1510497
https://doi.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176

	Abstract
	Acknowledgements
	List of Appended Papers
	Introduction
	Models
	Fault-Tolerance
	Summary
	First Paper: Self-stabilising TDMA Algorithms for Wireless Ad-hoc Networks without External Reference
	Second Paper: DecTDMA: A Decentralized-TDMA with Link Quality Estimation for WSNs
	Third Paper: Robust and Private Distributed Shared Atomic Memory in Message Passing Networks
	Fourth Paper: Changing Lanes on a Highway


	Self-stabilizing TDMA Algorithms
	Introduction
	System Settings
	Basic Results
	Probabilistic stabilising TDMA Allocation and Alignment Algorithm
	Experimental results
	Conclusions
	Acknowledgements

	DecTDMA: A Decentralized-TDMA with Link Quality Estimation for WSNs
	Introduction
	Background: Time Slot Alignment and Allocation
	TDMA Protocol with Link Quality Estimation
	Evaluation
	Related Work
	Discussion

	Robust and Private Distributed Shared Atomic Memory
	Introduction
	System Settings
	The Algorithm
	Conclusions

	Changing Lanes on a Highway
	Introduction
	Lane-Changing Problem
	Objectives
	Model of Computation
	Contributions

	Upper Bounds
	The Algorithm
	The Analysis

	Optimum Solution
	Correctness of the direct solver

	Optimum Agent Sorting is NP-hard: the Proof Details
	The construction of the stream R, for a given graph G:=(V,E)
	Moving agents to their target lanes at the lower and upper cavities
	Motivating the wall thickness
	Estimating the running time of the construction procedure
	Optimum placement functions and paths that lead to them
	Ac complies with Ao's solution and it is optimum
	The reduction proof


	Discussion and Conclusion

